
Memories

EE685, Fall 2025

Hank Dietz

http://aggregate.org/EE685

http://aggregate.org/EE685

Memory Terminology
• Volatile – power off, data fades away
• ROM – non-volatile Read Only Memory
• PROM, EPROM, OTP, EEROM, Flash, 3DXPoint –

types of non-volatile programmable memory
• RAM – Random Access Memory (mostly volatile)

• Core – non-volatile magnetic RAM technology
• SRAM – Static RAM, fast but big cells
• DRAM – Dynamic RAM, slow but small cells
• EDO, SDRAM, DDR, RamBus – DRAM types
• CXL – Compute eXpress Link

• Registers, Cache – fast working memories

https://media-www.micron.com/-/media/client/global/documents/products/white-paper/cxl_impact_dram_bit_growth_white_paper.pdf

More Memory Terminology

• Punched cards
• Punched paper tape
• Tape, Magtape
• Drum
• Disks:

Floppy, Hard, Magneto-optical, Compact Disc,
Digital Video (Versatile?) Disc, Blu-ray

• Solid State Disk, Optane

What we want, what we have

• What we want:
• Unlimited memory space
• Fast, constant, access time

(UMA: Uniform Memory Access)
• What we have:

• Memories are getting bigger
• Growing complexity memory hierarchy
• Temporal and spatial locality issues

(NUMA: Non-Uniform Memory Access)

Memory speed hasn’t kept up

• Pre-1970s memory faster than processor...

• Now thousands of times slower to access

Multi-core processor chips

• E.g., Intel Core i7 generates up to 2 refs/clock
for each of 4 cores @ 3.2GHz

– 25.6G 64-bit data refs/s
– 12.8G 128-bit inst. refs/s

Total 409.6GB/s… but DRAM is 25GB/s!
• Multi-port pipelined cache
• Multiple levels of caching
• Logic to support sharing
• Large fraction of area & power budget

Regs: a few kB, 1 cycle
L1 Cache: 64kB, ~4 cycles
L2 Cache: 2MB, ~12 cycles
L3 Cache: 16MB, ~43 cycles
Main Memory: 32GB, $4/GB,

~248 cycles
SSD: 512GB, $0.10/GB,

~200k cycles,
Magnetic Disk: 14TB,

$0.018/GB, ~20M cycles

The Memory Hierarchy

How The Hierarchy Helps

• Main memory is too slow & too small; we want:
– Capacity & cost of the big stuff (e.g., disk)
– Access speed of the fast stuff (e.g., regs)

• If most things are in the top layers when we
want to access them, this works…
this is what we call good locality of reference

• Two basic types of locality:
– Temporal: same thing accessed again soon
– Spatial: nearby thing accessed soon

Managing The Hierarchy

• Everything “lives” in the bottom layer (e.g., disk)

• Drop copies in higher layers to access faster
– SSD and disk are slow enough that OS

software can manage copying
– Caches need hardware management
– Register copy management is explicitly done

by the compiler via load/store instructions
(GPUs & microcontrollers often also have
local memories managed by the compiler)

Terms

• Cache line: one block of data in cache
• Dirty line: a block with value different from that

block in lower memory levels
• Hit: data found here
• Hit rate or hit ratio: # hits / # references total
• Hit time: RAM access time + check hit/miss
• Miss: data not here, must forward read request
• Miss rate: # misses / # references total
• Miss penalty: time to replace line & deliver data

Basic cache design issues

• Placement (mapping)
• Identification:

which line within the set do I want?
• Replacement policy:

which line gets kicked-out to make space?
• Write strategy

Placement / Mapping

• Caches are basically hash tables indexed by
hash value of the address requested

• Direct mapped:
Each bucket holds one line

• Set associative:
Each bucket holds set-size lines

• Fully associative:
Only one bucket, which holds all lines

Mapping Addresses
• Each address is {line number} {byte offset in

line}; 32B line [4:0] are → offset
• Cache set (bucket) index is hash({line number}),

often contiguous bits from {line number}
• Line tag field holds bits of {line number} that

are not implied by bucket index

E.g., a 4-way 16KB cache might be:
512 lines, each 32B long, with 128 buckets
Address[4:0] is offset, [11:5] is bucket index

