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MPI WITHIN A GPU

GPUs offer  high-performance floating-point  computation at  commodity prices, 
but  their  usage  is  hindered  by  programming  models  which  expose  the  user  to 
irregularities  in  the  current  shared-memory  environments  and  require  learning  new 
interfaces and semantics.

This  thesis  will  demonstrate  that  the  message-passing  paradigm  can  be 
conceptually  cleaner  than  the  current  data-parallel  models  for  programming  GPUs 
because it can hide the quirks of current GPU shared-memory environments, as well as 
GPU-specific  features,  behind a  well-established and well-understood interface.   This 
will be shown by demonstrating a proof-of-concept MPI implementation which provides 
cleaner,  simpler  code  with  a  reasonable  performance  cost.   This  thesis  will  also 
demonstrate  that,  although  there  is  a  virtualization  constraint  imposed  by  MPI,  this 
constraint is harmless as long as the virtualization was already chosen to be optimal in 
terms  of  a  strong execution  model  and  nearly-optimal  execution  time.   This  will  be 
demonstrated  by  examining  execution  times  with  varying  virtualization  using  a 
computationally-expensive micro-kernel.
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Chapter 1: Introduction

GPUs have gained attention for their impressive floating-point price/performance 

ratio.   The  consumer  demand for  realism  and  resolution  in  traditional  graphics 

applications has effectively created scalable, high-performance floating-point hardware at 

commodity  prices.   GPUs  have  already  been  used  to  accelerate  some  numerically-

intensive high-performance computing applications, but limitations imposed by current 

GPU programming methodologies,  including a lack of code portability between GPU 

platforms, have hindered the use of GPUs in a wider class of programs and relegated 

them to a second-class co-processor status.

This thesis aims primarily to demonstrate that the message-passing programming 

model  can  be  conceptually  cleaner  than  the  vendor-supplied  data-parallel  models  by 

hiding  the  quirks  of  current  shared-memory environments.   This  is  accomplished  by 

demonstrating a proof-of-concept implementation of a message-passing model on a GPU 

and  providing  performance  comparisons  between  two  GPU programs,  one  of  which 

utilizes  the  message-passing  implementation  and  the  other  of  which  does  not,  on  a 

parallel test algorithm computing the value of pi.  The message-passing implementation 

will be a subset of MPI[1] (the Message Passing Interface), which is a popular message-

passing  library  specification,  and  the  implementation  and  test  algorithms  will  be 

developed and tested in NVIDIA CUDA[2] (the Compute Unified Device Architecture), 

which is NVIDIA's parallel architecture and model for general-purpose computing on a 

GPU.

This  thesis  also  aims  to  demonstrate  that,  although  there  is  a  virtualization 

constraint for using message-passing (and more specifically MPI) within the GPU, the 

constraint is actually harmless if the amount of virtualization chosen is already optimal in 

terms of its interaction model and per-block execution time.  This is accomplished by 

ignoring the amount of virtualization needed by MPI and profiling different amounts of 

virtualization  on  a  simple  micro-kernel  benchmark.   The  resulting  execution  times 

demonstrate that the amount of virtualization needed to obtain the optimal performance, 

with optimal performance as defined above, is compatible with the MPI virtualization 

constraint.

The  rest  of  this  thesis  is  structured  as  follows.   Chapter  2 (Background,
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Methodology,  and Related Work) provides a brief  review of the message-passing and 

data-parallel programming paradigms discussed above, describes the relevant classes of 

architectures  and how they apply to  GPUs,  describes  an important  philosophy which 

underlies this thesis, and cites related work.  Chapter  3 (GPU Hardware Review and

Performance Factors) provides a hardware overview which compares current-generation 

GPU  architectures  and  then  provides  an  in-depth  review  of  the  NVIDIA  CUDA 

architecture and important performance considerations for it.  Chapter  4 (Virtualization

Constraints)  discusses  the  ideas  of  virtualization,  multi-threading,  global-memory 

coherence,  and  interaction  models,  presents  empirical  data  regarding  the  optimum 

amount of multi-threading and virtualization, and finally examines how the virtualization 

constraints  imposed  by  MPI  within  a  GPU  are  satisfied  at  the  optimum amount  of 

virtualization.   Chapter  5 (The MPI Implementation) introduces  the Message Passing 

Interface standard, discusses some design philosophies underlying the proof-of-concept 

implementation,  and  examines  key function  implementations  which  provide  point-to-

point and aggregate communication operations.  Chapter  5 also provides performance 

comparisons between canonical NVIDIA CUDA and the MPI implementation for two 

implementations of an algorithm computing the value of pi in parallel and discusses the 

costs and benefits of using the message-passing implementation.  Chapter 6 (Conclusions

and Future Work) presents conclusions and future work for the research.

Chapter 2: Background, Methodology, and Related Work

This section first  defines the data-parallel  and message-passing paradigms and 

discusses how they apply to the thesis.  This section also defines SIMD, SPMD, SIMT, 

and MIMD, since these architecture classifications are used extensively in the thesis.  The 

overarching philosophies of this thesis are then discussed after clarifying the definitions 

and applications of these background concepts.  Finally, related work is discussed.

2.1: Background

Two of the popular paradigms for programming parallel machines are the data-

parallel paradigm and the message-passing paradigm.  These programming models are 

described in detail below.
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The  data-parallel  paradigm,  exemplified  by  HPF[3]  and  current  GPU 

programming  environments  such  as  CUDA[2],  BrookGPU[4],  and  CAL[5],  typically 

consists of a single program controlling  execution of all processing elements.  In this 

paradigm, program data is typically stored in arrays, and processing elements work on 

subsets of arrays in their local memories.

Historically, GPU programming methods and environments have been based on 

the data-parallel paradigm.  This is largely due to the fact that GPUs have evolved to 

process  pixels  of  an image in  parallel.   Maintaining  the  same paradigm for  general-

purpose programming has not been widely questioned, largely because the majority of 

GPU users are still performing graphics-processing applications (as opposed to general-

purpose  computation).   While  general-purpose  computation  on  GPUs  is  gaining 

popularity, it is still a small portion of the total market share of current GPUs.  While this 

has  allowed  GPU vendors  to  both  continue  normal  product  development  cycles  and 

broaden marketability by advertising GPUs for non-graphics applications, it has restricted 

the use of the GPU to programs where data-parallelism is easily exposed.  If GPUs can 

support the message-passing paradigm in addition to the data-parallel paradigm, though, 

then a wider range of execution models can be supported on current GPUs.

Message-passing is not the opposite of data-parallelism; the opposite is actually 

task-parallelism.  This thesis will show that message-passing is compatible with data-

parallelism.  The message-passing paradigm, exemplified by the MPI standard[1] and 

various implementations of it such as OpenMPI[6] and LAM-MPI[7], typically consists 

of individual programs on each processing element controlling local execution.  In this 

paradigm, program data is typically passed between processing elements via cooperative 

send and receive mechanisms.

Before  continuing  with  the  idea  of  message-passing  on  a  GPU,  some  basic 

architectural ideas must be mentioned.  Parallel computer architectures have long been 

classified  as  SIMD  (Single-Instruction  stream,  Multiple-Data  stream)  and  MIMD 

(Multiple-Instruction  stream,  Multiple-Data  stream)[8].   As  the  names  imply,  SIMD 

hardware typically consists of a collection of processing elements, sometimes little more 

than Arithmetic Logic Units, all executing a single instruction on multiple data.  MIMD 

hardware,  in  contrast,  typically  consists  of  processing  elements  with  their  own 
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instruction-fetch,  decode,  and  execute  logic,  each  executing  a  potentially  different 

instruction on multiple data.

In addition to the SIMD and MIMD classifications, there are also SPMD systems, 

and  the  term  “SIMT”  should  be  discussed  since  NVIDIA uses  it.   SPMD  (Single 

Program, Multiple-Data stream) are akin to SIMD systems, except that the processing 

elements are potentially much less synchronized because they are executing programs 

rather  than  instructions[9].   These  are  also  akin  to  MIMD  systems  where  every 

processing  element  is  executing  an  identical  program.   SIMT is  a  term  coined  by 

NVIDIA, and stands  for  Single-Instruction,  Multiple-Thread[2].   While  it  attempts  to 

describe the scheduling of threads to available processor cores, it can best be thought of 

as SIMD with virtualization at the thread level.

GPUs have traditionally been classified as SIMD-like or SPMD-like architectures. 

As the hardware review section will illustrate, though, GPUs are a strange hybrid of the 

two, and behave differently at different granularities.  This plays a role in enabling the 

implementation of  a  message-passing system. More  importantly,  though,  the multiple 

potential  classifications  of  GPU architectures  can  and should  be leveraged to  further 

expand the set of execution models which are viable within a GPU.

2.2: Methodology

In chapter 1, the idea of the GPU being relegated to an attached co-processor role 

was mentioned.  The majority of GPU research approaches the GPU as a second-class 

processing  element  and  utilizes  the  GPU  as  an  attached  accelerator,  but  this  thesis 

approaches the GPU as a future first-class parallel processor, which motivates the idea of 

needing  a  message-passing  system within  a  GPU.   If  the  GPU will  internally  be  a 

separate entity, then it will need to perform synchronization and communication without 

assistance.  The work in this thesis is not merely about using more execution models 

within a GPU, it is about which models will be needed as GPUs become independent.

We envision the use of the GPU taking the same path as the use of traditional 

floating-point co-processors, such as the Intel 8087 floating-point co-processor.  While 

floating-point math was originally only available via an attached co-processor accessed 

with OS calls, it is now an integral part of the chip design and instruction set.  Intel's 

Larrabee, scheduled for a 2009 or 2010 release, will be an explicitly standalone GPU 

4



with many CPU features, including x86 processing cores[10].  Additionally, Larrabee's 

SIMD  extensions  will  be  opcode-compatible  with  the  specification  for  extending 

SSE[10].   The  Cell  processor  already  includes  SIMD  SPEs  (Synergistic  Processing 

Elements)  which  work  alongside  a  Power-architecture  based  PPE (Power  Processing 

Element)[11].   AMD's  FUSION  project  originally  proposed  “Accelerated  Processing 

Units” (CPUs with a GPU on-die) as early as 2007[12], and these are now scheduled for 

a 2011 release in the Llano and Ontario cores[13].

Since this thesis holds that  the models for GPUs are converging to this  single 

environment,  the  performance  benchmarks  in  this  thesis  are  focused  on  examining 

performance in the context of a self-contained world, with the GPU behaving as normal 

computing systems generally behave.  Since there is not much existing work with this 

viewpoint  to  benchmark  performance  against,  and  since  benchmarking  performance 

against  a  sequential  code  would  be  unfair,  the  benchmarks  in  this  thesis  focus  on 

describing and quantifying the performance penalty or cost for the more-general model 

provided by MPI.  Hopefully, future GPU research will yield competing models so that 

better performance comparisons can be accurately made.

2.3: Related Work

There  is  considerable  interest  in  GPGPU  (General-Purpose  Computation  on 

GPUs), which generally refers to using graphics cards to perform computations which are 

not strictly limited to manipulating graphics on the screen.  Although this work is related 

to many GPGPU efforts described below, note that this work is focused on developing a 

more-general programming model within the actual GPU.  As stated in chapter 2.2, this 

research is aimed at developing a first-class processing element.

Early GPGPU programming revolved around graphics programming languages 

such as DirectX[14] and OpenGL[15].  These languages developed programmable shader 

pipelines, controlled by the HLSL[16] and GLSL[17] languages, and programmers used 

the shader languages to process non-graphical data.  Some higher-level languages, such 

as Cg[18], were also used.  Because of the awkwardness of expressing non-graphical 

computations in graphically-oriented languages, general-purpose languages which could 

hide the underlying nature of the hardware and programming model began to emerge. 

These included Sh[19], which made the GPU hardware appear as a simple resource via a 
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C++ library, and BrookGPU[4], which focused on programming in streams with a C++ 

dialect.  Microsoft research also worked on an advanced system called Accelerator[20], 

which performed advanced just-in-time compilation with an OpenGL backend.  Some 

companies  also  provided  proprietary  solutions,  such  as  RapidMind's  Multi-Core 

Platform[21].

As GPGPU became popular, vendors began to provide languages which allowed 

better access to the underlying hardware.  ATI released CTM[22], which included the 

assembly  language  of  the  GPUs  and  driver-level  codes  to  operate  them.   NVIDIA 

released  CUDA[23],  which  provided  a  general-purpose  abstraction  of  the  underlying 

hardware,  but did not release instruction set architectures.   The development of these 

languages also lead to the development of more companies providing GPU acceleration 

services, such as PeakStream[24].  ATI's CTM was later obsoleted in favor of CAL[25], 

which provides similar low-level  access to CTM, but  with a modified version of the 

BrookGPU compiler which allowed users to avoid low-level programming.  Efforts are 

currently  underway  to  develop  a  vendor-independent  specification  for  a  GPGPU 

programming language called OpenCL[26].

Currently, many research efforts related to GPU programming environments are 

underway.  CUDASA[27] is a system for networking clusters of machines with GPUs 

together,  and  it  extends  CUDA with  new  language  constructs  to  do  so.   Zippy[28] 

provides  similar  functionality  via  library  routines  and  classes  which  abstract  the 

underlying GPUs.  More recently, DCGN[29] abstracted GPUs in clusters, but allowed 

dynamic communication patterns during execution between GPUs.  All of these efforts 

are  related  to  using  message-passing  across  clusters  of  GPUs  and  abstracting  the 

hardware,  whereas this  research is  interested in  exploring the message-passing model 

within the hardware.  

The most closely-related work is actually the BSGP project[30], which focuses on 

a  set  of  extensions  and very advanced compiler  techniques  to  transform and execute 

sequential code on a GPU.  BSGP still lacks inter-thread communication, though, and 

implements such mechanisms by generating individual kernels and using the edges as 

synchronization points.  This mechanism still relies on a host processor, and still leaves 

the GPU as a second-class processing element.
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Although virtualization is not the main focus of this research, it is worth noting 

that  virtualization  in  SIMD  machines  has  been  well  studied  before.   The  PARIS 

language[31] utilized by Thinking Machines SIMD computers is a good example.

Chapter 3: GPU Hardware Review and Performance Factors

To understand the proof-of-concept  MPI implementation and the virtualization 

test results, it is necessary to understand the underlying CUDA hardware.  This section 

first provides a high-level overview of current GPU hardware, which demonstrates the 

applicability of this work to other GPUs beyond just NVIDIA targets.  Next, it provides 

an overview of the CUDA hardware and the scaling or scheduling parameters used to 

control the hardware.  This section concludes with a discussion of performance factors 

within an NVIDIA CUDA GPU; this information needed to understand the virtualization 

test results in chapter  4 and some design decisions used in the MPI implementation in 

chapter 5.

3.1: Review of Current GPU Hardware

Modern  GPUs are  composed of  a  collection  of  virtualizing  SIMD processors. 

Note that these are not multiprocessors, since they do not support multiprocessing.  These 

are relatively narrow virtualizing SIMD engines which support multi-threading over a set 

of processing elements, and support no MIMD behavior aside from virtualization and 

multi-threading.

The individual virtualizing SIMD processors are composed of some number of 

physical  processing  elements,  each  with  its  own registers  and  all  sharing  some local 

shared memory.  Each virtualizing SIMD processor possesses local control logic for its 

processing  elements,  and  all  SIMD  processors  in  a  GPU  can  execute  a  different 

instruction at the same time.  All processing elements on the SIMD processors can access 

a global shared memory, and all SIMD processors are connected through some global 

control and scheduling logic.  The processing elements within a single SIMD processor 

can also access a local shared memory inside that multiprocessor.

The  smallest  unit  of  work  in  a  modern  GPU  is  a  sequence  of  instructions 

executing on a single processing element.  Note that this unit of work is not a thread in 
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the traditional sense (although the word has been appropriated to describe it), but rather a 

“slice” of a traditional thread executing a SIMD program.  A thread in the traditional 

sense is either a group of work units which execute simultaneously on the processing 

elements or a group of work units which form a single schedulable entity.

The units of work are typically grouped at two granularities visible to the user.  At 

the smaller granularity, some number of parallel work units form a single schedulable 

unit, with the size of the group usually determined by the number of logical processing 

cores inside a SIMD engine (which may be more than the number of physical cores).  At 

the larger granularity, the aforementioned groups which are executed together on a single 

SIMD processor are grouped again.   In some sense, the architecture is  MIMD at the 

device or higher granularity level, since SIMD processors can execute unique instructions 

simultaneously;  and  virtualizing  SIMD  or  SPMD  at  the  SIMD  processor  or  lower 

granularity  level,  since  instruction  execution  is  overlapped  and  scheduled  on  the 

processing cores.

