
Abstract

ABSTRACT OF THESIS

MPI WITHIN A GPU

GPUs offer high-performance floating-point computation at commodity prices,
but their usage is hindered by programming models which expose the user to
irregularities in the current shared-memory environments and require learning new
interfaces and semantics.

This thesis will demonstrate that the message-passing paradigm can be
conceptually cleaner than the current data-parallel models for programming GPUs
because it can hide the quirks of current GPU shared-memory environments, as well as
GPU-specific features, behind a well-established and well-understood interface. This
will be shown by demonstrating a proof-of-concept MPI implementation which provides
cleaner, simpler code with a reasonable performance cost. This thesis will also
demonstrate that, although there is a virtualization constraint imposed by MPI, this
constraint is harmless as long as the virtualization was already chosen to be optimal in
terms of a strong execution model and nearly-optimal execution time. This will be
demonstrated by examining execution times with varying virtualization using a
computationally-expensive micro-kernel.

KEYWORDS: message-passing, virtualization, data-parallel, virtualization MPI, GPU

 Bobby Dalton Young

 August 4, 2009

MPI WITHIN A GPU

By

Bobby Dalton Young

Henry G. Dietz, Ph.D.
 Director of Thesis

Stephen D. Gedney, Ph.D.
 Director of Graduate Studies

August 4, 2009
 Date

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master's degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard for the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copying or publication of the thesis in whole or part also requires the consent
of the Dean of the Graduate School of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

THESIS

Bobby Dalton Young

The Graduate School

University of Kentucky

2009

Title

MPI WITHIN A GPU

THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in the

College of Engineering
at the University of Kentucky

By

Bobby Dalton Young

Lexington, Kentucky

Director: Dr. Henry G. Dietz, Professor of Electrical Engineering

Lexington, Kentucky

2009

Copyright © Bobby Dalton Young 2009

Table of Contents

TABLE OF CONTENTS

List of Tables...iv

List of Figures..v

List of Files...vi

Chapter 1: Introduction..1

Chapter 2: Background, Methodology, and Related Work..2
2.1: Background..2
2.2: Methodology..4
2.3: Related Work..5

Chapter 3: GPU Hardware Review and Performance Factors...7
3.1: Review of Current GPU Hardware..7
3.2: The NVIDIA CUDA Architecture..9
3.3: NVIDIA CUDA Performance Considerations...12

Chapter 4: Virtualization Constraints...15
4.1: Background and Definitions..15
4.2: Performance Analysis of Virtualization...17
4.3: Optimal Virtualization and the MPI Constraints..26

Chapter 5: The MPI Implementation...27
5.1: Introduction to the Message-Passing Interface..27
5.2: Design Philosophies and Restrictions..28
5.3: The Point-to-Point Communication Interfaces..33
5.4: Point-to-Point Communication Performance...42
5.5: The Collective Communication Interfaces..48
5.6: Collective Communication Performance...59
5.7: Other Implemented Interfaces..65
5.8: Costs and Benefits of the Message-Passing Model...67

Chapter 6: Conclusions and Future Work..68

Appendix A: CUDA Code for the Functions...69

Bibliography..85

Vita...89

iii

List of Tables

LIST OF TABLES

Table 3.1: Some NVIDIA GPUs and various properties...10
Table 3.2: Compute Capabilities and their properties[23]...11

iv

List of Figures

LIST OF FIGURES

Figure 3.1: The NVIDIA CUDA Architecture[23]..10
Figure 4.1: Pseudo-code for the micro-benchmark..18
Figure 4.2: The register micro-benchmark..19
Figure 4.3: Total execution time of the register micro-benchmark....................................20
Figure 4.4: Per-block execution time of the register micro-benchmark............................20
Figure 4.5: The shared-memory micro-benchmark...22
Figure 4.6: Total execution time of the shared-memory micro-benchmark......................23
Figure 4.7: Per-block execution time of the shared-memory micro-benchmark...............23
Figure 5.1: MPI_Send prototype..34
Figure 5.2: Pseudo-code for MPI_Send...35
Figure 5.3: MPI_Recv Prototype...37
Figure 5.4: Pseudo-code for MPI_Recv...38
Figure 5.5: Algorithm for sequential estimation of PI...43
Figure 5.6: Point-to-point MPI implementation of the test algorithm...............................44
Figure 5.7: Point-to-point CUDA-only implementation of the test algorithm, part 1.......45
Figure 5.8: Point-to-point CUDA-only implementation of the test algorithm, part 2.......46
Figure 5.9: Execution time of both implementations of the test algorithm.......................47
Figure 5.10: MPI_Barrier prototype..49
Figure 5.11: Pseudo-code for MPI_Barrier..50
Figure 5.12: MPI_Reduce prototype macro...52
Figure 5.13: MPI_Reduce prototype..52
Figure 5.14: MPI_Reduce translation macro...53
Figure 5.15: Pseudo-code for MPI_Reduce...54
Figure 5.16: Algorithm for sequential estimation of PI...59
Figure 5.17: Collective MPI implementation of the test algorithm...................................61
Figure 5.18: Collective CUDA-only implementation of the test algorithm, part 1...........62
Figure 5.19: Collective CUDA-only implementation of the test algorithm, part 2...........63
Figure 5.20: Execution time of both implementations of the test algorithm.....................64

v

List of Files

LIST OF FILES

BDYthesis.pdf... 522KB

vi

BDYthesis.pdf

Chapter 1: Introduction

GPUs have gained attention for their impressive floating-point price/performance

ratio. The consumer demand for realism and resolution in traditional graphics

applications has effectively created scalable, high-performance floating-point hardware at

commodity prices. GPUs have already been used to accelerate some numerically-

intensive high-performance computing applications, but limitations imposed by current

GPU programming methodologies, including a lack of code portability between GPU

platforms, have hindered the use of GPUs in a wider class of programs and relegated

them to a second-class co-processor status.

This thesis aims primarily to demonstrate that the message-passing programming

model can be conceptually cleaner than the vendor-supplied data-parallel models by

hiding the quirks of current shared-memory environments. This is accomplished by

demonstrating a proof-of-concept implementation of a message-passing model on a GPU

and providing performance comparisons between two GPU programs, one of which

utilizes the message-passing implementation and the other of which does not, on a

parallel test algorithm computing the value of pi. The message-passing implementation

will be a subset of MPI[1] (the Message Passing Interface), which is a popular message-

passing library specification, and the implementation and test algorithms will be

developed and tested in NVIDIA CUDA[2] (the Compute Unified Device Architecture),

which is NVIDIA's parallel architecture and model for general-purpose computing on a

GPU.

This thesis also aims to demonstrate that, although there is a virtualization

constraint for using message-passing (and more specifically MPI) within the GPU, the

constraint is actually harmless if the amount of virtualization chosen is already optimal in

terms of its interaction model and per-block execution time. This is accomplished by

ignoring the amount of virtualization needed by MPI and profiling different amounts of

virtualization on a simple micro-kernel benchmark. The resulting execution times

demonstrate that the amount of virtualization needed to obtain the optimal performance,

with optimal performance as defined above, is compatible with the MPI virtualization

constraint.

The rest of this thesis is structured as follows. Chapter 2 (Background,

1

Methodology, and Related Work) provides a brief review of the message-passing and

data-parallel programming paradigms discussed above, describes the relevant classes of

architectures and how they apply to GPUs, describes an important philosophy which

underlies this thesis, and cites related work. Chapter 3 (GPU Hardware Review and

Performance Factors) provides a hardware overview which compares current-generation

GPU architectures and then provides an in-depth review of the NVIDIA CUDA

architecture and important performance considerations for it. Chapter 4 (Virtualization

Constraints) discusses the ideas of virtualization, multi-threading, global-memory

coherence, and interaction models, presents empirical data regarding the optimum

amount of multi-threading and virtualization, and finally examines how the virtualization

constraints imposed by MPI within a GPU are satisfied at the optimum amount of

virtualization. Chapter 5 (The MPI Implementation) introduces the Message Passing

Interface standard, discusses some design philosophies underlying the proof-of-concept

implementation, and examines key function implementations which provide point-to-

point and aggregate communication operations. Chapter 5 also provides performance

comparisons between canonical NVIDIA CUDA and the MPI implementation for two

implementations of an algorithm computing the value of pi in parallel and discusses the

costs and benefits of using the message-passing implementation. Chapter 6 (Conclusions

and Future Work) presents conclusions and future work for the research.

Chapter 2: Background, Methodology, and Related Work

This section first defines the data-parallel and message-passing paradigms and

discusses how they apply to the thesis. This section also defines SIMD, SPMD, SIMT,

and MIMD, since these architecture classifications are used extensively in the thesis. The

overarching philosophies of this thesis are then discussed after clarifying the definitions

and applications of these background concepts. Finally, related work is discussed.

2.1: Background

Two of the popular paradigms for programming parallel machines are the data-

parallel paradigm and the message-passing paradigm. These programming models are

described in detail below.

2

The data-parallel paradigm, exemplified by HPF[3] and current GPU

programming environments such as CUDA[2], BrookGPU[4], and CAL[5], typically

consists of a single program controlling execution of all processing elements. In this

paradigm, program data is typically stored in arrays, and processing elements work on

subsets of arrays in their local memories.

Historically, GPU programming methods and environments have been based on

the data-parallel paradigm. This is largely due to the fact that GPUs have evolved to

process pixels of an image in parallel. Maintaining the same paradigm for general-

purpose programming has not been widely questioned, largely because the majority of

GPU users are still performing graphics-processing applications (as opposed to general-

purpose computation). While general-purpose computation on GPUs is gaining

popularity, it is still a small portion of the total market share of current GPUs. While this

has allowed GPU vendors to both continue normal product development cycles and

broaden marketability by advertising GPUs for non-graphics applications, it has restricted

the use of the GPU to programs where data-parallelism is easily exposed. If GPUs can

support the message-passing paradigm in addition to the data-parallel paradigm, though,

then a wider range of execution models can be supported on current GPUs.

Message-passing is not the opposite of data-parallelism; the opposite is actually

task-parallelism. This thesis will show that message-passing is compatible with data-

parallelism. The message-passing paradigm, exemplified by the MPI standard[1] and

various implementations of it such as OpenMPI[6] and LAM-MPI[7], typically consists

of individual programs on each processing element controlling local execution. In this

paradigm, program data is typically passed between processing elements via cooperative

send and receive mechanisms.

Before continuing with the idea of message-passing on a GPU, some basic

architectural ideas must be mentioned. Parallel computer architectures have long been

classified as SIMD (Single-Instruction stream, Multiple-Data stream) and MIMD

(Multiple-Instruction stream, Multiple-Data stream)[8]. As the names imply, SIMD

hardware typically consists of a collection of processing elements, sometimes little more

than Arithmetic Logic Units, all executing a single instruction on multiple data. MIMD

hardware, in contrast, typically consists of processing elements with their own

3

instruction-fetch, decode, and execute logic, each executing a potentially different

instruction on multiple data.

In addition to the SIMD and MIMD classifications, there are also SPMD systems,

and the term “SIMT” should be discussed since NVIDIA uses it. SPMD (Single

Program, Multiple-Data stream) are akin to SIMD systems, except that the processing

elements are potentially much less synchronized because they are executing programs

rather than instructions[9]. These are also akin to MIMD systems where every

processing element is executing an identical program. SIMT is a term coined by

NVIDIA, and stands for Single-Instruction, Multiple-Thread[2]. While it attempts to

describe the scheduling of threads to available processor cores, it can best be thought of

as SIMD with virtualization at the thread level.

GPUs have traditionally been classified as SIMD-like or SPMD-like architectures.

As the hardware review section will illustrate, though, GPUs are a strange hybrid of the

two, and behave differently at different granularities. This plays a role in enabling the

implementation of a message-passing system. More importantly, though, the multiple

potential classifications of GPU architectures can and should be leveraged to further

expand the set of execution models which are viable within a GPU.

2.2: Methodology

In chapter 1, the idea of the GPU being relegated to an attached co-processor role

was mentioned. The majority of GPU research approaches the GPU as a second-class

processing element and utilizes the GPU as an attached accelerator, but this thesis

approaches the GPU as a future first-class parallel processor, which motivates the idea of

needing a message-passing system within a GPU. If the GPU will internally be a

separate entity, then it will need to perform synchronization and communication without

assistance. The work in this thesis is not merely about using more execution models

within a GPU, it is about which models will be needed as GPUs become independent.

We envision the use of the GPU taking the same path as the use of traditional

floating-point co-processors, such as the Intel 8087 floating-point co-processor. While

floating-point math was originally only available via an attached co-processor accessed

with OS calls, it is now an integral part of the chip design and instruction set. Intel's

Larrabee, scheduled for a 2009 or 2010 release, will be an explicitly standalone GPU

4

with many CPU features, including x86 processing cores[10]. Additionally, Larrabee's

SIMD extensions will be opcode-compatible with the specification for extending

SSE[10]. The Cell processor already includes SIMD SPEs (Synergistic Processing

Elements) which work alongside a Power-architecture based PPE (Power Processing

Element)[11]. AMD's FUSION project originally proposed “Accelerated Processing

Units” (CPUs with a GPU on-die) as early as 2007[12], and these are now scheduled for

a 2011 release in the Llano and Ontario cores[13].

Since this thesis holds that the models for GPUs are converging to this single

environment, the performance benchmarks in this thesis are focused on examining

performance in the context of a self-contained world, with the GPU behaving as normal

computing systems generally behave. Since there is not much existing work with this

viewpoint to benchmark performance against, and since benchmarking performance

against a sequential code would be unfair, the benchmarks in this thesis focus on

describing and quantifying the performance penalty or cost for the more-general model

provided by MPI. Hopefully, future GPU research will yield competing models so that

better performance comparisons can be accurately made.

2.3: Related Work

There is considerable interest in GPGPU (General-Purpose Computation on

GPUs), which generally refers to using graphics cards to perform computations which are

not strictly limited to manipulating graphics on the screen. Although this work is related

to many GPGPU efforts described below, note that this work is focused on developing a

more-general programming model within the actual GPU. As stated in chapter 2.2, this

research is aimed at developing a first-class processing element.

Early GPGPU programming revolved around graphics programming languages

such as DirectX[14] and OpenGL[15]. These languages developed programmable shader

pipelines, controlled by the HLSL[16] and GLSL[17] languages, and programmers used

the shader languages to process non-graphical data. Some higher-level languages, such

as Cg[18], were also used. Because of the awkwardness of expressing non-graphical

computations in graphically-oriented languages, general-purpose languages which could

hide the underlying nature of the hardware and programming model began to emerge.

These included Sh[19], which made the GPU hardware appear as a simple resource via a

5

C++ library, and BrookGPU[4], which focused on programming in streams with a C++

dialect. Microsoft research also worked on an advanced system called Accelerator[20],

which performed advanced just-in-time compilation with an OpenGL backend. Some

companies also provided proprietary solutions, such as RapidMind's Multi-Core

Platform[21].

As GPGPU became popular, vendors began to provide languages which allowed

better access to the underlying hardware. ATI released CTM[22], which included the

assembly language of the GPUs and driver-level codes to operate them. NVIDIA

released CUDA[23], which provided a general-purpose abstraction of the underlying

hardware, but did not release instruction set architectures. The development of these

languages also lead to the development of more companies providing GPU acceleration

services, such as PeakStream[24]. ATI's CTM was later obsoleted in favor of CAL[25],

which provides similar low-level access to CTM, but with a modified version of the

BrookGPU compiler which allowed users to avoid low-level programming. Efforts are

currently underway to develop a vendor-independent specification for a GPGPU

programming language called OpenCL[26].

Currently, many research efforts related to GPU programming environments are

underway. CUDASA[27] is a system for networking clusters of machines with GPUs

together, and it extends CUDA with new language constructs to do so. Zippy[28]

provides similar functionality via library routines and classes which abstract the

underlying GPUs. More recently, DCGN[29] abstracted GPUs in clusters, but allowed

dynamic communication patterns during execution between GPUs. All of these efforts

are related to using message-passing across clusters of GPUs and abstracting the

hardware, whereas this research is interested in exploring the message-passing model

within the hardware.

The most closely-related work is actually the BSGP project[30], which focuses on

a set of extensions and very advanced compiler techniques to transform and execute

sequential code on a GPU. BSGP still lacks inter-thread communication, though, and

implements such mechanisms by generating individual kernels and using the edges as

synchronization points. This mechanism still relies on a host processor, and still leaves

the GPU as a second-class processing element.

6

Although virtualization is not the main focus of this research, it is worth noting

that virtualization in SIMD machines has been well studied before. The PARIS

language[31] utilized by Thinking Machines SIMD computers is a good example.

Chapter 3: GPU Hardware Review and Performance Factors

To understand the proof-of-concept MPI implementation and the virtualization

test results, it is necessary to understand the underlying CUDA hardware. This section

first provides a high-level overview of current GPU hardware, which demonstrates the

applicability of this work to other GPUs beyond just NVIDIA targets. Next, it provides

an overview of the CUDA hardware and the scaling or scheduling parameters used to

control the hardware. This section concludes with a discussion of performance factors

within an NVIDIA CUDA GPU; this information needed to understand the virtualization

test results in chapter 4 and some design decisions used in the MPI implementation in

chapter 5.

3.1: Review of Current GPU Hardware

Modern GPUs are composed of a collection of virtualizing SIMD processors.

Note that these are not multiprocessors, since they do not support multiprocessing. These

are relatively narrow virtualizing SIMD engines which support multi-threading over a set

of processing elements, and support no MIMD behavior aside from virtualization and

multi-threading.

The individual virtualizing SIMD processors are composed of some number of

physical processing elements, each with its own registers and all sharing some local

shared memory. Each virtualizing SIMD processor possesses local control logic for its

processing elements, and all SIMD processors in a GPU can execute a different

instruction at the same time. All processing elements on the SIMD processors can access

a global shared memory, and all SIMD processors are connected through some global

control and scheduling logic. The processing elements within a single SIMD processor

can also access a local shared memory inside that multiprocessor.

The smallest unit of work in a modern GPU is a sequence of instructions

executing on a single processing element. Note that this unit of work is not a thread in

7

the traditional sense (although the word has been appropriated to describe it), but rather a

“slice” of a traditional thread executing a SIMD program. A thread in the traditional

sense is either a group of work units which execute simultaneously on the processing

elements or a group of work units which form a single schedulable entity.

