
Assembly/Machine Language

CPE380, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Compiling a C Program

1. Compiler generates assembly code
2. Assembler creates binary modules

– Machine code, data, & symbolic info
– Libraries are modules too

3. Linker combines needed modules into one
4. Loader is the part of the OS that loads a

module into memory for execution

• Usually, HLL programmers don't see this;
1-3 invoked by cc, 4 when you run the program

Assembly Language(s)?

• Not one language, but one per ISA
• “Human readable” textual representation

– Typically, one line becomes one instruction
– May also have macros
– Directives control assembly, specify data

• Used to be used for programming... now:
– Used mostly as compiler target
– People use it for debugging, performance

tweaking, or when no other option exists

Which Assembly Language?

• Which assembly language will we use?
– MIPS?
– IA32 or AMD64/Intel64/X86-64?
– ARM?

• We'll start with a simple stack instruction set:
– Close to what most compilers do internally
– Can transform to whichever

• No, the stack instruction set isn't in the text...

Worlds Inside Programs

• Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

• Code:
– Assignments & expressions
– Control flow
– Functions & subroutines

• Data

• Comments – which we'll ignore :-(

Worlds Inside Programs

• Most programming languages are very similar,
procedural (as opposed to descriptive, etc.)

• Code:
– Assignments & expressions – varies widely
– Control flow – easy, similar in most ISAs
– Functions & subroutines – complex!

• Data – easy, similar in most ISAs

• Comments – which we'll ignore :-(

Control Flow

• Determines sequence/order of operations
(orders can be parallel)

• HLLs have many constructs:
• if-then-else, switch-case, etc.
• while-do, repeat-until, for, etc.
• goto, break, continue

• Most assembly languages just have goto
and conditional goto... so that's what we
must use to implement everything

Compilation / Translation

• Compiler “understands” program and translates
it into a language the machine can execute...?

• Compilation is really based on “compiling” a
bunch of code chunks that represent each part
of your program into the translated constructs

• Compiler optimization isn't really “optimal” –
apply correctness-preserving transformations

• Parallelizing is reordering operations; optimizing
by making various things happen in parallel

Translation Templates

• It's about pattern matching & substitution
– Patterns contain terminals
– Also contain nested patterns (nonterminals)

• General form:

nonterminal: {list of terminals & nonterminals}

{output pattern}

if (expr) stat

• expr and stat are names of other patterns
• Jump over stat if expr is false, create label

{code for expr}
Test
JumpF L
{code for stat}

L:

if (expr) stat1 else stat2

• stat1 and stat2 are just stat
• Jump over stat2 if stat1 was executed

{code for expr}
Test
JumpF L
{code for stat1}
Jump M

L: {code for stat2}
M:

if (expr) stat1 else stat2

• There are two jumps for the then clause...
why not reorder to make that the fast case?

{code for expr}
Test
JumpT L
{code for stat2}
Jump M

L: {code for stat1}
M:

while (expr) stat

• Loop body executes 0 or more times

L: {code for expr}
Test
JumpF M
{code for stat}
Jump L

M:

do stat while (expr);

• Loop body executes 1 or more times
• Code is more efficient than for while loop

L: {code for stat}
{code for expr}
Test
JumpT L

while (expr) stat

• Improve while by using do-like sequence
enclosed in an if

{code for expr}
Test
JumpF M

L: {code for stat}
{code for expr}
Test
JumpT L

M:

while (expr) stat

• Improve while by jumping into loop...
nothing wrong with unstructured code here

Jump M
L: {code for stat}
M: {code for expr}

Test
JumpT L

for (expr1;expr2;expr3) stat

• Really “syntactic sugar” for:

expr1;
while (expr2) {
 stat;
L: expr3;
}

• Only difference is continue goes to L

DO label var=expr1,expr2,expr3

• Fortran DO loops imply lots of stuff, e.g.:
– Is loop counting up or down?
– If var is a real, Fortran requires converting

the index into an integer to avoid roundoff

• Implying more information is just more syntactic
sugar – use a simpler source language pattern
to encode a more complex, but common, target
code sequence

switch (expr) stat

• Not equivalent to a sequence of if statements;
this is C's version of a “computed goto”

• The case labels inside stat are merely labels,
and so is default, which is why there's break

• Depending on case values, compilers code as:
– Linear sequence of if-gotos
– Binary search of if-gotos
– Index a table of goto targets
– Combinations of the above...