Best replacement policy?
• Direct mapped → no choice
• Random
• Replace a clean (not dirty) line
• LRU (Least Recently Used): mark when line

is accessed, replace not accessed recently
• LFU (Least Frequently Used)
• MRU and MFU: Most “”
• Belady’s MIN: replace line not used for the

longest time in the future (how to know this?)
• Compiler-driven; e.g., using cache bypass

Best replacement policy?

• Sample comparison of LRU vs. Random
• Miss rate %:

LRU Ran LRU Ran LRU Ran
Size 2-way 4-way 8-way
16KB 5.2 5.7 4.7 5.3 4.4 5.0
64KB 1.9 2.0 1.5 1.7 1.4 1.5
256KB 1.15 1.17 1.13 1.13 1.12 1.12

Write strategy

• Write through
– Write always goes to main memory
– Easy; needed for I/O devices in memory

• Write back
– Write only when line replaced, saving traffic
– Could do lazy writes when not busy
– May need to read on miss to get rest of line

• Write allocate: write back, but don’t wait for
line to be read first; aka pre-arrival caching

Write Buffer

• Sort-of like a “level 0 data cache”
(faster because no TLB in front of it)

• Buffer can re-group writes to form write to a
larger fraction of a line (not just one byte or
word)

• Need to be careful about task switches, etc.;
may have to flush write buffer often

What causes a miss?
• Compulsory

– Never touched this block before
– Shared fetch effect can avoid these when

another process touches what I want first
• Capacity

– Could have been from cache, but didn’t fit
• Conflict

– Could have fit, but cache mapping had a
conflict with another line that caused this
line to be replaced (e.g., direct mapped)

Cache optimizations

• Larger total cache size
– Fewer capacity & conflict misses
– Dumber replacement policy works ok
– Increases hit time, die space, and power use

• Larger line size
– Fewer compulsory misses (spatial locality)
– More capacity & conflict misses
– Increases miss penalty (block transfer time)

More cache optimizations

• Higher associativity
– Reduces conflict misses
– Increases hit time & power use

• More levels of cache
– Smaller, faster, upper-level caches
– More complex hardware structure

Still more cache optimizations

• Priority to read misses over writes
– Reduces miss penalty
– Modest increase in design complexity

• Avoiding address translation before indexing
– Reduces hit time
– Not what operating systems expect
– Frequent cache flushes or need PID tags

Advanced cache optimizations

Small & simple L1 caches

• Critical timing path is
Access tags compare tags select line→ →

• Direct-mapped can overlap tag compare with
transmission of line data

• Lower associativity reduces power
(fewer comparators, narrower data access)

Advanced cache optimizations

Small & simple L1 caches

Access time vs. L1 size and associativity

Advanced cache optimizations

Small & simple L1 caches

Read energy vs. L1 size and associativity

Advanced cache optimizations

Way prediction

• Used in MIPS R1000, ARM Cortex-A8
– Helps where tag compares are serialized
– Mispredict increases hit time
– Accuracy >90% for 2-way, >80% 4-way
– Inst. cache more predictable than data

• Way selection predicts line data and tag

Advanced cache optimizations

Pipelined cache

• Improves bandwidth
• Easier to do higher associativity
• Branch mispredict time increases
• Examples:

Pentium was 1 cycle
Pentium Pro – III were 2 cycles
Pentium 4 – Core i7 are 4 cycles

Advanced cache optimizations

Non-blocking cache

• Allows hits before previous misses complete
– “Hit under miss”
– “Hit under multiple miss”

• Required for L2 caches
• Processors can’t hide L2 miss penalty

Advanced cache optimizations

Non-blocking cache

Advanced cache optimizations

Multi-banked cache
• Fragment cache into independent banks

– ARM Cortex-A8 supports 1-4 banks of L2
– Intel i7 supports 4-bank L1, 8-bank L2

