Memories

EE685, Fall 2025

Hank Dietz

http://aggregate.org/EE685

http://aggregate.org/EE685

Memory Terminology

Volatile — power off, data fades away

ROM - non-volatile Read Only Memory

PROM, EPROM, OTP, EEROM, Flash, 3DXPoint -
types of non-volatile programmable memory
RAM - Random Access Memory (mostly volatile)
* Core - non-volatile magnetic RAM technology
* SRAM - Static RAM, fast but big cells

* DRAM - Dynamic RAM, slow but small cells

* EDO, SDRAM, DDR, RamBus - DRAM types
* CXL - Compute eXpress Link

Registers, Cache - fast working memories

https://media-www.micron.com/-/media/client/global/documents/products/white-paper/cxl_impact_dram_bit_growth_white_paper.pdf

More Memory Terminology

Punched cards
Punched paper tape
Tape, Magtape
Drum

Disks:

Floppy, Hard, Magneto-optical, Compact Disc,
Digital Video (Versatile?) Disc, Blu-ray

Solid State Disk, Optane

What we want, what we have

* What we want:
* Unlimited memory space
* Fast, constant, access time
(UMA: Uniform Memory Access)
* What we have:
* Memories are getting bigger
. memory hierarchy
* Temporal and spatial locality issues
(NUMA: Non-Uniform Memory Access)

Memory speed hasn’t kept up

* Pre-1970s memory faster than processor...

* Now

Multi-core processor chips

E.g., Intel Core i7 generates up to 2 refs/clock
for each of 4 cores @ 3.2GHz

— 25.6G 64-bit data refs/s

- 12.8G 128-bit inst. refs/s
Total 409.6GB/s... but !
Multi-port pipelined cache
Multiple levels of caching
Logic to support sharing

Decode Buffer Data Registers } Write Buffer

Data L1 TLB

Inst. L1 TLB Inst. L1 Cache Data L1 Cache

8-32KB, 2-3 cycles 8-32KB, 2-3 cycles
Inst. L2 TLB | Data L2 TLB

Shared Inst./Data L2 Cache

Multi—Core Shared L3 Cache

Main Memory (DRAM): 2-64GB, ~1K cycles/reference

v ¢

SSD, Disk, or Disk with SSD cache: 32GB-5TB, ~10K—-10M cycles/reference

v ¢

The Memory Hierarchy

Regs: a few kB, 1 cycle

L1 Cache: 64kB, ~4 cycles
L2 Cache: 2MB, ~12 cycles
L3 Cache: 16 MB, ~43 cycles
Main Memory: 32GB, $4/GB,

, but Fast!

L1 Cache
Commonly built-into
processor chip;

can't easily upgrade

L2 Cache
L3 Cache

~248 CYCIes 5?} / Main Memory Non-volafl
SSD: 512GB, $0.10/GB, °°

storage
~200k cycles, >/ /) \‘e'g"ﬁ'esy“e”‘)

Magnetic Disk: 14TB, C / — \ Lots, but
$0.018/GB, ~20M cycles -’

How The Hierarchy Helps

Main memory is too slow & too small; we want:
— Capacity & cost of the big stuff (e.g., disk)
— Access speed of the fast stuff (e.g., regs)

If most things are in the top layers when we
want to access them, this works...
this is what we call good locality of reference

Two basic types of locality:
- Temporal: same thing accessed again soon
— Spatial: nearby thing accessed soon

Managing The Hierarchy

* Everything “lives” in the bottom layer (e.g., disk)

* Drop copies in higher layers to access faster

- SSD and disk are slow enough that OS
software can manage copying

— Caches need hardware management

- Register copy management is explicitly done
by the compiler via load/store instructions
(GPUs & microcontrollers often also have
local memories managed by the compiler)

Terms

Cache line: one block of data in cache

Dirty line: a block with value different from that
block in lower memory levels

Hit: data found here

Hit rate or hit ratio: # hits / # references total
Hit time: RAM access time + check hit/miss
Miss: data not here, must forward read request
Miss rate: # misses / # references total

Miss penalty: time to replace line & deliver data

Basic cache design issues

Placement (mapping)

|dentification:

which line within the set do | want?
Replacement policy:

which line gets kicked-out to make space?
Write strategy

Placement / Mapping

Caches are basically hash tables indexed by
hash value of the address requested

Direct mapped:

Each bucket holds one line

Set associative:

Each bucket holds set-size lines

Fully associative:

Only one bucket, which holds all lines

Mapping Addresses

Each address is {line number} {byte offset in
line}; 32B line — [4:0] are offset

Cache set (bucket) index is hash({line number}),
often contiguous bits from {line number}

Line tag field holds bits of {/ine number} that

are not implied by bucket index

E.g., a 4-way 16KB cache might be:
512 lines, each 32B long, with 128 buckets
Address[4:0] is offset, [11:5] is bucket index

Best replacement policy?