From reviewing the NVIDIA CUDA Programming Guide[23], the above concepts 

are clearly seen in NVIDIA GPUs. In a CUDA GPU, the virtualizing SIMD processors 

are the SMs (Streaming Multiprocessors).  Each SM consists of eight physical SP (Scalar 

Processor) cores executing 32 work units (called threads) in four clock cycles, and all SPs 

in an SM have access to a shared memory. Groups of 32 work units are called warps (the 

smaller granularity and smallest schedulable entity), and their execution is scheduled to 

hide memory latency.  The work units are grouped into what NVIDIA calls thread blocks 

(the larger granularity, inside of which execution is virtualizing SIMD or SPMD) which 

are distributed to the SMs by some global control logic, and multiple thread blocks can 

execute  on  a  single  SM.   Between  SMs,  divergence  in  code  causes  no  performance 

penalty and is effectively MIMD.  As work units execute within an SM, only divergence 

(due  to  control  flow  instructions)  within  a  warp  is  implemented  by  masking  and 

serialization;  divergence between warps  is  implemented by scheduling from the local 

control logic.

From reviewing the ATI Stream Computing User Guide[22], the concepts are also 

seen in ATI GPUs. In a CAL GPU, the virtualizing SIMD processors are called SIMD 

engines. The SIMD engines are composed of what ATI calls thread processors, with all 
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thread  processors  executing  the  same instruction  in  unison.  Work units  (again  called 

threads) are grouped into wavefronts (the smaller granularity and smallest schedulable 

entity), with the size of a wavefront determined by the number of thread processors times 

4,  since  each  thread  processor  can  issue  4  instructions  in  4  clock  cycles.  All  thread 

processors within a SIMD engine share a LDS (Local Data Store) shared memory (which 

is  owner-writes)  as  well  as  shared  registers  which  can  communicate  data  between 

wavefronts. The work units executed on the processors are arranged into groups at the 

software level (the larger granularity, inside of which execution is virtualizing SIMD or 

SPMD), and multiple wavefronts are overlapped in each SIMD engine to hide memory 

latency. During execution, only divergence within a wavefront is implemented by thread 

masking  and  serialization.   Divergence  between  SIMD  engines  has  no  performance 

penalty, and the execution is effectively MIMD at this granularity.

From the above descriptions, it should be obvious that the results obtained using 

an NVIDIA GPU are applicable to other GPUs.  This is not to say that no differences 

exist, especially since the next few sections on hardware and performance apply mainly 

to NVIDIA GPUs.  The differences between these architectures, however, are minor, and 

any impacts they would be expected to cause in the implementation are noted as they 

arise in the thesis.

Note that the rest of this thesis will use NVIDIA terminology (threads instead of 

work units, and SMs instead of SIMD processors), since the research utilizes an NVIDIA 

CUDA GPU.

3.2: The NVIDIA CUDA Architecture

Now,  an  overview of  the  NVIDIA CUDA architecture  is  needed.   Figure  3.1 

shows a simple overview of hardware used by a CUDA program in an NVIDIA GPU. 

All NVIDIA GPUs share a similar hardware structure, but may have different clock rates, 

SM counts, shared memory sizes, etc.  Table 3.1 shows some of these differences for the 

NVIDIA GPUs used in this work. 
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Figure 3.1: The NVIDIA CUDA Architecture[23]

Figure 3.1: The NVIDIA CUDA Architecture[23]

Table 3.1: Some NVIDIA GPUs and various properties

Table 3.1: Some NVIDIA GPUs and various properties

GeForce GPU 8800 GT[32] 9800 GT[33] 280 GTX[34]

Number of SMs 14 16 30

Number of SPs 112 128 240

Device Global Mem 512 MB 512 MB – 1 GB 1 GB

Compute Capability 1.1 1.1 1.3

Processor Clock 1500 MHz 1500 MHz 1296 MHz

Memory Clock 900 MHz 900 MHz 1107 MHz

As can be seen in Figure 3.1, the device architecture is composed of a collection 

of virtualizing SIMD processors (the Streaming Multiprocessors, or SMs), all of which 

share access to a global device memory.   Each SM is composed of SIMD processing 

elements  (the  Scalar  Processors,  or  SPs)  which  execute  instructions  issued  by  the 
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instruction unit.  Each SP possesses a separate register file, and all SPs in a block share 

access to a multi-banked shared memory, texture cache, and constant cache.  The sizes of 

the various memories and caches, as well as the register and SP counts, vary with what 

NVIDIA terms the “compute capability” of the device.  Specifications for the various 

compute capabilities are shown in Table 3.2.  Note that the device used for the research in 

this thesis is a compute-capability 1.0 device, which is the most restrictive of the compute 

capabilities.  This was necessary to guarantee that the results in this thesis are portable.

Table 3.2: Compute Capabilities and their properties[23]

Table 3.2: Compute Capabilities and their properties[23]

Compute Capability 1.0 & 1.1 1.2 & 1.3

Physical PEs per SM 8 8

Constant Memory 64k 64k

Shared Memory per SM 16k 16k

Registers per SM 8192 16384

Constant Cache per SM 8k 8k

Texture Cache per SM 6k - 8k 6k - 8k

Warp Size 32 32

Max Threads per Block 512 512

Max Blocks per SM 8 8

Max Warps per SM 24 32

Max Threads per SM 768 1024

In this system, what NVIDIA calls threads are the smallest unit of work.  Each 

thread executes a copy of the kernel, and groups of threads are scheduled in a SIMD 

fashion on the SPs inside the individual SMs.  More specifically, the eight physical SPs in 

current CUDA devices appear as 32 logical SPs to the scheduler, and each physical SP 

executes  an  instruction  from each of  four  threads  in  four  clock  cycles.  This  appears 

logically as 32 threads executing one instruction every four clock cycles.  A group of 32 

threads is called a “warp” in NVIDIA terminology, and each SM overlaps execution of 

the warps of 32 threads on the SPs in order to hide memory fetch latency.

Warps of threads are grouped into thread blocks (commonly referred to as blocks), 

and thread blocks are the basic element of virtualization.  A single SM may execute many 
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blocks at once (up to a compute-capability defined limit, as shown in Table 3.2), but only 

if  the  combined thread  count  of  the  blocks  does  not  exceed the  SM's  limit,  and  the 

resource  requirements  of  the  blocks  can be  met.   Resource requirements  for  a  block 

include the amount of shared memory and the number of registers used by the threads in 

the block, and the compute capability of the device determines the available resources. 

For example, if an SM will overlap execution of 4 thread blocks, then it must possess at 

least 4 times the total resources needed by each thread block.

Scheduling  parameters  (or  scaling  parameters,  since  they tightly  constrain  the 

number of kernels active at once on a GPU) govern the creation of thread blocks, and are 

provided by the user when a kernel program is invoked in host CPU code to execute on 

the  GPU hardware.   These  parameters  include  the  dimensions  of  a  thread  block  (in 

threads), the dimensions of the grid (in thread blocks), and the amount of dynamically 

shared memory allocated per thread block.  NVIDIA calls this collection of parameters 

the “execution configuration” of a kernel.  These parameters are often chosen by the user 

to allow easy mapping of the desired algorithm to the available GPU resources.

If more thread blocks are created by a kernel invocation than can be executed on 

the GPU's SMs, due either to a lack of resources or to more combined threads than the 

SMs can execute, some thread blocks are queued to wait.  These thread blocks do not 

execute until another thread block has executed to completion.  Lacking provision to save 

and restore state, there is no yield() or sleep() command which a block can issue 

to voluntarily de-schedule itself, although one would be extremely useful.

3.3: NVIDIA CUDA Performance Considerations

Now that all the fundamentals are established, it is important to discuss the key 

performance characteristics in the CUDA architecture.  These are essentially the points 

from chapter  five of  the  NVIDIA CUDA Programming Guide[23],  and they concern 

instruction performance and memory performance.

Instruction  performance  falls  loosely  into  three  categories:  arithmetic 

performance,  flow-control  performance,  and  memory  instruction  performance.   By 

examining each, a scale of relative expense should be established in the reader's mind, 

and this scale is required to understand design decisions described later in this thesis.

The shortest arithmetic instructions execute in four clock cycles, and these include 
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floating-point add, multiply,  multiply-add, integer add, 24-bit integer multiply,  bitwise 

operations, minimum, maximum, comparison, and type-conversion instructions.  32-bit 

integer multiply executes in 16 clock cycles, and floating-point reciprocal square root 

executes in 32 clock cycles.  Floating-point division executes in 20 or 36 clock cycles 

(depending  on  the  version  used),  and  some versions  of  sin,  cos,  and  exponentiation 

execute  in  32  clock  cycles.   The  instructions  which  are  specified  with  the  longest 

execution time are other versions of sin and cos, tan, and sincos, which may take around 

320 clock cycles to execute.

Flow-control instructions are not specified with execution times, and are primarily 

important in that divergent code can cause serious performance degradation or deadlock. 

In particular, divergence between warps is not problematic, because it is implemented by 

scheduling.   Within  a  warp,  though,  divergence  is  implemented  by  masking  off 

processing elements and serializing the branches.  The performance penalty can be high 

in such instances.  An example: if a single processing element in each warp wished to 

execute instructions requiring 10,000 clock cycles, while all other processing elements in 

the warp wished to execute instructions requiring 10 clock cycles, the total execution 

time of each warp would be 10,010 clock cycles.  Worse still is the possibility of live-

lock.  If a processing element inside of a flow-control statement which diverged within a 

warp  attempts  a  blocking  operation  (such  as  a  spin-lock)  while  waiting  for  other 

processing elements in the warp to signal a result, the result may never arrive due to the 

masking-off of the processing elements which send it, and the hardware may live-lock 

until the watchdog timer aborts the kernel execution.

Memory instructions are simple in that they always issue in 4 clock cycles.  The 

problem, as shown next, is the memory latency.

Memory performance in a CUDA GPU is the single most important performance 

consideration short of outright deadlock.  A fetch from global or local memory locations 

has a 400-600 clock cycle latency, and global memory is not cached.  Shared memory 

accesses which are fully-coalescing and conflict-free (across the banks) have a four-cycle 

latency which is hidden by the warp-at-a-time scheduling.  Similarly, dependency-free 

register  accesses  have  a  four-cycle  latency  hidden  by  the  scheduling.   Texture  and 

constant cache reads are also four-cycle unless the read is a cache miss, and cache misses 
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incur the 400-600 clock cycle global memory latency.

Memory  performance  can  be  improved  considerably  by  arranging  memory 

accesses to be coalesced.  As described in the NVIDIA CUDA Programming Guide[23], 

CUDA devices are capable of fetching 32-byte, 64-byte, and 128-byte blocks aligned on 

32-byte,  64-byte,  and  128-byte  boundaries  respectively,  in  single  instructions.   This 

occurs only under certain conditions based on the device compute-capability and for each 

half-warp (group of 16 consecutive threads).  For compute-capability 1.0 and 1.1 devices 

(such as the GeForce 8800 GTS used in this thesis), conditions for coalescing include 

threads accessing consecutive words in sequence, with each access being a 4-byte or 8-

byte object (16-byte object accesses are coalesced into two 128-byte load instructions).  It 

should  be  noted  that  coalesced  accesses  are  around  an  order  of  magnitude  higher 

bandwidth than non-coalesced on 4-byte objects,  around four times higher for 8-byte 

objects, and around two times higher for 16-byte objects.  On compute-capability 1.2 or 

higher devices, coalescing happens under a much broader set of conditions and is more 

flexible.

After examining the relative costs of operations, it should be clear that memory 

accesses are the most  critical  of the performance considerations.   NVIDIA GPUs are 

high-latency,  high-bandwidth devices which rely on computation to hide latency from 

non-cached global memory, and fast local memory is a scant resource.  More specifically, 

the GeForce 8800GTS, a compute capability 1.0 card, only has 8196 registers and 8196 

bytes (2048 words) of shared memory per SIMD processor, as shown in Table 3.2.  At 64 

threads per block (minimum recommended in the CUDA Programming Guide[23]), this 

amounts  to  128  registers  per  thread  with  one  block  on  the  SIMD processor  and  64 

registers per thread with two blocks on the SIMD processor.  At the limit of eight blocks 

per SIMD processor, this amounts to only 16 registers per thread and 256 words of shared 

memory available to each block.  At 256 threads per block, this amounts to 32 registers 

per thread at one block per SIMD processor, and four registers per thread (along with 256 

words of shared memory between the threads) at the maximum of 8 blocks per SIMD 

processor.

For comparison, the MasPar MP-1, a classical SIMD machine from 1990, had 16k 

bytes  of  memory per  processing  element[35],  and  this  machine  was  decidedly  more 
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“silicon-challenged” than a current GPU.  A more modern comparison could be made 

with the Cell BE (Broadband Engine), which has 256k per SPE[11].  Given the scarcity 

of local GPU memory compared to similar architectures, along with the aforementioned 

high-latency, high-bandwidth nature of the device, extra attention must be paid to local 

memory  usage.   Expensive  re-computation  of  intermediate  values  may  be  relatively 

cheap compared to caching.  Also, prioritizing coalesced memory accesses over full PE 

utilization can yield better performance.

Chapter 4: Virtualization Constraints

One claim of this thesis is that, although there is a virtualization constraint for 

using message-passing within the GPU, the constraint is actually harmless if the amount 

of virtualization chosen is already optimal in terms of its interaction model and per-block 

execution time.  More specifically, optimal virtualization is virtualization such that the 

performance  per  unit  time  is  nearly  as  high  as  possible,  and  the  interaction  model 

between processes is not limited by the choice of the virtualization.  This section first 

describes the ideas of multi-threading and virtualization inside of GPUs, as well as the 

memory coherence and interaction models.  This section next describes a micro-kernel 

and presents empirical data which suggests that the optimum amount of threading fully 

populates  the  GPU's  processing  resources  some  integral  number  of  times,  and  that 

virtualization  beyond  that  amount  yields  no  measurable  benefits  and  weakens  the 

interaction model.  This section concludes by describing the performance benefits reaped 

by using an optimum amount  of  threading,  focusing on the implications of  having a 

stronger  interaction  model  and  a  less-awkward  coherence  model  and  how  these  are 

required by a message-passing implementation executing within a GPU.

4.1: Background and Definitions

GPUs have evolved a SIMD-based, multi-threaded execution model which relies 

heavily on virtualization.  Multi-threading makes perfect sense in the context of graphics-

processing  because  it  allows  memory latency  to  be  hidden  behind  Pixel  processing, 

which increases throughput.  More precisely, multi-threading allows data fetches from a 

slow, non-cached GPU global memory (as discussed in Chapter 2.3) to be hidden behind 
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useful  computations  by  having  a  thread  de-scheduled  while  waiting  for  its  memory 

request to complete.  Virtualization also makes perfect sense in the context of graphics-

processing because most images processed contain more pixels than available processors. 

A modern HDTV image, for example, has roughly two million pixels, while a current 

NVIDIA GPU (the GeForce GTX 280) has 240 processor cores, as shown in Table 3.1. 

Since each pixel can be processed (more or less) independently, large-scale virtualization 

of  the  pixels  over  the  available  processors  has  been  (and  will  remain)  an  obvious 

performance win.  Large-scale virtualization has also created a nice abstraction between 

the hardware and the images it processes (since drivers can handle the virtualization), and 

this abstraction has allowed new generations of GPUs to be developed by merely taking 

an existing architecture and adding more processing pipelines, tweaking the clock speeds, 

optimizing  the  core  floating-point  units,  adding  hardware  features,  etc.,  rather  than 

inventing a new architecture.

The  memory  coherence  or  memory  consistency  model  of  global  memory  in 

NVIDIA GPUs is slightly awkward.  Global memory is the only true shared memory for 

all the processors on the device, but the only real guarantee about global memory is that 

specific kinds of transactions are performed atomically.  This is not referring to just the 

atomic operations provided by higher compute-capabilities, but also coalesced memory 

accesses[23].  Unfortunately, the model provides no rules governing the order of writes, 

when data  written becomes available  to  other  processes,  or the fairness of the writer 

scheduling.  Here, fairness refers to threads being guaranteed a chance to write their data, 

and it is possible that one or more threads will never get a chance to write.

Because of these uncertainties, the interaction model of the processes is relatively 

weak.  A process cannot safely wait on another process, because it is possible that the 

other process may not be able to run due to a lack of resources.  For example, imagine 

that each process wants to contribute an element to a global array, and then wait until 

another specific process has contributed before continuing.  The interaction model does 

not allow this, because there could be enough processes created so that all the executing 

processes wait on contributions from processes queued to wait at the software level, and 

this would obviously cause a live-lock.
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4.2: Performance Analysis of Virtualization

The established method for boosting application performance with GPUs is  to 

write kernels with wide parallelism and allow the GPU to virtualize the computations 

over  the  available  GPU processing  elements.   For  example,  in  the  NVIDIA CUDA 

Programming Guide[23] developers are informed that using a large number of thread 

blocks amortizes the overhead from device memory reads and thread synchronizations 

better than a small  number of thread blocks, and that the number of thread blocks is 

usually dictated by the size of the data being processed, which can greatly exceed the 

number of processors in the GPU.