The units of work are typically grouped at two granularities visible to the user. At

the smaller granularity, some number of parallel work units form a single schedulable

unit, with the size of the group usually determined by the number of logical processing

cores inside a SIMD engine (which may be more than the number of physical cores). At

the larger granularity, the aforementioned groups which are executed together on a single

SIMD processor are grouped again. In some sense, the architecture is MIMD at the

device or higher granularity level, since SIMD processors can execute unique instructions

simultaneously; and virtualizing SIMD or SPMD at the SIMD processor or lower

granularity level, since instruction execution is overlapped and scheduled on the

processing cores.

From reviewing the NVIDIA CUDA Programming Guide[23], the above concepts

are clearly seen in NVIDIA GPUs. In a CUDA GPU, the virtualizing SIMD processors

are the SMs (Streaming Multiprocessors). Each SM consists of eight physical SP (Scalar

Processor) cores executing 32 work units (called threads) in four clock cycles, and all SPs

in an SM have access to a shared memory. Groups of 32 work units are called warps (the

smaller granularity and smallest schedulable entity), and their execution is scheduled to

hide memory latency. The work units are grouped into what NVIDIA calls thread blocks

(the larger granularity, inside of which execution is virtualizing SIMD or SPMD) which

are distributed to the SMs by some global control logic, and multiple thread blocks can

execute on a single SM. Between SMs, divergence in code causes no performance

penalty and is effectively MIMD. As work units execute within an SM, only divergence

(due to control flow instructions) within a warp is implemented by masking and

serialization; divergence between warps is implemented by scheduling from the local

control logic.

From reviewing the ATI Stream Computing User Guide[22], the concepts are also

seen in ATI GPUs. In a CAL GPU, the virtualizing SIMD processors are called SIMD

engines. The SIMD engines are composed of what ATI calls thread processors, with all

8

thread processors executing the same instruction in unison. Work units (again called

threads) are grouped into wavefronts (the smaller granularity and smallest schedulable

entity), with the size of a wavefront determined by the number of thread processors times

4, since each thread processor can issue 4 instructions in 4 clock cycles. All thread

processors within a SIMD engine share a LDS (Local Data Store) shared memory (which

is owner-writes) as well as shared registers which can communicate data between

wavefronts. The work units executed on the processors are arranged into groups at the

software level (the larger granularity, inside of which execution is virtualizing SIMD or

SPMD), and multiple wavefronts are overlapped in each SIMD engine to hide memory

latency. During execution, only divergence within a wavefront is implemented by thread

masking and serialization. Divergence between SIMD engines has no performance

penalty, and the execution is effectively MIMD at this granularity.

From the above descriptions, it should be obvious that the results obtained using

an NVIDIA GPU are applicable to other GPUs. This is not to say that no differences

exist, especially since the next few sections on hardware and performance apply mainly

to NVIDIA GPUs. The differences between these architectures, however, are minor, and

any impacts they would be expected to cause in the implementation are noted as they

arise in the thesis.

Note that the rest of this thesis will use NVIDIA terminology (threads instead of

work units, and SMs instead of SIMD processors), since the research utilizes an NVIDIA

CUDA GPU.

3.2: The NVIDIA CUDA Architecture

Now, an overview of the NVIDIA CUDA architecture is needed. Figure 3.1

shows a simple overview of hardware used by a CUDA program in an NVIDIA GPU.

All NVIDIA GPUs share a similar hardware structure, but may have different clock rates,

SM counts, shared memory sizes, etc. Table 3.1 shows some of these differences for the

NVIDIA GPUs used in this work.

9

Figure 3.1: The NVIDIA CUDA Architecture[23]

Figure 3.1: The NVIDIA CUDA Architecture[23]

Table 3.1: Some NVIDIA GPUs and various properties

Table 3.1: Some NVIDIA GPUs and various properties

GeForce GPU 8800 GT[32] 9800 GT[33] 280 GTX[34]

Number of SMs 14 16 30

Number of SPs 112 128 240

Device Global Mem 512 MB 512 MB – 1 GB 1 GB

Compute Capability 1.1 1.1 1.3

Processor Clock 1500 MHz 1500 MHz 1296 MHz

Memory Clock 900 MHz 900 MHz 1107 MHz

As can be seen in Figure 3.1, the device architecture is composed of a collection

of virtualizing SIMD processors (the Streaming Multiprocessors, or SMs), all of which

share access to a global device memory. Each SM is composed of SIMD processing

elements (the Scalar Processors, or SPs) which execute instructions issued by the

10

instruction unit. Each SP possesses a separate register file, and all SPs in a block share

access to a multi-banked shared memory, texture cache, and constant cache. The sizes of

the various memories and caches, as well as the register and SP counts, vary with what

NVIDIA terms the “compute capability” of the device. Specifications for the various

compute capabilities are shown in Table 3.2. Note that the device used for the research in

this thesis is a compute-capability 1.0 device, which is the most restrictive of the compute

capabilities. This was necessary to guarantee that the results in this thesis are portable.

Table 3.2: Compute Capabilities and their properties[23]

Table 3.2: Compute Capabilities and their properties[23]

Compute Capability 1.0 & 1.1 1.2 & 1.3

Physical PEs per SM 8 8

Constant Memory 64k 64k

Shared Memory per SM 16k 16k

Registers per SM 8192 16384

Constant Cache per SM 8k 8k

Texture Cache per SM 6k - 8k 6k - 8k

Warp Size 32 32

Max Threads per Block 512 512

Max Blocks per SM 8 8

Max Warps per SM 24 32

Max Threads per SM 768 1024

In this system, what NVIDIA calls threads are the smallest unit of work. Each

thread executes a copy of the kernel, and groups of threads are scheduled in a SIMD

fashion on the SPs inside the individual SMs. More specifically, the eight physical SPs in

current CUDA devices appear as 32 logical SPs to the scheduler, and each physical SP

executes an instruction from each of four threads in four clock cycles. This appears

logically as 32 threads executing one instruction every four clock cycles. A group of 32

threads is called a “warp” in NVIDIA terminology, and each SM overlaps execution of

the warps of 32 threads on the SPs in order to hide memory fetch latency.

Warps of threads are grouped into thread blocks (commonly referred to as blocks),

and thread blocks are the basic element of virtualization. A single SM may execute many

11

blocks at once (up to a compute-capability defined limit, as shown in Table 3.2), but only

if the combined thread count of the blocks does not exceed the SM's limit, and the

resource requirements of the blocks can be met. Resource requirements for a block

include the amount of shared memory and the number of registers used by the threads in

the block, and the compute capability of the device determines the available resources.

For example, if an SM will overlap execution of 4 thread blocks, then it must possess at

least 4 times the total resources needed by each thread block.

Scheduling parameters (or scaling parameters, since they tightly constrain the

number of kernels active at once on a GPU) govern the creation of thread blocks, and are

provided by the user when a kernel program is invoked in host CPU code to execute on

the GPU hardware. These parameters include the dimensions of a thread block (in

threads), the dimensions of the grid (in thread blocks), and the amount of dynamically

shared memory allocated per thread block. NVIDIA calls this collection of parameters

the “execution configuration” of a kernel. These parameters are often chosen by the user

to allow easy mapping of the desired algorithm to the available GPU resources.

If more thread blocks are created by a kernel invocation than can be executed on

the GPU's SMs, due either to a lack of resources or to more combined threads than the

SMs can execute, some thread blocks are queued to wait. These thread blocks do not

execute until another thread block has executed to completion. Lacking provision to save

and restore state, there is no yield() or sleep() command which a block can issue

to voluntarily de-schedule itself, although one would be extremely useful.

3.3: NVIDIA CUDA Performance Considerations

Now that all the fundamentals are established, it is important to discuss the key

performance characteristics in the CUDA architecture. These are essentially the points

from chapter five of the NVIDIA CUDA Programming Guide[23], and they concern

instruction performance and memory performance.

Instruction performance falls loosely into three categories: arithmetic

performance, flow-control performance, and memory instruction performance. By

examining each, a scale of relative expense should be established in the reader's mind,

and this scale is required to understand design decisions described later in this thesis.

The shortest arithmetic instructions execute in four clock cycles, and these include

12

floating-point add, multiply, multiply-add, integer add, 24-bit integer multiply, bitwise

operations, minimum, maximum, comparison, and type-conversion instructions. 32-bit

integer multiply executes in 16 clock cycles, and floating-point reciprocal square root

executes in 32 clock cycles. Floating-point division executes in 20 or 36 clock cycles

(depending on the version used), and some versions of sin, cos, and exponentiation

execute in 32 clock cycles. The instructions which are specified with the longest

execution time are other versions of sin and cos, tan, and sincos, which may take around

320 clock cycles to execute.

Flow-control instructions are not specified with execution times, and are primarily

important in that divergent code can cause serious performance degradation or deadlock.

In particular, divergence between warps is not problematic, because it is implemented by

scheduling. Within a warp, though, divergence is implemented by masking off

processing elements and serializing the branches. The performance penalty can be high

in such instances. An example: if a single processing element in each warp wished to

execute instructions requiring 10,000 clock cycles, while all other processing elements in

the warp wished to execute instructions requiring 10 clock cycles, the total execution

time of each warp would be 10,010 clock cycles. Worse still is the possibility of live-

lock. If a processing element inside of a flow-control statement which diverged within a

warp attempts a blocking operation (such as a spin-lock) while waiting for other

processing elements in the warp to signal a result, the result may never arrive due to the

masking-off of the processing elements which send it, and the hardware may live-lock

until the watchdog timer aborts the kernel execution.

Memory instructions are simple in that they always issue in 4 clock cycles. The

problem, as shown next, is the memory latency.

Memory performance in a CUDA GPU is the single most important performance

consideration short of outright deadlock. A fetch from global or local memory locations

has a 400-600 clock cycle latency, and global memory is not cached. Shared memory

accesses which are fully-coalescing and conflict-free (across the banks) have a four-cycle

latency which is hidden by the warp-at-a-time scheduling. Similarly, dependency-free

register accesses have a four-cycle latency hidden by the scheduling. Texture and

constant cache reads are also four-cycle unless the read is a cache miss, and cache misses

13

incur the 400-600 clock cycle global memory latency.

Memory performance can be improved considerably by arranging memory

accesses to be coalesced. As described in the NVIDIA CUDA Programming Guide[23],

CUDA devices are capable of fetching 32-byte, 64-byte, and 128-byte blocks aligned on

32-byte, 64-byte, and 128-byte boundaries respectively, in single instructions. This

occurs only under certain conditions based on the device compute-capability and for each

half-warp (group of 16 consecutive threads). For compute-capability 1.0 and 1.1 devices

(such as the GeForce 8800 GTS used in this thesis), conditions for coalescing include

threads accessing consecutive words in sequence, with each access being a 4-byte or 8-

byte object (16-byte object accesses are coalesced into two 128-byte load instructions). It

should be noted that coalesced accesses are around an order of magnitude higher

bandwidth than non-coalesced on 4-byte objects, around four times higher for 8-byte

objects, and around two times higher for 16-byte objects. On compute-capability 1.2 or

higher devices, coalescing happens under a much broader set of conditions and is more

flexible.

After examining the relative costs of operations, it should be clear that memory

accesses are the most critical of the performance considerations. NVIDIA GPUs are

high-latency, high-bandwidth devices which rely on computation to hide latency from

non-cached global memory, and fast local memory is a scant resource. More specifically,

the GeForce 8800GTS, a compute capability 1.0 card, only has 8196 registers and 8196

bytes (2048 words) of shared memory per SIMD processor, as shown in Table 3.2. At 64

threads per block (minimum recommended in the CUDA Programming Guide[23]), this

amounts to 128 registers per thread with one block on the SIMD processor and 64

registers per thread with two blocks on the SIMD processor. At the limit of eight blocks

per SIMD processor, this amounts to only 16 registers per thread and 256 words of shared

memory available to each block. At 256 threads per block, this amounts to 32 registers

per thread at one block per SIMD processor, and four registers per thread (along with 256

words of shared memory between the threads) at the maximum of 8 blocks per SIMD

processor.

For comparison, the MasPar MP-1, a classical SIMD machine from 1990, had 16k

bytes of memory per processing element[35], and this machine was decidedly more

14

“silicon-challenged” than a current GPU. A more modern comparison could be made

with the Cell BE (Broadband Engine), which has 256k per SPE[11]. Given the scarcity

of local GPU memory compared to similar architectures, along with the aforementioned

high-latency, high-bandwidth nature of the device, extra attention must be paid to local

memory usage. Expensive re-computation of intermediate values may be relatively

cheap compared to caching. Also, prioritizing coalesced memory accesses over full PE

utilization can yield better performance.

Chapter 4: Virtualization Constraints

One claim of this thesis is that, although there is a virtualization constraint for

using message-passing within the GPU, the constraint is actually harmless if the amount

of virtualization chosen is already optimal in terms of its interaction model and per-block

execution time. More specifically, optimal virtualization is virtualization such that the

performance per unit time is nearly as high as possible, and the interaction model

between processes is not limited by the choice of the virtualization. This section first

describes the ideas of multi-threading and virtualization inside of GPUs, as well as the

memory coherence and interaction models. This section next describes a micro-kernel

and presents empirical data which suggests that the optimum amount of threading fully

populates the GPU's processing resources some integral number of times, and that

virtualization beyond that amount yields no measurable benefits and weakens the

interaction model. This section concludes by describing the performance benefits reaped

by using an optimum amount of threading, focusing on the implications of having a

stronger interaction model and a less-awkward coherence model and how these are

required by a message-passing implementation executing within a GPU.

4.1: Background and Definitions

GPUs have evolved a SIMD-based, multi-threaded execution model which relies

heavily on virtualization. Multi-threading makes perfect sense in the context of graphics-

processing because it allows memory latency to be hidden behind Pixel processing,

which increases throughput. More precisely, multi-threading allows data fetches from a

slow, non-cached GPU global memory (as discussed in Chapter 2.3) to be hidden behind

15

useful computations by having a thread de-scheduled while waiting for its memory

request to complete. Virtualization also makes perfect sense in the context of graphics-

processing because most images processed contain more pixels than available processors.

A modern HDTV image, for example, has roughly two million pixels, while a current

NVIDIA GPU (the GeForce GTX 280) has 240 processor cores, as shown in Table 3.1.

Since each pixel can be processed (more or less) independently, large-scale virtualization

of the pixels over the available processors has been (and will remain) an obvious

performance win. Large-scale virtualization has also created a nice abstraction between

the hardware and the images it processes (since drivers can handle the virtualization), and

this abstraction has allowed new generations of GPUs to be developed by merely taking

an existing architecture and adding more processing pipelines, tweaking the clock speeds,

optimizing the core floating-point units, adding hardware features, etc., rather than

inventing a new architecture.

The memory coherence or memory consistency model of global memory in

NVIDIA GPUs is slightly awkward. Global memory is the only true shared memory for

all the processors on the device, but the only real guarantee about global memory is that

specific kinds of transactions are performed atomically. This is not referring to just the

atomic operations provided by higher compute-capabilities, but also coalesced memory

accesses[23]. Unfortunately, the model provides no rules governing the order of writes,

when data written becomes available to other processes, or the fairness of the writer

scheduling. Here, fairness refers to threads being guaranteed a chance to write their data,

and it is possible that one or more threads will never get a chance to write.

Because of these uncertainties, the interaction model of the processes is relatively

weak. A process cannot safely wait on another process, because it is possible that the

other process may not be able to run due to a lack of resources. For example, imagine

that each process wants to contribute an element to a global array, and then wait until

another specific process has contributed before continuing. The interaction model does

not allow this, because there could be enough processes created so that all the executing

processes wait on contributions from processes queued to wait at the software level, and

this would obviously cause a live-lock.

16

4.2: Performance Analysis of Virtualization

The established method for boosting application performance with GPUs is to

write kernels with wide parallelism and allow the GPU to virtualize the computations

over the available GPU processing elements. For example, in the NVIDIA CUDA

Programming Guide[23] developers are informed that using a large number of thread

blocks amortizes the overhead from device memory reads and thread synchronizations

better than a small number of thread blocks, and that the number of thread blocks is

usually dictated by the size of the data being processed, which can greatly exceed the

number of processors in the GPU.

There are established rules which govern the choices of multi-threading and

virtualization parameters. CUDA developers are instructed to carefully choose the

number of threads per block and/or number of blocks to maximally utilize the device

resources[23]. In terms of multi-threading, the CUDA programming guide suggests 64

threads per block (twice the size of a warp) as a minimum, and further suggests that 192

or 256 threads per block is a better number[23]. Obviously, these sizes create some

integral number of fully-populated warps. In terms of virtualization, the CUDA

Programming Guide states that “It is therefore usually better to allow for two or more

blocks to be active on each multiprocessor to allow overlap between blocks that wait and

blocks that can run,” and that “More thread blocks stream in pipeline fashion through the

device and amortize overhead even more. The number of blocks per grid should be at

least 100 if one wants it to scale to future devices; 1,000 blocks will scale across several

generations.”[23]. Because there is no clear message stating “how much is enough,” this

section presents a micro-kernel which is used to test the benefits of large-scale

virtualization.

The NVIDIA CUDA Programming Guide[23] suggests a typical processing

pattern of 1)reading data from global device memory into shared memory, 2)synchronizing

all threads in each block to make sure that all global memory entries have been fetched

into shared memory, 3)processing the data in shared memory, 4)synchronizing all threads

in each block to ensure that all processing results are present in shared memory, and 5)

writing the results back to global device memory. Using the above ideas, a very simple,

ideal kernel can be constructed which tests the benefits of large-scale virtualization. The

17

pseudo-code for this kernel is shown in Figure 4.1.

Figure 4.1: Pseudo-code for the micro-benchmark

float a,b;

int main()
{

float ta,tb;
int i = 10000;
do {

ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;
ta += tb * 1.11; tb += ta * 1.11;

} while (--i);

a = ta;
b = tb;

}

Figure 4.1: Pseudo-code for the micro-benchmark

Note that this kernel is not intended to mimic a complicated or realistic GPU

kernel, because realistic kernels introduce extra factors and lack performance

transparency. This kernel is arithmetically intensive, providing 10 floating-point

multiply-adds in a loop iterating 10,000 times, which provides roughly 400,000 cycles of

arithmetic for the two memory reads and two memory writes performed by each thread.

The data is aligned in global device memory so that maximum bandwidth can be

utilized, and the code requires a minimal number of registers. Under these minimal

conditions, the benefits of virtualization are clearly seen.