Direct mapped -

Random

Replace a clean (not dirty) line

LRU (Least Recently Used): mark when line
is accessed, replace not accessed recently
LFU (Least Frequently Used)

MRU and MFU: Most ™

Belady’s MIN: replace line not used for the
longest time in the future (how to know this?)
Compiler-driven; e.g., using cache bypass

Best replacement policy?

* Sample comparison of LRU vs. Random
* Miss rate %:

LRU Ran LRU Ran LRU Ran
Size 2-way 4-way 8-way
16KB 5.2 5.7 4.7 5.3 4.4 5.0
64KB 1.9 2.0 15 1.7 14 1.5
256KB 1.151.171.131.131.12 1.12

Write strategy

* Write through

— Easy; needed for I/O devices in memory

* Write back
— Write only when line replaced, saving traffic
— Could do lazy writes when not busy

* Write allocate: write back, but don’t wait for
line to be read first; aka pre-arrival caching

Write Buffer

e Sort-of like a “level 0 data cache”
(faster because no TLB in front of it)

* Buffer can re-group writes to form write to a
larger fraction of a line (not just one byte or
word)

* Need to be careful about task switches, etc.;

What causes a miss?

* Compulsory
— Never touched this block before
— Shared fetch effect can avoid these when
another process touches what | want first
* (Capacity
— Could have been from cache, but didn’t fit
* Conflict
— Could have fit, but cache mapping had a
conflict with another line that caused this
line to be replaced (e.g., direct mapped)

Cache optimizations

* Larger total cache size

— Fewer capacity & conflict misses

— Dumber replacement policy works ok

— Increases hit time, die space, and power use
* Larger line size

— Fewer compulsory misses (spatial locality)

— More capacity & conflict misses

— Increases miss penalty (block transfer time)

More cache optimizations

* Higher associativity
— Reduces conflict misses
— Increases hit time & power use
* More levels of cache
— Smaller, faster, upper-level caches
— More complex hardware structure

Still more cache optimizations

* Priority to read misses over writes
— Reduces miss penalty
— Modest increase in design complexity
* Avoiding address translation before indexing
- Reduces hit time
— Not what operating systems expect
— Frequent cache flushes or need PID tags

Advanced cache optimizations

Small & simple L1 caches

Critical timing path is

Access tags — compare tags — select line
Direct-mapped can overlap tag compare with
transmission of line data
Lower associativity reduces power
(fewer comparators, narrower data access)

Advanced cache optimizations

Small & simple L1 caches

1

Access time vs. L1 size and associativity

Advanced cache optimizations

Small & simple L1 caches

6 KB 32 KB 64 KB 128 KB 256 KB

Cache size

Read energy vs. L1 size and associativity

Advanced cache optimizations

Way prediction

 Used in MIPS R1000, ARM Cortex-AS8
- Helps where tag compares are serialized

— Accuracy >90% for 2-way, >80% 4-way
— Inst. cache more predictable than data
* Way selection predicts line data and tag

Advanced cache optimizations

Pipelined cache

Improves bandwidth
Easier to do higher associativity

Examples:
Pentium was 1 cycle
Pentium Pro - lll were 2 cycles

Pentium 4 — Core i7 are 4 cycles

Advanced cache optimizations

Non-blocking cache

* Allows hits before previous misses complete
— “Hit under miss”
— “Hit under multiple miss”

* Required for L2 caches

* Processors can’t hide L2 miss penalty

Advanced cache optimizations

Non-blocking cache

100%

—l— Hit-undar-1-miss
—ik— Hit-undar-2-missas |
—@— Hit-under-64-misses

90% -

B0% eeee e S (R PR "

70% +
B0%, S e e e I'.
50% -

Ratio of cache miss penalty

300 | |,_| .. \

1 e O 1 I'*

0 O e P e S e e B e e o e e e e e M e SR e R

”
0% T T T T T T T T T T T T

Advanced cache optimizations

Multi-banked cache

Fragment cache into independent banks

— ARM Cortex-A8 supports 1-4 banks of L2
— Intel i7 supports 4-bank L1, 8-bank L2
Banks commonly interleave on low bits of
line address (sequential interleaving):

Block Block Block Block
address Bank 0 address Bank 1 address Bank 2 address Bank 3
0 1 2 3
8 9 10 11
12 13 14 15

Figure 2.6 Four-way interleaved cache banks using block addressing. Assuming 64
bytes per blocks, each of these addresses would be multiplied by 64 to get byte
addressing.

