
A Simple Implementation

CPE380, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Where Is This Stuff?

• Not in the text per se...
• Primary reference is:

http://aggregate.org/CPE380/refs3S25.html

• Textbook appendix B reviews CPE282 stuff...

http://aggregate.org/CPE380/refs3S25.html

A Dumb Implementation

• A design like I learned as an undergrad...
• Can be built with a pile of TTL parts
• Can execute MIPS instructions
• Slow; many clock cycles per instruction

• The key parts:
• Memory
• Processor
• I/O – which we'll ignore for now...

Our Favorite Gates

• In CPE282, you never used one of these:

but they help keep signals digital...
• In CPE380, we use lots of these:

to make bus and mux structures...

Tri-State
(& Open Collector)

Processor/Memory Interface

A bit Of SRAM
(D Flip Flop)

In Verilog

module DFF(q, d, clk);
input d, clk;
output reg q;

always @(posedge clk) q <= d;
endmodule

A Simple Memory

What If Data Is Bidirectional?

In Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
output reg mfc; output reg [7:0] dread;
input [7:0] dwrite; input [15:0] addr;
input rnotw, strobe;
reg [7:0] m [65535:0];

always @(posedge strobe) begin
 mfc = 0;
 if (rnotw) begin
 dread <= m[addr];
 mfc = #4 1; // delay 4 units of simulated time
 end else begin
 m[addr] <= dwrite;
 end
end
endmodule

Parametric Verilog
module memory(mfc, dread, dwrite, addr, rnotw, strobe);
parameter ABITS = 8; parameter DBITS = 16;
output reg mfc; output reg [DBITS-1:0] dread;
input [DBITS-1:0] dwrite; input [ABITS-1:0] addr;
input rnotw, strobe;
reg [DBITS-1:0] m [(1<<ABITS)-1:0];

always @(posedge strobe) begin
 mfc = 0;
 if (rnotw) begin
 dread <= m[addr];
 mfc = #4 1; // delay 4 units of simulated time
 end else begin
 m[addr] <= dwrite;
 end
end
endmodule

A bit Of DRAM

• Data to Vcc to store 1
• Data to Gnd to store 0
• Read: dump charge, amplify, & threshold

– Analog – slow & noise sensitive
– Destructive (need to refresh value)

• Charge slowly leaks (need to refresh)

Inside The Processor

In Verilog

`define WORD [31:0] // size of a data word
`define STATENO [31:0] // size of a state number

module module processor(halt, reset, clk);
output reg halt;
input reset, clk;
reg `WORD IR, PC, MAR, MDR, Y, ALUMUX, ALUZ;
reg rnotw, strobe;
wire mfc;
wire `WORD dread;
reg `WORD addr;
reg `STATENO STATE;
...
memory mainmem(mfc, dread, MDR, MAR, rnotw, strobe);
...
endmodule

Something To Run It…

module testbench;
reg reset = 1;
reg clk = 0;
wire halt;

processor PE(halt, reset, clk);

initial begin
 #1 reset = 0;
 while (!halt) begin
 #1 clk = 1;
 #1 clk = 0;
 end
end
endmodule

Control Logic

• A big state machine (spec. by names)
– Begins by fetching instruction
– Decoding instruction sends us to

particular instruction's state sequence
– Ends by going to fetch next instruction

• Instruction decode logic
when mask match lab

– Applied in state with JUMPONOP
– if ((IR & mask) == match) goto lab;

Instruction Fetch Sequence

• Not dependent on instruction – can't be
• Also does PC+=4

Start: PCout,MARin,MEMread,Yin
 CONST(4),ALUadd,Zin,UNTILmfc
 MDRout,Irin
 JUMPONOP,Zout,Pcin
 HALT /* illegal inst. */

MIPS Register Add

• add $rd,$rs,$rt
• Means rd=rs+rt

Add: SELrs,REGout,Yin
 SELrt,REGout,ALUadd,Zin
 Zout,SELrd,REGin,JUMP(Start)

MIPS Register And

• and $rd,$rs,$rt
• Means rd=rs&rt

And: SELrs,REGout,Yin
 SELrt,REGout,ALUand,Zin
 Zout,SELrd,REGin,JUMP(Start)

MIPS Load Word

• lw $rt,immed($rs)
• Means rt=mem[immed+rs]

Lw: SELrs,REGout,Yin
 IRIMMEDout,ALUadd,Zin
 Zout,MARin,MEMread
 UNTILmfc
 MDRout,SELrt,REGin,JUMP(Start)

MIPS Store Word

• sw $rt,immed($rs)
• Means mem[immed+rs]=rt
• Don't have to wait for write to complete

Sw: SELrt,REGout,MDRin
 SELrs,REGout,Yin
 IRIMMEDout,ALUadd,Zin
 Zout,MARin,MEMwrite,JUMP(Start)

Timing

• Clock period determined by slowest path
in any state – try to minimize variation

• Number of clock cycles/instruction (CPI) is
determined by counting
– Not just count of states passed through
– Time passed waiting counts (UNTILmfc)

• Clock period and CPI usually trade off;
higher Hz often achieved by higher CPI

Clock Period

• Assume the critical state is:

SELrt,REGout,MDRin,ALUadd,Zin

• The paths are:

SELrt > REGout > MDRin
SELrt > REGout > ALUadd > Zin

Reducing Clock Period

• Increase clock speed by replacing:

SELrt,REGout,MDRin,ALUadd,Zin

• With:

SELrt,REGout,MDRin
MDRout,ALUadd,Zin

Counting CPI

• Instruction fetch time counts
• Time between MEMread and UNTILmfc

Lw: SELrs,REGout,Yin +1
 IRIMMEDout,ALUadd,Zin +1
 Zout,MARin,MEMread +1
 UNTILmfc +?
 MDRout,SELrt,REGin,JUMP(Start) +1

Cycle-Accurate Simulation

• Custom-built full simulator for CPE380
– Textual state machine specification
– Can define signal delays
– Can define initial & final conditions
– Built-in mini MIPS assembler

http://aggregate.org/CPE380/refss.html

• Actual simulator is live at
https://aggregate.org/cgi-bin/simple.cgi

http://aggregate.org/EE380/s21a1.html

http://aggregate.org/CPE380/refss.html
https://aggregate.org/cgi-bin/simple.cgi

A Verilog Implementation

• Design for simulation, not rendering HW
• Key ideas:

– `define control signals & constants
– module memory(…);

Models main memory
– module processor(halt,reset,clk);

Models the complete processor
– module bench;

Drives the simulation

Verilog Simulation

• Don’t have to go low level:

http://aggregate.org/CPE380/multiS25.html

• Don’t have to feed it raw bits either;
here’s a (slightly mutant) MIPS assembler:

http://aggregate.org/CPE380/mipsaik.html

but I don’t expect you to be using AIK

http://aggregate.org/CPE380/multiS25.html
http://aggregate.org/CPE380/mipsaik.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30