• Banks commonly interleave on low bits of
line address (sequential interleaving):

Advanced cache optimizations

Critical word first

• Requested word in line is fetched first
• Requested word is returned immediately upon

arrival at the cache – don’t wait for full line
• Other words of line fetched in some order
• Can use rotated order

– Start at word k, ith fetch is (k+i)%n
– Sort-of like assuming sequential prefetch

Advanced cache optimizations

Early restart

• Requests words in normal order
• Requested word is returned immediately upon

arrival at cache – don’t wait for full line
• Potentially simpler than critical word first,

probably not as effective…

Advanced cache optimizations

Merging write buffer
• This is the write buffer described earlier…

essentially a FIFO of lines
• Does NOT always treat write buffer as a FIFO

– Each line tracks which fields are “present”
– Collects word writes into the same line entry
– I/O addresses must still be FIFO

• Increases effective size of write buffer
• If entire line is present, cache doesn’t need to

read the missing parts

Compiler optimizations

Linker optimization

• Changing link order can change caching by
changing which addresses conflict in cache
– If f() calls g(), different buckets for f() and g()
– Profiling to detect conflict pattern

• Same idea can be used to pick addresses for
data structures

Compiler optimizations

• Restructure code to change data access pattern
– Group data (data layout)
– Reorder accesses (loop transformations)

• Prevent cache pollution
– Why cache what you get from a register?
– Often double-map: cache / bypass

• Avoid saving data that isn’t used again

Compiler optimizations

Merging/splitting arrays
• Array elements accessed together can be

grouped together to enhance spatial locality
• Also separate those not accessed together

E.g., suppose a[i] and c[i] accessed together:

int a[N], b[N], c[N];
struct { int a, b, c; } abc[N];
struct { int a, c; } ac[N]; int b[N];

Compiler optimizations

Loop interchange
• Loop nest traversal order matches data layout
• Improves spatial locality

E.g., if a[0][0] is next to a[0][1]:

for (i=0; i<N; ++i)
 for (j=0; j<M; ++j) a[i][j] = 0;
for (j=0; j<M; ++j)
 for (i=0; i<N; ++i) a[i][j] = 0;

Compiler optimizations

Loop fusion
• Fuse loops that work on similar data
• Improves spatial locality

for (i=0; i<N; ++i)
 for (j=0; j<M; ++j)
 a[i][j] = b[i][j] + c[i][j];
for (i=0; i<N; ++i)
 for (j=0; j<M; ++j)
 d[i][j] = a[i][j] * c[i][j];
for (i=0; i<N; ++i)
 for (j=0; j<M; ++j) {
 a[i][j] = b[i][j] + c[i][j];
 d[i][j] = a[i][j] * c[i][j]; }

Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (i=0; i<N; ++i)
 for (j=0; j<N; ++j) {
 r = 0;
 for (k=0; k<N; ++k)
 r += y[i][k] * z[k][j];
 x[i][j] = r; }

Compiler optimizations

Loop blocking/stenciling

• Iterate in pattern that maximizes reuse

for (jj=0; jj<N; jj+=B)
 for (kk=0; kk<N; kk+=B)
 for (i=0; i<N; ++i)
 for (j=jj; j<min(jj+B,N); ++j) {
 r = 0;
 for (k=kk; k<min(kk+B,N); ++k)
 r += y[i][k] * z[k][j];
 x[i][j] += r; }

Prefetching
• Software (by compiler)

– Hoist load to earlier position in program
– Suggest hardware load into cache

• Hardware
– Assume or recognize reference pattern

and request expected next early
– Line +/-1, strided, other patterns

• Works better for instructions than data
• Generally can abort a prefetch to cache,

Prefetches can’t fault (no exceptions)

Prefetching

• Fetch line and next line on a miss (Pentium 4)

Consistency Models

• The volatile keyword in C/C++ gives
potential memory order constraints

• Strict: everybody sees result at next tick
• Sequential: everybody sees things as if

they happened in a sequential order
• Weak Ordering: memory barriers/fences

force ordering of before vs. after
• Transactional Memory: uses cache to buffer

speculative memory writes, signal conflicts

Cache Coherence
• How one maintains consistency
• What to do when something writes?