Assignments & Expressions

• This is where the computation happens

• Assignment notation was a major advance;
Cobol's add c to b giving a is a=b+c

• Expressions (expr) compute a value

• Assignments associate a value with a name:

name=expr

name=expr ?

• Not really math; it binds a value to a name

• Names (lval) are places that can hold values;
registers or main memory addresses

• Expressions (rval, value) are computed results

• Consider some examples:
a=5 associates value 5 with name a
5=a 5 is not a name
a=b associates a copy of b's value with a

a=5

• Let's generate simple stack code for this...

Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a

• but where's the ; at the end?
– C has an assignment operator
– ; simply means discard the value produced

a=5;

Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a
Pop ;discard remaining 5

b=(a=5);

• b gets a copy of a's value

Push b ;push &b on stack
Push a ;push &a on stack
Push 5 ;push the value 5
Store ;*(&a)=5, remove &a
Store ;*(&b)=5, remove &b
Pop ;discard remaining 5

b+c

• What does b+c mean – what's added?
It adds rvals to produce an rval result.

• What does b.c mean?
It adds lvals to produce an lval result:
&b + offset_of_field_c

• What does b[c] mean?
It adds lval+rval to produce an lval result:
&(b[0]) + (c * sizeof(b[c]))

• If you know which are lvals and rvals, it's easy...

a=(b+c);

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Store ;a=b+c, remove &a
Pop ;discard remaining b+c

a=(b+c);

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Store ;a=b+c, remove &a
Pop ;discard remaining b+c

if (b+c) stat;

Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Add ;replace b, c with b+c
Test ;tests and pops
JumpF L
{code for stat}

L:

if (b<c) stat;

Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Lt ;replace b, c with b<c
Test ;tests and pops
JumpF L
{code for stat}

L:

a=(b+(5*c));

Push a ;push &a on stack
Push b ;push &b on stack
Ind ;replace &b with *(&b)
Push 5 ;push 5 on stack
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Mul ;5, c becomes 5*c
Add ;b, 5*c becomes b+5*c
Store ;a=b+5*c, remove &a
Pop ;discard b+5*c

a=b[c];

Push a ;push &a on stack
Push b ;push &b on stack
Push c ;push &c on stack
Ind ;replace &c with *(&c)
Push 4 ;push sizeof(b[c])
Mul ;c, 4 becomes c*4
Add ;&b, c*4 becomes &b+c*4
Ind ;&(b[c]) becomes b[c]
Store ;a=b[c], remove &a
Pop ;discard b[c]

Different Models

• Stack code – easy to generate, as you saw…

• General Register code
– 3 operand (MIPS): reg1 = reg2 op reg3
– 2 operand (IA32): reg1 = reg1 op reg3
– accumulator: acc = acc op mem

• Load/Store vs. memory operands:
reg1 = reg1 op mem

• HLL-oriented Memory-to-Memory (IAPX432):
e.g., a[i] = b[j] * c[k]

a=b[c];

Push a ;stack: &a
Push b ;stack: &a, &b
Push c ;stack: &a, &b, &c
Ind ;stack: &a, &b, c
Push 4 ;stack: &a, &b, c, 4
Mul ;stack: &a, &b, c*4
Add ;stack: &a, &(b[c])
Ind ;stack: &a, b[c]
Store ;stack: b[c]
Pop ;stack:

a=b[c];

Push a ;r0=&a
Push b ;r0=&a, r1=&b
Push c ;r0=&a, r1=&b, r2=&c
Ind ;r0=&a, r1=&b, r2=c
Push 4 ;r0=&a, r1=&b, r2=c, r3=4
Mul ;r0=&a, r1=&b, r2=c*4
Add ;r0=&a, r1=&(b[c])
Ind ;r0=&a, r1=b[c]
Store ;r0=b[c]
Pop

a=b[c];