Advanced cache optimizations

Critical word first

Requested word in line is fetched first
Requested word is returned immediately upon
arrival at the cache - don’t wait for full line
Other words of line fetched in some order
Can use rotated order

— Start at word k, ith fetch is (k+i)%n

— Sort-of like assuming sequential prefetch

Advanced cache optimizations

Early restart

Requests words in normal order

Requested word is returned immediately upon
arrival at cache - don’t wait for full line
Potentially simpler than critical word first,
probably not as effective...

Advanced cache optimizations

Merging write buffer

This is the write buffer described earlier...
essentially a FIFO of lines

Does NOT always treat write buffer as a FIFO
— Each line tracks which fields are “present”

— Collects word writes into the same line entry
— |/O addresses must still be FIFO

Increases effective size of write buffer

If entire line is present, cache doesn’t need to
read the missing parts

Compiler optimizations

Linker optimization

* Changing link order can change caching by
changing which addresses conflict in cache
— If f() calls g(), different buckets for f() and g()
— Profiling to detect conflict pattern

 Same idea can be used to pick addresses for
data structures

Compiler optimizations

* Restructure code to change data access pattern
— Group data (data layout)
— Reorder accesses (loop transformations)
* Prevent cache pollution
— Why cache what you get from a register?
— Often double-map: cache / bypass
* Avoid saving data that isn’t used again

Compiler optimizations
Merging/splitting arrays

* Array elements accessed together can be
grouped together to enhance spatial locality
* Also separate those not accessed together

E.g., suppose a[1] and c[1] accessed together:

struct { 1int a, c; } ac[N]; int b[N];

Compiler optimizations

Loop interchange

* Loop nest traversal order matches data layout
* |Improves spatial locality

E.g.,ifa[0][0] isnexttoa[O][1]:

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j) al[il[j] = 0O;

Compiler optimizations

Loop fusion

* Fuse loops that work on similar data
* |Improves spatial locality

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j)
ali][j] = bl[1][]]

for (1=0; 1<N; ++1)
for (j=0; j<M; ++j)
dii][j] = al1][]]

for (1=0; 1i<N; ++1)
for (j=0; j<M; ++j)
ali1][j] = bl[1][]]
dli][j] = al1ll[]]

% +

c[i1][1];

cl1][3];

clil[j];
clilljl;

}

Compiler optimizations

Loop blocking/stenciling

* [terate in pattern that maximizes reuse

Compiler optimizations

Loop blocking/stenciling

* [terate in pattern that maximizes reuse

for (33=0; jj<N; jj+=B)
for (kk=0; kk<N; kk+=B)

for (1=0; i<N; ++1)

for (j=jj; Jj<min(jj+B,N); ++j) {

r=20;
for (k=kk; k<min(kk+B,N); ++k)
r+= y[1][k] * z[K][]];

x[1]1[]j] += r; }

Prefetching

Software (by compiler)

— Hoist load to earlier position in program

- Suggest hardware load into cache

Hardware

— Assume or recognize reference pattern
and request expected next early

— Line +/-1, strided, other patterns

Works better for instructions than data

Generally can abort a prefetch to cache,

Prefetches can’t fault (no exceptions)

Prefetching

 Fetch line and next line on a miss (Pentium 4)

2.20

2.00 - 1.97
=
£ 1.80 5
g
o ;
S :
<5 1.601
S 145 | 1.49
£ R
£ : 1.40
£ 1.401 | a5
€ . .
S E o5 1:29

: 120 1.2
120 1.16 i 1.18 I I I I
1.0’0 I T :I I T T T T T T T T

gap mcf fam3d wupwise galgel facerec swim applu lucas mgrid equake
SPECint2000 SPEC{p2000

Hit Band- Miss Miss Power Hardware cost/

Technique time width penalty rate consumption complexity Comment

Small and simple + - + 0 Trivial; widely used

caches

Way-predicting caches + + 1 Used in Pentium 4

Pipelined cache access - 1 Widely used

Nonblocking caches + + 3 Widely used

Banked caches + + 1 Used in L2 of both i7 and
Cortex-AR

Critical word first + p Widely used

and early restart

Merging write buffer + 1 Widely used with write
through

Compiler techniques to + 0 Software 1s a challenge. but

reduce cache misses many compilers handle
common linear algebra
calculations

Hardware prefetching + + - 2 instr., Most provide prefetch

of instructions and data 3 data mstructions; modern high-
end processors also
automatically prefetch in
hardware.

Compiler-controlled + + 3 Needs nonblocking cache:

prefetching possible instruction overhead:

m many CPUs

Figure 2.11 Summary of 10 advanced cache optimizations showing impact on cache performance, power con-
sumption, and complexity. Although generally a technique helps only one factor, prefetching can reduce misses if
done sufficiently early; if not, it can reduce miss penalty. + means that the technique improves the factor, - means it
hurts that factor, and blank means it has no impact. The complexity measure is subjective, with 0 being the easiest and
3 being a challenge.