There  are  established  rules  which  govern  the  choices  of  multi-threading  and 

virtualization  parameters.   CUDA developers  are  instructed  to  carefully  choose  the 

number of threads per block and/or number of blocks to maximally utilize the device 

resources[23].  In terms of multi-threading, the CUDA programming guide suggests 64 

threads per block (twice the size of a warp) as a minimum, and further suggests that 192 

or 256 threads per block is  a better  number[23].   Obviously,  these sizes create  some 

integral  number  of  fully-populated  warps.   In  terms  of  virtualization,  the  CUDA 

Programming Guide states that “It is therefore usually better to allow for two or more 

blocks to be active on each multiprocessor to allow overlap between blocks that wait and 

blocks that can run,” and that “More thread blocks stream in pipeline fashion through the 

device and amortize overhead even more.  The number of blocks per grid should be at 

least 100 if one wants it to scale to future devices; 1,000 blocks will scale across several 

generations.”[23].  Because there is no clear message stating “how much is enough,” this 

section  presents  a  micro-kernel  which  is  used  to  test  the  benefits  of  large-scale 

virtualization.

The  NVIDIA CUDA Programming  Guide[23]  suggests  a  typical  processing 

pattern of 1)reading data from global device memory into shared memory, 2)synchronizing 

all threads in each block to make sure that all global memory entries have been fetched 

into shared memory,  3)processing the data in shared memory,  4)synchronizing all threads 

in each block to ensure that all processing results are present in shared memory, and  5) 

writing the results back to global device memory.  Using the above ideas, a very simple, 

ideal kernel can be constructed which tests the benefits of large-scale virtualization.  The 
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pseudo-code for this kernel is shown in Figure 4.1.

Figure 4.1: Pseudo-code for the micro-benchmark

float a,b;

int main()
{

float ta,tb;
int i = 10000;
do {

ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;

} while (--i);

a = ta;
b = tb;

}

Figure 4.1: Pseudo-code for the micro-benchmark

Note that this  kernel is  not intended to mimic a complicated or realistic GPU 

kernel,  because  realistic  kernels  introduce  extra  factors  and  lack  performance 

transparency.   This  kernel  is  arithmetically  intensive,  providing  10  floating-point 

multiply-adds in a loop iterating 10,000 times, which provides roughly 400,000 cycles of 

arithmetic for the two memory reads and two memory writes performed by each thread. 

The  data  is  aligned  in  global  device  memory so  that  maximum  bandwidth  can  be 

utilized,  and the code requires a  minimal  number of registers.   Under  these minimal 

conditions, the benefits of virtualization are clearly seen.

Two versions of the kernel are tested below with varying block counts (amounts 

of virtualization): one with ta and tb in registers, the other with ta and tb in shared 

memory.   Both kernel versions use 256 threads per block (BNPROC is the number of 

thread blocks).  The test GPU is an NVIDIA GeForce 8800 GTS (a compute capability 

1.0 card with 12 SMs), and the kernels are executed with varying thread-block counts 

from 2 blocks to 434 blocks (more than 434 blocks becomes unstable during some tests). 

After each kernel listing,  the average execution time of 10 iterations of the kernel is 

plotted against the block count.  The per-block execution time is then plotted from this 

data.

Kernel 1, shown in Figure 4.2, performs the operations with the values read into 
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registers  prior  to  entering  the  do-while  loop and writes  the  register  contents  back  to 

global memory before exiting.  Both execution time plots are shown following the kernel 

code, and plots are marked in increments of 24 because this is two times the number of 

SMs in the test card.

Figure 4.2: The register micro-benchmark

#define BNPROC 256
__global__ void
myperf(register volatile float *a, register volatile float *b)
{
  register int IPROC = (blockIdx.x * BNPROC) + threadIdx.x;

  register float a_reg = a[IPROC];
  register float b_reg = b[IPROC];

  __syncthreads();
  int i = 10000;
  do {
    a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
    a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
    a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
    a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
    a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
  } while (--i);

  a[IPROC] = a_reg;
  b[IPROC] = b_reg;
  __syncthreads();
}

Figure 4.2: The register micro-benchmark
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Figure 4.3: Total execution time of the register micro-benchmark

Figure 4.3: Total execution time of the register micro-benchmark

Figure 4.4: Per-block execution time of the register micro-benchmark

Figure 4.4: Per-block execution time of the register micro-benchmark
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Figure  4.3 may be  surprising  in  that  execution  time  is  obviously a  stair-step 

function for computationally-intensive code looping in registers.  Note that the NVIDIA 

8800 used in the test has 12 SMs; not surprisingly every time a multiple of 12 blocks is 

exceeded the execution time “steps”.  This is because adding that extra block causes one 

SM to execute another set of kernels while the other 11 SMs are idle.  Adding additional 

blocks populates the idle SMs, which does not cause any increase in execution time.  The 

important idea is simply that the stair-step characteristic comes from populating the SMs 

unevenly, and therefore the number of blocks should be chosen based on the number of 

SMs in a device.

Figure 4.4 shows the execution times normalized to the number of blocks.  The 

actual smallest execution time in this chart occurs at 396 blocks (33 blocks/SM) with a 

time per block of 0.48499 ms.  It should be noted that the time per block at 12 blocks (1 

block/SM) of 0.4915 ms is still smaller than the time per block at 390 blocks (0.4934 

ms),  388  blocks  (0.4959  ms),  and  386  blocks  (0.4981  ms).   Moreover,  the  percent 

difference between the time at 12 blocks and the time at 396 blocks is only 1.33%.

From the above data, it can clearly be seen that the near-optimal execution time 

per block is obtained any time the execution configuration runs a multiple of 12 blocks 

total, which is the same as running an identical number of blocks on every SM or fully 

populating the device some integral number of times. However, running a large multiple 

of 12 yields little additional performance benefit over running a small multiple of 12.

Kernel 2, shown in Figure 4.5, performs the same operations as kernel 1, but reads 

the global data into shared memory, uses pointers in registers to volatile shared memory 

inside  the  loop,  and  writes  the  shared-memory values  back  to  global  memory  upon 

completion.  Both execution time plots are shown following the kernel code, and plots are 

marked in increments of 24 because this is two times the number of SMs in the test card.
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Figure 4.5: The shared-memory micro-benchmark

#define BNPROC 256
typedef struct {
  float a_s[BNPROC];
  float b_s[BNPROC];
} my_shared_t;

__global__ void
myperf(register volatile float *a, register volatile float *b)
{
  register int IPROC = (blockIdx.x * BNPROC) + threadIdx.x;

  extern __shared__ my_shared_t shared[];
  register volatile float *a_shr = &((*shared).a_s[IPROC]);
  register volatile float *b_shr = &((*shared).b_s[IPROC]);
  *a_shr = a[IPROC];
  *b_shr = b[IPROC];

  __syncthreads();    
  int i = 10000;
  do {
    *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
    *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
    *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
    *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
    *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
  } while (--i);
  __syncthreads();
  a[IPROC] = *a_shr;
  b[IPROC] = *b_shr;     
  __syncthreads();
}

Figure 4.5: The shared-memory micro-benchmark
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Figure 4.6: Total execution time of the shared-memory micro-benchmark

Figure 4.6: Total execution time of the shared-memory micro-benchmark

Figure 4.7: Per-block execution time of the shared-memory micro-benchmark

Figure 4.7: Per-block execution time of the shared-memory micro-benchmark
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Figure 4.6 shows the same stair-step function for execution time as  Figure 4.3. 

Since conflict-free shared memory accesses are as fast as register accesses in CUDA[23], 

it is expected that the shared memory behaves in a similar manner to the register file with 

regards to scheduling behavior.  Note that the kernel does not attempt to stride shared 

memory reads or prevent bank conflicts, since the presence or absence of such conflicts 

should not change the scheduling behavior of the kernels.  While the scheduling unit in 

an SM may swap blocks to cover global memory latency, the overhead of such a swap 

would likely swamp a shared-memory conflict completely.

As  mentioned  before,  the  NVIDIA 8800  used  in  the  test  has  12  SMs;  not 

surprisingly every time a multiple of 12 blocks is exceeded the execution time “steps”. 

This is again because adding that extra block causes one SM to execute another set of 

kernels while the other 11 SMs are idle.  Adding additional blocks populates the idle 

SMs, which does not cause any increase in execution time.  The important idea is again 

that the stair-step characteristic comes from populating the SMs unevenly, and therefore 

the number of blocks should be chosen based on the number of SMs in a device.

Figure 4.7 shows the execution time normalized to the number of blocks. The 

smallest  execution time occurs at  36 blocks  (3 blocks/SM) with a  time per  block of 

1.06187 ms.  This  can be compared to  the largest  execution time at  a  multiple  of  12 

blocks, which is 24 blocks at a time per block of 1.075 ms. The percent difference is 

1.31%, and again the worst choice of a multiple of 12 (24 blocks at 1.075 ms/block) is 

better than a naive choice of a large number of blocks (424 blocks at 1.0838 ms/block or 

426 blocks at 1.079 ms/block).

Again, the data clearly shows that the near-optimal execution time per block is 

obtained any time the execution configuration runs a multiple of 12 blocks total, which is 

the  same as  fully  populating  the  device  some integral  number  of  times.   As  before, 

running a large multiple of 12 is not necessary to get nearly-optimal execution time per 

block, and does not appear to provide much benefit.

At this point, it is clear that running a number of thread blocks which is an integer 

multiple of the number of SMs is required for near-optimal performance.  But at what 

point does more virtualization result in less performance?  In terms of execution time, 

there appears to be no point where adding another 12 thread blocks results in noticeable 
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performance loss.  In terms of the interaction model, however, there is a very noticeable 

performance loss as soon as any blocks are queued to wait.

In the introductory material of this section, the interaction model of the CUDA 

GPU was described as relatively weak, primarily because processes cannot wait on each 

other  due  to  the  uncertainty  about  what  processes  are  currently  executing  and  the 

awkward global  memory coherence model.   If  it  is  known that  all  thread blocks are 

executing, however, then blocks can wait on each other by polling, and be assured that a 

write by one process will eventually be visible by all other processes.  This constitutes a 

much stronger interaction model, and is possible if the virtualization is kept within the 

limits of what can execute concurrently on a given device.  This would be dictated by the 

number of SMs in the device, the number of active blocks per SM or threads per SM 

supported by the device, and the per-block resource usage.

While  the  number  of  SMs,  threads-per-SM  constraint,  and  blocks-per-SM 

constraint  are  each  device-dependent,  the  per-thread  resource  usage  is  program-

dependent.  The per-thread resource utilization can be calculated prior to execution by 

using the built-in nvcc compiler option --ptxas-options=-v to determine register 

and shared memory usage, and resource usage can also be partially controlled by using 

the compiler option  --maxrregcount amount, where  amount is the  maximum 

number of registers a GPU function can use[23].  By using this compiler output alongside 

the  information  from  NVIDIA's  deviceQuery program  provided  with  the  default 

CUDA SDK installation (the compute capability information and number of SMs in the 

installed devices),  scaling parameters which populate  the device without queuing any 

thread blocks to wait can be automatically predicted for a particular kernel.

In this sense, GPU code could be autonomously optimized for a strong interaction 

model  and  nearly-best  execution  time  on  new  GPU  hardware  by  recompilation  or 

dynamic hardware detection at runtime.  This would be similar to  ATLAS[36], where the 

software tests various implementations of linear algebra routines and then uses the results 

to seed a search for the best implementation on a specific machine.  In ATLAS, a large 

time investment at compile-time pays a large performance dividend at run-time.  GPU 

code can also be automatically tuned at compile-time to use optimal virtualization.

25



4.3: Optimal Virtualization and the MPI Constraints

Optimal virtualization obviously boasts a performance boost over a poor choice of 

virtualization (a non-multiple  of the number of  SMs) in  terms of  execution time per 

operation,  as shown above.   The more important benefit,  though,  is  that  the stronger 

interaction model provided by the virtualization allows communication within a GPU.

Since  processes  are  guaranteed  to  eventually  see  values  written  by  other 

processes,  inter-process  communication  and  inter-process  synchronization  become 

possible without the need for the traditional kernel stop and restart.  Communication can 

be provided by simple data structures declared volatile in global device memory, or 

by a more advanced mechanism such as message-passing.  The benefit of the latter is that 

it completely hides the remaining shared-memory semantics issues associated with global 

memory, mainly the non-determinism associated with writes, since there is no guaranteed 

ordering between processes.  Synchronization can be provided by an established single-

writer,  multiple-reader algorithm, originally proposed and utilized in the SHMAPERS 

library[37] and adapted to an NVIDIA CUDA GPU within this research group.

There  is  also  a  performance  impact  of  the  new  capabilities:  the  kernel  can 

continue execution.   NVIDIA has stated that  kernel  launches have low overhead and 

should be used as global thread synchronization points[23].   The problem is  that  the 

hardware overhead may be low, but the software overhead for a kernel stop and restart is 

not.  In  the  CUDA  system,  no  local  processor  state  is  maintained  across  kernel 

invocations, so data must be written to global memory at the end of one invocation, and 

then read from global memory at the beginning of the next invocation[23].  Unpublished 

experiments conducted within this research group have shown that restoring state from 

global  memory quickly becomes  prohibitively expensive,  partially due  to  the lack of 

computation available to cover the latency from the extra memory reads.  In BGSP, the 

researchers were content with a 4x performance penalty for having to include save and 

restore state mechanisms, even when not in use[30].

In  addition to  the  cost  of  restoring  state  after  synchronization,  the stop/restart 

model  complicates  programming.   Currently,  if  communication is  required,  then data 

must either be copied to the host between kernels and altered appropriately before being 

copied  back,  or  another  kernel  must  perform  the  communications  using  the  global 
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memory between invocations.   Any code requiring multiple synchronizations must be 

rewritten  into  separate  kernels,  with  the  host  providing  the  glue  logic  to  invoke  the 

correct  kernels  as  necessary,  and  synchronizations  nested  within  control  structures 

exacerbate the problem of restoring state and continuing.  One simple example of this 

would be an iterative solver which is looping through a data structure and needs to check 

against a quality metric at the end of a set of iterations.

Chapter 5: The MPI Implementation

The primary claim of this thesis is that the message-passing programming model 

can be conceptually cleaner than the currently ubiquitous data-parallel model by hiding 

rather than dealing with the quirks of current shared-memory environments.  This section 

first provides a brief introduction to MPI (the Message-Passing Interface), which is the 

standard used in this research to implement the message-passing model on the GPU.  It 

then describes which parts of the standard are actually implemented and what design 

considerations  are  involved in  the  proof-of-concept  implementation.   Details  are  also 

provided  on  the  key  point-to-point  communication  function  implementations.   A 

performance comparison to the native NVIDIA CUDA code on a sample algorithm which 

computes  the  value  of  pi  in  parallel  is  then  presented  for  the  point-to-point 

communication functions.  This section then provides the same details and performance 

analysis for the key collective communication function implementations.  Some of the 

other  MPI  functions  which  were  implemented  are  briefly  discussed.   This  section 

concludes by describing the key benefits of the message-passing model compared to the 

data-parallel model, as demonstrated by the proof-of-concept MPI implementation and 

the example implementations of the sample algorithm.

5.1: Introduction to the Message-Passing Interface

MPI, the Message-Passing Interface, is a parallel-programming standard which 

provides a message-passing library interface specification[1].  That is, MPI provides a 

detailed specification of the various functions and data structures which are externally 

available in a message-passing library implementation which conforms to the standard. 

The standard does not specify the implementation details under the interface, and so MPI 
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can be implemented on a variety of hardware architectures.  The main benefit of MPI is 

therefore the ability to easily write portable code utilizing the message-passing model in 

C, C++, or Fortran.

As  seen  in  the  MPI  standard[1],  MPI  specifies  several  general  categories  of 

functionality  which  contain  the  various  MPI  functions.   These  include  point-to-point 

communication, data-type creation and management, collective or aggregate operations, 

process  group  management,  communication  context  management,  process  topology 

descriptions,  environmental  management  and  environmental  query,  info  object 

management,  process  creation  and  management,  one-sided  communication,  external 

interfaces management, parallel file I/O, and a profiling interface[1].  Each category of 

functionality contains both the functions, whose interfaces are defined in C, C++, and 

Fortran, and any data-types or constants which must be exposed to the user to interact 

with the functions.

5.2: Design Philosophies and Restrictions

Since  the  goal  of  this  research  is  to  provide  a  proof-of-concept  MPI 

implementation rather than a full one, only some functions from some of the categories 

above are actually implemented.  The emphasis is on proving the viability and benefits of 

the message-passing model, so point-to-point communications and aggregate operations 

are  the  main  focus  of  this  work.   In  addition,  a  handful  of  data-type  creation  and 

management,  environmental  management  and  environmental  query,  communication 

context management, and one-sided communications functions are implemented.

The functions implemented are chosen because they represent a large portion of 

what can be done with MPI, and they conceptually cover what is most often done with 

MPI.  The functions are not just the functions which naturally fit a GPU's programming 

model  and  architecture;  they  are  a  representative  set  of  functions  which  should 

demonstrate the benefits of MPI within a GPU in a relatively complete fashion.  The 

functions implemented are also similar to those in other subset implementations such as 

AFMPI[38], where the goal is  to prove the viability and benefits  of MPI on unusual 

hardware.