Push a ;r0=&a Li r0,a
Push b ;r1=&b Li r1,b
Push c ;r2=&c Li r2,c
Ind ;r2=c Lw r2,@r2
Push 4 ;r3=4 Li r3,4
Mul ;r2=c*4 Mul r2,r2,r3
Add ;r1=&(b[c]) Add r1,r1,r2
Ind ;r1=b[c] Lw r1,@r1
Store ;r0=b[c] Sw r1,@r0
Pop

Two Vs. Three Operands

• Uses fewer instruction bits...
MIPS three of 32 registers takes 3*5=15 bits;
IA32 two of 8 registers takes 2*3=6 bits

• From stack code, it doesn't cost anything

• With a smart compiler avoiding recomputation
(e.g., via common subexpression elimination),
might need to fake three operands:

Op r1,r2,r3 becomes Mov r1,r2
Op r1,r3

Two Vs. Three Operands

Li r0,a Li r0,a
Li r1,b Li r1,b
Li r2,c Li r2,c
Lw r2,@r2 Lw r2,@r2
Li r3,4 Li r3,4
Mul r2,r2,r3 Mul r2,r3
Add r1,r1,r2 Add r1,r2
Lw r1,@r1 Lw r1,@r1
Sw r1,@r0 Sw r1,@r0

Load/Store Vs. Mem Operands

• Easier to build pipelined implementation if
load/store are the only memory accesses
(as in RISC architectures like MIPS)

• Memory used to be faster and processor
couldn't fit lots of registers...
– Memory operands mean fewer instructions
– Pairs well with two operand forms (IA32)
– Accumulator must allow memory operands

(where else to get second operand?)

Load/Store Vs. Mem Operands

Load/Store 2 Operand Accumulator
with Mem with Mem

Li r0,a
Li r1,b Lw r0,@b Lw @b
Lw r1,@r1
Li r2,c
Lw r2,@r2
Add r1,r1,r2 Add r0,@c Add @c
Sw r1,@r0 Sw r0,@a Sw @a

How Many Registers Needed?

Li r0,a ;1 register
Li r1,b ;2 registers
Li r2,c ;3 registers
Lw r2,@r2 ;3 registers
Li r3,4 ;4 registers
Mul r2,r2,r3 ;4 registers
Add r1,r1,r2 ;3 registers
Lw r1,@r1 ;2 registers
Sw r1,@r0 ;2 registers

Spill/Reload Fakes More

Li r0,a Li r0,a
Li r1,b Li r1,b
Li r2,c Li r2,c
Lw r2,@r2 Lw r2,@r2
Li r3,4 { Spill t0=r0 }

Li r0,4
Mul r2,r2,r3 Mul r2,r2,r0
Add r1,r1,r2 Add r1,r1,r2
Lw r1,@r1 Lw r1,@r1
Sw r1,@r0 { Reload r0=t0 }

Sw r1,@r0

HLL Memory-to-Memory

• Advantages:
– Easier to write complex assembly code

(but we use compilers for that now and this
actually makes the compiler harder to write)

– Can enforce strict typing, software reliability
(but complicates hardware a lot)

– Allows glueless parallel processing by
keeping all program state in memory
(but memory access is s-l-o-w)

• IAPX432 did this... nothing since then

Parallel Machines
• There are two flavors of large-scale parallelism:

– MIMD: different program on each PE
(multi-core processors, clusters, etc.)

– SIMD: same instruction on PE's local data
(GPUs – graphics processing units)

• Each MIMD PE runs a sequential program...
nothing special in code generation

• SIMD machines are different:
– If one PE executes some code, all must
– Can disable a PE that doesn't want to do it

SIMD Code
• There are two flavors of data

– Singular, Scalar: one value all PEs agree on
– Plural, Parallel: value local to each PE

• Assignments and expressions work normally,
except when mixing singular and plural:
– Singular values can be copied to plurals
– Plural values have to be “reduced” to a single

value to treat as singular; for example, using
operators like any or all

• Control flow is complicated by enable masking...

if (expr) stat

• Jump over stat if expr is false for all PEs;
otherwise, do for all the PEs where it's true