Two versions of the kernel are tested below with varying block counts (amounts

of virtualization): one with ta and tb in registers, the other with ta and tb in shared

memory. Both kernel versions use 256 threads per block (BNPROC is the number of

thread blocks). The test GPU is an NVIDIA GeForce 8800 GTS (a compute capability

1.0 card with 12 SMs), and the kernels are executed with varying thread-block counts

from 2 blocks to 434 blocks (more than 434 blocks becomes unstable during some tests).

After each kernel listing, the average execution time of 10 iterations of the kernel is

plotted against the block count. The per-block execution time is then plotted from this

data.

Kernel 1, shown in Figure 4.2, performs the operations with the values read into

18

registers prior to entering the do-while loop and writes the register contents back to

global memory before exiting. Both execution time plots are shown following the kernel

code, and plots are marked in increments of 24 because this is two times the number of

SMs in the test card.

Figure 4.2: The register micro-benchmark

#define BNPROC 256
__global__ void
myperf(register volatile float *a, register volatile float *b)
{
 register int IPROC = (blockIdx.x * BNPROC) + threadIdx.x;

 register float a_reg = a[IPROC];
 register float b_reg = b[IPROC];

 __syncthreads();
 int i = 10000;
 do {
 a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
 a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
 a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
 a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
 a_reg += b_reg * 1.11; b_reg += a_reg * 1.11;
 } while (--i);

 a[IPROC] = a_reg;
 b[IPROC] = b_reg;
 __syncthreads();
}

Figure 4.2: The register micro-benchmark

19

Figure 4.3: Total execution time of the register micro-benchmark

Figure 4.3: Total execution time of the register micro-benchmark

Figure 4.4: Per-block execution time of the register micro-benchmark

Figure 4.4: Per-block execution time of the register micro-benchmark

20

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456

0.00

50.00

100.00

150.00

200.00

250.00

Total Execution Time

(Using Registers)

Number of Blocks

tim
e

 [
m

s]

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456

0.40

0.50

0.60

0.70

0.80

0.90

1.00

Per Block Execution Time

(Using Registers)

Number of Blocks

tim
e

 [
m

s]

Figure 4.3 may be surprising in that execution time is obviously a stair-step

function for computationally-intensive code looping in registers. Note that the NVIDIA

8800 used in the test has 12 SMs; not surprisingly every time a multiple of 12 blocks is

exceeded the execution time “steps”. This is because adding that extra block causes one

SM to execute another set of kernels while the other 11 SMs are idle. Adding additional

blocks populates the idle SMs, which does not cause any increase in execution time. The

important idea is simply that the stair-step characteristic comes from populating the SMs

unevenly, and therefore the number of blocks should be chosen based on the number of

SMs in a device.

Figure 4.4 shows the execution times normalized to the number of blocks. The

actual smallest execution time in this chart occurs at 396 blocks (33 blocks/SM) with a

time per block of 0.48499 ms. It should be noted that the time per block at 12 blocks (1

block/SM) of 0.4915 ms is still smaller than the time per block at 390 blocks (0.4934

ms), 388 blocks (0.4959 ms), and 386 blocks (0.4981 ms). Moreover, the percent

difference between the time at 12 blocks and the time at 396 blocks is only 1.33%.

From the above data, it can clearly be seen that the near-optimal execution time

per block is obtained any time the execution configuration runs a multiple of 12 blocks

total, which is the same as running an identical number of blocks on every SM or fully

populating the device some integral number of times. However, running a large multiple

of 12 yields little additional performance benefit over running a small multiple of 12.

Kernel 2, shown in Figure 4.5, performs the same operations as kernel 1, but reads

the global data into shared memory, uses pointers in registers to volatile shared memory

inside the loop, and writes the shared-memory values back to global memory upon

completion. Both execution time plots are shown following the kernel code, and plots are

marked in increments of 24 because this is two times the number of SMs in the test card.

21

Figure 4.5: The shared-memory micro-benchmark

#define BNPROC 256
typedef struct {
 float a_s[BNPROC];
 float b_s[BNPROC];
} my_shared_t;

__global__ void
myperf(register volatile float *a, register volatile float *b)
{
 register int IPROC = (blockIdx.x * BNPROC) + threadIdx.x;

 extern __shared__ my_shared_t shared[];
 register volatile float *a_shr = &((*shared).a_s[IPROC]);
 register volatile float *b_shr = &((*shared).b_s[IPROC]);
 *a_shr = a[IPROC];
 *b_shr = b[IPROC];

 __syncthreads();
 int i = 10000;
 do {
 *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
 *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
 *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
 *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
 *a_shr += *b_shr * 1.11; *b_shr += *a_shr * 1.11;
 } while (--i);
 __syncthreads();
 a[IPROC] = *a_shr;
 b[IPROC] = *b_shr;
 __syncthreads();
}

Figure 4.5: The shared-memory micro-benchmark

22

Figure 4.6: Total execution time of the shared-memory micro-benchmark

Figure 4.6: Total execution time of the shared-memory micro-benchmark

Figure 4.7: Per-block execution time of the shared-memory micro-benchmark

Figure 4.7: Per-block execution time of the shared-memory micro-benchmark

23

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456

0.00

50.00

100.00

150.00

200.00

250.00

300.00

350.00

400.00

450.00

500.00

Total Execution Time

(Using Shared Memory)

Number of Blocks

tim
e

 [
m

s]

0 24 48 72 96 120 144 168 192 216 240 264 288 312 336 360 384 408 432 456

0.90

1.00

1.10

1.20

1.30

1.40

1.50

1.60

1.70

1.80

1.90

Per Block Execution Time

(Using Shared Memory)

Number of Blocks

tim
e

 [
m

s]

Figure 4.6 shows the same stair-step function for execution time as Figure 4.3.

Since conflict-free shared memory accesses are as fast as register accesses in CUDA[23],

it is expected that the shared memory behaves in a similar manner to the register file with

regards to scheduling behavior. Note that the kernel does not attempt to stride shared

memory reads or prevent bank conflicts, since the presence or absence of such conflicts

should not change the scheduling behavior of the kernels. While the scheduling unit in

an SM may swap blocks to cover global memory latency, the overhead of such a swap

would likely swamp a shared-memory conflict completely.

As mentioned before, the NVIDIA 8800 used in the test has 12 SMs; not

surprisingly every time a multiple of 12 blocks is exceeded the execution time “steps”.

This is again because adding that extra block causes one SM to execute another set of

kernels while the other 11 SMs are idle. Adding additional blocks populates the idle

SMs, which does not cause any increase in execution time. The important idea is again

that the stair-step characteristic comes from populating the SMs unevenly, and therefore

the number of blocks should be chosen based on the number of SMs in a device.

Figure 4.7 shows the execution time normalized to the number of blocks. The

smallest execution time occurs at 36 blocks (3 blocks/SM) with a time per block of

1.06187 ms. This can be compared to the largest execution time at a multiple of 12

blocks, which is 24 blocks at a time per block of 1.075 ms. The percent difference is

1.31%, and again the worst choice of a multiple of 12 (24 blocks at 1.075 ms/block) is

better than a naive choice of a large number of blocks (424 blocks at 1.0838 ms/block or

426 blocks at 1.079 ms/block).

Again, the data clearly shows that the near-optimal execution time per block is

obtained any time the execution configuration runs a multiple of 12 blocks total, which is

the same as fully populating the device some integral number of times. As before,

running a large multiple of 12 is not necessary to get nearly-optimal execution time per

block, and does not appear to provide much benefit.

At this point, it is clear that running a number of thread blocks which is an integer

multiple of the number of SMs is required for near-optimal performance. But at what

point does more virtualization result in less performance? In terms of execution time,

there appears to be no point where adding another 12 thread blocks results in noticeable

24

performance loss. In terms of the interaction model, however, there is a very noticeable

performance loss as soon as any blocks are queued to wait.

In the introductory material of this section, the interaction model of the CUDA

GPU was described as relatively weak, primarily because processes cannot wait on each

other due to the uncertainty about what processes are currently executing and the

awkward global memory coherence model. If it is known that all thread blocks are

executing, however, then blocks can wait on each other by polling, and be assured that a

write by one process will eventually be visible by all other processes. This constitutes a

much stronger interaction model, and is possible if the virtualization is kept within the

limits of what can execute concurrently on a given device. This would be dictated by the

number of SMs in the device, the number of active blocks per SM or threads per SM

supported by the device, and the per-block resource usage.

While the number of SMs, threads-per-SM constraint, and blocks-per-SM

constraint are each device-dependent, the per-thread resource usage is program-

dependent. The per-thread resource utilization can be calculated prior to execution by

using the built-in nvcc compiler option --ptxas-options=-v to determine register

and shared memory usage, and resource usage can also be partially controlled by using

the compiler option --maxrregcount amount, where amount is the maximum

number of registers a GPU function can use[23]. By using this compiler output alongside

the information from NVIDIA's deviceQuery program provided with the default

CUDA SDK installation (the compute capability information and number of SMs in the

installed devices), scaling parameters which populate the device without queuing any

thread blocks to wait can be automatically predicted for a particular kernel.

In this sense, GPU code could be autonomously optimized for a strong interaction

model and nearly-best execution time on new GPU hardware by recompilation or

dynamic hardware detection at runtime. This would be similar to ATLAS[36], where the

software tests various implementations of linear algebra routines and then uses the results

to seed a search for the best implementation on a specific machine. In ATLAS, a large

time investment at compile-time pays a large performance dividend at run-time. GPU

code can also be automatically tuned at compile-time to use optimal virtualization.

25

4.3: Optimal Virtualization and the MPI Constraints

Optimal virtualization obviously boasts a performance boost over a poor choice of

virtualization (a non-multiple of the number of SMs) in terms of execution time per

operation, as shown above. The more important benefit, though, is that the stronger

interaction model provided by the virtualization allows communication within a GPU.

Since processes are guaranteed to eventually see values written by other

processes, inter-process communication and inter-process synchronization become

possible without the need for the traditional kernel stop and restart. Communication can

be provided by simple data structures declared volatile in global device memory, or

by a more advanced mechanism such as message-passing. The benefit of the latter is that

it completely hides the remaining shared-memory semantics issues associated with global

memory, mainly the non-determinism associated with writes, since there is no guaranteed

ordering between processes. Synchronization can be provided by an established single-

writer, multiple-reader algorithm, originally proposed and utilized in the SHMAPERS

library[37] and adapted to an NVIDIA CUDA GPU within this research group.

There is also a performance impact of the new capabilities: the kernel can

continue execution. NVIDIA has stated that kernel launches have low overhead and

should be used as global thread synchronization points[23]. The problem is that the

hardware overhead may be low, but the software overhead for a kernel stop and restart is

not. In the CUDA system, no local processor state is maintained across kernel

invocations, so data must be written to global memory at the end of one invocation, and

then read from global memory at the beginning of the next invocation[23]. Unpublished

experiments conducted within this research group have shown that restoring state from

global memory quickly becomes prohibitively expensive, partially due to the lack of

computation available to cover the latency from the extra memory reads. In BGSP, the

researchers were content with a 4x performance penalty for having to include save and

restore state mechanisms, even when not in use[30].

In addition to the cost of restoring state after synchronization, the stop/restart

model complicates programming. Currently, if communication is required, then data

must either be copied to the host between kernels and altered appropriately before being

copied back, or another kernel must perform the communications using the global

26

memory between invocations. Any code requiring multiple synchronizations must be

rewritten into separate kernels, with the host providing the glue logic to invoke the

correct kernels as necessary, and synchronizations nested within control structures

exacerbate the problem of restoring state and continuing. One simple example of this

would be an iterative solver which is looping through a data structure and needs to check

against a quality metric at the end of a set of iterations.

Chapter 5: The MPI Implementation

The primary claim of this thesis is that the message-passing programming model

can be conceptually cleaner than the currently ubiquitous data-parallel model by hiding

rather than dealing with the quirks of current shared-memory environments. This section

first provides a brief introduction to MPI (the Message-Passing Interface), which is the

standard used in this research to implement the message-passing model on the GPU. It

then describes which parts of the standard are actually implemented and what design

considerations are involved in the proof-of-concept implementation. Details are also

provided on the key point-to-point communication function implementations. A

performance comparison to the native NVIDIA CUDA code on a sample algorithm which

computes the value of pi in parallel is then presented for the point-to-point

communication functions. This section then provides the same details and performance

analysis for the key collective communication function implementations. Some of the

other MPI functions which were implemented are briefly discussed. This section

concludes by describing the key benefits of the message-passing model compared to the

data-parallel model, as demonstrated by the proof-of-concept MPI implementation and

the example implementations of the sample algorithm.

5.1: Introduction to the Message-Passing Interface

MPI, the Message-Passing Interface, is a parallel-programming standard which

provides a message-passing library interface specification[1]. That is, MPI provides a

detailed specification of the various functions and data structures which are externally

available in a message-passing library implementation which conforms to the standard.

The standard does not specify the implementation details under the interface, and so MPI

27

can be implemented on a variety of hardware architectures. The main benefit of MPI is

therefore the ability to easily write portable code utilizing the message-passing model in

C, C++, or Fortran.

As seen in the MPI standard[1], MPI specifies several general categories of

functionality which contain the various MPI functions. These include point-to-point

communication, data-type creation and management, collective or aggregate operations,

process group management, communication context management, process topology

descriptions, environmental management and environmental query, info object

management, process creation and management, one-sided communication, external

interfaces management, parallel file I/O, and a profiling interface[1]. Each category of

functionality contains both the functions, whose interfaces are defined in C, C++, and

Fortran, and any data-types or constants which must be exposed to the user to interact

with the functions.

5.2: Design Philosophies and Restrictions

Since the goal of this research is to provide a proof-of-concept MPI

implementation rather than a full one, only some functions from some of the categories

above are actually implemented. The emphasis is on proving the viability and benefits of

the message-passing model, so point-to-point communications and aggregate operations

are the main focus of this work. In addition, a handful of data-type creation and

management, environmental management and environmental query, communication

context management, and one-sided communications functions are implemented.

The functions implemented are chosen because they represent a large portion of

what can be done with MPI, and they conceptually cover what is most often done with

MPI. The functions are not just the functions which naturally fit a GPU's programming

model and architecture; they are a representative set of functions which should

demonstrate the benefits of MPI within a GPU in a relatively complete fashion. The

functions implemented are also similar to those in other subset implementations such as

AFMPI[38], where the goal is to prove the viability and benefits of MPI on unusual

hardware.

The following sections describe the implementation in greater detail, but there are

a handful of overarching restrictions which mandate design decisions affecting the entire

28

implementation. Each of these restrictions is described briefly here, and then in greater

detail below. The first restriction is the aliasing of the hierarchical groups inside a GPU,

which refers to the interdependence of threads, warps, and thread blocks within an

NVIDIA CUDA GPU. This restriction affects the choice of what constitutes an MPI

process in the implementation. The second restriction is the inability to read from or

write to an SM's local shared memory, and this restriction forces all communication to

travel through slow global memory. The third restriction is the scarcity of local

resources, and this restriction forces some potential optimizations within thread blocks to

be ignored and forces a simple name-space for all MPI processes. The fourth restriction

is the ease with which the GPU can be accidentally live-locked, and this restriction forces

the alteration of some MPI semantics to avoid potential live-locks. The fifth and final

restriction is the orientation of hardware to 32-bit operations, and this restriction causes

all operations to be naturally word-oriented, and prevents some MPI interfaces involving

double-precision floating-point numbers from being implemented. Each of these ideas is

described in more detail below.

The first restriction, the interconnection of the hierarchical groups inside a GPU,

is simply referring to the fact that thread blocks are aliases for groups of warps, and

warps are aliases for groups of threads. A single thread never exists if it does not belong

to a warp, and that warp never exists if it does not belong to a thread block. This is

different than a cluster of workstations, for example, where a single workstation can exist

without being part of a cluster.

The implications of this restriction become clear when deciding what exactly

constitutes an MPI process or rank. In DCGN[29], Stuart and Davis discuss the problems

with choosing either an entire kernel or single threads as a rank, noting that each mapping

can have benefits. In this research, though, the focus is on communication within a GPU,

rather than communication across GPUs. Within any GPU, the basic blocks mentioned in

chapter 3.2 are present. In the NVIDIA CUDA GPU used here, the obvious choice for

what constitutes a rank or process would be a thread, a warp, or a thread block. This

research chooses to implement processes as threads, since threads are the smallest units

performing work inside a GPU. This has the benefit of making kernel code look

relatively normal (rather than always collective across warps or thread blocks), and

29

keeping the programming model easy to use, as opposed to forcing the user to write

vector-oriented code for warps or thread blocks. The obvious penalty for this choice is

that all potential SIMD divergence issue are exposed by this choice and must be taken

into consideration (this will be illustrated in the test algorithm implementations). The

future work for this research includes examining other MPI implementations with

processes mapped onto warps and thread blocks. Warps could hide SIMD divergence

issues while still providing a low-level, vector-oriented programming model. Thread

blocks could hide all scheduling issues when optimally virtualized and provide a MIMD

programming model, but at the cost of load-balancing issues and a more complex vector

model.

The second restriction involves the limitations on which thread can write to a

SIMD processor's local shared memory. Only a thread which is executing in a thread

block on a given SIMD processor may read and write to the shared memory allocated to

the thread block locally in that SIMD processor. A thread cannot write to shared memory

in a thread block executing on another SIMD processor, and cannot write to statically-

allocated local shared memory of another thread block executing on the same SIMD

processor (a pointer to dynamically-allocated shared memory created by the host can be

shared among thread blocks on a SIMD processor, but the operations on it must be

synchronized by a global barrier synchronization of all processes, since the

__syncthreads() command only synchronizes threads within a thread block). This

forces communication to move through device global memory (optimizations for threads

in the same thread block are not used because of the scarcity of local resources, described

in the next section). For send and receive operations, a send may specify a source in

shared memory and a receive may specify a destination in a different shared memory, but

the message must move through global memory at some point. This also constrains one-

sided communication to targets in global memory or in the shared memory of the thread

block of the invoking process.

The third restriction, the scarcity of local resources, refers to the relatively small

amounts of fast, local resources in current GPUs. On the NVIDIA GPU, these resources

include the registers and shared memory, as described in chapter 3.2.

