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Where Is This Stuff?

• Not in the text per se...
• Primary reference is:

http://aggregate.org/CPE380/refs3S25.html 

• Textbook appendix B reviews CPE282 stuff...

http://aggregate.org/CPE380/refs3S25.html


A Dumb Implementation

• A design like I learned as an undergrad...
• Can be built with a pile of TTL parts
• Can execute MIPS instructions
• Slow; many clock cycles per instruction

• The key parts:
• Memory
• Processor
• I/O – which we'll ignore for now...



Our Favorite Gates

• In CPE282, you never used one of these:

but they help keep signals digital...
• In CPE380, we use lots of these:

to make bus and mux structures...



Tri-State
(& Open Collector)



Processor/Memory Interface



A bit Of SRAM
(D Flip Flop)



In Verilog

module DFF(q, d, clk);
input d, clk;
output reg q;

always @(posedge clk) q <= d;
endmodule



A Simple Memory



What If Data Is Bidirectional?



In Verilog

module memory(mfc, dread, dwrite, addr, rnotw, strobe);
output reg mfc; output reg [7:0] dread;
input [7:0] dwrite; input [15:0] addr;
input rnotw, strobe;
reg [7:0] m [65535:0];

always @(posedge strobe) begin
  mfc = 0;
  if (rnotw) begin
    dread <= m[addr];
    mfc = #4 1; // delay 4 units of simulated time
  end else begin
    m[addr] <= dwrite;
  end
end
endmodule



Parametric Verilog
module memory(mfc, dread, dwrite, addr, rnotw, strobe);
parameter ABITS = 8; parameter DBITS = 16;
output reg mfc; output reg [DBITS-1:0] dread;
input [DBITS-1:0] dwrite; input [ABITS-1:0] addr;
input rnotw, strobe;
reg [DBITS-1:0] m [(1<<ABITS)-1:0];

always @(posedge strobe) begin
  mfc = 0;
  if (rnotw) begin
    dread <= m[addr];
    mfc = #4 1; // delay 4 units of simulated time
  end else begin
    m[addr] <= dwrite;
  end
end
endmodule



A bit Of DRAM

• Data to Vcc to store 1
• Data to Gnd to store 0
• Read: dump charge, amplify, & threshold

– Analog – slow & noise sensitive
– Destructive (need to refresh value)

• Charge slowly leaks (need to refresh)



Inside The Processor



In Verilog

`define WORD [31:0] // size of a data word
`define STATENO [31:0] // size of a state number

module module processor(halt, reset, clk);
output reg halt;
input reset, clk;
reg `WORD IR, PC, MAR, MDR, Y, ALUMUX, ALUZ;
reg rnotw, strobe;
wire mfc;
wire `WORD dread;
reg `WORD addr;
reg `STATENO STATE;
...
memory mainmem(mfc, dread, MDR, MAR, rnotw, strobe);
...
endmodule



Something To Run It…

module testbench;
reg reset = 1;
reg clk = 0;
wire halt;

processor PE(halt, reset, clk);

initial begin
  #1 reset = 0;
  while (!halt) begin
    #1 clk = 1;
    #1 clk = 0;
  end
end
endmodule





Control Logic

• A big state machine (spec. by names)
– Begins by fetching instruction
– Decoding instruction sends us to

particular instruction's state sequence
– Ends by going to fetch next instruction

• Instruction decode logic
when mask match lab

– Applied in state with JUMPONOP
– if ((IR & mask) == match) goto lab;



Instruction Fetch Sequence

• Not dependent on instruction – can't be
• Also does PC+=4

Start: PCout,MARin,MEMread,Yin
       CONST(4),ALUadd,Zin,UNTILmfc
       MDRout,Irin
       JUMPONOP,Zout,Pcin
       HALT /* illegal inst. */



MIPS Register Add

• add $rd,$rs,$rt
• Means rd=rs+rt

Add: SELrs,REGout,Yin
     SELrt,REGout,ALUadd,Zin
     Zout,SELrd,REGin,JUMP(Start)



MIPS Register And

• and $rd,$rs,$rt
• Means rd=rs&rt

And: SELrs,REGout,Yin
     SELrt,REGout,ALUand,Zin
     Zout,SELrd,REGin,JUMP(Start)



MIPS Load Word

• lw $rt,immed($rs)
• Means rt=mem[immed+rs]

Lw: SELrs,REGout,Yin
    IRIMMEDout,ALUadd,Zin
    Zout,MARin,MEMread
    UNTILmfc
    MDRout,SELrt,REGin,JUMP(Start)



MIPS Store Word

• sw $rt,immed($rs)
• Means mem[immed+rs]=rt
• Don't have to wait for write to complete

Sw: SELrt,REGout,MDRin
    SELrs,REGout,Yin
    IRIMMEDout,ALUadd,Zin
    Zout,MARin,MEMwrite,JUMP(Start)



Timing

• Clock period determined by slowest path
in any state – try to minimize variation

• Number of clock cycles/instruction (CPI) is
determined by counting
– Not just count of states passed through
– Time passed waiting counts (UNTILmfc)

• Clock period and CPI usually trade off;
higher Hz often achieved by higher CPI



Clock Period

• Assume the critical state is: 

SELrt,REGout,MDRin,ALUadd,Zin

• The paths are:

SELrt > REGout > MDRin
SELrt > REGout > ALUadd > Zin



Reducing Clock Period

• Increase clock speed by replacing:

SELrt,REGout,MDRin,ALUadd,Zin

• With:

SELrt,REGout,MDRin
MDRout,ALUadd,Zin



Counting CPI

• Instruction fetch time counts
• Time between MEMread and UNTILmfc

Lw: SELrs,REGout,Yin +1
    IRIMMEDout,ALUadd,Zin +1
    Zout,MARin,MEMread +1
    UNTILmfc +?
    MDRout,SELrt,REGin,JUMP(Start) +1



Cycle-Accurate Simulation

• Custom-built full simulator for CPE380
– Textual state machine specification
– Can define signal delays
– Can define initial & final conditions
– Built-in mini MIPS assembler

http://aggregate.org/CPE380/refss.html

• Actual simulator is live at
https://aggregate.org/cgi-bin/simple.cgi 

http://aggregate.org/EE380/s21a1.html

http://aggregate.org/CPE380/refss.html
https://aggregate.org/cgi-bin/simple.cgi


A Verilog Implementation

• Design for simulation, not rendering HW
• Key ideas:

– `define control signals & constants
– module memory(…);

Models main memory
– module processor(halt,reset,clk);

Models the complete processor
– module bench;

Drives the simulation



Verilog Simulation

• Don’t have to go low level:

http://aggregate.org/CPE380/multiS25.html 

• Don’t have to feed it raw bits either;
here’s a (slightly mutant) MIPS assembler:

http://aggregate.org/CPE380/mipsaik.html

but I don’t expect you to be using AIK

http://aggregate.org/CPE380/multiS25.html
http://aggregate.org/CPE380/mipsaik.html
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