Consistency Models

The volatile keyword in C/C++ gives
potential memory order constraints

Strict: everybody sees result at next tick
Sequential: everybody sees things as if
they happened in a sequential order

Weak Ordering: memory barriers/fences
force ordering of before vs. after
Transactional Memory: uses cache to buffer
speculative memory writes, signal conflicts

Cache Coherence

How one maintains consistency

What to do when something writes?

— Invalidate: mark/discard old entries

— Update: use the write data to update
Who to notify?

- Snooping: everybody watches

— Ownership: only talk to owner

— Directory: permissions, who to notify
MESI Protocol: Modified (dirty), Exclusive,
Shared (clean), Invalid — 4 line states

Verilog Implementation?

* A cache is a memory with the usual address
decode logic, but:
— Address used is hash(memory_address)
- Each Cache memory cell contains
(tag, data, dirty, valid, ...)/line
- Tag match and replacement algorithm
— Partial read/write of data field

» State machine sequences operations

* Can be pipelined (even out of order)

Memory Map of a Process

Arranging stuff in memory: Stack
— Code starts at low address (0) | — —=
— Static (fixed address) data
— Heap typically grows up

— Stack typically grows down

Very bad if stack meets heap Heap (sbrk)
— Stack grows to cover SP S
- Heap grows by explicit calls to (data)

sbrk (), malloc (), new, elcC. (can)
text

Memory Map of a Computer

* Originally, loaded one program
at a time
— OS was mostly a “loader”
— User code could do anything

* Sitill a fairly common model for
embedded computers and various
microcontrollers

Operating
System

Protection

* A stray user program could
corrupt the OS... add a fence
register to protect it

* Processor respects fence unless
in privileged mode
— Become priv by system call
or interrupt to trusted address
— Surrender priv when return to

user program Operating
System

Batch Scheduling and

Timesharing

Don’t want expensive computer
idle while waiting for printer, etc.
- Load multiple jobs

— Run 1 while 0 is waiting

Timesharing: alternate running
so all processes make progress

Want two fence registers...

Operating
System

Memory Fragmentation

Memory Page Tables

Logical vs. Physical Addresses

* Memory is divided into pages
— Classically, each page is 4kB
— Most systems also support 4MB pages

* Processor outputs logical (aka virtual) address
— Top bits identify page number, bottom offset
- Page table says where each page number is
- Physical address substitutes page address in
memory for logical page number

Page Table Issues

* 4kB pages are quite small...
— IBM PC had 128KB memory, so 32 entries
- With 4GB memory, need 1M page entries!
— Each process needs a page table!

 Translation Lookaside Buffer (TLB)
— Essentially a cache for page table entries
— Translation typically before L1 cache...
so the TLB needs to be fast, hence small
— Can make L1/L2 TLBs, separate for I/D;
don’t wait for L1 miss to start search of L2

A Real Processor: AMD Athlon

AMD Athlon™ Processor Architectural Block Diagram

Branch Prediction Table

2-way, BAKB Instruction Cache Pradecoda =

sd-antry L1 TLEREE-sntry L2 TLE Cache

FWay x86 Instruction De

coders

MK MM
30N ow! SO ool

Load | Store Queus Unit

2-way, B4KB Data Cache
3z-sntry L1 TLB/286-entry L2 TLB
System Interface L2 SRAMs |

4 TLBs: L1+L2 for each of code and data

Page Table Issues

* What happens for a TLB miss?

— Instruction gets stopped, then restarted when
the TLB has the appropriate entry...
this requires hardware support

— Must fetch page table entry (from memory)

* Thus, data in cache might not be accessible
because TLB can’t translate the address:

e.g., L1 64kB cache has 1024 64B lines, but
L1+L2 TLB might only have 256 entries!

Page Table Use

Prevents memory fragmentation
Allows per-page access protection (e.g., rwx)

Don’t need to have everything in main memory!
— Pages can not yet exist

— Pages can be shared between processes

— Pages can exist on disk

- Pages can exist in a networked machine

Pages can be slow to access from elsewhere

Page Table Benefits

Pages can not yet exist
— Stack, heap, and space between

Pages can be shared between processes
— DLLs: Dynamic Link Libraries
— Inter-process communication

Pages can exist on disk
- Bigger than main memory
— Fault in stuff as needed, mapped file 1/0

Pages can exist in a networked machine
— DSM: Distributed Shared Memory

Verilog Implementation?

* ATLB is a memory with the usual address
decode logic, but:
— Address used is hash(memory_address)
— Each TLB memory cell contains:
(tag, physical_address, status)
- Tag match and replacement algorithm

* Commonly pipelined such that L1 and L2 are
sent a request at the same time and L2 aborts
if L1 succeeds

* Hardware mechanism for handling misses