There are two design decisions caused by the restriction: a single-context, flat

30

process name-space and a lack of optimizations for threads communicating within a

thread block. MPI specifies a range of functions for subdividing the collection of all

processes into subgroups and for managing unique communication contexts within

groups and subgroups. Such functions require that information about the various groups

and contexts be available to each process, but this implies that something must be stored

for each process to identify its contexts and groups. Given the already-limited amount of

local shared memory and registers, and given that the subgroups and communicators are

not essential for proving the viability and conceptual cleanliness of the message-passing

model, this research chooses not to implement the subgroup and communication context

functionality and instead uses a single communicator: MPI_COMM_WORLD. The lack of

local resources also limits potential optimizations for threads communicating or working

within a thread block. As described in the previous section, threads communicating

within a thread block could benefit from passing messages through shared memory.

However, this optimization could easily consume all the shared-memory resources and

leave none for user computation. As an example, if each of 256 threads in a thread block

wanted to send 1 single-precision float to the next process, this would require 255*4 =

1020 bytes of shared memory (1/8 the total available if only one thread block is executing

on the SIMD processor) for a single buffered send operation.

the ease with which the GPU can be accidentally live-locked, and this restriction forces

The fourth restriction is the the ease with which the GPU can be accidentally live-

locked. Because MPI requires some operations to be semantically blocking, there is

always the possibility of spin-locking one process while waiting on another which will

not be scheduled because of the fairness issues described in chapter 4.1. Note that the

choice of a process mapping does not affect this; at optimal virtualization there are still

usually more blocks than SMs, and nearly always more threads than physical processors.

The mapping of a process to a thread only makes it simpler to hang the hardware via

SIMD enable masking used within a warp. Note that the NVIDIA GPU does not support

any interrupt mechanism to recover from a lock, the only supported mechanism is a

watchdog timer which terminates the kernel invocation after about 10 seconds. When the

watchdog timer activates, no local state is preserved and the results of any pending

memory writes are undefined.

31

The live-lock restriction implies that not all blocking operations can be trivially

implemented. This research handles this restriction by obeying the semantics of MPI

blocking operations without actually blocking where possible. An example of this is

MPI_Send, which always buffers send data to a system buffer. If buffer space is

unavailable, MPI_Send returns an error (MPI_NO_SPACE) rather than blocking. This

also relates back to the choice of a process mapping: a true blocking send and receive pair

could never work at the thread granularity due to the enable masking used to implement

divergence. Some MPI interfaces, such as MPI_Recv and MPI_Barrier, must block.

As long as the user kernel is written correctly, though, these cannot actually lock the

device. The restrictions for using interfaces are described in the following sections

alongside the actual interfaces.

The fifth and final restriction is the orientation of hardware to 32-bit operations.

Some GPUs still lack support for double-precision, including the compute-capability 1.0

GeForce 8800GTS used in this research. These devices may silently demote double-

precision floating-point numbers and computations to single-precision equivalents[23].

Additionally, the cost for utilizing the support tends to be high compared to the native

single-precision support for which GPUs became known.

Because of this restriction, this research attempts to utilize 32-bit words wherever

possible. All data copy routines operate on 32-bit words, and shorter or longer data-

types (including double-precision floating-point) are not supported in computation

functions such as reduction. Support for double-precision floating-point could potentially

be emulated using pairs of single-precision floating point numbers, as suggested by

Dietz[39], but this optimization is beyond the scope of proving the viability and benefits

of MPI within a GPU.

Now that the design philosophies and restrictions have been explained, the next

sections will describe the important interfaces in detail. There are a total of 28 functions

in the proof-of-concept implementation, but only the key ones are explained in detail in

their respective sections below. There are 7 point-to-point communication interfaces

implemented: MPI_Send, MPI_Recv, MPI_Get_count, MPI_Iprobe,

MPI_Probe, MPI_Sendrecv, and MPI_Sendrecv_replace. There are 8

collective communication interfaces implemented: MPI_Barrier, MPI_Bcast,

32

MPI_Gather, MPI_Scatter, MPI_Allgather, MPI_Alltoall, MPI_Reduce,

and MPI_Allreduce. There are 3 data-type management interfaces implemented:

MPI_Pack, MPI_Unpack, and MPI_Pack_size. There are 2 communication

context management interfaces implemented: MPI_Comm_size and

MPI_Comm_rank. There are 5 one-sided communication interfaces implemented:

MPI_Win_create, MPI_Win_free, MPI_Put, MPI_Get, and MPI_Win_fence.

Finally, there are 3 environmental management and inquiry interfaces implemented:

MPI_Get_version, MPI_Init, and MPI_Finalize.

5.3: The Point-to-Point Communication Interfaces

Point-to-point communications are perhaps the quintessential message-passing

operations. This section will focus on the send and receive implementations by

describing the general point-to-point model, showing pseudo-code for the send and

receive operations, and explaining each operation thoroughly. Potential performance

improvements are also discussed.

The general model for point-to-point communication inside the GPU is that

messages and envelopes are buffered in global memory by the process which sends the

message. The buffer is a system data structure (described later in this section), and there

is a static limit on the number of buffered messages and the size of each message. The

receive operation searches in the buffer of the source it intends to read from, blocking

until it finds a matching envelope and message. Once the receive reads the message, it

marks the send buffer as read and returns. To better understand these steps, MPI_Send

and MPI_Recv are each examined in detail below.

The prototype for MPI_Send is shown in Figure 5.1.

33

Figure 5.1: MPI_Send prototype

/* Send, standard-mode */
__device__ int MPI_Send (

void* buf, /* IN */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int dest, /* IN */
int tag, /* IN */
MPI_Comm comm /* IN */

);

Figure 5.1: MPI_Send prototype

The MPI_Send function sends count items of the type data-type from the

buffer *buf to the process with rank dest with an envelope tag value tag and the

communicator comm. The pseudo-code for the entire function is shown in Figure 5.2 (the

actual code implementing the function is shown in Appendix A).

34

Figure 5.2: Pseudo-code for MPI_Send

/* Send, standard-mode */
__device__ int MPI_Send(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
if((err_code = check_args(...))) return(err_code);

/* Reset received buffers as available and
 * adjust the total buffered message count
 * accordingly */
msg_count = reset_received_buffers();

/* Ensure that buffer space is still available */
if (msg_count == MAX_BUFFERED_MESSAGES)

return(MPI_ERR_NO_SPACE);

/* Now find the first free buffer
 * (one marked as available) */
msg_slot = get_first_available_buffer();

/* Fill the buffer with the message header */
set_msg_header(msg_slot,...);

/* Copy the data from the send buffer
 * to the the system buffer */
copy_data(msg_slot,buf,data-type,count);

/* Increment the current message count */
set_msg_count(++msg_count);

/* Serialize the message, which marks it as valid. */
set_msg_serial(msg_slot, serial_number++);

/* Return */
return (MPI_SUCCESS);

}

Figure 5.2: Pseudo-code for MPI_Send

The send function is fairly straightforward. First, the necessary temporary

variables are declared and initialized. Next, the input arguments are checked for errors.

In the case of MPI_Send, errors include a destination process which is negative and not

MPI_PROC_NULL, a tag value which is less than the specified lower-bound

MPI_TAG_LB, greater than the specified upper-bound MPI_TAG_UB, or

MPI_ANY_TAG, a send type which is not a valid data-type, a send count which is zero,

35

negative, or would require more storage than MAX_DATA_PER_MESSAGE*4 bytes, and

a communicator which is not MPI_COMM_WORLD.

Once error checking is complete, the function needs to update its internal list of

message serial numbers. Messages are serialized from 0 upwards, so that two messages

sent from one process will arrive at another process in order. The serial numbers are also

used to store the special tags SN_AVAILABLE and SN_RECEIVED, which indicate that

a message slot is available for use, or has been received by another process, respectively.

The update process consists of resetting all messages marked SN_RECEIVED to

SN_AVAILABLE, so that the send operation can use them again, and decrementing the

message count accordingly.

After updating the serial number list, the routine ensures that space is available. If

it is, the first message slot marked SN_AVAILABLE is located and used for the message.

The message header and envelope information is then copied into the slot. This includes

the destination, data-type, count, tag, and communicator.

Once the header is written, the actual data must be copied into the system buffer.

Although the system buffer is aligned, it is possible for the source buffer to be

misaligned. For this reason, the copy operation must get the aligned address of the

source, convert the count to bytes, and then perform a different copy routine based on the

misalignment of the source address. The aligned-copy routine is a straightforward word-

to-word copy. The other copy routines all require that two words from the source buffer

be read and then shifted, bit-masked, and pasted together to make the correct aligned

data. The routine actually may read more data than specified for code simplicity, but the

correct amount of data is stored in the header information.

After copying the data, the process must first increment its message count, then

serialize this message with the current serial number and increment the serial number.

The ordering of these operations is important, since the receive operation loops based on

the message count. Finally, the message and envelope are all buffered and the routine can

return successfully.

The prototype for MPI_Recv is shown in Figure 5.3.

36

Figure 5.3: MPI_Recv Prototype

/* Receive */
__device__ int
MPI_Recv
(

void* buf, /* OUT */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int source, /* IN */
int tag, /* IN */
MPI_Comm comm, /* IN */
MPI_Status *status /* OUT */

);

Figure 5.3: MPI_Recv Prototype

The MPI_Recv function receives up to count items of the type data-type

into the buffer *buf from the process with rank source with an envelope tag value

tag and the communicator comm. MPI_Recv also returns information about its

execution in *status. The pseudo-code for the entire function is shown in Figure 5.4

(the actual code implementing the function is shown in Appendix A).

37

Figure 5.4: Pseudo-code for MPI_Recv

/* Recv */
__device__ int MPI_Recv(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
if((err_code = check_args(...))) return(err_code);

/* This is a blocking receive operation, so
 * loop until a matching send is found */
msg_slot = -1;
while(msg_slot == -1) {

msg_slot = match_envelope(...);
}

/* We now have a matching message slot, and
 * the message will be consumed even if there
 * are errors, so set the status object. */
set_status(...);

/* Check that the data-types match */
if((err_code = check_types(...))) return(err_code);

/* Ensure that recv buffer can hold message */
if(err_code = check_sizes(...))) return(err_code);

/* Copy the data from the system buffer
 * to the the recv buffer */
copy_data(msg_slot,buf,data-type,count);

/* Mark the message as received */
set_msg_serial(msg_slot, serial_number++);

/* Return */
return (MPI_SUCCESS);

}

Figure 5.4: Pseudo-code for MPI_Recv

The recv function is also fairly straightforward. First, the necessary temporary

variables are declared and initialized. Next, the input arguments are checked for errors.

In the case of MPI_Recv, errors include a source process which is negative and not

MPI_PROC_NULL, a tag value which is less than the specified lower-bound

MPI_TAG_LB or greater than the specified upper-bound MPI_TAG_UB, and not

MPI_ANY_TAG, a receive type which is not a valid data-type, a send count which is

zero, negative, or would require more storage than MAX_DATA_PER_MESSAGE*4

38

bytes, and a communicator which is not MPI_COMM_WORLD.

Once error checking is complete, the function needs to find the message it will

receive. To do this, it spins in a loop repeatedly checking the messages in the process

specified by source. The actual checking consists of reading the message count from

the specified process, and then iterating through the messages until either the maximum

number of buffered messages are checked or the number of valid messages read from the

source process is the same as the message count read earlier, which would indicate that

all valid messages have been checked. Checking a message consists of looking at all

messages which are not marked SN_AVAILABLE. A message matches if it is not

marked SN_RECEIVED, the tag value and communicator match those specified by the

receive, the destination is the rank of the process performing the receive, and the serial

number is the lower than the lowest serial number which the receiver has seen so far.

Both the serial numbers and the need to check all buffered messages instead of stopping

at the first match are dictated by the MPI requirement that messages be non-

overtaking[1]. If no match is found, the message count will be re-fetched from the source

process and the search will continue.

Upon finding a matching message, the MPI_SOURCE and MPI_TAG fields of the

status object are set, since the message will be received at this point even if an error is

generated. The count is also set to the count read from the matching message slot, since

only that many entries can be received. The data-type is then read from the matching

message slot and compared to the receive data-type according to MPI type-matching

rules (these essentially state that the types must match perfectly unless one type is

MPI_PACKED[1]). If the data-types do not match, the receive call marks the message

SN_RECEIVED in the send buffer and returns.

Once the types are matched, the only remaining check is that the count of

elements in the send buffer is less than or equal to the count to be received. If the count

is greater than the number to be received, the message is marked SN_RECEIVED, but no

data is read and the receiver returns with an error code of MPI_ERR_TRUNCATE.

After the checks are complete, the actual data must be copied into the receive

buffer. Although the system buffer is aligned, it is possible for the receive buffer to be

39

misaligned. For this reason, the copy operation must get the aligned address, convert the

count to bytes, and then perform a different copy routine based on the misalignment of

the receive address. The copies are all the same type as those in MPI_Send, but with the

exception that the number of bytes written at the end must be exact, and extra data cannot

be written. This is not merely a design decision; it is a strict requirement in the MPI

standard[1]. The aligned-copy routine is a straightforward word-to-word copy. The other

copy routines all require that two words from the system send buffer be read and then

shifted, bit-masked, and pasted together to make the correct misaligned data in the

receive buffer. After copying the data, the receive process must mark the message serial

number as SN_RECEIVED in the system send buffer, and can then return successfully.

Now that both MPI_Send and MPI_Recv have been explained, there are several

important concepts and clarifications which must be discussed. These fall into three

categories: performance optimizations used in the code, future performance optimizations

not implemented yet, and unsupported functionality.

As a performance optimization, this algorithm breaks the strict “owner-writes”

rules typical of GPUs by allowing the receiver to write into the serial number array of the

system send buffer. NVIDIA CUDA allows arbitrary writers on global memory at the

cost of not having cached global memory accesses, while ATI still requires owner-writes

global memory access (with the exception of scatter via the “global buffer”) but has

cached global memory accesses[23][5]. The good news is that some newer models (ie

OpenCL[26]) do not have owner-writes restrictions, and there is no problem

implementing the algorithm on a system which does, but the bad news is that it requires

additional space on the receive process. In particular, the receiver would record in its

global space that it had read a message with some envelope and serial number from some

sender, and each sending process would have to check all its targets during sends and at

the next global synchronization to see what messages had been read (Global

synchronization is required for the receiving process to stop indicating it received a

certain message, since this ends the cycle of “process 1 saw that process 2 saw that

process 1 saw that process 2 saw that …” etc.). Since receiving processes would need to

keep records of all messages that had been received until a global synchronization, the

buffer holding the records in global memory could in theory be very large for each

40

process.

The next performance optimizations are both related to the arrangement of the

message data in the system send buffer. All the handles which access the system send

buffer are written in macros, which hides the nastiness of accessing arrays of structures of

special data-types and arrays. More importantly, this allows memory layouts to be

tweaked to enable better coalescing and memory access patterns without major recoding.

Originally, the global message buffer was laid out as an array of process message

structures. Each process message structure was then laid out as an array of individual

message structures and some header information, including the current serial number, the

message count, and the serial number array. The individual message structures, which

were the lowest level, contained the header information for each message and an array of

data which was used to store the message contents.

After seeing that the aggregate communications and one-sided communications

could share the system message buffer for storage space, the process message structures

were re-written so that all the data would be at the process level. The buffers are still

statically-sized and have fixed limits for send and receive operations, but this allowed

aggregate communications hijacking the buffer to store as much data as all the message

buffers in a process could hold, and to store it in a simple manor without jumping

between multiple buffers.

There are other optimizations which could be made. First and foremost, all the

message buffers for all processes should be joined at the top level as a single array in the

system message buffer, as this (combined with an appropriate skew) could potentially

allow send operations to coalesce. The skew is required so that the threads of a half warp

will access consecutive addresses when accessing the same element in their respective

system buffers.

Other potential optimizations could be provided by allowing the user to promise

that only aligned addresses are passed, thereby reducing the computation and memory

accesses needed to perform a copy; or by allowing shared-memory usage for point-to-

point messaging within a thread block, which would drastically reduce the costs of

sending certain messages at the aforementioned expense of using a lot of a scarce local

resource. It should also be noted that, since the MPI implementation does not allow user-

41

defined communicators or data-types, all data-types and communicators could be

eliminated at compile-time. The macros for determining the size of a data-type are

already evaluated at compile-time, but more code could likely be removed.

Finally, there are two capabilities missing in the current MPI_Send and

MPI_Recv implementations: receive from any source (MPI_ANY_SOURCE) and

receive with any tag (MPI_ANY_TAG). The MPI_ANY_TAG support is not implemented

yet simply because the research has focused on optimizations with more potential benefit,

although it can be implemented by merely modifying the envelope-checking routine in

the MPI_Recv code. Support for MPI_ANY_SOURCE has not been implemented

because it implies a search in global memory. Instead of merely searching the specified

source for a matching message, the receiving process would have to search through as

many processes as necessary to find a matching message.

The other supported point-to-point communication interfaces are basically

portions or combinations of the MPI_Send and MPI_Recv functions. MPI_Iprobe

and MPI_Probe are merely non-blocking and blocking envelope-matching routines

from MPI_Recv, which set a status object to the values of what would have been

received if MPI_Recv was called with the same parameters. MPI_Sendrecv, and

MPI_Sendrecv_replace are simply wrappers which call MPI_Send and then

MPI_Recv. Finally, MPI_Get_count is just a routine which reads a system-defined

(as opposed to MPI-standard defined) field in the status object returned by MPI_Recv

and returns the number of elements which were actually received.

5.4: Point-to-Point Communication Performance

This section will show the performance of the MPI implementation compared to

the performance of native CUDA code, with both executing a parallel algorithm which

estimates PI. The code for the basic sequential algorithm is shown in Figure 5.5.

42

Figure 5.5: Algorithm for sequential estimation of PI

main(int argc, char **argv)
{
 register double width, sum;
 register int intervals, i;

 /* get the number of intervals */
 intervals = atoi(argv[1]);
 width = 1.0 / intervals;

 /* do the computation */
 sum = 0;
 for (i=0; i<intervals; ++i) {
 register double x = (i + 0.5) * width;
 sum += 4.0 / (1.0 + x * x);
 }
 sum *= width;

 printf("Estimation of PI is %f\n", sum);

 return(0);
}

Figure 5.5: Algorithm for sequential estimation of PI

The algorithm computes the value of pi by summing the area under x2, and was

used in the Linux Documentation Project Parallel Processing HOWTO[40] (and

originally shown by Quinn[41]) to demonstrate how various programming models differ.