The following sections describe the implementation in greater detail, but there are 

a handful of overarching restrictions which mandate design decisions affecting the entire 
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implementation.  Each of these restrictions is described briefly here, and then in greater 

detail below.  The first restriction is the aliasing of the hierarchical groups inside a GPU, 

which  refers  to  the  interdependence  of  threads,  warps,  and  thread  blocks  within  an 

NVIDIA CUDA GPU.  This restriction affects the choice of what constitutes an MPI 

process in the implementation.  The second restriction is the inability to read from or 

write to an SM's local shared memory, and this restriction forces all communication to 

travel  through  slow  global  memory.   The  third  restriction  is  the  scarcity  of  local 

resources, and this restriction forces some potential optimizations within thread blocks to 

be ignored and forces a simple name-space for all MPI processes.  The fourth restriction 

is the ease with which the GPU can be accidentally live-locked, and this restriction forces 

the alteration of some MPI semantics to avoid potential live-locks.  The fifth and final 

restriction is the orientation of hardware to 32-bit operations, and this restriction causes 

all operations to be naturally word-oriented, and prevents some MPI interfaces involving 

double-precision floating-point numbers from being implemented.  Each of these ideas is 

described in more detail below.

The first restriction, the interconnection of the hierarchical groups inside a GPU, 

is simply referring to the fact that thread blocks are aliases for groups of warps, and 

warps are aliases for groups of threads.  A single thread never exists if it does not belong 

to a warp, and that warp never exists if it does not belong to a thread block.  This is 

different than a cluster of workstations, for example, where a single workstation can exist 

without being part of a cluster.

The  implications  of  this  restriction  become clear  when deciding  what  exactly 

constitutes an MPI process or rank.  In DCGN[29], Stuart and Davis discuss the problems 

with choosing either an entire kernel or single threads as a rank, noting that each mapping 

can have benefits.  In this research, though, the focus is on communication within a GPU, 

rather than communication across GPUs.  Within any GPU, the basic blocks mentioned in 

chapter 3.2 are present.  In the NVIDIA CUDA GPU used here, the obvious choice for 

what constitutes a rank or process would be a thread, a warp, or a thread block.  This 

research chooses to implement processes as threads, since threads are the smallest units 

performing  work  inside  a  GPU.   This  has  the  benefit  of  making  kernel  code  look 

relatively  normal  (rather  than  always  collective  across  warps  or  thread  blocks),  and 
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keeping the programming model easy to use,  as opposed to forcing the user to write 

vector-oriented code for warps or thread blocks.  The obvious penalty for this choice is 

that all potential SIMD divergence issue are exposed by this choice and must be taken 

into consideration (this will be illustrated in the test algorithm implementations).  The 

future  work  for  this  research  includes  examining  other  MPI  implementations  with 

processes mapped onto warps and thread blocks.  Warps could hide SIMD divergence 

issues while  still  providing a  low-level,  vector-oriented programming model.   Thread 

blocks could hide all scheduling issues when optimally virtualized and provide a MIMD 

programming model, but at the cost of load-balancing issues and a more complex vector 

model.

The second restriction involves the limitations on which thread can write to a 

SIMD processor's local shared memory.  Only a thread which is executing in a thread 

block on a given SIMD processor may read and write to the shared memory allocated to 

the thread block locally in that SIMD processor.  A thread cannot write to shared memory 

in a thread block executing on another SIMD processor, and cannot write to statically-

allocated local  shared memory of another  thread block executing on the same SIMD 

processor (a pointer to dynamically-allocated shared memory created by the host can be 

shared  among thread  blocks  on  a  SIMD processor,  but  the  operations  on  it  must  be 

synchronized  by  a  global  barrier  synchronization  of  all  processes,  since  the 

__syncthreads() command only synchronizes threads within a thread block).  This 

forces communication to move through device global memory (optimizations for threads 

in the same thread block are not used because of the scarcity of local resources, described 

in the next section).  For send and receive operations, a send may specify a source in 

shared memory and a receive may specify a destination in a different shared memory, but 

the message must move through global memory at some point.  This also constrains one-

sided communication to targets in global memory or in the shared memory of the thread 

block of the invoking process.

The third restriction, the scarcity of local resources, refers to the relatively small 

amounts of fast, local resources in current GPUs.  On the NVIDIA GPU, these resources 

include the registers and shared memory, as described in chapter 3.2.

There are two design decisions caused by the restriction: a single-context,  flat 
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process  name-space  and  a  lack  of  optimizations  for  threads  communicating  within  a 

thread block.  MPI specifies a range of functions for subdividing the collection of all 

processes  into  subgroups  and  for  managing  unique  communication  contexts  within 

groups and subgroups.  Such functions require that information about the various groups 

and contexts be available to each process, but this implies that something must be stored 

for each process to identify its contexts and groups.  Given the already-limited amount of 

local shared memory and registers, and given that the subgroups and communicators are 

not essential for proving the viability and conceptual cleanliness of the message-passing 

model, this research chooses not to implement the subgroup and communication context 

functionality and instead uses a single communicator: MPI_COMM_WORLD.  The lack of 

local resources also limits potential optimizations for threads communicating or working 

within  a  thread  block.   As described  in  the  previous  section,  threads  communicating 

within  a  thread  block  could  benefit  from passing  messages  through  shared  memory. 

However, this optimization could easily consume all the shared-memory resources and 

leave none for user computation.  As an example, if each of 256 threads in a thread block 

wanted to send 1 single-precision float to the next process, this would require 255*4 = 

1020 bytes of shared memory (1/8 the total available if only one thread block is executing 

on the SIMD processor) for a single buffered send operation.

the ease with which the GPU can be accidentally live-locked, and this restriction forces

The fourth restriction is the the ease with which the GPU can be accidentally live-

locked.  Because MPI requires some operations to  be semantically blocking,  there  is 

always the possibility of spin-locking one process while waiting on another which will 

not be scheduled because of the fairness issues described in chapter  4.1.  Note that the 

choice of a process mapping does not affect this; at optimal virtualization there are still 

usually more blocks than SMs, and nearly always more threads than physical processors. 

The mapping of a process to a thread only makes it simpler to hang the hardware via 

SIMD enable masking used within a warp.  Note that the NVIDIA GPU does not support 

any interrupt  mechanism to recover  from a lock,  the only supported mechanism is  a 

watchdog timer which terminates the kernel invocation after about 10 seconds.  When the 

watchdog  timer  activates,  no  local  state  is  preserved  and the  results  of  any pending 

memory writes are undefined.
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The live-lock restriction implies that not all blocking operations can be trivially 

implemented.  This research handles this restriction by obeying the semantics of MPI 

blocking operations without actually blocking where possible.   An example of this  is 

MPI_Send, which  always  buffers  send data  to  a  system buffer.   If  buffer  space  is 

unavailable, MPI_Send returns an error (MPI_NO_SPACE) rather than blocking.  This 

also relates back to the choice of a process mapping: a true blocking send and receive pair 

could never work at the thread granularity due to the enable masking used to implement 

divergence.  Some MPI interfaces, such as MPI_Recv and MPI_Barrier, must block. 

As long as the user kernel is written correctly, though, these cannot actually lock the 

device.   The  restrictions  for  using  interfaces  are  described  in  the  following  sections 

alongside the actual interfaces.

The fifth and final restriction is the orientation of hardware to 32-bit operations. 

Some GPUs still lack support for double-precision, including the compute-capability 1.0 

GeForce 8800GTS used in this research.  These devices may silently demote double-

precision floating-point numbers and computations to single-precision equivalents[23]. 

Additionally, the cost for utilizing the support tends to be high compared to the native 

single-precision support for which GPUs became known.

Because of this restriction, this research attempts to utilize 32-bit words wherever 

possible.  All data copy routines operate on  32-bit words, and shorter or longer data-

types  (including  double-precision  floating-point)  are  not  supported  in  computation 

functions such as reduction.  Support for double-precision floating-point could potentially 

be  emulated  using  pairs  of  single-precision  floating  point  numbers,  as  suggested  by 

Dietz[39], but this optimization is beyond the scope of proving the viability and benefits 

of MPI within a GPU.

Now that the design philosophies and restrictions have been explained, the next 

sections will describe the important interfaces in detail.  There are a total of 28 functions 

in the proof-of-concept implementation, but only the key ones are explained in detail in 

their  respective sections  below.   There  are  7  point-to-point  communication interfaces 

implemented:  MPI_Send,  MPI_Recv,  MPI_Get_count,  MPI_Iprobe, 

MPI_Probe,  MPI_Sendrecv,  and  MPI_Sendrecv_replace.   There  are  8 

collective  communication  interfaces  implemented:  MPI_Barrier,  MPI_Bcast, 
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MPI_Gather, MPI_Scatter, MPI_Allgather, MPI_Alltoall, MPI_Reduce, 

and  MPI_Allreduce.   There  are  3  data-type  management  interfaces  implemented: 

MPI_Pack,  MPI_Unpack,  and  MPI_Pack_size.   There  are  2  communication 

context  management  interfaces  implemented:  MPI_Comm_size and 

MPI_Comm_rank.   There  are  5  one-sided  communication  interfaces  implemented: 

MPI_Win_create, MPI_Win_free, MPI_Put, MPI_Get, and MPI_Win_fence. 

Finally,  there  are  3  environmental  management  and  inquiry  interfaces  implemented: 

MPI_Get_version, MPI_Init, and MPI_Finalize.

5.3: The Point-to-Point Communication Interfaces

Point-to-point  communications  are  perhaps  the  quintessential  message-passing 

operations.   This  section  will  focus  on  the  send  and  receive  implementations  by 

describing  the  general  point-to-point  model,  showing  pseudo-code  for  the  send  and 

receive  operations,  and  explaining  each  operation  thoroughly.   Potential  performance 

improvements are also discussed.

The  general  model  for  point-to-point  communication  inside  the  GPU  is  that 

messages and envelopes are buffered in global memory by the process which sends the 

message.  The buffer is a system data structure (described later in this section), and there 

is a static limit on the number of buffered messages and the size of each message.  The 

receive operation searches in the buffer of the source it intends to read from, blocking 

until it finds a matching envelope and message.  Once the receive reads the message, it 

marks the send buffer as read and returns.  To better understand these steps, MPI_Send 

and MPI_Recv are each examined in detail below.

The prototype for MPI_Send is shown in Figure 5.1.
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Figure 5.1: MPI_Send prototype

/* Send, standard-mode */
__device__ int MPI_Send ( 

void* buf, /* IN */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int dest, /* IN */
int tag, /* IN */
MPI_Comm comm /* IN */

);

Figure 5.1: MPI_Send prototype

The MPI_Send function sends count items of the type data-type from the 

buffer  *buf to the process with rank  dest with an envelope tag value  tag and the 

communicator comm.  The pseudo-code for the entire function is shown in Figure 5.2 (the 

actual code implementing the function is shown in Appendix A).
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Figure 5.2: Pseudo-code for MPI_Send

/* Send, standard-mode */
__device__ int MPI_Send(...) 
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
if((err_code = check_args(...))) return(err_code);

/* Reset received buffers as available and
 * adjust the total buffered message count
 * accordingly */
msg_count = reset_received_buffers();

/* Ensure that buffer space is still available */
if (msg_count == MAX_BUFFERED_MESSAGES)

return(MPI_ERR_NO_SPACE);

/* Now find the first free buffer 
 * (one marked as available) */
msg_slot = get_first_available_buffer();

/* Fill the buffer with the message header */
set_msg_header(msg_slot,...);

/* Copy the data from the send buffer 
 * to the the system buffer */
copy_data(msg_slot,buf,data-type,count);

/* Increment the current message count */
set_msg_count(++msg_count);

/* Serialize the message, which marks it as valid. */
set_msg_serial(msg_slot, serial_number++);

/* Return */
return (MPI_SUCCESS);

}

Figure 5.2: Pseudo-code for MPI_Send

The  send  function  is  fairly  straightforward.   First,  the  necessary  temporary 

variables are declared and initialized.  Next, the input arguments are checked for errors. 

In the case of MPI_Send, errors include a destination process which is negative and not 

MPI_PROC_NULL,  a  tag  value  which  is  less  than  the  specified  lower-bound 

MPI_TAG_LB,  greater  than  the  specified  upper-bound  MPI_TAG_UB,  or 

MPI_ANY_TAG, a send type which is not a valid data-type, a send count which is zero, 
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negative, or would require more storage than MAX_DATA_PER_MESSAGE*4 bytes, and 

a communicator which is not MPI_COMM_WORLD.

Once error checking is complete, the function needs to update its internal list of 

message serial numbers.  Messages are serialized from 0 upwards, so that two messages 

sent from one process will arrive at another process in order.  The serial numbers are also 

used to store the special tags SN_AVAILABLE and SN_RECEIVED, which indicate that 

a message slot is available for use, or has been received by another process, respectively. 

The  update  process  consists  of  resetting  all  messages  marked  SN_RECEIVED to 

SN_AVAILABLE, so that the send operation can use them again, and decrementing the 

message count accordingly.

After updating the serial number list, the routine ensures that space is available.  If 

it is, the first message slot marked SN_AVAILABLE is located and used for the message. 

The message header and envelope information is then copied into the slot.  This includes 

the destination, data-type, count, tag, and communicator.

Once the header is written, the actual data must be copied into the system buffer. 

Although  the  system  buffer  is  aligned,  it  is  possible  for  the  source  buffer  to  be 

misaligned.   For  this  reason,  the  copy operation must  get  the  aligned address  of  the 

source, convert the count to bytes, and then perform a different copy routine based on the 

misalignment of the source address.  The aligned-copy routine is a straightforward word-

to-word copy.  The other copy routines all require that two words from the source buffer 

be read and then shifted, bit-masked, and pasted together to make the correct aligned 

data.  The routine actually may read more data than specified for code simplicity, but the 

correct amount of data is stored in the header information.

After copying the data, the process must first increment its message count, then 

serialize this message with the current serial number and increment the serial number. 

The ordering of these operations is important, since the receive operation loops based on 

the message count.  Finally, the message and envelope are all buffered and the routine can 

return successfully.

The prototype for MPI_Recv is shown in Figure 5.3.

36



Figure 5.3: MPI_Recv Prototype

/* Receive */
__device__ int 
MPI_Recv
(

void* buf, /* OUT */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int source, /* IN */
int tag, /* IN */
MPI_Comm comm, /* IN */
MPI_Status *status /* OUT */

);

Figure 5.3: MPI_Recv Prototype

The MPI_Recv function receives up to  count items of the type  data-type 

into the buffer  *buf from the process with rank  source with an envelope tag value 

tag and  the  communicator  comm.   MPI_Recv also  returns  information  about  its 

execution in   *status.  The pseudo-code for the entire function is shown in Figure 5.4 

(the actual code implementing the function is shown in Appendix A).
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Figure 5.4: Pseudo-code for MPI_Recv

/* Recv */
__device__ int MPI_Recv(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
if((err_code = check_args(...))) return(err_code);

/* This is a blocking receive operation, so 
 * loop until a matching send is found */
msg_slot = -1;
while( msg_slot == -1 ) {

msg_slot = match_envelope(...);
}

/* We now have a matching message slot, and
 * the message will be consumed even if there
 * are errors, so set the status object. */
set_status(...);

/* Check that the data-types match */
if((err_code = check_types(...))) return(err_code);

/* Ensure that recv buffer can hold message */
if( err_code = check_sizes(...))) return(err_code);

/* Copy the data from the system buffer 
 * to the the recv buffer */
copy_data(msg_slot,buf,data-type,count);

/* Mark the message as received */
set_msg_serial(msg_slot, serial_number++);

/* Return */
return (MPI_SUCCESS);

}

Figure 5.4: Pseudo-code for MPI_Recv

The recv function is also fairly straightforward.  First, the necessary temporary 

variables are declared and initialized.  Next, the input arguments are checked for errors. 

In the case of  MPI_Recv, errors include a source process which is negative and not 

MPI_PROC_NULL,  a  tag  value  which  is  less  than  the  specified  lower-bound 

MPI_TAG_LB or  greater  than  the  specified  upper-bound  MPI_TAG_UB,  and  not 

MPI_ANY_TAG, a receive type which is not a valid data-type, a send count which is 

zero,  negative,  or  would  require  more  storage  than  MAX_DATA_PER_MESSAGE*4 
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bytes, and a communicator which is not MPI_COMM_WORLD.

Once error checking is complete, the function needs to find the message it will 

receive.  To do this, it spins in a loop repeatedly checking the messages in the process 

specified by source.  The actual checking consists of reading the message count from 

the specified process, and then iterating through the messages until either the maximum 

number of buffered messages are checked or the number of valid messages read from the 

source process is the same as the message count read earlier, which would indicate that 

all valid messages have been checked.  Checking a message consists of looking at all 

messages  which  are  not  marked  SN_AVAILABLE.   A message  matches  if  it  is  not 

marked SN_RECEIVED, the tag value and communicator match those specified by the 

receive, the destination is the rank of the process performing the receive, and the serial 

number is the lower than the lowest serial number which the receiver has seen so far. 

Both the serial numbers and the need to check all buffered messages instead of stopping 

at  the  first  match  are  dictated  by  the  MPI  requirement  that  messages  be  non-

overtaking[1].  If no match is found, the message count will be re-fetched from the source 

process and the search will continue.