PushEn ;save PE enable state
{code for expr}
Test ;test on each PE...
DisableF ;turn off if false
Any ;any PE still enabled?
JumpF L ;any PE must do stat?
{code for stat}

L:PopEn ;restore enable state

if (c < 5) a = b;

• Masking idea can be used in sequential code to
avoid using control flow: if conversion

• The above can be rewritten as:

a = ((c < 5) ? b : a);

• Bitwise AND with -1 can be used to enable,
while AND with 0 disables, thus simply OR:

t = -(c < 5);
a = ((t & b) | ((~t) & a));

while (expr) stat

• Keep doing stat while expr is true for any
PE; once off, PE stays off until while ends

PushEn ;save PE enable state
M: {code for expr}

Test ;test on each PE...
DisableF ;turn myself off if false
Any ;any PE still enabled?
JumpF L ;exit if no PE enabled
{code for stat}
Jump M

L: PopEn ;restore enable state

Functions & Subroutines

• Mixes expressions and control flow…

• Complex!
– Support of recursion
– Lots of stuff that has to happen
– Each ISA does it a little differently... but

specifies it (e.g., as part of the ABI)

• We'll focus on generically what must happen

Simple Subroutine Call/Return

• Jump, but first save return address on stack

sub(); Push L
Jump sub

L: …

sub() { sub:
… …
return; Ret ;PC=pop

}

Simple Subroutine Call/Return

• Jump, but first save return address on stack
• Very common, and L is actually PC value when

executing, so often a special instruction:

Push L Call sub
Jump sub

L: …

Stack Frame

• The return address isn't all we must pass…

• Everything for a particular call is a stack frame:
– Return address
– Return value (for a function)
– Argument values
– Local variables
– Temporaries
– Optionally, a frame pointer (FP)

• Call/return and stack use is specified in ABI

Function Call

• Reserve space for return value first...
• Then push args & remove them on return

a = f(5); Push a
Push 0 ;ret value
Push 5 ;push arg
Call f
Pop ;pop arg
Store
Pop

Function Call

f(int b) { f: Push 16
return(b+1); ASP

} Push 16
ASP
Ind
Push 1
Add
Store
Pop
Ret

Function Call

f: Push 16 ;offset of ret value (0)
ASP ;add stack pointer
Push 16 ;stack offset of b
ASP
Ind ;get rval of b
Push 1 ;add 1
Add
Store ;store into ret value
Pop ;remove extra copy
Ret

Frame Pointer

• Where did the stack offsets come from?

• Subsequent pushing onto stack changes offset!

f: Push 16 ;stack offset of ret value
...
Push 16 ;stack offset of b

• Frame pointer (FP) points at a fixed point in the
stack (saved FP), forming a linked list of frames

Function Call Using FP

• Mark pushes old FP, makes new FP point at it

• Release restores old FP, removes frame

a = f(5); Push a
Push 0 ;ret value
Push 5 ;push arg
Mark
Call f
Release
Pop ;pop arg
Store
Pop

Function Call Using FP

f(int b) { f: Push 4 ;always f
return(b+1); AFP

} Push -4 ;always b
AFP
Ind
Push 1
Add
Store
Pop
Ret

What Is Passed For Args?
• Call by value: copy of rval

– used by most languages (C, Java, etc.)
– considered safest way to pass values

• Call by address or reference: copy of lval
– used by: ForTran, C* reference, Pascal var
– efficiently avoids copying big data structures

• Call by name or thunk: pointer to function
to compute lval as it would have thunk to earlier
– used by: Algol, some Lisp variants
– interesting, but strange and dangerous

The Operating System (OS)?

• Trusted code that is always present to
control resource allocation at runtime;
it is privileged to touch all hardware

• Invoked by a privileging “call” to trusted code
– User program issues a system call
– Interrupt from an I/O device (e.g., timer)

• OS “return” removes privilege, can return to
a place it didn’t come from (e.g., timesharing)

Enough Generalization: MIPS!