If the intervals are distributed among processes, the algorithm instantly becomes a

parallel computation, with several possible implementations for transferring and

combining the partial sums from each process. This is not a benchmark algorithm which

flatters MPI, since it does not contain enough work to show speedup on most parallel

machines; this is an algorithm which has been shown to be useful for comparing and

contrasting programming environments.

For the point-to-point communication performance tests, the implementations will

use a send and receive mechanism to have all processes aggregate their partial sums on

process 0. Process 0 will then complete the summation and return the result. Note that

this is not a good approach (a reduction would be more appropriate), but the algorithm

provides a basis for comparison between native CUDA with and without the MPI

implementation. Figure 5.6 shows the kernel for the algorithm implemented in CUDA

using MPI, while Figure 5.7 and Figure 5.8 show the kernels for the algorithm

43

implemented in CUDA without MPI.

Figure 5.6: Point-to-point MPI implementation of the test algorithm

/* MPI Implementation using point-to-point communication */
__global__ void
PI__point_to_point(register volatile int *interval_p,

register volatile float *sum_p,
register volatile int *error_p)

{
register float width, sum;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i;
int nproc, iproc, ib;
MPI_Status status;

if (MPI_Init((void *) 0) != MPI_SUCCESS) {
error_p[0] = 1; return;

}
MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

 intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

if (iproc != 0) {
MPI_Send(&(lsum[ib]), 1, MPI_FLOAT, 0,

0, MPI_COMM_WORLD);
}
if(iproc == 0) {

sum = lsum[ib];
for (i=1; i<nproc; ++i) {

MPI_Recv(&(lsum[ib]), 1, MPI_FLOAT, i,
 0, MPI_COMM_WORLD, &status);

sum += lsum[ib];
}
sum_p[0] = sum;

}

MPI_Finalize(); error_p[iproc] = 0;
return;

}

Figure 5.6: Point-to-point MPI implementation of the test algorithm

44

Figure 5.7: Point-to-point CUDA-only implementation of the test algorithm, part 1

/* Native CUDA using point-to-point communication */
/* Kernel 1 of 2 */
__global__ void
PI__point_to_point_1(register volatile int *interval_p,
 register volatile float *lsum_p)
{

register float width;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i;
int nproc, iproc, ib;

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

 intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

if (iproc != 0)
{

/* Send the partial sum to processor 0 */
lsum_p[iproc] = lsum[ib];

}

return;
}

Figure 5.7: Point-to-point CUDA-only implementation of the test
algorithm, part 1

45

Figure 5.8: Point-to-point CUDA-only implementation of the test algorithm, part 2

/* Native CUDA using point-to-point communication */
/* Kernel 2 of 2 */
__global__ void
PI__point_to_point_2(register volatile float *sum_p,

register volatile int *error_p,
register volatile float *lsum_p)

{
register int i;
int iproc,nproc, ib;
__shared__ float sum;

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;
ib = iproc % NUM_THREADS_PER_BLOCK;

if(iproc == 0) {
sum = lsum_p[iproc];
for (i=1; i<nproc; ++i) {

sum += lsum_p[i];
}
sum_p[0] = sum;

}

error_p[iproc] = 0;
return;

}

Figure 5.8: Point-to-point CUDA-only implementation of the test
algorithm, part 2

There is little to explain regarding the above codes. The MPI implementation

uses standard MPI functions to initialize, get the process rank and number of processes,

have every process except process 0 send to process 0, and then have process 0 receive

all the partial sums. The computations are nearly identical to those in the original

algorithm, with the exception that they are performed in a shared-memory block. The

native CUDA code uses CUDA built-ins to identify the process and number of processes,

and then uses an intermediate memory location to pass out the partial sums to global

memory for the next kernel invocation. Again, the computation is identical to the original

but performed in shared memory. The second CUDA kernel recalculates the process

parameters and then has process 0 read the global memory, summing as it goes. When

finished, process 0 records the sum in global memory and all processes return.

To test the execution-time performance of these kernels, each was executed three

times with the number of intervals per process varied from 2 to 128 in steps of 2. The

46

resulting average execution times are shown in Figure 5.9.

Figure 5.9: Execution time of both implementations of the test algorithm

Figure 5.9: Execution time of both implementations of the test algorithm

The above chart shows the execution time for the MPI implementation and the

native CUDA implementation. The average execution time of the MPI kernel is 21.62ms,

while the average execution time of the native CUDA kernel is 1.74ms. The difference in

execution time between 128 intervals per process and 2 intervals for process is 0.014ms

for the MPI implementation and 0.079ms for the native CUDA implementation.

The performance data above indicates that there is roughly a 12.5x execution time

performance penalty for using the MPI kernel over the native kernels with a point-to-

point communication implementation of the PI-estimation algorithm. Examining the

execution times can easily reveal the reason. Note that the execution time does not

change noticeably when the number of intervals change. This suggests that computation

does not factor into the execution time, meaning that memory latency must be the

dominating portion of it. While the native CUDA routine only performs one global

memory write per process and then a sequential set of as many global reads as there are

processes to move the partial sums, it does so by virtue of having the barrier-

47

0 20 40 60 80 100 120

0.00000

5.00000

10.00000

15.00000

20.00000

25.00000

Point to Point Execution Time

MPI Implementation vs Native CUDA

MPI
Native

Interv als per thread

ti
m

e
 [

m
s

]

synchronization mechanism provided by the first kernel stopping and the second starting.

The MPI kernel, on the other hand, does not use any barrier synchronization. Instead,

process 0 searches for and fetches messages in global memory. Each send operation,

although happening in parallel with others, involves a series of global memory reads and

writes for bookkeeping, finding a message slot, and writing the header information, in

addition to writing the actual data. Since only one data element is written per process,

there is no amortizing of the latencies for the extra reads and writes over multiple data

elements. Similarly, the receive operations involve envelope matching and header

copying in addition to the actual message copying.

While the message-passing implementation has worse performance in terms of

execution time, it certainly has better performance in terms of simplicity and a

standardized, familiar interface. The message-passing implementation also hides the

shared-memory issues, transparently allowing messages to pass from shared memory in

one thread block to shared memory in another thread block.

5.5: The Collective Communication Interfaces

While point-to-point communications involve communication between individual

processes, collective communications involve communication within groups of processes.

This section will focus on the barrier synchronization and reduction implementations by

describing the general collective communication model, showing pseudo-code for the

operations, and explaining each operation thoroughly. Potential performance

improvements will also be discussed.

The general model for collective communication inside the GPU is a two-step

process. First, depending on the operation, one or all processes (the sending processes)

will perform some local operations to accomplish half the operation. In a broadcast

operation, for instance, the root process would participate by copying the broadcast data

to a buffer in global memory, thereby making it accessible to all other processes. In a

gather operation, this would consist of all processes writing their contributions to a global

space accessible to root. After the first phase of the collective is completed, a barrier

synchronization is required.

The second step is basically the same as the first, except it involves the receiving

group of processes. In this step, the processes will complete the operation on the now-

48

visible data from the first group of processes. In a broadcast operation, every process

reads the broadcast data at once. In a gather operation, the root process reads the data

from the global memory into its result buffer. After this part of the collective, another

barrier synchronization is required.

There are some aggregate operations which do not conform to the two-step

general model presented above. Personalized all-to-all communications, for example,

require O(n) passes through the above steps in a GPU. Barrier synchronization also does

not require two phases, as it is more basic than gather or scatter operations. To better

understand the collective communications, MPI_Barrier and MPI_Reduce will

each be examined in detail below.

The prototype for MPI_Barrier is shown in Figure 5.10.

Figure 5.10: MPI_Barrier prototype

/* Barrier synchronization */
__device__ int
MPI_Barrier
(

MPI_Comm comm /* IN */
);

Figure 5.10: MPI_Barrier prototype

The MPI_Barrier function performs a barrier synchronization of all the

processes in the communicator comm. The pseudo-code for the entire function is shown

in Figure 5.11 (the actual code implementing the function is shown in Appendix A).

49

Figure 5.11: Pseudo-code for MPI_Barrier

/* Barrier synchronization */
/* (Uses a single-writer, multiple-reader mechanism in
 * global memory) */
__device__ int MPI_Barrier(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
err_code = check_args(...);

/* Sync here to ensure that everybody in this
 * block is at the barrier */
__syncthreads();

/* The first thread in the block represents the
 * whole block in the synchronization */
if (thread_id_in_block == 0)
{

/* Increment this block's barrier number */
bar_nums[my_block]++;

/* Now, starting at the next block, scan the
 * barrier numbers until either all
 * other blocks have arrived or one
 * block has passed */
do
{

done = scan_numbers(bar_nums, my_block);
} while (!done);

/* The barrier is completed. Increment again
 * to inform anybody still scanning */
bar_nums[my_block]++;

}

/* All threads wait here for the first thread */
__syncthreads();

/* Return */
return(err_code);

}

Figure 5.11: Pseudo-code for MPI_Barrier

The barrier function is essentially a single-writer, multiple-reader mechanism (as

mentioned before, the algorithm was first published by Dietz[37], and later adapted to

NVIDIA CUDA inside this research group). First, the necessary temporary variables are

declared and initialized and the input arguments are checked for errors. In the case of

MPI_Barrier, the only potential error is using an unsupported communicator (the only

50

supported communicator is MPI_COMM_WORLD). Note that an erroneous function call

does not return until it has participated in a barrier, because doing so results in a system

hang while the other synchronizing processes wait for it.

Once error checking is complete, the function first obtains a pointer to the array of

barrier numbers in global memory (this array is normally initialized to 0 by either

MPI_Init or the host before a kernel invocation). Next, a __syncthreads()

command is issued to synchronize the threads in each block, ensuring that all processes

are at the barrier. Once this synchronization completes, only the first thread in each block

participates in the actual barrier synchronization.

The thread first allocates a register to store the barrier numbers as they are read, a

register to store the current barrier number for this block, and a read barrier numbers and

a register to hold the starting location for this block's scan (which will be the next block).

Once these registers are initialized, the thread increments its barrier number in the global

array to indicate that it has arrived at the barrier. It then begins scanning the next block's

barrier entry in global memory, waiting for it to be greater than or equal to the scanning

thread's current barrier number. If all blocks begin by scanning at process 0 instead, the

performance is only slightly degraded. This likely indicates that high latency, rather than

a lack of bandwidth, limits the speed of the algorithm.

Once the barrier number being scanned increases, the scanning thread first

increments its scan position, looping if necessary, and then checks to see if the barrier is

finished. The barrier is finished when either the thread is scanning its own entry in the

barrier number array, meaning it made the whole loop through the barrier number entries,

or the thread has scanned an entry which had a barrier number greater than the current

value for the scanning thread, meaning that the thread being scanned knows that every

other process has finished the barrier and is continuing. In either case, the thread exits

the loop and increments its own barrier number again to indicate that the barrier

synchronization is finished to any processes which are still scanning.

Finally, all processes enter another __syncthreads(), which ensures that no

process can schedule code while process 0 is still participating in the barrier. Once the

__syncthreads() command completes, the processes return the error code, which

was MPI_SUCCESS unless the communicator provided was invalid, in which case it was

51

MPI_ERR_COMM.

Before the prototype for MPI_Reduce is shown, some explanation is needed.

Because of the length of reduction functions, it would be inconvenient to implement each

reduction function as a copy with only a few symbols and/or data-types changed. For this

reason, the research implements the reduction function as a macro which is called

repeatedly to create the various reductions. The macro to declare the prototype, as well

as an invocation of it, are shown in Figure 5.12. To simplify discussion, this thesis will

use the example of MPI_SUM reduction of MPI_FLOAT data-types. The prototype for

this particular reduction function is shown in Figure 5.13.

Figure 5.12: MPI_Reduce prototype macro

/* This macro creates a reduction function prototype. */
#define CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(op,dtype) \
__device__ int \
MPI_Reduce_##dtype##_##op \
(\

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

);

/* Declaration of a MPI_SUM reduction of MPI_FLOAT types */
CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,MPI_FLOAT)

Figure 5.12: MPI_Reduce prototype macro

Figure 5.13: MPI_Reduce prototype

/* The created reduction function prototype. */
__device__ int
MPI_Reduce_MPI_FLOAT_MPI_SUM
(

void* sendbuf, /* IN */
void* recvbuf, /* OUT */
int count, /* IN */
int root, /* IN */
MPI_Comm comm /* IN */

);

Figure 5.13: MPI_Reduce prototype

The MPI_Reduce function performs a reduction operation specified by op and

datatype on count elements of each process. The elements are located in sendbuf,

52

and the reduction operation involves all of the processes in the communicator comm.

The process specified in root receives the final reduction result in recvbuf. The

macros which cause the correct function variant to be invoked are shown in Figure 5.14,

while the pseudo-code for the entire MPI_FLOAT , MPI_SUM variant is shown in Figure

5.15 (the actual code implementing the function is shown in Appendix A).

Figure 5.14: MPI_Reduce translation macro

/* This macro changes the MPI_Reduce() function call to a
 * particular (data-type,op) variant at compile-time. */
#define MPI_Reduce(sbuf,rbuf,count,dtype,op,root,comm) \
MPI_Reduce_##dtype##_##op(sbuf,rbuf,count,root,comm)

Figure 5.14: MPI_Reduce translation macro

53

Figure 5.15: Pseudo-code for MPI_Reduce

/* Reduction (MPI_SUM for MPI_FLOAT data-types)*/
__device__ int MPI_Reduce_MPI_FLOAT_MPI_SUM(...)
{

/* Declare any necessary variables */
(...)

/* Check arguments for errors */
err_code = check_args(...);

/* For each element, have all processes read that
 * element into shared mem from their sendbuf
 * and reduce the values in shared mem, then have
 * the first process in each block write the
 * value out into global memory. */
for(i=0 ; i<count ; ++i) {

reduce_data_tree();
if(my_id==0) global[my_block] = my_data;

}

/* Use a barrier synchronization to ensure that all
 * values are written in global memory */
MPI_Barrier(...);

/* Do a linear reduction using one process per
 * element, since there are not many blocks. */
if(my_id < count) {

fetch_global_data(...);
reduce_data_linear();

}

/* Synchronize root and read the data */
__syncthreads();
if(root == MPI_ROOT) {

copy_data(msg_slot,buf,data-type,count);
}

/* Now, synchronize again to let root finish */
MPI_Barrier(...);

/* Return */
return(err_code); \

}

Figure 5.15: Pseudo-code for MPI_Reduce

The reduction function may be the most complicated function in the entire

implementation, so this section walks through it step by step. Reduction also has some

special requirements when compared to other functions in the implementation, and these

are mentioned as they arise. It is important to note that, like all aggregate

communications, reduction hijacks the system message buffer, so there can be no pending

54

point-to-point messages waiting or the results of such communications are undefined

(usually corrupted message data). Also, MPI_Reduce uses shared memory to hold one

reduction element for each process, so the function behaves in an undefined fashion if the

shared memory is not available (behavior could include failure of the kernel invocation or

corruption of existing data in local shared memory).

First, the necessary temporary variables are declared and initialized and the input

arguments are checked for errors. In the case of MPI_Reduce, errors may include a

count which is negative, 0, or greater than the max amount of data which a process'

message buffer can hold (MAX_DATA_PER_MESSAGE *

MAX_BUFFERED_MESSAGES), a communicator which is unsupported, or a root process

which is negative or greater than the total number of processes and not MPI_ROOT.

Because count is structured as a logarithmic reduction in shared memory, there is an

additional restriction that the input buffer on each process be aligned on a word boundary.

This is needed to use the smallest amount of shared-memory possible and simplify the

reduction code (although it could be removed as a future optimization, as discussed

below). Note that, like MPI_Barrier, errors do not cause the function to return; they

cause it to participate with an identity entry. In the case above, with a MPI_FLOAT data-

type and MPI_SUM operation, processes with errors will contribute the value 0.0f.

Once the error checking is complete, the first reduction begins. With aggregate

operations which are focused solely on communicating data, such as MPI_Bcast or

MPI_Gather, the next step would be to copy the data to global memory. In

MPI_Reduce, this incurs a large performance drop, and the better solution is to copy the

values directly to shared memory in each block. There is a large issue with doing so: a

lack of local shared memory. Because there is so little shared memory, copying all the

reduction vectors from each processor is not feasible. It is feasible to reduce one element

from each vector at a time, though, and this code does exactly that. If the input vectors

are allowed to be misaligned, though, the storage cost instantly triples. In addition to one

array with the length of the number of processes (to hold the actual reduction data), two

more identically-sized arrays are required to hold the elements used to paste together the

data in an aligned way. To deal with the above costs, the function requires that input data

55

be aligned on word boundaries.

The structure of the reduction is straight-forward. For each element in the

reduction vectors, the processes load their individual elements at that index into the

shared memory they control. Then, after a __syncthreads(), a simple reduction is

applied which halves the number of active processes, keeping the lower half active (this

prevents divergent warps), until only one process (process 0 in the block) is active.

Process 0 then writes out the reduced value into its message buffer as an element in

message zero (since the messages are linked into a single pool, all elements can be

written by merely incrementing the position, rather than requiring distribution between

message buffers). This process repeats until all elements in the vector have been reduced

and written to global memory.

After the block reductions are completed, a barrier synchronization is used to

allow all blocks to write their reduced values. Once this barrier completes, every block

can then fetch the values (the overlapping reads turn into broadcasts) and reduce to a final

value. This avoids having to identify which block has the root process.

The second reduction is a linear reduction which reduces the vectors of elements,

and only processes which have an ID inside the block less than the number of elements

can participate. In this reduction, each process first fetches a value from the global

message buffer of process 0, and then sums that element with the corresponding elements

from the message buffer of the processes at the beginning of each block. The result is a

vector in shared memory which contains the final reduction values.

At this point, a __syncthreads() is issued to ensure that the root process can

start reading the shared-memory values, and then an aligned-to-misaligned copy routine

(identical to that in MPI_Recv) is used to copy the vector from shared memory over to

the root process' receive buffer. Only the root process is enabled for the copy routine, so

all processes enter a barrier synchronization after the routine to ensure that the root

process has finished before any other processes return. After the barrier synchronization,

each process can return its error code, which was MPI_SUCCESS unless an error

occurred and changed the value.

Now that both MPI_Barrier and MPI_Reduce have been explained, there are

several important concepts and clarifications which must be discussed. These fall into

56

three categories: performance optimizations used in the code, future performance

optimizations not implemented yet, and unsupported functionality.