Upon finding a matching message, the MPI_SOURCE and MPI_TAG fields of the 

status object are set, since the message will be received at this point even if an error is 

generated.  The count is also set to the count read from the matching message slot, since 

only that many entries can be received.  The data-type is then read from the matching 

message slot  and compared to  the receive data-type according to MPI type-matching 

rules  (these  essentially  state  that  the  types  must  match  perfectly  unless  one  type  is 

MPI_PACKED[1]).  If the data-types do not match, the receive call marks the message 

SN_RECEIVED in the send buffer and returns.

Once  the  types  are  matched,  the  only  remaining  check  is  that  the  count  of 

elements in the send buffer is less than or equal to the count to be received.  If the count 

is greater than the number to be received, the message is marked SN_RECEIVED, but no 

data is read and the receiver returns with an error code of MPI_ERR_TRUNCATE.

After the checks are complete, the actual data must be copied into the receive 

buffer.  Although the system buffer is aligned, it is possible for the receive buffer to be 
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misaligned.  For this reason, the copy operation must get the aligned address, convert the 

count to bytes, and then perform a different copy routine based on the misalignment of 

the receive address.  The copies are all the same type as those in MPI_Send, but with the 

exception that the number of bytes written at the end must be exact, and extra data cannot 

be written.  This is not merely a design decision; it is a strict requirement in the MPI 

standard[1].  The aligned-copy routine is a straightforward word-to-word copy.  The other 

copy routines all require that two words from the system send buffer be read and then 

shifted,  bit-masked,  and  pasted  together  to  make  the  correct  misaligned  data  in  the 

receive buffer.  After copying the data, the receive process must mark the message serial 

number as SN_RECEIVED in the system send buffer, and can then return successfully.

Now that both MPI_Send and MPI_Recv have been explained, there are several 

important  concepts and clarifications which must be discussed.   These fall  into three 

categories: performance optimizations used in the code, future performance optimizations 

not implemented yet, and unsupported functionality.

As a performance optimization,  this  algorithm breaks the strict  “owner-writes” 

rules typical of GPUs by allowing the receiver to write into the serial number array of the 

system send buffer.  NVIDIA CUDA allows arbitrary writers on global memory at the 

cost of not having cached global memory accesses, while ATI still requires owner-writes 

global  memory access  (with the exception of scatter  via  the “global  buffer”)  but has 

cached global memory accesses[23][5].  The good news is that some newer models (ie 

OpenCL[26])  do  not  have  owner-writes  restrictions,  and  there  is  no  problem 

implementing the algorithm on a system which does, but the bad news is that it requires 

additional space on the receive process.  In particular, the receiver would record in its 

global space that it had read a message with some envelope and serial number from some 

sender, and each sending process would have to check all its targets during sends and at 

the  next  global  synchronization  to  see  what  messages  had  been  read  (Global 

synchronization  is  required  for  the  receiving  process  to  stop  indicating  it  received  a 

certain  message,  since this  ends the cycle  of “process 1 saw that  process 2 saw that 

process 1 saw that process 2 saw that …” etc.).  Since receiving processes would need to 

keep records of all messages that had been received until a global synchronization, the 

buffer  holding  the  records  in  global  memory could  in  theory be  very large  for  each 
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process.

The next performance optimizations are both related to the arrangement of the 

message data in the system send buffer.  All the handles which access the system send 

buffer are written in macros, which hides the nastiness of accessing arrays of structures of 

special  data-types  and  arrays.   More  importantly,  this  allows  memory layouts  to  be 

tweaked to enable better coalescing and memory access patterns without major recoding.

Originally, the global message buffer was laid out as an array of process message 

structures.  Each process message structure was then laid out as an array of individual 

message structures and some header information, including the current serial number, the 

message count, and the serial number array.  The individual message structures, which 

were the lowest level, contained the header information for each message and an array of 

data which was used to store the message contents.

After seeing that the aggregate communications and one-sided communications 

could share the system message buffer for storage space, the process message structures 

were re-written so that all the data would be at the process level.  The buffers are still 

statically-sized and have fixed limits for send and receive operations, but this allowed 

aggregate communications hijacking the buffer to store as much data as all the message 

buffers  in  a  process  could  hold,  and  to  store  it  in  a  simple  manor  without  jumping 

between multiple buffers.

There are other optimizations which could be made.  First and foremost, all the 

message buffers for all processes should be joined at the top level as a single array in the 

system message buffer, as this (combined with an appropriate skew) could potentially 

allow send operations to coalesce.  The skew is required so that the threads of a half warp 

will access consecutive addresses when accessing the same element in their respective 

system buffers.

Other potential optimizations could be provided by allowing the user to promise 

that only aligned addresses are passed, thereby reducing the computation and memory 

accesses needed to perform a copy; or by allowing shared-memory usage for point-to-

point  messaging  within  a  thread  block,  which  would  drastically  reduce  the  costs  of 

sending certain messages at the aforementioned expense of using a lot of a scarce local 

resource.  It should also be noted that, since the MPI implementation does not allow user-
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defined  communicators  or  data-types,  all  data-types  and  communicators  could  be 

eliminated  at  compile-time.   The  macros  for  determining  the  size  of  a  data-type  are 

already evaluated at compile-time, but more code could likely be removed.

Finally,  there  are  two  capabilities  missing  in  the  current  MPI_Send and 

MPI_Recv implementations:  receive  from  any  source  (MPI_ANY_SOURCE)  and 

receive with any tag (MPI_ANY_TAG).  The MPI_ANY_TAG support is not implemented 

yet simply because the research has focused on optimizations with more potential benefit, 

although it can be implemented by merely modifying the envelope-checking routine in 

the  MPI_Recv code.   Support  for  MPI_ANY_SOURCE has  not  been  implemented 

because it implies a search in global memory.  Instead of merely searching the specified 

source for a matching message, the receiving process would have to search through as 

many processes as necessary to find a matching message.

The  other  supported  point-to-point  communication  interfaces  are  basically 

portions or combinations of the MPI_Send and MPI_Recv functions.  MPI_Iprobe 

and  MPI_Probe are  merely  non-blocking  and  blocking  envelope-matching  routines 

from  MPI_Recv,  which  set  a  status  object  to  the  values  of  what  would  have  been 

received if  MPI_Recv was called with the same parameters.   MPI_Sendrecv,  and 

MPI_Sendrecv_replace are  simply  wrappers  which  call  MPI_Send and  then 

MPI_Recv.  Finally,  MPI_Get_count is just a routine which reads a system-defined 

(as opposed to MPI-standard defined) field in the status object returned by MPI_Recv 

and returns the number of elements which were actually received.

5.4: Point-to-Point Communication Performance

This section will show the performance of the MPI implementation compared to 

the performance of native CUDA code, with both executing a parallel algorithm which 

estimates PI.  The code for the basic sequential algorithm is shown in Figure 5.5.
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Figure 5.5: Algorithm for sequential estimation of PI

main(int argc, char **argv)
{
  register double width, sum;
  register int intervals, i;

  /* get the number of intervals */
  intervals = atoi(argv[1]);
  width = 1.0 / intervals;

  /* do the computation */
  sum = 0;
  for (i=0; i<intervals; ++i) {
    register double x = (i + 0.5) * width;
    sum += 4.0 / (1.0 + x * x);
  }
  sum *= width;

  printf("Estimation of PI is %f\n", sum);

  return(0);
}

Figure 5.5: Algorithm for sequential estimation of PI

The algorithm computes the value of pi by summing the area under x2, and was 

used  in  the  Linux  Documentation  Project  Parallel  Processing  HOWTO[40]  (and 

originally shown by Quinn[41]) to demonstrate how various programming models differ. 

If  the  intervals  are  distributed  among  processes,  the  algorithm  instantly  becomes  a 

parallel  computation,  with  several  possible  implementations  for  transferring  and 

combining the partial sums from each process.  This is not a benchmark algorithm which 

flatters MPI, since it does not contain enough work to show speedup on most parallel 

machines; this is an algorithm which has been shown to be useful for comparing and 

contrasting programming environments.

For the point-to-point communication performance tests, the implementations will 

use a send and receive mechanism to have all processes aggregate their partial sums on 

process 0.  Process 0 will then complete the summation and return the result.  Note that 

this is not a good approach (a reduction would be more appropriate), but the algorithm 

provides  a  basis  for  comparison  between  native  CUDA with  and  without  the  MPI 

implementation.  Figure 5.6 shows the kernel for the algorithm implemented in CUDA 

using  MPI,  while  Figure  5.7 and  Figure  5.8 show  the  kernels  for  the  algorithm 
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implemented in CUDA without MPI.

Figure 5.6: Point-to-point MPI implementation of the test algorithm

/* MPI Implementation using point-to-point communication */
__global__ void 
PI__point_to_point( register volatile int *interval_p,

register volatile float *sum_p,
register volatile int *error_p)

{
register float width, sum;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i; 
int nproc, iproc, ib; 
MPI_Status status;

if (MPI_Init((void *) 0) != MPI_SUCCESS) {
error_p[0] = 1; return;

}
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

  intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

if (iproc != 0) {
MPI_Send(&(lsum[ib]), 1, MPI_FLOAT, 0,

0, MPI_COMM_WORLD);
}
if(iproc == 0) {

sum = lsum[ib];
for (i=1; i<nproc; ++i) {

MPI_Recv(&(lsum[ib]), 1, MPI_FLOAT, i,
 0, MPI_COMM_WORLD, &status);

sum += lsum[ib];
}
sum_p[0] = sum;

}

MPI_Finalize(); error_p[iproc] = 0;
return;

}

Figure 5.6: Point-to-point MPI implementation of the test algorithm
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Figure 5.7: Point-to-point CUDA-only implementation of the test algorithm, part 1

/* Native CUDA using point-to-point communication */
/* Kernel 1 of 2 */
__global__ void
PI__point_to_point_1(register volatile int *interval_p, 
 register volatile float *lsum_p)
{

register float width;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i; 
int nproc, iproc, ib;

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

  intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

if (iproc != 0)
{

/* Send the partial sum to processor 0 */
lsum_p[iproc] = lsum[ib];

}

return;
}

Figure 5.7: Point-to-point CUDA-only implementation of the test  
algorithm, part 1
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Figure 5.8: Point-to-point CUDA-only implementation of the test algorithm, part 2

/* Native CUDA using point-to-point communication */
/* Kernel 2 of 2 */
__global__ void
PI__point_to_point_2(register volatile float *sum_p,

register volatile int *error_p,
register volatile float *lsum_p)

{
register int i;
int iproc,nproc, ib;
__shared__ float sum;

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;
ib = iproc % NUM_THREADS_PER_BLOCK;

if(iproc == 0) {
sum = lsum_p[iproc];
for (i=1; i<nproc; ++i) {

sum += lsum_p[i];
}
sum_p[0] = sum;

}

error_p[iproc] = 0;
return;

}

Figure 5.8: Point-to-point CUDA-only implementation of the test  
algorithm, part 2

There is little to explain regarding the above codes.  The MPI implementation 

uses standard MPI functions to initialize, get the process rank and number of processes, 

have every process except process 0 send to process 0, and then have process 0 receive 

all  the  partial  sums.   The  computations  are  nearly  identical  to  those  in  the  original 

algorithm, with the exception that they are performed in a shared-memory block.  The 

native CUDA code uses CUDA built-ins to identify the process and number of processes, 

and then uses an intermediate memory location to pass out the partial sums to global 

memory for the next kernel invocation.  Again, the computation is identical to the original 

but performed in shared memory.   The second CUDA kernel recalculates the process 

parameters and then has process 0 read the global memory, summing as it goes.  When 

finished, process 0 records the sum in global memory and all processes return.

To test the execution-time performance of these kernels, each was executed three 

times with the number of intervals per process varied from 2 to 128 in steps of 2.  The 
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resulting average execution times are shown in Figure 5.9.

Figure 5.9: Execution time of both implementations of the test algorithm

Figure 5.9: Execution time of both implementations of the test algorithm

The above chart shows the execution time for the MPI implementation and the 

native CUDA implementation.  The average execution time of the MPI kernel is 21.62ms, 

while the average execution time of the native CUDA kernel is 1.74ms.  The difference in 

execution time between 128 intervals per process and 2 intervals for process is 0.014ms 

for the MPI implementation and 0.079ms for the native CUDA implementation.

The performance data above indicates that there is roughly a 12.5x execution time 

performance penalty for using the MPI kernel over the native kernels with a point-to-

point  communication  implementation  of  the  PI-estimation  algorithm.   Examining  the 

execution times can easily reveal  the reason.   Note that  the execution time does not 

change noticeably when the number of intervals change.  This suggests that computation 

does  not  factor  into  the  execution  time,  meaning  that  memory  latency  must  be  the 

dominating  portion  of  it.   While  the  native  CUDA routine only performs  one global 

memory write per process and then a sequential set of as many global reads as there are 

processes  to  move  the  partial  sums,  it  does  so  by  virtue  of  having  the  barrier-
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synchronization mechanism provided by the first kernel stopping and the second starting. 

The MPI kernel, on the other hand, does not use any barrier synchronization.  Instead, 

process 0 searches for and fetches messages in global memory.  Each send operation, 

although happening in parallel with others, involves a series of global memory reads and 

writes for bookkeeping, finding a message slot, and writing the header information, in 

addition to writing the actual data.  Since only one data element is written per process, 

there is no amortizing of the latencies for the extra reads and writes over multiple data 

elements.   Similarly,  the  receive  operations  involve  envelope  matching  and  header 

copying in addition to the actual message copying.

While the message-passing implementation has worse performance in terms of 

execution  time,  it  certainly  has  better  performance  in  terms  of  simplicity  and  a 

standardized,  familiar  interface.   The  message-passing  implementation  also  hides  the 

shared-memory issues, transparently allowing messages to pass from shared memory in 

one thread block to shared memory in another thread block.

5.5: The Collective Communication Interfaces

While point-to-point communications involve communication between individual 

processes, collective communications involve communication within groups of processes. 

This section will focus on the barrier synchronization and reduction implementations by 

describing the general  collective communication model,  showing pseudo-code for the 

operations,  and  explaining  each  operation  thoroughly.   Potential  performance 

improvements will also be discussed.

The general model for collective communication inside the GPU is a two-step 

process.  First, depending on the operation, one or all processes (the sending processes) 

will  perform some local  operations to  accomplish half  the operation.   In a  broadcast 

operation, for instance, the root process would participate by copying the broadcast data 

to a buffer in global memory, thereby making it accessible to all other processes.  In a 

gather operation, this would consist of all processes writing their contributions to a global 

space accessible to root.  After the first phase of the collective is completed, a barrier 

synchronization is required.

The second step is basically the same as the first, except it involves the receiving 

group of processes.  In this step, the processes will complete the operation on the now-
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visible data from the first group of processes.  In a broadcast operation, every process 

reads the broadcast data at once.  In a gather operation, the root process reads the data 

from the global memory into its result buffer.  After this part of the collective, another 

barrier synchronization is required. 

There  are  some  aggregate  operations  which  do  not  conform  to  the  two-step 

general  model presented above.   Personalized all-to-all  communications,  for example, 

require O(n) passes through the above steps in a GPU.  Barrier synchronization also does 

not require two phases, as it is more basic than gather or scatter operations.  To better 

understand  the  collective  communications,   MPI_Barrier and  MPI_Reduce will 

each be examined in detail below.

The prototype for MPI_Barrier is shown in Figure 5.10.

Figure 5.10: MPI_Barrier prototype

/* Barrier synchronization */
__device__ int
MPI_Barrier
(

MPI_Comm comm /* IN */
);

Figure 5.10: MPI_Barrier prototype

The  MPI_Barrier function  performs  a  barrier  synchronization  of  all  the 

processes in the communicator comm.  The pseudo-code for the entire function is shown 

in Figure 5.11 (the actual code implementing the function is shown in Appendix A).
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Figure 5.11: Pseudo-code for MPI_Barrier

/* Barrier synchronization */
/* (Uses a single-writer, multiple-reader mechanism in 
 * global memory) */
__device__ int MPI_Barrier(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
err_code = check_args(...);

/* Sync here to ensure that everybody in this
 *  block is at the barrier */
__syncthreads();

/* The first thread in the block represents the
 * whole block in the synchronization */
if (thread_id_in_block == 0)
{

/* Increment this block's barrier number */
bar_nums[my_block]++;

/* Now, starting at the next block, scan the
 * barrier numbers until either all
 * other blocks have arrived or one 
 * block has passed */
do
{

done = scan_numbers(bar_nums, my_block);
} while (!done);

/* The barrier is completed. Increment again
 * to inform anybody still scanning */
bar_nums[my_block]++;

}

/* All threads wait here for the first thread */
__syncthreads();

/* Return */
return(err_code);

}

Figure 5.11: Pseudo-code for MPI_Barrier

The barrier function is essentially a single-writer, multiple-reader mechanism (as 

mentioned before, the algorithm was first published by Dietz[37], and later adapted to 

NVIDIA CUDA inside this research group).  First, the necessary temporary variables are 

declared and initialized and the input arguments are checked for errors.  In the case of 

MPI_Barrier, the only potential error is using an unsupported communicator (the only 
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supported communicator is  MPI_COMM_WORLD).  Note that an erroneous function call 

does not return until it has participated in a barrier, because doing so results in a system 

hang while the other synchronizing processes wait for it.