– Invalidate: mark/discard old entries
– Update: use the write data to update

• Who to notify?
– Snooping: everybody watches
– Ownership: only talk to owner
– Directory: permissions, who to notify

• MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid – 4 line states

Verilog Implementation?

• A cache is a memory with the usual address
decode logic, but:
– Address used is hash(memory_address)
– Each Cache memory cell contains

(tag, data, dirty, valid, …)/line
– Tag match and replacement algorithm
– Partial read/write of data field

• State machine sequences operations

• Can be pipelined (even out of order)

• Arranging stuff in memory:
– Code starts at low address (0)
– Static (fixed address) data
– Heap typically grows up
– Stack typically grows down

• Very bad if stack meets heap
– Stack grows to cover SP
– Heap grows by explicit calls to
sbrk(), malloc(), new, etc.

Memory Map of a Process

Memory Map of a Computer

• Originally, loaded one program
at a time
– OS was mostly a “loader”
– User code could do anything

• Still a fairly common model for
embedded computers and various
microcontrollers

• A stray user program could
corrupt the OS… add a fence
register to protect it

• Processor respects fence unless
in privileged mode
– Become priv by system call

or interrupt to trusted address
– Surrender priv when return to

user program

Protection

• Don’t want expensive computer
idle while waiting for printer, etc.
– Load multiple jobs
– Run 1 while 0 is waiting

• Timesharing: alternate running
so all processes make progress

• Want two fence registers...

Batch Scheduling and
Timesharing

Memory Fragmentation

Memory Page Tables

Logical vs. Physical Addresses

• Memory is divided into pages
– Classically, each page is 4kB
– Most systems also support 4MB pages

• Processor outputs logical (aka virtual) address
– Top bits identify page number, bottom offset
– Page table says where each page number is
– Physical address substitutes page address in

memory for logical page number

Page Table Issues

• 4kB pages are quite small...
– IBM PC had 128KB memory, so 32 entries
– With 4GB memory, need 1M page entries!
– Each process needs a page table!

• Translation Lookaside Buffer (TLB)
– Essentially a cache for page table entries
– Translation typically before L1 cache…

so the TLB needs to be fast, hence small
– Can make L1/L2 TLBs, separate for I/D;

don’t wait for L1 miss to start search of L2

A Real Processor: AMD Athlon

4 TLBs: L1+L2 for each of code and data

Page Table Issues

• What happens for a TLB miss?
– Instruction gets stopped, then restarted when

the TLB has the appropriate entry…
this requires hardware support

– Must fetch page table entry (from memory)

• Thus, data in cache might not be accessible
because TLB can’t translate the address:

e.g., L1 64kB cache has 1024 64B lines, but
L1+L2 TLB might only have 256 entries!

Page Table Use

• Prevents memory fragmentation

• Allows per-page access protection (e.g., rwx)

• Don’t need to have everything in main memory!
– Pages can not yet exist
– Pages can be shared between processes
– Pages can exist on disk
– Pages can exist in a networked machine

• Pages can be slow to access from elsewhere

Page Table Benefits
• Pages can not yet exist

– Stack, heap, and space between

• Pages can be shared between processes
– DLLs: Dynamic Link Libraries
– Inter-process communication

• Pages can exist on disk
– Bigger than main memory
– Fault in stuff as needed, mapped file I/O

• Pages can exist in a networked machine
– DSM: Distributed Shared Memory

Verilog Implementation?
• A TLB is a memory with the usual address

decode logic, but:
– Address used is hash(memory_address)
– Each TLB memory cell contains:

(tag, physical_address, status)
– Tag match and replacement algorithm

• Commonly pipelined such that L1 and L2 are
sent a request at the same time and L2 aborts
if L1 succeeds

• Hardware mechanism for handling misses