Beyond the optimizations discussed in the description of MPI_Reduce, the most

important is that the code does not require a kernel stop and restart, which simplifies it

considerably. There is no way to jump to a specific instruction when starting a kernel, so

stopping and restarting involves completely restructuring code. Chapter 5.8 will compare

the two approaches in more detail.

The other important optimization used in MPI_Reduce is the compile-time

selection of code. This is a benefit in terms of execution speed, because it eliminates

conditionals and allows the compiler to fold out many constants. It is also a benefit in

terms of code size. There is limited code space (~2 million ptx instructions) for any

kernel[23]. If the MPI implementation will be used for more complex algorithms, then

code size may become an issue. Therefore, compile-time selection of code is an

optimization which can and should be used in other functions.

Beyond MPI_Reduce and MPI_Barrier, there is one other optimization

worth mentioning, and that is the implementation of sequential writes as parallel reads

where possible. In MPI_Bcast, the broadcast is performed by the root process writing

to its message buffer, and then all processes reading from the message buffer in parallel.

This optimization, however, is limited by the inability to read local shared memory

remotely. MPI_Scatter, for instance, only has one implementation. It makes no

difference whether the root process writes the scatter data into its own global message

buffer or into the global message buffers of other processes, since the number of writes

will still be the same, and the non-root processes cannot read the root shared memory.

MPI_Gather similarly cannot be implemented by having all processes write to the root

process' receive buffer in parallel, since the receive buffer is likely located in shared

memory. Instead, the algorithm must be implemented with sequential reads.

There are some potential performance improvements which could still be

implemented in the collective communication functions. Obviously, allowing the user to

specify aligned inputs can save code space and branch overhead. There are also

improved reduction schemes for MPI_Reduce, and the second reduction can likely be

converted to a tree if a reasonable method of storing the final reduced vector can be

57

obtained (without storing the vector, writing to the root process' receive buffer, which is

an aligned-to-misaligned write, would be required during each iteration). The reductions

in MPI_Reduce can be rewritten to take non-power-of-two inputs and to reduce more

inputs than processes in a block, and both of these would also be helpful optimizations.

Also, any collective could benefit by using shared-memory to have the root process send

or receive from processes in the same block.

The only issue with some of the above optimizations involves MPI function calls.

Imagine, for example, that an improved reduction scheme is used which starts by

distributing the elements among the processes so that the first warp reduces the first

element, the second reduces the second element, and so on. This allows the first several

reduction passes to fully utilize the processors by adding multiple elements in each

thread. The issue is locating the elements in other processes. In the MPI_Reduce

function call, a process specifies its data using a pointer. There is no requirement that the

pointers be to consecutive addresses in memory, so simple arithmetic will not suffice for

a process to find a data element which it is not passing into the reduction. Instead,

something like a list of pointers would likely be required, which implies additional

storage. Moreover, the nvcc compiler can easily lose track of whether a pointer is

addressing global or shared memory, and its action upon doing so is to require that the

pointer address global memory only. This means that some manipulation will be required

to allow any process to read shared memory to which another process passed a pointer.

There are two capabilities missing in the current collective communications:

MPI_IN_PLACE support and MPI_Reduce support for data-types which are not word-

length. MPI_IN_PLACE support is left as an optimization for future research, since it

appears to have less potential benefit than other work. MPI_Reduce support for data-

types which are not word-length is important, and the support is already effectively there

for some operations on shorter data-types (such as the bitwise AND MPI_BAND and the

bitwise OR MPI_BOR) using SWAR[42] techniques in the 4-byte code. The support for

other data-types, however, has not yet been implemented. This includes support for

MPI_DOUBLE, as mentioned in chapter 5.2, although the future work will provide it via

pairs of single-precision floating-point values.

58

The other supported collective communication interfaces are mostly data-transfer

routines utilizing the aligned-to-misaligned and misaligned-to-aligned copy routines

along with MPI_Barrier. Of the 8 interfaces implemented, the broadcast operation

MPI_Bcast, the gather operation MPI_Gather, and the scatter operation

MPI_Scatter fall into this category. MPI_Allgather is an extension of

MPI_Gather which returns the results to all processes, and MPI_Alltoall is merely

a sequence of MPI_Gather calls, one executed from each process. Finally,

MPI_Allreduce. Is merely an extension of MPI_Reduce in which all processes

perform the final copy to the receive buffer.

5.6: Collective Communication Performance

This section will again show the performance of the MPI implementation

compared to the performance of native CUDA code with both executing a parallel

algorithm which estimates PI. This time, however, the algorithm will be implemented as

a collective reduction operation. The code for the basic sequential algorithm is shown

again in Figure 5.16 for reference.

Figure 5.16: Algorithm for sequential estimation of PI

main(int argc, char **argv)
{
 register double width, sum;
 register int intervals, i;

 /* get the number of intervals */
 intervals = atoi(argv[1]);
 width = 1.0 / intervals;

 /* do the computation */
 sum = 0;
 for (i=0; i<intervals; ++i) {
 register double x = (i + 0.5) * width;
 sum += 4.0 / (1.0 + x * x);
 }
 sum *= width;

 printf("Estimation of PI is %f\n", sum);

 return(0);
}

Figure 5.16: Algorithm for sequential estimation of PI

59

As mentioned before, the algorithm computes the value of pi by summing the area

under x2, and was used in the Linux Documentation Project Parallel Processing

HOWTO[40] (and originally shown by Quinn[41]) to demonstrate how various

programming models differ. If the intervals are distributed among processes, the

algorithm instantly becomes a parallel computation, with several possible

implementations for transferring and combining the partial sums from each process. This

is not a benchmark algorithm which flatters MPI, since it does not contain enough work

to show speedup on most parallel machines; this is an algorithm which has been shown to

be useful for comparing and contrasting programming environments.

For the collective communication performance tests, the implementations will use

a reduction mechanism to have all processes reduce the partial sums in their thread block

locally, and then have the processes pass their reduced partial sums to process 0. Process

0 will then complete the summation and return the result. Figure 5.17 shows the kernel

for the algorithm implemented in CUDA with MPI, while Figure 5.18 and Figure 5.19

show the kernels for the algorithm implemented in CUDA without MPI.

60

Figure 5.17: Collective MPI implementation of the test algorithm

/* MPI Implementation using collective communication */
__global__ void
PI__collective(register volatile int *interval_p,

register volatile float *sum_p,
register volatile int *error_p)

{
register float width;
__shared__ float sum;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i;
int nproc, iproc, ib;
register int root = 0;

/* Initialize MPI */
if (MPI_Init((void *) 0) != MPI_SUCCESS) {

error_p[0] = 1; return;
}

MPI_Comm_size(MPI_COMM_WORLD, &nproc);
MPI_Comm_rank(MPI_COMM_WORLD, &iproc);
if(iproc == 0) { root = MPI_ROOT; }

 intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width;

MPI_Reduce((void *) &(lsum[ib]), (void *) &(sum), 1,
MPI_FLOAT, MPI_SUM, root, MPI_COMM_WORLD);

if(iproc == 0) { sum_p[0] = sum; }

MPI_Finalize(); error_p[iproc] = 0;
return;

}

Figure 5.17: Collective MPI implementation of the test algorithm

61

Figure 5.18: Collective CUDA-only implementation of the test algorithm, part 1

/* Native CUDA using collective communication */
/* Kernel 1 of 2 */
__global__ void
PI__collective_1(register volatile int *interval_p,

register volatile float *sum_p)
{

register float width;
__shared__ float lsum[NUM_THREADS_PER_BLOCK];
register int intervals, i;
int nproc, iproc, ib;
__shared__ float sdata[NUM_THREADS_PER_BLOCK];

nproc = blockDim.x * gridDim.x;
iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

 intervals = *interval_p; width = 1.0 / intervals;
ib = iproc % NUM_THREADS_PER_BLOCK; lsum[ib] = 0;
for (i=iproc; i<intervals; i+=nproc) {

register float x = (i + 0.5) * width;
lsum[ib] += 4.0 / (1.0 + x * x);

}
lsum[ib] *= width; __syncthreads();

sdata[ib] = lsum[ib]; __syncthreads();

if (ib < 64) { sdata[ib] += sdata[ib + 64]; }
__syncthreads();
if (ib < 32) { sdata[ib] += sdata[ib + 32]; }
if (ib < 16) { sdata[ib] += sdata[ib + 16]; }
if (ib < 8) { sdata[ib] += sdata[ib + 8]; }
if (ib < 4) { sdata[ib] += sdata[ib + 4]; }
if (ib < 2) { sdata[ib] += sdata[ib + 2]; }
if (ib == 0) { sdata[ib] += sdata[ib + 1]; }

if (ib == 0) { sum_p[blockIdx.x] = sdata[0]; }
return;

}

Figure 5.18: Collective CUDA-only implementation of the test algorithm,
part 1

62

Figure 5.19: Collective CUDA-only implementation of the test algorithm, part 2

/* Native CUDA using point-to-point communication */
/* Kernel 2 of 2 */
PI__collective_2(register volatile float *sum_p,

register volatile int *error_p)
{

int iproc, ib;
__shared__ float sdata[NUM_THREADS_PER_BLOCK];

iproc = (blockIdx.x * blockDim.x) + threadIdx.x;

ib = iproc % NUM_THREADS_PER_BLOCK;

if (ib < 32) { sdata[ib] = sum_p[ib]; }

if (ib < 16) { sdata[ib] += sdata[ib + 16]; }
if (ib < 8) { sdata[ib] += sdata[ib + 8]; }
if (ib < 4) { sdata[ib] += sdata[ib + 4]; }
if (ib < 2) { sdata[ib] += sdata[ib + 2]; }
if (ib == 0) { sdata[ib] += sdata[ib + 1]; }

if (iproc == 0) { sum_p[0] = sdata[0]; }

error_p[iproc] = 0;
return;

}

Figure 5.19: Collective CUDA-only implementation of the test algorithm,
part 2

The above codes require a little more explanation. The MPI implementation uses

standard MPI functions to initialize, get the process rank and number of processes, and

have every process perform a reduction operation, specifying process 0 as the root.

Process 0 returns the final estimate to the host, and the computations are again nearly

identical to those in the original algorithm, with the exception that they are performed in

a shared-memory block. The native CUDA code uses CUDA built-ins to identify the

process and number of processes, and performs the same computation as the MPI

implementation. It then allocates a shared-memory block and performs an unrolled

reduction operation in the shared-memory block, synchronizing only when necessary.

Once the partial reduction is complete, the code uses a global memory location to pass

out the partial sums for the next kernel invocation. The second CUDA kernel recalculates

the process parameters and then has the low 32 processes in each block read the global

memory into shared memory. Once read, the processes perform a tree reduction, just like

63

the first CUDA code, until process 0 writes the final solution out to global memory and

all processes return.

To test the execution-time performance of these kernels, each was executed three

times with the number of intervals per process varied from 2 to 128 in steps of 2. The

resulting average execution times are shown in Figure 5.20.

Figure 5.20: Execution time of both implementations of the test algorithm

Figure 5.20: Execution time of both implementations of the test algorithm

The above chart shows the execution time for the MPI implementation and the

native CUDA implementation. The average execution time of the MPI kernel is 0.231ms,

while the average execution time of the native CUDA kernel is 0.121ms. The difference

in execution time between 128 intervals per process and 2 intervals per process is

0.075ms for the MPI implementation and 0.076ms for the native CUDA implementation.

The performance data above indicates that there is roughly a 1.9x execution time

performance penalty for using the MPI kernel over the native kernels with a collective

communication implementation of the PI-estimation algorithm. It should first be noted

that the increase in execution time from 2 intervals to 8 intervals per process, for both the

MPI implementation and the native CUDA implementation, is nearly identical to the

64

0 20 40 60 80 100 120

0.00000

0.05000

0.10000

0.15000

0.20000

0.25000

0.30000

Collective Execution Time

MPI Implementation vs Native CUDA

MPI
Native

Interv als per thread

ti
m

e
 [

m
s

]

increase in execution time of the native CUDA implementation performing point-to-point

communication (0.079ms). This indicates that this is roughly the time required for the

computation (the MPI point-to-point implementation hid this execution time behind

global memory latency). This means that, for the native CUDA implementation, about

0.087ms is spent in communication. For the MPI implementation, about 0.19ms is spent

in communication.

There are two reasons for the difference. The first, and most obvious reason is

that the MPI implementation is not as efficient as the native CUDA implementation. On

the second pass, for instance, the MPI implementation performs a linear reduction

compared to the CUDA implementation's tree reduction. The MPI implementation also

uses an aligned-to-misaligned copy routine to write its final value to the receive buffer in

the root process. The second difference, which is not obvious at all, is the overhead in

calling MPI_Init. The initialization routine must prepare the MPI system in its

entirety, and this includes initializing all system data structures, whether used in the

program or not. In particular, the initialization routine in the algorithm above initialized

the RMA structures for one-sided communication and the message structures for point-to-

point communication. The execution time performance gain observed by disabling these

initializations is approximately 0.07ms. If this overhead could be removed by having the

host initialize the structures, then the average time of the MPI implementation would be

approximately 0.16ms.

In this case, the message-passing implementation is only slightly slower than the

native CUDA implementation, but again provides a well-established and accepted

interface. There is also a large performance benefit in terms of simpler, more-portable

code, and the shared-memory issues are once again hidden nicely behind the MPI calls.

5.7: Other Implemented Interfaces

There are a handful of other interfaces which are implemented. These are either

utility functions or other functions which can provide improved performance, and both

these categories are described below.

The utility functions include the communication context management functions

and the environmental management and inquiry functions. The 2 communication context

65

management interfaces implemented are MPI_Comm_size and MPI_Comm_rank, and

the 3 environmental management and inquiry interfaces implemented are

MPI_Get_version, MPI_Init, and MPI_Finalize.

MPI_Comm_size and MPI_Comm_rank are the process identification

functions, and work on built-in CUDA variables. They have little overhead.

MPI_Get_version also works on simple built-ins and has little overhead.

MPI_Finalize is normally expensive because it implies a barrier synchronization, but

it relies on the kernel stop as a synchronization mechanism in the implementation.

MPI_Init, as discussed above, is not low-overhead due to its initialization of global

data structures and requirement of a barrier synchronization. This overhead may be

removable with more research.

There are 8 other functions are implemented because they had the potential to

improve performance. These include 5 one-sided communication interfaces

(MPI_Win_create, MPI_Win_free, MPI_Put, MPI_Get, MPI_Win_fence),

and 3 data-type management interfaces (MPI_Pack, MPI_Unpack,

MPI_Pack_size). The MPI_Pack and MPI_Unpack data-type management

functions focus on packing data elements into buffers, and essentially perform

misaligned-to-misaligned copy routines. MPI_Pack_size quickly calculates how

much space a given call to MPI_Pack would require. The one-sided communication

interfaces were originally interesting because it seemed that they could possibly help in

hiding the strange semantics of the memory systems in the GPU. MPI_Put and

MPI_Get, for example, allow a process to write to another processes memory space, and

this could be very useful. The issue, though, is the shared-memory restriction. One-sided

communication calls are only useful for processes in the same thread block with access to

the same local shared memory, and this ruins most of the potential utility of these

functions. They can, however, still be used to hide global-memory writes if needed, and

once a window is created using MPI_Win_create, the accesses to the window are

less-expensive than a corresponding send and receive simply because no handshaking or

data-buffering is required in global memory.

66

5.8: Costs and Benefits of the Message-Passing Model

As clearly illustrated in the previous sections, the message-passing

implementation has both costs and benefits. This section is not concerned with recapping

those benefits, but rather intends to clarify and expand the costs and benefits beyond

collective communications or point-to-point communications only.

The primary claim of this thesis is that the message-passing model can be

conceptually cleaner by hiding, rather than dealing with, the quirks in underlying shared-

memory models. The message-passing environment provides shorter code by hiding the

piles of code needed to accomplish most tasks behind a clean, well-defined, and well-

specified interface. The environment also results in fewer user-written operations, since

many operations are provided by the MPI specification. The message-passing

environment hides many GPU-dependent features such as owner-writes rules behind its

standard interface, and also hides the global-memory semantics issues mentioned earlier.

Finally, the message-passing implementation can result in better performance

transparency, since the interfaces specified by MPI can be profiled cleanly and separately

on any given GPU. Given the above factors, we suggest that the message-passing model

is a significantly cleaner interface.

The message-passing model also has some disadvantages on the GPU.

Virtualization is constrained by the MPI implementation because the underlying

environment can hang (the lack of coherence issue again) if it is not. The MPI

implementation also results in a larger code size, and current GPUs have a fixed limit for

the number of instructions in a kernel. This is especially complicated by the fact that

many current GPUs in-line functions, rather than calling them, which results in

duplicated code if the same function is invoked multiple times. Finally, implementing a

message-passing model on modern GPU hardware is not trivial, but performance suffers

only slightly with careful choice of data structures and algorithms.

Given the trade-offs involved, we suggest that the prototype implementation of

MPI discussed in this thesis can and does provide a conceptually cleaner interface for

high-performance computing within a GPU.

67

Chapter 6: Conclusions and Future Work

In conclusion, this thesis has demonstrated that the message-passing programming

model can be conceptually cleaner than the data-parallel model for programming GPUs.

This provides a performance benefit by hiding any oddities with current shared-memory

environments and also abstracting away GPU-specific features, while providing an

interface which is well-established and well-understood. This thesis has also

demonstrated that the virtualization constraint required by MPI within the GPU is

harmless and compatible with any virtualization which is already optimal in terms of a

strong interaction model and nearly-optimal per-block execution time.

The future work for this research will focus on first optimizing and thoroughly

testing the existing implementation. This will involve profiling the individual parts

carefully to determine which functions should be revisited. Also, many of the

optimizations mentioned in the MPI implementation can clearly be applied and tested to

improve the implementation. Finally, this work must be expanded onto other GPUs to

determine its broader applicability, and also to determine what virtualization points will

yield optimal behavior on different GPU systems.