Once error checking is complete, the function first obtains a pointer to the array of 

barrier  numbers  in  global  memory  (this  array  is  normally  initialized  to  0  by  either 

MPI_Init or  the  host  before  a  kernel  invocation).   Next,  a  __syncthreads() 

command is issued to synchronize the threads in each block, ensuring that all processes 

are at the barrier.  Once this synchronization completes, only the first thread in each block 

participates in the actual barrier synchronization.

The thread first allocates a register to store the barrier numbers as they are read, a 

register to store the current barrier number for this block, and a read barrier numbers and 

a register to hold the starting location for this block's scan (which will be the next block). 

Once these registers are initialized, the thread increments its barrier number in the global 

array to indicate that it has arrived at the barrier.  It then begins scanning the next block's 

barrier entry in global memory, waiting for it to be greater than or equal to the scanning 

thread's current barrier number.  If all blocks begin by scanning at process 0 instead, the 

performance is only slightly degraded.  This likely indicates that high latency, rather than 

a lack of bandwidth, limits the speed of the algorithm.

Once  the  barrier  number  being  scanned  increases,  the  scanning  thread  first 

increments its scan position, looping if necessary, and then checks to see if the barrier is 

finished.  The barrier is finished when either the thread is scanning its own entry in the 

barrier number array, meaning it made the whole loop through the barrier number entries, 

or the thread has scanned an entry which had a barrier number greater than the current 

value for the scanning thread, meaning that the thread being scanned knows that every 

other process has finished the barrier and is continuing.  In either case, the thread exits 

the  loop  and  increments  its  own  barrier  number  again  to  indicate  that  the  barrier 

synchronization is finished to any processes which are still scanning.

Finally, all processes enter another __syncthreads(), which ensures that no 

process can schedule code while process 0 is still participating in the barrier.  Once the 

__syncthreads() command completes, the processes return the error code, which 

was MPI_SUCCESS unless the communicator provided was invalid, in which case it was 
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MPI_ERR_COMM.

Before the prototype for  MPI_Reduce is shown, some explanation is needed. 

Because of the length of reduction functions, it would be inconvenient to implement each 

reduction function as a copy with only a few symbols and/or data-types changed.  For this 

reason,  the  research  implements  the  reduction  function  as  a  macro  which  is  called 

repeatedly to create the various reductions.  The macro to declare the prototype, as well 

as an invocation of it, are shown in Figure 5.12.  To simplify discussion, this thesis will 

use the example of MPI_SUM reduction of MPI_FLOAT data-types.  The prototype for 

this particular reduction function is shown in Figure 5.13.

Figure 5.12: MPI_Reduce prototype macro

/* This macro creates a reduction function prototype. */
#define CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(op,dtype) \
__device__ int \
MPI_Reduce_##dtype##_##op \
( \

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

);

/* Declaration of a MPI_SUM reduction of MPI_FLOAT types */
CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,MPI_FLOAT)

Figure 5.12: MPI_Reduce prototype macro

Figure 5.13: MPI_Reduce prototype

/* The created reduction function prototype. */
__device__ int
MPI_Reduce_MPI_FLOAT_MPI_SUM
(

void* sendbuf, /* IN */
void* recvbuf, /* OUT */
int count, /* IN */
int root, /* IN */
MPI_Comm comm /* IN */

);

Figure 5.13: MPI_Reduce prototype

The MPI_Reduce function performs a reduction operation specified by op and 

datatype on count elements of each process.  The elements are located in sendbuf, 
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and the reduction operation involves all of the processes in  the communicator  comm. 

The process specified in  root receives the final  reduction result  in  recvbuf.   The 

macros which cause the correct function variant to be invoked are shown in Figure 5.14, 

while the pseudo-code for the entire MPI_FLOAT , MPI_SUM variant is shown in Figure

5.15 (the actual code implementing the function is shown in Appendix A).

Figure 5.14: MPI_Reduce translation macro

/* This macro changes the MPI_Reduce() function call to a
 * particular (data-type,op) variant at compile-time. */
#define MPI_Reduce(sbuf,rbuf,count,dtype,op,root,comm) \
MPI_Reduce_##dtype##_##op(sbuf,rbuf,count,root,comm)

Figure 5.14: MPI_Reduce translation macro
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Figure 5.15: Pseudo-code for MPI_Reduce

/* Reduction (MPI_SUM for MPI_FLOAT data-types)*/
__device__ int MPI_Reduce_MPI_FLOAT_MPI_SUM(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
err_code = check_args(...);

/* For each element, have all processes read that 
 * element into shared mem from their sendbuf
 * and reduce the values in shared mem, then have
 * the first process in each block write the
 * value out into global memory. */
for(i=0 ; i<count ; ++i) {

reduce_data_tree();
if(my_id==0) global[my_block] = my_data;

}

/* Use a barrier synchronization to ensure that all
 * values are written in global memory */
MPI_Barrier(...);

/* Do a linear reduction using one process per
 * element, since there are not many blocks. */
if(my_id < count) {

fetch_global_data(...);
reduce_data_linear();

}

/* Synchronize root and read the data */
__syncthreads(); 
if(root == MPI_ROOT) {

copy_data(msg_slot,buf,data-type,count);
}

/* Now, synchronize again to let root finish */
MPI_Barrier(...);

/* Return */
return(err_code); \

}

Figure 5.15: Pseudo-code for MPI_Reduce

The  reduction  function  may  be  the  most  complicated  function  in  the  entire 

implementation, so this section walks through it step by step.  Reduction also has some 

special requirements when compared to other functions in the implementation, and these 

are  mentioned  as  they  arise.   It  is  important  to  note  that,  like  all  aggregate 

communications, reduction hijacks the system message buffer, so there can be no pending 
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point-to-point  messages  waiting  or  the  results  of  such  communications  are  undefined 

(usually corrupted message data).  Also, MPI_Reduce uses shared memory to hold one 

reduction element for each process, so the function behaves in an undefined fashion if the 

shared memory is not available (behavior could include failure of the kernel invocation or 

corruption of existing data in local shared memory).

First, the necessary temporary variables are declared and initialized and the input 

arguments are checked for errors.  In the case of  MPI_Reduce, errors may include a 

count which is  negative,  0, or  greater than the max amount of data which a process' 

message  buffer  can  hold  (MAX_DATA_PER_MESSAGE  * 

MAX_BUFFERED_MESSAGES), a communicator which is unsupported, or a root process 

which is  negative or greater than the total  number of processes and not  MPI_ROOT. 

Because count is structured as a logarithmic reduction in shared memory,  there is  an 

additional restriction that the input buffer on each process be aligned on a word boundary. 

This is needed to use the smallest amount of shared-memory possible and simplify the 

reduction  code  (although  it  could  be  removed as  a  future  optimization,  as  discussed 

below).  Note that, like MPI_Barrier, errors do not cause the function to return; they 

cause it to participate with an identity entry.  In the case above, with a MPI_FLOAT data-

type and MPI_SUM operation, processes with errors will contribute the value 0.0f.

Once the error checking is complete, the first reduction begins.  With aggregate 

operations which are focused solely on communicating data, such as  MPI_Bcast or 

MPI_Gather,  the  next  step  would  be  to  copy  the  data  to  global  memory.   In 

MPI_Reduce, this incurs a large performance drop, and the better solution is to copy the 

values directly to shared memory in each block.  There is a large issue with doing so: a 

lack of local shared memory.  Because there is so little shared memory, copying all the 

reduction vectors from each processor is not feasible.  It is feasible to reduce one element 

from each vector at a time, though, and this code does exactly that.  If the input vectors 

are allowed to be misaligned, though, the storage cost instantly triples.  In addition to one 

array with the length of the number of processes (to hold the actual reduction data), two 

more identically-sized arrays are  required to hold the elements used to paste together the 

data in an aligned way.  To deal with the above costs, the function requires that input data 
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be aligned on word boundaries.  

The  structure  of  the  reduction  is  straight-forward.   For  each  element  in  the 

reduction  vectors,  the  processes  load  their  individual  elements  at  that  index  into  the 

shared memory they control.  Then, after a __syncthreads(), a simple reduction is 

applied which halves the number of active processes, keeping the lower half active (this 

prevents  divergent  warps),  until  only one  process  (process  0  in  the  block)  is  active. 

Process 0 then writes out the reduced value into its  message buffer as an element in 

message  zero  (since  the  messages  are  linked into  a  single  pool,  all  elements  can  be 

written by merely incrementing the position, rather than requiring distribution between 

message buffers).  This process repeats until all elements in the vector have been reduced 

and written to global memory.

After  the block reductions  are  completed,  a  barrier  synchronization is  used to 

allow all blocks to write their reduced values.  Once this barrier completes, every block 

can then fetch the values (the overlapping reads turn into broadcasts) and reduce to a final 

value.  This avoids having to identify which block has the root process.

The second reduction is a linear reduction which reduces the vectors of elements, 

and only processes which have an ID inside the block less than the number of elements 

can participate.   In this  reduction,  each process first  fetches a  value from the global 

message buffer of process 0, and then sums that element with the corresponding elements 

from the message buffer of the processes at the beginning of each block.  The result is a 

vector in shared memory which contains the final reduction values.

At this point, a __syncthreads() is issued to ensure that the root process can 

start reading the shared-memory values, and then an aligned-to-misaligned copy routine 

(identical to that in MPI_Recv) is used to copy the vector from shared memory over to 

the root process' receive buffer.  Only the root process is enabled for the copy routine, so 

all  processes  enter  a  barrier  synchronization  after  the  routine  to  ensure  that  the  root 

process has finished before any other processes return.  After the barrier synchronization, 

each  process  can  return  its  error  code,  which  was  MPI_SUCCESS unless  an  error 

occurred and changed the value.

Now that both MPI_Barrier and MPI_Reduce have been explained, there are 

several important concepts and clarifications which must be discussed.  These fall into 
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three  categories:  performance  optimizations  used  in  the  code,  future  performance 

optimizations not implemented yet, and unsupported functionality.

Beyond the optimizations discussed in the description of MPI_Reduce, the most 

important is that the code does not require a kernel stop and restart, which simplifies it 

considerably.  There is no way to jump to a specific instruction when starting a kernel, so 

stopping and restarting involves completely restructuring code.  Chapter 5.8 will compare 

the two approaches in more detail.

The  other  important  optimization  used  in  MPI_Reduce is  the  compile-time 

selection of code.  This is a benefit in terms of execution speed, because it eliminates 

conditionals and allows the compiler to fold out many constants.  It is also a benefit in 

terms of code size.  There is limited code space (~2 million ptx instructions) for any 

kernel[23].  If the MPI implementation will be used for more complex algorithms, then 

code  size  may  become  an  issue.   Therefore,  compile-time  selection  of  code  is  an 

optimization which can and should be used in other functions.

Beyond   MPI_Reduce and  MPI_Barrier,  there  is  one  other  optimization 

worth mentioning, and that is the implementation of sequential writes as parallel reads 

where possible.  In MPI_Bcast, the broadcast is performed by the root process writing 

to its message buffer, and then all processes reading from the message buffer in parallel. 

This  optimization,  however,  is  limited  by the  inability  to  read  local  shared  memory 

remotely.   MPI_Scatter,  for  instance,  only has  one implementation.   It  makes  no 

difference whether the root process writes the scatter data into its own global message 

buffer or into the global message buffers of other processes, since the number of writes 

will still be the same, and the non-root processes cannot read the root shared memory. 

MPI_Gather similarly cannot be implemented by having all processes write to the root 

process'  receive buffer in  parallel,  since the receive buffer is  likely located in  shared 

memory.  Instead, the algorithm must be implemented with sequential reads.

There  are  some  potential  performance  improvements  which  could  still  be 

implemented in the collective communication functions.  Obviously, allowing the user to 

specify  aligned  inputs  can  save  code  space  and  branch  overhead.   There  are  also 

improved reduction schemes for MPI_Reduce, and the second reduction can likely be 

converted to a tree if a reasonable method of storing the final reduced vector can be 
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obtained (without storing the vector, writing to the root process' receive buffer, which is 

an aligned-to-misaligned write, would be required during each iteration).  The reductions 

in  MPI_Reduce can be rewritten to take non-power-of-two inputs and to reduce more 

inputs than processes in a block, and both of these would also be helpful optimizations. 

Also, any collective could benefit by using shared-memory to have the root process send 

or receive from processes in the same block.

The only issue with some of the above optimizations involves MPI function calls. 

Imagine,  for  example,  that  an  improved  reduction  scheme  is  used  which  starts  by 

distributing the elements  among the processes so that  the first  warp reduces the first 

element, the second reduces the second element, and so on.  This allows the first several 

reduction  passes  to  fully  utilize  the  processors  by adding  multiple  elements  in  each 

thread.  The issue is locating the elements in other processes.  In the  MPI_Reduce 

function call, a process specifies its data using a pointer.  There is no requirement that the 

pointers be to consecutive addresses in memory, so simple arithmetic will not suffice for 

a  process to  find a data  element  which it  is  not passing into the reduction.   Instead, 

something  like  a  list  of  pointers  would  likely  be  required,  which  implies  additional 

storage.   Moreover,  the  nvcc compiler  can easily lose track of whether  a  pointer  is 

addressing global or shared memory, and its action upon doing so is to require that the 

pointer address global memory only.  This means that some manipulation will be required 

to allow any process to read shared memory to which another process passed a pointer.

There  are  two  capabilities  missing  in  the  current  collective  communications: 

MPI_IN_PLACE support and MPI_Reduce support for data-types which are not word-

length.  MPI_IN_PLACE support is left as an optimization for future research, since it 

appears to have less potential benefit than other work.  MPI_Reduce support for data-

types which are not word-length is important, and the support is already effectively there 

for some operations on  shorter data-types (such as the bitwise AND MPI_BAND and the 

bitwise OR MPI_BOR) using SWAR[42] techniques in the 4-byte code.  The support for 

other  data-types,  however,  has  not  yet  been  implemented.   This  includes  support  for 

MPI_DOUBLE, as mentioned in chapter 5.2, although the future work will provide it via 

pairs of single-precision floating-point values.
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The other supported collective communication interfaces are mostly data-transfer 

routines  utilizing  the  aligned-to-misaligned  and  misaligned-to-aligned  copy  routines 

along with  MPI_Barrier.  Of the 8 interfaces implemented, the broadcast operation 

MPI_Bcast,  the  gather  operation  MPI_Gather,  and  the  scatter  operation 

MPI_Scatter fall  into  this  category.   MPI_Allgather is  an  extension  of 

MPI_Gather which returns the results to all processes, and MPI_Alltoall is merely 

a  sequence  of   MPI_Gather calls,  one  executed  from  each  process.   Finally, 

MPI_Allreduce.  Is  merely an extension of  MPI_Reduce in which all  processes 

perform the final copy to the receive buffer.

5.6: Collective Communication Performance

This  section  will  again  show  the  performance  of  the  MPI  implementation 

compared  to  the  performance  of  native  CUDA code  with  both  executing  a  parallel 

algorithm which estimates PI.  This time, however, the algorithm will be implemented as 

a collective reduction operation.  The code for the basic sequential algorithm is shown 

again in Figure 5.16 for reference.

Figure 5.16: Algorithm for sequential estimation of PI

main(int argc, char **argv)
{
  register double width, sum;
  register int intervals, i;

  /* get the number of intervals */
  intervals = atoi(argv[1]);
  width = 1.0 / intervals;

  /* do the computation */
  sum = 0;
  for (i=0; i<intervals; ++i) {
    register double x = (i + 0.5) * width;
    sum += 4.0 / (1.0 + x * x);
  }
  sum *= width;

  printf("Estimation of PI is %f\n", sum);

  return(0);
}

Figure 5.16: Algorithm for sequential estimation of PI
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As mentioned before, the algorithm computes the value of pi by summing the area 

under  x2,  and  was  used  in  the  Linux  Documentation  Project  Parallel  Processing 

HOWTO[40]  (and  originally  shown  by  Quinn[41])  to  demonstrate  how  various 

programming  models  differ.   If  the  intervals  are  distributed  among  processes,  the 

algorithm  instantly  becomes  a  parallel  computation,  with  several  possible 

implementations for transferring and combining the partial sums from each process.  This 

is not a benchmark algorithm which flatters MPI, since it does not contain enough work 

to show speedup on most parallel machines; this is an algorithm which has been shown to 

be useful for comparing and contrasting programming environments.