• We'll be using MIPS throughout this course

• A simple, 32-bit, RISC architecture:
– 32 general registers, 3-register operands
– Strict load/store for memory access
– Every instruction is one 32-bit word
– Memory is byte addressed (4 bytes/word)
– Closely matched to the C langauge

MIPS Registers ($ names)

$zero 0 constant 0
$at 1 reserved for assembler
$v0-$v1 2-3 value results
$a0-$a3 4-7 arguments (not on stack)
$t0-$t9 8-15,24-25 temporaries
$s0-$s7 16-23 save before use
$k0-$k1 26-27 reserved for OS kernel
$gp 28 global pointer (const)
$sp 29 stack pointer
$fp 30 frame pointer
$ra 31 return address

MIPS ALU Instructions

• Either 3 reg operands or 2 regs and immediate
16-bit value (sign extended to 32 bits):

add $rd,$rs,$rt #rd=rs+rt
addi $rt,$rs,immed #rt=rs+immed

• Suffix of i means immediate (u for unsigned)

• The usual operations: add, sub, and, or, xor

• Also has set-less-than, slt: rd=(rs<rt)

MIPS Load Immediate

• Can directly load a 16-bit immediate:

addi $rt,$0,imm #rt=0+imm

• For 32-bit, generally use 2 instructions to load
upper 16 bits then OR-in lower 16 bits:

lui $rt,imm #rt=(imm<<16)
ori $rt,$rs,imm #rt=rs|(imm&0xffff)

• MIPS assembler macro does it as li or la:

li $dest,const #dest=const

MIPS Load & Store

• Can access a memory location given by a
register plus a 16-bit Immediate offset:

lw $rt,off($rs) #rt=memory[rs+off]
sw $rt,off($rs) #memory[rs+off]=rt

• Byte and halfword using b and h instead of w

MIPS Jumps

• MIPS has a jump instruction, j:

j address #PC=address

• Call saves return address in $ra: jal addr
• Return is jump register using jr $ra
• Limited range (26 bits) for j or jal;

can do full 32-bit target using jump register:

la $t0,address #t0=address
jr $t0 #PC=t0

MIPS Branches

• MIPS has only conditional branches:

beq $rs,$rt,lab #if rs==rt, PC=lab
bne $rs,$rt,lab #if rs!=rt, PC=lab

• The target is encoded as a 16-bit immediate:

immediate = (lab-(PC+4))>>2

• Branch over jump to target distant address

MIPS Comparisons

• Truth in C is “non-0,” so compare to $0

• Equality comparison can use xor or sub

• Inequality comparisons all use slt:

$t0=$t1<$t2 slt $t0,$t1,$t2

$t0=$t1>=$t2 ! $t0=$t1<$t2

$t0=$t1>$t2 slt $t0,$t2,$t1

$t0=$t1<=$t2 ! $t0=$t1>$t2

MIPS Assembler Notation

• One assembly directive or instruction per line

• # means to end of line is a comment

• Labels look like they do in C, followed by a :

• Directives generally start with a .
.data #the following is static data
.text #the following is code
.globl name #name is what C calls extern
.word value #initialize a word to value
.ascii “abc” #initialize bytes to 97,98,99
.asciiz “abc” #initialize bytes to 97,98,99,0

MIPS References & Tools

• Reference materials:
– The course website
– The textbook
– MIPS cc -S

• Simulator we prefer is SPIM, WWW version:
 http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi

• There’s even a little C-subset compiler:

 http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

http://garage.ece.engr.uky.edu:10043/cgi-bin/cgispim.cgi
http://garage.ece.engr.uky.edu:10043/cgi-big/mucky.cgi

RISC-V vs. MIPS

• RISC-V started at Berkeley in 2010, and is a
“free and open” extendable MIPS-like ISA
https://riscv.org/

• Similar instructions and assembly syntax
• Expandable instruction format, 16-bit parcels
• Branches do comparisons, not just equality
• lui uses 20 bits because immed is 12 bits
• Various ratified extensions: multiplication,

atomics, floats, 16-bit format, vectors, etc.

https://riscv.org/

RISC-V

• Encoding is more complex than MIPS…

Summary

• There are many different assembly languages,
but there are many similarities

• ISA specifies instructions (ABI for conventions)

• MIPS is a very straightforward RISC made for C

• You don't need to write lots of assembly code
– tweak code output by a compiler
– write little wrappers for what compiler can't do