68

Appendix A: CUDA Code for the Functions

/*************** MPI_Send ********************/

/* Send, standard-mode */
__device__ int MPI_Send (

void* buf, /* IN */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int dest, /* IN */
int tag, /* IN */
MPI_Comm comm /* IN */

)
{

/* Declare any necessary variables */
register int msg_slot = 0;
register int msg_count = 0;
register int i = 0;
register int temp_a, temp_b;
register int *buf_aligned;
register char *temp_buf;

/* Check arguments for errors */
/* 1) Invalid dest -> Send to any
 2) Invalid dest -> Send to invalid processor number and

not MPI_PROC_NULL
 3) Invalid tag -> >Upper Bound or <Lower Bound
 4) Invalid comm -> Not a supported communicator
 5) Invalid data-type -> not a supported type
 6) Invalid count -> negative or otherwise invalid
 */

#if ENABLE_ERROR_CHECKING

/* Check for error conditions */
if(((dest < 0) | (dest > (NPROC - 1))) &

(dest != MPI_PROC_NULL)
) return (MPI_ERR_RANK);
if((tag < 0) | (tag > MPI_TAG_UB) | (tag == MPI_ANY_TAG)
) return (MPI_ERR_TAG);
if((comm != MPI_COMM_WORLD)) return (MPI_ERR_COMM);
if((((data-type & MPI_UNSIGNED_TYPE)==1) &

((data-type & MPI_FLOAT_TYPE)== 1)) |
(TYPE_SIZE(data-type) > MPI_LARGEST_TYPE) |
(((TYPE_SIZE(data-type))&((TYPE_SIZE(data-type))-1))!=0)

) return(MPI_ERR_TYPE);
if((count <= 0)|

((count*TYPE_SIZE(data-type))>(MAX_DATA_PER_MESSAGE<<2))
) return (MPI_ERR_COUNT);

#endif

/* Special case for send to MPI_PROC_NULL */
if(dest == MPI_PROC_NULL) return(MPI_SUCCESS);

/* Reset received buffers as available and adjust the total

69

 * buffered message count accordingly */
msg_count = PE_MSG_COUNT(IPROC);
i=0;
while (msg_count > 0)
{

switch(PE_MSG_SERIALS(IPROC,i))
{

case SN_AVAILABLE:
break;

case SN_RECEIVED:
PE_MSG_SERIALS(IPROC,i) = SN_AVAILABLE;
--PE_MSG_COUNT(IPROC);

default:
--msg_count;

}
++i;

}

/* Ensure that buffer space is still available */
if (PE_MSG_COUNT(IPROC) == MAX_BUFFERED_MESSAGES)

return (MPI_ERR_NO_SPACE);

/* Now find the first free buffer (one marked as available) */
msg_slot=-1;
do{ i = PE_MSG_SERIALS(IPROC,++msg_slot);
} while(i != SN_AVAILABLE);

/* Fill the buffer with the message header */
MSG_DST(IPROC, msg_slot) = dest;
MSG_DTYPE(IPROC, msg_slot) = data-type;
MSG_COUNT(IPROC, msg_slot) = count;
MSG_TAG(IPROC, msg_slot) = tag;
MSG_COMM(IPROC, msg_slot) = comm;

/* Copy the data from the send buffer to the the system buffer */
/* (This copy actually copies more data than necessary, but
 * reading extra bytes is not problematic since the GPU
 * allocates memory on word-boundaries anyway) */

/* Get the aligned source address */
/* This is actually just:
 * buf_aligned = ((int *) (((long) buf) & (~3)));
 * but nvcc doesn't realize that this won't change a
 * pointer's domain (global or shared mem), and so it forces
 * the pointer to global mem only. The following code is the
 * same pointer math modified for the nvcc compiler. */
switch(((long) buf) & 3)
{

case 3: temp_buf = ((char *) buf) - 3;
break;

case 2: temp_buf = ((char *) buf) - 2;
break;

case 1: temp_buf = ((char *) buf) - 1;
break;

70

case 0: temp_buf = (char *) buf;
break;

}
buf_aligned = (int *) temp_buf;

/* Convert the count to bytes */
count = count * TYPE_SIZE(data-type);

/* The read is based on the misalignment of the source */
i=0;
switch(((long) buf) & 3) {

case 0: /* The source is aligned on a word boundary */
while(count > 0)
{

MSG_DATA(IPROC,msg_slot,i++) = *(buf_aligned++);
count -= 4;

}
break;

case 1: /* The source is misaligned by one byte */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 8;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x00ffffff) | (temp_b << 24));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;

}
break;

case 2: /* The source is misaligned by two bytes */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 16;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x0000ffff) | (temp_b << 16));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;

}
break;

case 3: /* The source is misaligned by three bytes */
temp_a = *(buf_aligned++);
while (count > 0)
{

temp_a >>= 24;
temp_b = *(buf_aligned++);
temp_a = ((temp_a & 0x000000ff) | (temp_b << 8));
MSG_DATA(IPROC,msg_slot,i++) = temp_a;
temp_a = temp_b;
count -= 4;

71

}
break;

}

/* Finally, increment the current message count */
++PE_MSG_COUNT(IPROC);

/* Serialize the message, which marks it as valid. */
PE_MSG_SERIALS(IPROC, msg_slot) = PE_SERIAL(IPROC);
++PE_SERIAL(IPROC);

/* Return */
return (MPI_SUCCESS);

}

/*************** MPI_Recv ********************/

/* Receive */
__device__ int
MPI_Recv
(

void* buf, /* OUT */
int count, /* IN */
MPI_Datatype data-type, /* IN */
int source, /* IN */
int tag, /* IN */
MPI_Comm comm, /* IN */
MPI_Status *status /* OUT */

)
{

/* Declare any necessary variables */
register int msg_slot = -1;
register int msg_count = 0;
register int i = 0;
register int serial = (1 << 30);
register int temp_a, temp_b;
register int *buf_aligned;
register char *temp_buf;

/* Check for error conditions */
/* 1) Invalid source -> Recv from invalid processor number and

not MPI_PROC_NULL.
 3) Invalid tag -> >UB or <LB and not MPI_ANY_TAG
 4) Invalid comm -> Not a supported communicator
 6) Invalid data-type -> not a supported type
 5) Invalid count -> negative or otherwise invalid
 */

#if ENABLE_ERROR_CHECKING

/* Check arguments for errors */
if(((source < 0) | (source > (NPROC - 1))) &

(source != MPI_PROC_NULL)
) return (MPI_ERR_RANK);
if(((tag < 0) | (tag > MPI_TAG_UB)) & (tag != MPI_ANY_TAG)

72

) return (MPI_ERR_TAG);
if((count <= 0) |

((count*TYPE_SIZE(data-type))>(MAX_DATA_PER_MESSAGE << 2))
) return (MPI_ERR_COUNT);
if((comm != MPI_COMM_WORLD)) return (MPI_ERR_COMM);
if((TYPE_SIZE(data-type) > MPI_LARGEST_TYPE) |

(((TYPE_SIZE(data-type))&((TYPE_SIZE(data-type))-1))!=0) |
(((data-type & MPI_UNSIGNED_TYPE) == 1) &
((data-type & MPI_FLOAT_TYPE) == 1))

) return(MPI_ERR_TYPE);

#endif

/* Special case for recv from MPI_PROC_NULL */
if(source == MPI_PROC_NULL)
{

/* Set the status object and return. */
(*status).MPI_SOURCE = MPI_PROC_NULL;
(*status).MPI_TAG = MPI_ANY_TAG;
(*status).recv_count = 0;
return(MPI_SUCCESS);

}

/* This is a blocking receive operation, so
 * loop until a matching send is found */
msg_slot = -1;
while(msg_slot == -1)
{

msg_count = PE_MSG_COUNT(source);
i = 0;

/* Envelope matching */
while((msg_count > 0) & (i < MAX_BUFFERED_MESSAGES))
{

if(PE_MSG_SERIALS(source, i) != SN_AVAILABLE)
{

--msg_count;

/* If the serial number is valid, check the
 * envelope of this message */
if((PE_MSG_SERIALS(source, i) != SN_RECEIVED) &

(PE_MSG_SERIALS(source, i) < serial) &
(MSG_DST(source, i) == IPROC) &
(MSG_TAG(source, i) == tag) &
(MSG_COMM(source, i) == comm)

) {
msg_slot = i;
serial = PE_MSG_SERIALS(source, i);

}
}

++i;
}

}

/* We now have a matching message slot. */

73

/* The message will now be consumed even if the call generates an
 * error, so the status object is set. */
(*status).MPI_SOURCE = source;
(*status).MPI_TAG = tag;
(*status).recv_count = MSG_COUNT(source,msg_slot);

/* Check that the data-types match */
switch(data-type)
{

case MPI_PACKED:
break;

default:
if(data-type != MSG_DTYPE(source,msg_slot))
{

PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;
return(MPI_ERR_TYPE);

}
break;

}

/* Ensure that recv buffer can hold message */
if(count < MSG_COUNT(source, msg_slot))
{

PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;
return(MPI_ERR_TRUNCATE);

}

/* Copy the data from the system buffer to the the recv buffer */

/* Get the aligned source address */
/* This is actually just:
 * buf_aligned = ((int *) (((long) buf) & (~3)));
 * but nvcc doesn't realize that this won't change a
 * pointer's domain (global or shared mem), and so it forces
 * the pointer to global mem only. The following code is the
 * same pointer math modified for the nvcc compiler. */
switch(((long) buf) & 3)
{

case 3: temp_buf = ((char *) buf) - 3;
break;

case 2: temp_buf = ((char *) buf) - 2;
break;

case 1: temp_buf = ((char *) buf) - 1;
break;

case 0: temp_buf = (char *) buf;
break;

}
buf_aligned = (int *) temp_buf;

/* Convert the count to bytes */
count = MSG_COUNT(source, msg_slot) * TYPE_SIZE(data-type);

74

/* The read is based on the misalignment of the destination */
i=0;
switch(((long) buf) & 3) {

case 0: /* The destination buffer is aligned */
while (count > 3)
{

*(buf_aligned++) = MSG_DATA(source,msg_slot,i++);
count -= 4;

}
temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a >> 16);
case 2: *(((char *) buf_aligned) + 1)=(temp_a >> 8);
case 1: *((char *) buf_aligned)=temp_a;
case 0: ;

}
break;

case 1: /* The destination buffer is misaligned by one byte */
temp_b = MSG_DATA(source,msg_slot,i++);
switch(count)
{

default:
case 3: *(((char *) buf_aligned) + 3)=(temp_b >> 16);

--count;
case 2: *(((char *) buf_aligned) + 2)=(temp_b >> 8);

--count;
case 1: *(((char *) buf_aligned) + 1)=temp_b;

--count;
}

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 24;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 8) | (temp_b & 0x000000ff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a >> 8);
case 2: *(((char *) buf_aligned) + 1)=(temp_a);
case 1: *((char *) buf_aligned)=(temp_b >> 24);
case 0: ;

}
break;

75

case 2: /* The destination buffer is misaligned by 2 bytes */
temp_b = MSG_DATA(source,msg_slot,i++);
switch(count)
{

default:
case 2: *(((char *) buf_aligned) + 3)=(temp_b >> 8);

--count;
case 1: *(((char *) buf_aligned) + 2)=temp_b;

--count;
}

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 16;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 16) | (temp_b & 0x0000ffff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

temp_a = MSG_DATA(source,msg_slot,i);
switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_a);
case 2: *(((char *) buf_aligned) + 1)=(temp_b >> 24);
case 1: *((char *) buf_aligned)=(temp_b >> 16);
case 0: ;

}
break;

case 3: /* The destination buffer is misaligned by 3 bytes */
temp_b = MSG_DATA(source,msg_slot,i++);

/* The count is always at least one */
*(((char *) buf_aligned) + 3) = temp_b;
--count;

++buf_aligned;

/* Now that the destination is aligned, assemble messages */
while(count > 3)
{

temp_b >>= 8;
temp_a = MSG_DATA(source,msg_slot,i++);
temp_b = ((temp_a << 24) | (temp_b & 0x00ffffff));
*(buf_aligned++) = temp_b;
temp_b = temp_a;
count -= 4;

}

switch(count)
{

case 3: *(((char *) buf_aligned) + 2)=(temp_b >> 24);

76

case 2: *(((char *) buf_aligned) + 1)=(temp_b >> 16);
case 1: *((char *) buf_aligned)=(temp_b >> 8);
case 0: ;

}
break;

}

/* Mark the message as received */
PE_MSG_SERIALS(source, msg_slot) = SN_RECEIVED;

/* Return */
return(MPI_SUCCESS);

}

/*************** MPI_Barrier ********************/

/* Barrier synchronization */
/* (Uses a single-writer, multiple-reader mechanism in global memory)*/
__device__ int
MPI_Barrier
(

MPI_Comm comm /* IN */
)
{

/* This is a barrier synchronization using a single-writer,
 * multiple-reader mechanism in global memory. */

/* Declare any necessary variables */
register int err_code = MPI_SUCCESS;

/* Check for error conditions */
/* 1) Invalid comm -> Not a supported communicator
 */

#if ENABLE_ERROR_CHECKING

/* Check arguments for errors */
if((comm != MPI_COMM_WORLD)) err_code = (MPI_ERR_COMM);

#endif

/* Get a pointer (in a register) to the volatile global memory
 * segment where the barrier numbers reside. */
register volatile int *bar_nums = &(system_barrier_buffer[0]);

/* Sync here to be sure that everybody in this block is at the
 * barrier */
__syncthreads();

/* The first thread in the block represents the whole block in
 * the synchronization */
if (IPROC_IN_BLOCK == 0)
{

/* We need the next storage for the next block's
 * barrier number */
register int his_bar_num;

77

/* Get the current barrier number for this block */
register int my_bar_num = bar_nums[BIPROC] + 1;

/* This is the starting location for the scan */
register int i = ((BIPROC + 1) % BNPROC);

/* Increment this block's barrier number */
bar_nums[BIPROC] = my_bar_num;

/* Now, starting at the next block, scan the barrier
 * numbers until either all other blocks have arrived or
 * one block has passed. */
do {

/* Wait for the block to arrive */
do
{

his_bar_num = bar_nums[i];
} while (his_bar_num < my_bar_num);

/* Get the next index, wrapping if needed */
if (++i >= BNPROC) i = 0;

} while ((his_bar_num == my_bar_num) & (i != BIPROC));

/* The barrier is completed. Increment again to inform
 * anybody still scanning */
bar_nums[BIPROC] = my_bar_num + 1;

}

/* All threads wait here for the first thread */
__syncthreads();

/* Return */
return(err_code);

}

/*************** MPI_Reduce ********************/

/* Reduction */
/* This macro will create a reduction function working on 4-byte
 * objects. The count modifier count_mod could be used when working
 * with short or char types SWAR-style */
#define CREATE_FUNCTION_MPI_REDUCE_4_BYTE_OPS(op,

op,op_symbol,dtype,dtype_symbol,ident_val) \
__device__ int \
MPI_Reduce_##dtype##_##op \
(\

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

) \

78

{ \
\

/* Declare any necessary variables */ \
register int temp_a, temp_b, temp_count, i; \
register int err_code = MPI_SUCCESS; \
register int *recvbuf_aligned; \
register char *temp_buf; \
__shared__ dtype_symbol shared_data[NPROC_IN_BLOCK]; \

\
\

/* Check arguments for errors */ \
/* 1) Invalid sendbuf -> null \
 2) Invalid recvbuf -> null \
 3) Invalid count -> negative, zero, or greater than the max \
 4) Invalid comm -> Not a supported communicator \
 */ \

\
if(ENABLE_ERROR_CHECKING) { \

\
/* Check for error conditions */ \
if(((root < 0) | (root > (NPROC - 1))) & (root != MPI_ROOT) & \

(root != MPI_PROC_NULL) \
) err_code = (MPI_ERR_ROOT); \
if(((((long) sendbuf) & 3) != 0)) err_code = (MPI_ERR_BUFFER); \
if((count <= 0) | \

((count*TYPE_SIZE(dtype)) > \
((MAX_DATA_PER_MESSAGE *MAX_BUFFERED_MESSAGES) << 2)) \

) err_code = (MPI_ERR_COUNT); \
if((((count) & (count - 1)) != 0)) err_code = (MPI_ERR_COUNT); \
if((comm != MPI_COMM_WORLD)) err_code = (MPI_ERR_COMM); \

\
} \

\
/* For each element, have all processes read that element into \
 * shared mem from their sendbuf and reduce the values in \
 * shared mem, then have the first process in each block \
 * write the value out into global memory. */ \

\
for(temp_count = 0 ; temp_count < count ; ++temp_count) \
{ \

/* First, copy the data to the the shared memory block */ \
shared_data[IPROC_IN_BLOCK] = ((err_code == MPI_SUCCESS) ? \
((dtype_symbol *) sendbuf)[temp_count] : (ident_val)); \
__syncthreads(); \

\
/* Now, perform the tree reduction in each block */ \
for(i = (NPROC_IN_BLOCK >> 1) ; i > 0 ; i >>= 1) \
{ \

if(IPROC_IN_BLOCK < i) \
{ \

if((op != MPI_MIN) & (op != MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \
shared_data[IPROC_IN_BLOCK] op_symbol \
shared_data[IPROC_IN_BLOCK + i]; \

} \
if((op == MPI_MIN) | (op == MPI_MAX)) \

79

{ \
shared_data[IPROC_IN_BLOCK] = \
((shared_data[IPROC_IN_BLOCK] op_symbol \
shared_data[IPROC_IN_BLOCK + i]) ? \
shared_data[IPROC_IN_BLOCK] : \
shared_data[IPROC_IN_BLOCK + i]); \

} \
} \
__syncthreads(); \

} \
\

/* Now write the data into the sys buffer for this block*/ \
if(IPROC_IN_BLOCK == 0) \
{ \

MSG_DATA(IPROC, 0, temp_count) = \
*((datum_t *) &(shared_data[0])); \

} \
} \

\
/* Use a barrier synchronization to ensure that all values are \
 * written in global memory */ \
MPI_Barrier(comm); \

\
/* Do a linear reduction using one process per element, since \
 * there are not many blocks. */ \

\
/* Let all the blocks reduce to a final answer. */ \
if(IPROC_IN_BLOCK < BNPROC) \
{ \

shared_data[IPROC_IN_BLOCK] = \
*((dtype_symbol *) &MSG_DATA(0, 0, IPROC_IN_BLOCK)); \

\
for(temp_count = NPROC_IN_BLOCK ; \

temp_count < NPROC ; \
temp_count += NPROC_IN_BLOCK) \

{ \
if((op != MPI_MIN) & (op != MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \
shared_data[IPROC_IN_BLOCK] op_symbol \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK)); \

} \
if((op == MPI_MIN) | (op == MPI_MAX)) \
{ \

shared_data[IPROC_IN_BLOCK] = \
((shared_data[IPROC_IN_BLOCK] op_symbol \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK))) ? \
shared_data[IPROC_IN_BLOCK] : \
*((dtype_symbol *) \
&MSG_DATA(temp_count, 0, IPROC_IN_BLOCK))); \