For the collective communication performance tests, the implementations will use 

a reduction mechanism to have all processes reduce the partial sums in their thread block 

locally, and then have the processes pass their reduced partial sums to process 0.  Process 

0 will then complete the summation and return the result.  Figure 5.17 shows the kernel 

for the algorithm implemented in CUDA with MPI, while  Figure 5.18 and  Figure 5.19 

show the kernels for the algorithm implemented in CUDA without MPI.
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Figure 5.17: Collective MPI implementation of the test algorithm

/* MPI Implementation using collective communication */
__global__ void
PI__collective(register volatile int *interval_p,

register volatile float *sum_p,
register volatile int *error_p)

{
register float width;
__shared__ float sum;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i; 
int nproc, iproc, ib;
register int root = 0;

/* Initialize MPI */
if (MPI_Init((void *) 0) != MPI_SUCCESS) {

error_p[0] = 1; return;
}

MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &iproc);
if(iproc == 0) { root = MPI_ROOT; }

  intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

MPI_Reduce((void *) &(lsum[ib]), (void *) &(sum), 1,
MPI_FLOAT, MPI_SUM, root, MPI_COMM_WORLD);

if(iproc == 0) { sum_p[0] = sum; }

MPI_Finalize(); error_p[iproc] = 0;
return;

}

Figure 5.17: Collective MPI implementation of the test algorithm

61



Figure 5.18: Collective CUDA-only implementation of the test algorithm, part 1

/* Native CUDA using collective communication */
/* Kernel 1 of 2 */
__global__ void
PI__collective_1(register volatile int *interval_p,

register volatile float *sum_p)
{

register float width;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i; 
int nproc, iproc, ib;
__shared__ float sdata[NUM_THREADS_PER_BLOCK];

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

  intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width; __syncthreads();

sdata[ib] = lsum[ib]; __syncthreads();

if (ib <  64) { sdata[ib] += sdata[ib +  64]; } 
__syncthreads();
if (ib < 32) { sdata[ib] += sdata[ib + 32]; }
if (ib < 16) { sdata[ib] += sdata[ib + 16]; }
if (ib < 8) { sdata[ib] += sdata[ib +  8]; }
if (ib < 4) { sdata[ib] += sdata[ib +  4]; }
if (ib < 2) { sdata[ib] += sdata[ib +  2]; }
if (ib == 0) { sdata[ib] += sdata[ib +  1]; }

if (ib == 0) { sum_p[blockIdx.x] = sdata[0]; }
return;

}

Figure 5.18: Collective CUDA-only implementation of the test algorithm,  
part 1
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Figure 5.19: Collective CUDA-only implementation of the test algorithm, part 2

/* Native CUDA using point-to-point communication */
/* Kernel 2 of 2 */
PI__collective_2(register volatile float *sum_p,

register volatile int *error_p)
{

int iproc, ib;
__shared__ float sdata[NUM_THREADS_PER_BLOCK];

iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

ib = iproc % NUM_THREADS_PER_BLOCK;

if (ib < 32) { sdata[ib] = sum_p[ib]; }

if (ib < 16) { sdata[ib] += sdata[ib + 16]; }
if (ib < 8) { sdata[ib] += sdata[ib +  8]; }
if (ib < 4) { sdata[ib] += sdata[ib +  4]; }
if (ib < 2) { sdata[ib] += sdata[ib +  2]; }
if (ib == 0) { sdata[ib] += sdata[ib +  1]; }

if (iproc == 0) { sum_p[0] = sdata[0]; }

error_p[iproc] = 0;
return;

}

Figure 5.19: Collective CUDA-only implementation of the test algorithm,  
part 2

The above codes require a little more explanation.  The MPI implementation uses 

standard MPI functions to initialize, get the process rank and number of processes, and 

have  every  process  perform a  reduction  operation,  specifying  process  0  as  the  root. 

Process 0 returns the final estimate to the host, and the computations are again nearly 

identical to those in the original algorithm, with the exception that they are performed in 

a shared-memory block.  The native CUDA code uses CUDA built-ins to identify the 

process  and  number  of  processes,  and  performs  the  same  computation  as  the  MPI 

implementation.   It  then  allocates  a  shared-memory block  and  performs  an  unrolled 

reduction operation in the shared-memory block,  synchronizing only when necessary. 

Once the partial reduction is complete, the code uses a global memory location to pass 

out the partial sums for the next kernel invocation.  The second CUDA kernel recalculates 

the process parameters and then has the low 32 processes in each block read the global 

memory into shared memory.  Once read, the processes perform a tree reduction, just like 
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the first CUDA code, until process 0 writes the final solution out to global memory and 

all processes return.

To test the execution-time performance of these kernels, each was executed three 

times with the number of intervals per process varied from 2 to 128 in steps of 2.  The 

resulting average execution times are shown in Figure 5.20.

Figure 5.20: Execution time of both implementations of the test algorithm

Figure 5.20: Execution time of both implementations of the test algorithm

The above chart shows the execution time for the MPI implementation and the 

native CUDA implementation.  The average execution time of the MPI kernel is 0.231ms, 

while the average execution time of the native CUDA kernel is 0.121ms.  The difference 

in  execution  time  between  128  intervals  per  process  and  2  intervals  per  process  is 

0.075ms for the MPI implementation and 0.076ms for the native CUDA implementation.

The performance data above indicates that there is roughly a 1.9x execution time 

performance penalty for using the MPI kernel over the native kernels with a collective 

communication implementation of the PI-estimation algorithm.  It should first be noted 

that the increase in execution time from 2 intervals to 8 intervals per process, for both the 

MPI implementation and the native CUDA implementation,  is  nearly identical  to  the 
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increase in execution time of the native CUDA implementation performing point-to-point 

communication (0.079ms).  This indicates that this is roughly the time required for the 

computation  (the  MPI  point-to-point  implementation  hid  this  execution  time  behind 

global memory latency).  This means that, for the native CUDA implementation, about 

0.087ms is spent in communication.  For the MPI implementation, about 0.19ms is spent 

in communication.

There are two reasons for the difference.  The first, and most obvious reason is 

that the MPI implementation is not as efficient as the native CUDA implementation.  On 

the  second  pass,  for  instance,  the  MPI  implementation  performs  a  linear  reduction 

compared to the CUDA implementation's tree reduction.  The MPI implementation also 

uses an aligned-to-misaligned copy routine to write its final value to the receive buffer in 

the root process.  The second difference, which is not obvious at all, is the overhead in 

calling  MPI_Init.   The  initialization  routine  must  prepare  the  MPI  system  in  its 

entirety,  and  this  includes  initializing  all  system data  structures,  whether  used  in  the 

program or not.  In particular, the initialization routine in the algorithm above initialized 

the RMA structures for one-sided communication and the message structures for point-to-

point communication.  The execution time performance gain observed by disabling these 

initializations is approximately 0.07ms.  If this overhead could be removed by having the 

host initialize the structures, then the average time of the MPI implementation would be 

approximately 0.16ms.

In this case, the message-passing implementation is only slightly slower than the 

native  CUDA implementation,  but  again  provides  a  well-established  and  accepted 

interface.  There is also a large performance benefit in terms of simpler, more-portable 

code, and the shared-memory issues are once again hidden nicely behind the MPI calls.

5.7: Other Implemented Interfaces

There are a handful of other interfaces which are implemented.  These are either 

utility functions or other functions which can provide improved performance, and both 

these categories are described below.

The utility functions include the communication context management functions 

and the environmental management and inquiry functions.  The 2 communication context 
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management interfaces implemented are MPI_Comm_size and MPI_Comm_rank, and 

the  3  environmental  management  and  inquiry  interfaces  implemented  are 

MPI_Get_version, MPI_Init, and MPI_Finalize.

MPI_Comm_size and  MPI_Comm_rank are  the  process  identification 

functions,  and  work  on  built-in  CUDA  variables.   They  have  little  overhead. 

MPI_Get_version also  works  on  simple  built-ins  and  has  little  overhead. 

MPI_Finalize is normally expensive because it implies a barrier synchronization, but 

it  relies  on  the  kernel  stop  as  a  synchronization  mechanism in  the  implementation. 

MPI_Init, as discussed above, is not low-overhead due to its initialization of global 

data  structures  and requirement  of  a  barrier  synchronization.   This  overhead may be 

removable with more research.

There are 8 other functions are implemented because they had the potential to 

improve  performance.   These  include  5  one-sided  communication  interfaces 

(MPI_Win_create,  MPI_Win_free,  MPI_Put,  MPI_Get,  MPI_Win_fence), 

and  3  data-type  management  interfaces  (MPI_Pack,  MPI_Unpack, 

MPI_Pack_size).   The  MPI_Pack and  MPI_Unpack data-type  management 

functions  focus  on  packing  data  elements  into  buffers,  and  essentially  perform 

misaligned-to-misaligned  copy  routines.   MPI_Pack_size quickly  calculates  how 

much space a given call to  MPI_Pack would require.  The one-sided communication 

interfaces were originally interesting because it seemed that they could possibly help in 

hiding  the  strange  semantics  of  the  memory  systems  in  the  GPU.   MPI_Put and 

MPI_Get, for example, allow a process to write to another processes memory space, and 

this could be very useful.  The issue, though, is the shared-memory restriction.  One-sided 

communication calls are only useful for processes in the same thread block with access to 

the  same  local  shared  memory,  and  this  ruins  most  of  the  potential  utility  of  these 

functions.  They can, however, still be used to hide global-memory writes if needed, and 

once a window is created using  MPI_Win_create, the accesses to the window are 

less-expensive than a corresponding send and receive simply because no handshaking or 

data-buffering is required in global memory.  
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5.8: Costs and Benefits of the Message-Passing Model

As  clearly  illustrated  in  the  previous  sections,  the  message-passing 

implementation has both costs and benefits.  This section is not concerned with recapping 

those benefits,  but rather intends to clarify and expand the costs and benefits beyond 

collective communications or point-to-point communications only.

The  primary  claim  of  this  thesis  is  that  the  message-passing  model  can  be 

conceptually cleaner by hiding, rather than dealing with, the quirks in underlying shared-

memory models.  The message-passing environment provides shorter code by hiding the 

piles of code needed to accomplish most tasks behind a clean, well-defined, and well-

specified interface.  The environment also results in fewer user-written operations, since 

many  operations  are  provided  by  the  MPI  specification.   The  message-passing 

environment hides many GPU-dependent features such as owner-writes rules behind its 

standard interface, and also hides the global-memory semantics issues mentioned earlier. 

Finally,  the  message-passing  implementation  can  result  in  better  performance 

transparency, since the interfaces specified by MPI can be profiled cleanly and separately 

on any given GPU.  Given the above factors, we suggest that the message-passing model 

is a significantly cleaner interface.

The  message-passing  model  also  has  some  disadvantages  on  the  GPU. 

Virtualization  is  constrained  by  the  MPI  implementation  because  the  underlying 

environment  can  hang  (the  lack  of  coherence  issue  again)  if  it  is  not.   The  MPI 

implementation also results in a larger code size, and current GPUs have a fixed limit for 

the number of instructions in a kernel.  This is especially complicated by the fact that 

many  current  GPUs  in-line  functions,  rather  than  calling  them,  which  results  in 

duplicated code if the same function is invoked multiple times.  Finally, implementing a 

message-passing model on modern GPU hardware is not trivial, but performance suffers 

only slightly with careful choice of data structures and algorithms.

Given the trade-offs involved, we suggest that the prototype implementation of 

MPI discussed in this thesis can and does provide a conceptually cleaner interface for 

high-performance computing within a GPU.

67



Chapter 6: Conclusions and Future Work

In conclusion, this thesis has demonstrated that the message-passing programming 

model can be conceptually cleaner than the data-parallel model for programming GPUs. 

This provides a performance benefit by hiding any oddities with current shared-memory 

environments  and  also  abstracting  away  GPU-specific  features,  while  providing  an 

interface  which  is  well-established  and  well-understood.   This  thesis  has  also 

demonstrated  that  the  virtualization  constraint  required  by  MPI  within  the  GPU  is 

harmless and compatible with any virtualization which is already optimal in terms of a 

strong interaction model and nearly-optimal per-block execution time.

The future work for this research will focus on first optimizing and thoroughly 

testing  the  existing  implementation.   This  will  involve  profiling  the  individual  parts 

carefully  to  determine  which  functions  should  be  revisited.   Also,  many  of  the 

optimizations mentioned in the MPI implementation can clearly be applied and tested to 

improve the implementation.  Finally, this work must be expanded onto other GPUs to 

determine its broader applicability, and also to determine what virtualization points will 

yield optimal behavior on different GPU systems.
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Appendix A: CUDA Code for the Functions

/*************** MPI_Send ********************/

/* Send, standard-mode */
__device__ int MPI_Send ( 

void* buf, /* IN */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int dest, /* IN */
int tag, /* IN */
MPI_Comm comm /* IN */

)
{

/* Declare any necessary variables */
register int msg_slot = 0;
register int msg_count = 0;
register int i = 0;
register int temp_a, temp_b;
register int *buf_aligned;
register char *temp_buf;

/* Check arguments for errors */
/* 1) Invalid dest -> Send to any
   2) Invalid dest -> Send to invalid processor number and

not MPI_PROC_NULL
   3) Invalid tag -> >Upper Bound or <Lower Bound
   4) Invalid comm -> Not a supported communicator
   5) Invalid data-type -> not a supported type
   6) Invalid count -> negative or otherwise invalid
 */

#if ENABLE_ERROR_CHECKING

/* Check for error conditions */
if( ((dest < 0) | (dest > (NPROC - 1))) & 

(dest != MPI_PROC_NULL) 
) return (MPI_ERR_RANK);
if( (tag < 0) | (tag > MPI_TAG_UB) | (tag == MPI_ANY_TAG) 
) return (MPI_ERR_TAG);
if( (comm != MPI_COMM_WORLD) ) return (MPI_ERR_COMM);
if( (((data-type & MPI_UNSIGNED_TYPE)==1) &

((data-type & MPI_FLOAT_TYPE)== 1)) |
(TYPE_SIZE(data-type) > MPI_LARGEST_TYPE) |
(((TYPE_SIZE(data-type))&((TYPE_SIZE(data-type))-1))!=0) 

) return(MPI_ERR_TYPE);
if( (count <= 0)|

((count*TYPE_SIZE(data-type))>(MAX_DATA_PER_MESSAGE<<2)) 
) return (MPI_ERR_COUNT);

#endif

/* Special case for send to MPI_PROC_NULL */
if(dest == MPI_PROC_NULL) return(MPI_SUCCESS);

/* Reset received buffers as available and adjust the total
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 * buffered message count accordingly */
msg_count = PE_MSG_COUNT(IPROC);
i=0;
while ( msg_count > 0 )
{

switch( PE_MSG_SERIALS(IPROC,i) )
{

case SN_AVAILABLE:
break;

case SN_RECEIVED:
PE_MSG_SERIALS(IPROC,i) = SN_AVAILABLE;
--PE_MSG_COUNT(IPROC);

default:
--msg_count;

}
++i;

}

/* Ensure that buffer space is still available */
if (PE_MSG_COUNT(IPROC) == MAX_BUFFERED_MESSAGES)

return (MPI_ERR_NO_SPACE);

/* Now find the first free buffer (one marked as available) */
msg_slot=-1;
do{ i = PE_MSG_SERIALS(IPROC,++msg_slot); 
} while(i != SN_AVAILABLE);

/* Fill the buffer with the message header */
MSG_DST(IPROC, msg_slot) = dest;
MSG_DTYPE(IPROC, msg_slot) = data-type;
MSG_COUNT(IPROC, msg_slot) = count;
MSG_TAG(IPROC, msg_slot) = tag;
MSG_COMM(IPROC, msg_slot) = comm;

/* Copy the data from the send buffer to the the system buffer */
/* (This copy actually copies more data than necessary, but
 * reading extra bytes is not problematic since the GPU
 * allocates memory on word-boundaries anyway) */

/* Get the aligned source address */
/* This is actually just: 
 * buf_aligned = ((int *) (((long) buf) & (~3)));
 * but nvcc doesn't realize that this won't change a 
 * pointer's domain (global or shared mem), and so it forces
 * the pointer to global mem only.  The following code is the
 * same pointer math modified for the nvcc compiler. */
switch(((long) buf) & 3)
{

case 3: temp_buf =  ((char *) buf) - 3; 
break;

case 2: temp_buf = ((char *) buf) - 2; 
break;

case 1: temp_buf = ((char *) buf) - 1; 
break;
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case 0: temp_buf = (char *) buf; 
break;

}
buf_aligned = (int *) temp_buf;

/* Convert the count to bytes */
count = count * TYPE_SIZE(data-type);

/* The read is based on the misalignment of the source */
i=0;
switch(((long) buf) & 3) {

case 0: /* The source is aligned on a word boundary */
while(count > 0)
{

MSG_DATA(IPROC,msg_slot,i++) = *(buf_aligned++);
count -= 4;

}
break;

case 1: /* The source is misaligned by one byte */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 8;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x00ffffff) | (temp_b << 24));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;

}
break;

case 2: /* The source is misaligned by two bytes */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 16;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x0000ffff) | (temp_b << 16));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;

}
break;

case 3: /* The source is misaligned by three bytes */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 24;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x000000ff) | (temp_b << 8));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;
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}
break;

}

/* Finally, increment the current message count */
++PE_MSG_COUNT(IPROC);

/* Serialize the message, which marks it as valid. */
PE_MSG_SERIALS(IPROC, msg_slot) = PE_SERIAL(IPROC);
++PE_SERIAL(IPROC);

/* Return */
return (MPI_SUCCESS);

}

/*************** MPI_Recv ********************/

/* Receive */
__device__ int 
MPI_Recv
(

void* buf, /* OUT */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int source, /* IN */
int tag, /* IN */
MPI_Comm comm, /* IN */
MPI_Status *status /* OUT */

)
{

/* Declare any necessary variables */
register int msg_slot = -1;
register int msg_count = 0;
register int i = 0;
register int serial = (1 << 30);
register int temp_a, temp_b;
register int *buf_aligned;
register char *temp_buf;

/* Check for error conditions */
/* 1) Invalid source -> Recv from invalid processor number and 

not MPI_PROC_NULL.
   3) Invalid tag -> >UB or <LB and not MPI_ANY_TAG
   4) Invalid comm -> Not a supported communicator
   6) Invalid data-type -> not a supported type
   5) Invalid count -> negative or otherwise invalid
 */

#if ENABLE_ERROR_CHECKING

/* Check arguments for errors */
if( ((source < 0) | (source > (NPROC - 1))) & 

(source != MPI_PROC_NULL) 
) return (MPI_ERR_RANK);
if( ((tag < 0) | (tag > MPI_TAG_UB)) & (tag != MPI_ANY_TAG) 
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) return (MPI_ERR_TAG);
if( (count <= 0) | 

((count*TYPE_SIZE(data-type))>(MAX_DATA_PER_MESSAGE << 2)) 
) return (MPI_ERR_COUNT);
if( (comm != MPI_COMM_WORLD) ) return (MPI_ERR_COMM);
if( (TYPE_SIZE(data-type) > MPI_LARGEST_TYPE) |

(((TYPE_SIZE(data-type))&((TYPE_SIZE(data-type))-1))!=0) |
(((data-type & MPI_UNSIGNED_TYPE) == 1) &
((data-type & MPI_FLOAT_TYPE) == 1))

) return(MPI_ERR_TYPE);

#endif

/* Special case for recv from MPI_PROC_NULL */
if(source == MPI_PROC_NULL)
{

/* Set the status object and return. */ 
(*status).MPI_SOURCE = MPI_PROC_NULL;
(*status).MPI_TAG = MPI_ANY_TAG;
(*status).recv_count = 0;
return(MPI_SUCCESS);

}

/* This is a blocking receive operation, so 
 * loop until a matching send is found */
msg_slot = -1;
while( msg_slot == -1 )
{

msg_count = PE_MSG_COUNT(source);
i = 0;

/* Envelope matching */
while( ( msg_count > 0) & (i < MAX_BUFFERED_MESSAGES) )
{

if(PE_MSG_SERIALS(source, i) != SN_AVAILABLE)
{

--msg_count;

/* If the serial number is valid, check the
 * envelope of this message */
if((PE_MSG_SERIALS(source, i) != SN_RECEIVED) &

(PE_MSG_SERIALS(source, i) < serial) &
(MSG_DST(source, i) == IPROC) &
(MSG_TAG(source, i) == tag) &
(MSG_COMM(source, i) == comm)

) {
msg_slot = i;
serial = PE_MSG_SERIALS(source, i);

}
}

++i;
}

}

/* We now have a matching message slot. */
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/* The message will now be consumed even if the call generates an
 * error, so the status object is set. */ 
(*status).MPI_SOURCE = source;
(*status).MPI_TAG = tag;
(*status).recv_count = MSG_COUNT(source,msg_slot);

/* Check that the data-types match */
switch(data-type)
{

case MPI_PACKED:
break;

default:
if( data-type != MSG_DTYPE(source,msg_slot) )
{

PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;
return(MPI_ERR_TYPE);

}
break;

}

/* Ensure that recv buffer can hold message */
if( count < MSG_COUNT(source, msg_slot) )
{

PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;
return(MPI_ERR_TRUNCATE);

}

/* Copy the data from the system buffer to the the recv buffer */

/* Get the aligned source address */
/* This is actually just: 
 * buf_aligned = ((int *) (((long) buf) & (~3)));
 * but nvcc doesn't realize that this won't change a 
 * pointer's domain (global or shared mem), and so it forces
 * the pointer to global mem only.  The following code is the
 * same pointer math modified for the nvcc compiler. */
switch(((long) buf) & 3)
{

case 3: temp_buf =  ((char *) buf) - 3; 
break;

case 2: temp_buf = ((char *) buf) - 2; 
break;

case 1: temp_buf = ((char *) buf) - 1; 
break;

case 0: temp_buf = (char *) buf; 
break;

}
buf_aligned = (int *) temp_buf;

/* Convert the count to bytes */
count = MSG_COUNT(source, msg_slot) * TYPE_SIZE(data-type);
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/* The read is based on the misalignment of the destination */
i=0;
switch(((long) buf) & 3) {

case 0: /* The destination buffer is aligned */
while (count > 3)
{

*(buf_aligned++) = MSG_DATA(source,msg_slot,i++);
count -= 4;

}
temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a >> 16);
case 2: *(((char *) buf_aligned) + 1)=(temp_a >> 8);
case 1: *((char *) buf_aligned)=temp_a;
case 0: ;

}
break;

case 1: /* The destination buffer is misaligned by one byte */
temp_b = MSG_DATA(source,msg_slot,i++);
switch(count)
{

default:
case 3: *(((char *) buf_aligned) + 3)=(temp_b >> 16);

--count;
case 2: *(((char *) buf_aligned) + 2)=(temp_b >> 8);

--count;
case 1: *(((char *) buf_aligned) + 1)=temp_b;

--count;
}

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 24;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 8) | (temp_b & 0x000000ff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a >> 8);
case 2: *(((char *) buf_aligned) + 1)=(temp_a);
case 1: *((char *) buf_aligned)=(temp_b >> 24);
case 0: ;

}
break;
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case 2: /* The destination buffer is misaligned by 2 bytes */
temp_b = MSG_DATA(source,msg_slot,i++);
switch(count)
{

default:
case 2: *(((char *) buf_aligned) + 3)=(temp_b >> 8);

--count;
case 1: *(((char *) buf_aligned) + 2)=temp_b;

--count;
}

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 16;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 16) | (temp_b & 0x0000ffff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a);
case 2: *(((char *) buf_aligned) + 1)=(temp_b >> 24);
case 1: *((char *) buf_aligned)=(temp_b >> 16);
case 0: ;

}
break;

case 3: /* The destination buffer is misaligned by 3 bytes */
temp_b = MSG_DATA(source,msg_slot,i++);

/* The count is always at least one */
*(((char *) buf_aligned) + 3) = temp_b;
--count;

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 8;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 24) | (temp_b & 0x00ffffff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_b >> 24);
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case 2: *(((char *) buf_aligned) + 1)=(temp_b >> 16);
case 1: *((char *) buf_aligned)=(temp_b >> 8);
case 0: ;

}
break;

}

/* Mark the message as received */
PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;

/* Return */
return(MPI_SUCCESS);

}

/*************** MPI_Barrier ********************/

/* Barrier synchronization */
/* (Uses a single-writer, multiple-reader mechanism in global memory)*/
__device__ int
MPI_Barrier
(

MPI_Comm comm /* IN */
)
{

/* This is a barrier synchronization using a single-writer,
 * multiple-reader mechanism in global memory. */

/* Declare any necessary variables */
register int err_code = MPI_SUCCESS;

/* Check for error conditions */
/* 1) Invalid comm -> Not a supported communicator
 */

#if ENABLE_ERROR_CHECKING

/* Check arguments for errors */
if( (comm != MPI_COMM_WORLD) ) err_code = (MPI_ERR_COMM);

#endif

/* Get a pointer (in a register) to the volatile global memory
 * segment where the barrier numbers reside. */
register volatile int *bar_nums = &(system_barrier_buffer[0]);

/* Sync here to be sure that everybody in this block is at the
 * barrier */
__syncthreads();

/* The first thread in the block represents the whole block in
 * the synchronization */
if (IPROC_IN_BLOCK == 0)
{

/* We need the next storage for the next block's
 * barrier number */
register int his_bar_num;
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/* Get the current barrier number for this block */
register int my_bar_num = bar_nums[BIPROC] + 1;

/* This is the starting location for the scan */
register int i = ((BIPROC + 1) % BNPROC);

/* Increment this block's barrier number */
bar_nums[BIPROC] = my_bar_num;

/* Now, starting at the next block, scan the barrier
 * numbers until either all other blocks have arrived or
 * one block has passed. */
do {

/* Wait for the block to arrive */
do 
{

his_bar_num = bar_nums[i];
} while (his_bar_num < my_bar_num);

/* Get the next index, wrapping if needed */
if (++i >= BNPROC) i = 0;

} while ((his_bar_num == my_bar_num) & (i != BIPROC));

/* The barrier is completed. Increment again to inform
 * anybody still scanning */
bar_nums[BIPROC] = my_bar_num + 1;

}

/* All threads wait here for the first thread */
__syncthreads();

/* Return */
return(err_code);

}

/*************** MPI_Reduce ********************/

/* Reduction */
/* This macro will create a reduction function working on 4-byte
 * objects.  The count modifier count_mod could be used when working
 * with short or char types SWAR-style */
#define CREATE_FUNCTION_MPI_REDUCE_4_BYTE_OPS(op,

op,op_symbol,dtype,dtype_symbol,ident_val) \
__device__ int \
MPI_Reduce_##dtype##_##op \
( \

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

) \

78



{ \
\

/* Declare any necessary variables */ \
register int temp_a, temp_b, temp_count, i; \
register int err_code = MPI_SUCCESS; \
register int *recvbuf_aligned; \
register char *temp_buf; \
__shared__ dtype_symbol shared_data[NPROC_IN_BLOCK]; \

\
\

/* Check arguments for errors */ \
/* 1) Invalid sendbuf -> null \
   2) Invalid recvbuf -> null \
   3) Invalid count -> negative, zero, or greater than the max \
   4) Invalid comm -> Not a supported communicator \
 */ \

\
if(ENABLE_ERROR_CHECKING) { \

\
/* Check for error conditions */ \
if( ((root < 0) | (root > (NPROC - 1))) & (root != MPI_ROOT) & \

(root != MPI_PROC_NULL) \
) err_code = (MPI_ERR_ROOT); \
if( ((((long) sendbuf) & 3) != 0) ) err_code = (MPI_ERR_BUFFER); \
if( (count <= 0) | \

((count*TYPE_SIZE(dtype)) > \
((MAX_DATA_PER_MESSAGE *MAX_BUFFERED_MESSAGES) << 2)) \

) err_code = (MPI_ERR_COUNT); \
if( (((count) & (count - 1)) != 0) ) err_code = (MPI_ERR_COUNT); \
if( (comm != MPI_COMM_WORLD) ) err_code =  (MPI_ERR_COMM); \

\
} \

\
/* For each element, have all processes read that element into \
 * shared mem from their sendbuf and reduce the values in \
 * shared mem, then have the first process in each block \
 * write the value out into global memory. */ \

\
for(temp_count = 0 ; temp_count < count ; ++temp_count) \
{ \

/* First, copy the data to the the shared memory block */ \
shared_data[IPROC_IN_BLOCK] = ((err_code == MPI_SUCCESS) ? \
((dtype_symbol *) sendbuf)[temp_count] : (ident_val) ); \
__syncthreads(); \

\
/* Now, perform the tree reduction in each block */ \
for(i = (NPROC_IN_BLOCK >> 1) ; i > 0 ; i >>= 1) \
{ \

if(IPROC_IN_BLOCK < i) \
{ \

if((op != MPI_MIN) & (op != MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \
shared_data[IPROC_IN_BLOCK] op_symbol \
shared_data[IPROC_IN_BLOCK + i]; \

} \
if((op == MPI_MIN) | (op == MPI_MAX)) \
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{ \
shared_data[IPROC_IN_BLOCK] = \
( (shared_data[IPROC_IN_BLOCK] op_symbol \
shared_data[IPROC_IN_BLOCK + i]) ? \
shared_data[IPROC_IN_BLOCK] : \
shared_data[IPROC_IN_BLOCK + i] ); \

} \
} \
__syncthreads(); \

} \
\

/* Now write the data into the sys buffer for this block*/ \
if(IPROC_IN_BLOCK == 0) \
{ \

MSG_DATA(IPROC, 0, temp_count) = \
*((datum_t *) &(shared_data[0])); \

} \
} \

\
/* Use a barrier synchronization to ensure that all values are \
 * written in global memory */ \
MPI_Barrier(comm); \

\
/* Do a linear reduction using one process per element, since \
 * there are not many blocks. */ \

\
/* Let all the blocks reduce to a final answer. */ \
if(IPROC_IN_BLOCK < BNPROC) \
{ \

shared_data[IPROC_IN_BLOCK] = \
*((dtype_symbol *) &MSG_DATA(0, 0, IPROC_IN_BLOCK)); \

\
for(temp_count = NPROC_IN_BLOCK ; \

temp_count < NPROC ; \
temp_count += NPROC_IN_BLOCK) \

{ \
if((op != MPI_MIN) & (op != MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \ 
shared_data[IPROC_IN_BLOCK] op_symbol \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK)); \

} \
if((op == MPI_MIN) | (op == MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \
( (shared_data[IPROC_IN_BLOCK] op_symbol \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK))) ? \
shared_data[IPROC_IN_BLOCK] : \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK)) ); \

} \
} \

} \
\

/* Synchronize root and read the data */ \
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__syncthreads(); \
if(root == MPI_ROOT) \
{ \

/* Copy the data from shared memory to the the buffer */ \
\

/* Get the aligned recv buffer address */ \
/* (The long version of recvbuf_aligned = \
 * ((int *) (((long) recvbuf) & (~3)));) */ \
switch(((long) recvbuf) & 3) \
{ \

\
case 3: temp_buf =  ((char *) recvbuf) - 3; \

break; \
\

case 2: temp_buf = ((char *) recvbuf) - 2; \
break; \

\
case 1: temp_buf = ((char *) recvbuf) - 1; \

break; \
\

case 0: temp_buf = (char *) recvbuf; \
break; \

\
} \
recvbuf_aligned = (int *) temp_buf; \

\
/* Convert the count to bytes */ \
count = count * TYPE_SIZE(dtype); \

\
/* The read is based on the misalignment of the dest */ \
i=0; \
switch(((long) recvbuf) & 3) { \

\
case 0: /* The destination buffer is aligned */ \

while (count > 3) \
{ \

*(recvbuf_aligned++) = \
*((int *) &(shared_data[i++])); \

count -= 4; \
} \
temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a >> 16); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_a >> 8); \

case 1: *((char *) recvbuf_aligned) = temp_a; \
case 0: ; \

} \
break; \

\
case 1: /* The dest buffer is misaligned by 1 byte */ \

temp_b = *((int *) &(shared_data[i++])); \
switch(count) \
{ \

default: \
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case 3: *(((char *) recvbuf_aligned) + 3) = \
(temp_b >> 16); \
--count; \

case 2: *(((char *) recvbuf_aligned) + 2) = \
(temp_b >> 8); \
--count; \

case 1: *(((char *) recvbuf_aligned) + 1) = \
temp_b; \
--count; \

} \
\

++recvbuf_aligned; \
\

/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 24; \
temp_a = *((int *) &(shared_data[i++])); \
temp_b = ((temp_a << 8)|(temp_b&0x000000ff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a >> 8); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_a); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 24); \

case 0: ; \
} \
break; \

\
case 2: /* The dest buffer is misaligned by 2 bytes */ \

temp_b = *((int *) &(shared_data[i++])); \
switch(count) \
{ \

default: \
case 2: *(((char *) recvbuf_aligned) + 3) = \

(temp_b >> 8); \
--count; \

case 1: *(((char *) recvbuf_aligned) + 2) = \
temp_b; \
--count; \

} \
\

++recvbuf_aligned; \
\

/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 16; \
temp_a = *((int *) &(shared_data[i++])); \
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temp_b = ((temp_a<<16)|(temp_b&0x0000ffff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_b >> 24); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 16); \

case 0: ; \
} \
break; \

\
case 3: /* The dest buffer is misaligned by 3 bytes */ \

temp_b = *((int *) &(shared_data[i++])); \
\

/* The count is always at least one */ \
*(((char *) recvbuf_aligned) + 3) = temp_b; \
--count; \

\
++recvbuf_aligned; \

\
/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 8; \
temp_a = *((int *) &(shared_data[i++])); \
temp_b = ((temp_a<<24)|(temp_b&0x00ffffff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_b >> 24); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_b >> 16); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 8); \

case 0: ; \
} \
break; \

} \
} \

\
/* Now, synchronize again to let root finish */ \
MPI_Barrier(comm); \

\
/* Return */ \
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return(err_code); \
} \
\

/* Declarations for the various MPI_Reduce_xxx_xxx() functions */

/* Floating point functions */
CREATE_FUNCTION_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,+,MPI_FLOAT,float,0.0f)

/* Reduction */
/* This macro changes the MPI_Reduce() function call to a particular
 * (data-type,op) function variant at compile-time. */
#define MPI_Reduce(sendbuf,recvbuf,count,data-type,op,root,comm) \

MPI_Reduce_##data-type##_##op(sendbuf,recvbuf,count,root,comm)

/* This macro creates a reduction function prototype. */
#define CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(op,dtype) \
__device__ int \
MPI_Reduce_##dtype##_##op \
( \

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

);

/* Declarations for the various MPI_Reduce_xxx_xxx() function
 * prototypes */

/* Floating point prototypes */
CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,MPI_FLOAT)
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