} \
} \

} \
\

/* Synchronize root and read the data */ \

80

__syncthreads(); \
if(root == MPI_ROOT) \
{ \

/* Copy the data from shared memory to the the buffer */ \
\

/* Get the aligned recv buffer address */ \
/* (The long version of recvbuf_aligned = \
 * ((int *) (((long) recvbuf) & (~3)));) */ \
switch(((long) recvbuf) & 3) \
{ \

\
case 3: temp_buf = ((char *) recvbuf) - 3; \

break; \
\

case 2: temp_buf = ((char *) recvbuf) - 2; \
break; \

\
case 1: temp_buf = ((char *) recvbuf) - 1; \

break; \
\

case 0: temp_buf = (char *) recvbuf; \
break; \

\
} \
recvbuf_aligned = (int *) temp_buf; \

\
/* Convert the count to bytes */ \
count = count * TYPE_SIZE(dtype); \

\
/* The read is based on the misalignment of the dest */ \
i=0; \
switch(((long) recvbuf) & 3) { \

\
case 0: /* The destination buffer is aligned */ \

while (count > 3) \
{ \

*(recvbuf_aligned++) = \
*((int *) &(shared_data[i++])); \

count -= 4; \
} \
temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a >> 16); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_a >> 8); \

case 1: *((char *) recvbuf_aligned) = temp_a; \
case 0: ; \

} \
break; \

\
case 1: /* The dest buffer is misaligned by 1 byte */ \

temp_b = *((int *) &(shared_data[i++])); \
switch(count) \
{ \

default: \

81

case 3: *(((char *) recvbuf_aligned) + 3) = \
(temp_b >> 16); \
--count; \

case 2: *(((char *) recvbuf_aligned) + 2) = \
(temp_b >> 8); \
--count; \

case 1: *(((char *) recvbuf_aligned) + 1) = \
temp_b; \
--count; \

} \
\

++recvbuf_aligned; \
\

/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 24; \
temp_a = *((int *) &(shared_data[i++])); \
temp_b = ((temp_a << 8)|(temp_b&0x000000ff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a >> 8); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_a); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 24); \

case 0: ; \
} \
break; \

\
case 2: /* The dest buffer is misaligned by 2 bytes */ \

temp_b = *((int *) &(shared_data[i++])); \
switch(count) \
{ \

default: \
case 2: *(((char *) recvbuf_aligned) + 3) = \

(temp_b >> 8); \
--count; \

case 1: *(((char *) recvbuf_aligned) + 2) = \
temp_b; \
--count; \

} \
\

++recvbuf_aligned; \
\

/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 16; \
temp_a = *((int *) &(shared_data[i++])); \

82

temp_b = ((temp_a<<16)|(temp_b&0x0000ffff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

temp_a = *((int *) &(shared_data[i])); \
switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_a); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_b >> 24); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 16); \

case 0: ; \
} \
break; \

\
case 3: /* The dest buffer is misaligned by 3 bytes */ \

temp_b = *((int *) &(shared_data[i++])); \
\

/* The count is always at least one */ \
*(((char *) recvbuf_aligned) + 3) = temp_b; \
--count; \

\
++recvbuf_aligned; \

\
/* Now that the dest is aligned, assemble messages*/ \
while(count > 3) \
{ \

temp_b >>= 8; \
temp_a = *((int *) &(shared_data[i++])); \
temp_b = ((temp_a<<24)|(temp_b&0x00ffffff)); \
*(recvbuf_aligned++) = temp_b; \
temp_b = temp_a; \
count -= 4; \

} \
\

switch(count) \
{ \

case 3: *(((char *) recvbuf_aligned) + 2) = \
(temp_b >> 24); \

case 2: *(((char *) recvbuf_aligned) + 1) = \
(temp_b >> 16); \

case 1: *((char *) recvbuf_aligned) = \
(temp_b >> 8); \

case 0: ; \
} \
break; \

} \
} \

\
/* Now, synchronize again to let root finish */ \
MPI_Barrier(comm); \

\
/* Return */ \

83

return(err_code); \
} \
\

/* Declarations for the various MPI_Reduce_xxx_xxx() functions */

/* Floating point functions */
CREATE_FUNCTION_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,+,MPI_FLOAT,float,0.0f)

/* Reduction */
/* This macro changes the MPI_Reduce() function call to a particular
 * (data-type,op) function variant at compile-time. */
#define MPI_Reduce(sendbuf,recvbuf,count,data-type,op,root,comm) \

MPI_Reduce_##data-type##_##op(sendbuf,recvbuf,count,root,comm)

/* This macro creates a reduction function prototype. */
#define CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(op,dtype) \
__device__ int \
MPI_Reduce_##dtype##_##op \
(\

void* sendbuf, /* IN */ \
void* recvbuf, /* OUT */ \
int count, /* IN */ \
int root, /* IN */ \
MPI_Comm comm /* IN */ \

);

/* Declarations for the various MPI_Reduce_xxx_xxx() function
 * prototypes */

/* Floating point prototypes */
CREATE_PROTOTYPE_MPI_REDUCE_4_BYTE_OPS(MPI_SUM,MPI_FLOAT)

84

Bibliography

[1] Message Passing Interface Forum, “MPI: A Message-Passing Interface Standard,”
Version 2.1, June 2008. [Online]. Available: http://www.mpi-forum.org
/ docs/mpi21-report.pdf . [Accessed: August 5, 2009].

[2] J. Nickolls, I. Buck, M. Garland, and K. Skadron, "Scalable Parallel Programming
with CUDA," ACM Queue, vol. 6, no. 2, pp. 40-53, 2008.

[3] H. Richardson, “High Performance Fortran: history, overview, and current
developments,” Version 1.4, Thinking Machines Corporation, Bedford, MA, USA,
Tech. Rep. TMC-261, 1996.

[4] I. Buck, et al., “Brook for GPUs: Stream Computing on Graphics Hardware,” ACM
Transactions on Graphics, vol. 23, pp. 777-786, 2004.

[5] ATI, “ATI Stream Computing – Technical Overview,” ATI Stream Developer Articles
& Publications, March 2009. [Online]. Available: http://developer.amd.com
/gpu_assets/Stream_Computing_Overview.pdf. [Accessed: August 5, 2009].

[6] E. Gabriel, et al., "Open MPI: Goals, Concept, and Design of a Next Generation MPI
Implementation,” in Lecture Notes in Computer Science: Recent Advances in
Parallel Virtual Machine and Message Passing Interface, Vol. 3241, D.
Kranzlmuller, P. Kacsuk, J. Dongarra, Ed. Heidelberg, Germany: Springer Berlin,
2004, pp. 97-104.

[7] G. Burns, R. Daoud, and J. Vaigl, “LAM: An Open Cluster Environment for MPI,” in
Proceedings of Supercomputing Symposium, 1994, pp. 379-386.

[8] M. Flynn, "Some computer organizations and their effectiveness," IEEE Transactions
on Computers, vol. 21, pp. 948-960, September 1972.

[9] F. Darema, “SPMD model: past, present and future,” in Lecture Notes in Computer
Science: Recent Advances in Parallel Virtual Machine and Message Passing
Interface, Vol. 2131, Y. Cotronis, J. Dongarra, Ed. Heidelberg, Germany:
Springer Berlin, 2001, pp. 1.

[10] L. Seiler, et al., "Larrabee: A many-core x86 architecture for visual computing,"
IEEE Micro, vol. 29, no. 1, pp. 10-21, 2009.

[11] T. Chen, R. Raghavan, J. N. Dale, and E. Iwata, “Cell Broadband Engine
Architecture and its First Implementation: A Performance View,” IBM Journal of
Research and Development, vol. 51, no. 5, pp. 559-572, 2007.

85

http://www.nvidia.com/object/cuda_home.html
http://www.nvidia.com/object/cuda_home.html
http://developer.amd.com/
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/docs/mpi21-report.pdf
http://www.mpi-forum.org/

[12] M. Rivas, “AMD Financial Analyst Day 2007 Presentation,” AMD, December 2007.
[Online]. Available: http://download.amd.com/Corporate
/MarioRivasDec2007AMDAnalystDay.pdf. [Accessed: August 5, 2009].

[13] R. Bergman, “AMD Financial Analyst Day 2008 Presentation,” AMD, November
2008. [Online]. Available: http://www.amd.com/us-en/assets/content_type
/DownloadableAssets/RickBergmanAMD2008AnalystDay11-13-08.pdf.
[Accessed: August 5, 2009].

[14] Microsoft Corporation, “DirectX Graphics,” Microsoft Developer Network, March
2009. [Online]. Available: http://msdn.microsoft.com/en-us/library
/bb219740(VS.85).aspx. [Accessed: August 5, 2009].

[15] Khronos Group, “OpenGL 3.2 Core Profile Specification,” August 2009. [Online].
Available: http://www.opengl.org/registry/doc/glspec32.core.20090803.pdf.
[Accessed: August 5, 2009].

[16] Microsoft Corporation, “HLSL,” Microsoft Developer Network, March 2009.
[Online]. Available: http://msdn.microsoft.com/en-us/library
/bb509561(VS.85).aspx. [Accessed: August 5, 2009].

[17] Khronos Group, “OpenGL Shading Language 1.50.09 Specification,” July 2009.
[Online]. Available: http://www.opengl.org/registry/doc
/GLSLangSpec.1.50.09.pdf. [Accessed: August 5, 2009].

[18] W. Mark, R. Glanville, K. Akeley, and M. Kilgard, “Cg: a System for Programming
Graphics Hardware in a C-like Language,” ACM Transactions on Graphics, vol.
22, no. 3, pp. 896-907, 2003.

[19] M. McCool, and S. Du Toit, Metaprogramming GPUs with Sh,” Wellesley, MA,
USA: A K Peters, Ltd., 2004.

[20] D. Tarditi, S. Puri, and J. Oglesby, "Accelerator: Using Data Parallelism to Program
GPUs for General-Purpose Uses," in ASPLOS-XII: Proceedings of the 12th

international conference on Architectural support for programming languages
and operating systems. New York, NY, USA: ACM, 2006, pp. 325-335.

[21] M. Monteyne, “RapidMind Multi-Core Development Platform,” RapidMind Inc.,
Waterloo, Canada, February 2008. [Online]. Available: http://www.rapidmind.net
/pdfs /WP_RapidMindPlatform.pdf . [Accessed: August 5, 2009].

[22] ATI, “ATI CTM Guide,” Version 1.01, November 2006. [Online]. Available:
http://ati.amd.com/companyinfo/researcher/documents.html. [Accessed: August
5, 2009].

86

http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://www.rapidmind.net/pdfs
http://www.rapidmind.net/
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://msdn.microsoft.com/en-us/library/bb509561%5C(VS.85%5C).aspx
http://msdn.microsoft.com/en-us/library
http://msdn.microsoft.com/en-us/library/bb509561%5C(VS.85%5C).aspx
http://msdn.microsoft.com/en-us/library
http://www.opengl.org/registry/doc/glspec32.core.20090803.pdf
http://www.opengl.org/registry/doc
http://www.opengl.org/registry/doc/glspec32.core.20090803.pdf
http://www.amd.com/us-en/assets/content_type/DownloadableAssets/RickBergmanAMD2008AnalystDay11-13-08.pdf
http://www.amd.com/us-en/assets/content_type
http://download.amd.com/Corporate/MarioRivasDec2007AMDAnalystDay.pdf
http://download.amd.com/Corporate

[23] NVIDIA, “NVIDIA CUDA Programming Guide,” Version 2.1, December 2008.
[Online]. Available: http://developer.download.nvidia.com/compute/cuda/2_1
/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf. [Accessed:
August 5, 2009].

[24] M. Papakipos, “The PeakStream Platform: High-Productivity Software Development
for Multi-Code Processors,” PeakStream Inc., Redwood City, CA, USA, April
2007. [Online]. Available: http://www.linuxclustersinstitute.org/conferences
/archive/2007/PDF/papakipos_21367.pdf. [Accessed: August 5, 2009].

[25] ATI, “ATI Stream Computing User Guide,” Revision 1.4.0, March 2009. [Online].
Available: http://developer.amd.com/gpu_assets
/Stream_Computing_User_Guide.pdf. [Accessed: August 5, 2009].

[26] Khronos OpenCL Working Group, “The OpenCL Specification,” Version 1.0, May
2009. [Online]. Available: http://www.khronos.org/registry/cl/specs
/opencl-1.0.43.pdf. [Accessed: August 5, 2009].

[27] M. Strengert, C. Miller, C. Dachsbacher, and T. Ertl, “CUDASA: Compute Unified
Device and Systems Architecture,” in Eurographics Symposium on Parallel
Graphics and Visualization, pp. 49-56, 2008.

[28] Z. Fan, F. Qiu, and A. Kaufman, “Zippy: A Framework for Computation and
Visualization on a GPU Cluster,” Computer Graphics Forum, vol. 27, no. 2, pp.
341-350, April 2008.

[29] J. Stuart, and J. Owens, “Message Passing on Data-Parallel Architectures,” in
Proceedings of the 23rd IEEE International Parallel and Distributed Processing
Symposium, May 2009. [Online]. Available: http://www.idav.ucdavis.edu/func
/return_pdf?pub_id=959. [Accessed: August 5, 2009].

[30] Q. Hou, K. Zhou, and B. Guo, “BSGP: Bulk-Synchronous GPU Programming,”
ACM Transactions on Graphics, vol. 27, no. 3, August 2008.

[31] L. Tucker, G. Robertson, "Architecture and Applications of the Connection
Machine,"Computer, vol. 21, no. 8, pp. 26-38, Aug. 1988.

[32] NVIDIA, “NVIDIA GeForce 8800 GT,” NVIDIA Products / Desktop / GeForce
Family. [Online]. Available: http://www.nvidia.com/object
/product_geforce_8800_gt_us.html. [Accessed: August 5, 2009].

[33] NVIDIA, “NVIDIA GeForce 9800 GT,” NVIDIA, Products / Desktop / GeForce
Family / NVIDIA GeForce 9800 GT. [Online]. Available: http://www.nvidia.com
/object/product_geforce_9800gt_us.html. [Accessed: August 5, 2009].

87

http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf
http://www.khronos.org/registry/cl/specs/opencl-1.0.43.pdf
http://www.khronos.org/registry/cl/specs
http://developer.amd.com/gpu_assets/Stream_Computing_User_Guide.pdf
http://developer.amd.com/gpu_assets/Stream_Computing_User_Guide.pdf
http://developer.amd.com/gpu_assets
http://developer.download.nvidia.com/compute/cuda/2_1/toolkit/docs/NVIDIA_CUDA_Programming_Guide_2.1.pdf
http://developer.download.nvidia.com/compute/cuda/2_1
http://www.linuxclustersinstitute.org/conferences/archive/2007/PDF/papakipos_21367.pdf
http://www.linuxclustersinstitute.org/conferences
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/object
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=959
http://www.idav.ucdavis.edu/func/return_pdf?pub_id=959
http://www.idav.ucdavis.edu/func

[34] NVIDIA, “GeForce GTX 280,” NVIDIA, Products / Desktop / GeForce Family.
[Online]. Available: http://www.nvidia.com/object
/product_geforce_gtx_280_us.html. [Accessed: August 5, 2009].

[35] J. Nickolls, “The Design of the MasPar MP-1: A Cost Effective Massively Parallel
Computer,” Thirty-Fifteh IEEE Computer Society International Conference:
Intellectual Leverage, pp. 25-28, February 1990.

[36] C. Whaley, A. Petitet, and J. Dongarra, “Automated Empirical Optimization of
Software and the ATLAS Project,” Parallel Computing, vol. 27, 2001.

[37] H. Dietz, T. Mattox, and G. Krishnamurthy, “The Aggregate Function API: It's not
just for PAPERS anymore,” in Lecture Notes in Computer Science:Languages
and Compilers for Parallel Computing, Vol. 1366, Z. Li, P. Yew, S. Chatterjee, C.
Huang, P. Sadayappan, and D. Sehr, Ed. Heidelberg, Germany: Springer Berlin,
1998, pp. 277-291.

[38] H. Dietz, T. Mattox, “Development of an Aggregate Function Message Passing
Interface (MPI 2.0) Library,” School of Electrical and Computer Engineering
Annual Research Summary: July 1, 1998 – June 30, 1999. Purdue, Indiana, USA:
Purdue University, 1999. Available: https://engineering.purdue.edu/ECE
/Research/ARS/ARS99/PART_I/Section4/4_16.whtml. [Accessed: August 5,
 2009].

[39] H. Dietz, B. Dieter, R. Fisher, and K. Chang, “Floating-Point Computation with Just
Enough Accuracy,” in Lecture Notes in Computer Science: Computational
Science – ICCS 2006, Vol. 3991, V. Alexandrov, G. Albada, P. Sloot, and J.
Dongarra, Ed. Heidelberg, Germany: Springer Berlin, April 2006, pp. 226-233.

[40] H. Dietz, “Linux Parallel Processing HOWTO,” The Linux Documentation Project,
 June 28, 2004. [Online]. Available: http://tldp.org/HOWTO
/Parallel-Processing-HOWTO.html. [Accessed: August 5, 2009].

[41] M. Quinn, Parallel Computing Theory And Practice, 2nd ed. New York, USA:
McGraw Hill, 1994.

[42] R. Fisher, and H. Dietz, “Compiling for SIMD Within a Register,” in Proceedings of
the 11th international Workshop on Languages and Compilers For Parallel
Computing, Vol. 1656, S. Chatterjee, J. Prins, L. Carter, J. Ferrante, Z. Li, D. C.
Sehr, and P. Yew, Ed. Chapel Hill, NC, USA: Springer-Verlag, 1998, pp. 290-304.

88

https://engineering.purdue.edu/ECE/Research/ARS/ARS99/PART_I/Section4/4_16.whtml
https://engineering.purdue.edu/ECE
http://www.nvidia.com/object/product_geforce_gtx_280_us.html
http://www.nvidia.com/object
http://tldp.org/HOWTO/Parallel-Processing-HOWTO.html
http://tldp.org/HOWTO

Vita

Author's Name – Bobby Dalton Young

Birthplace – Memphis, Tennessee

Birthdate – October 10, 1983

Education

Bachelor of Science in Electrical Engineering

University of Kentucky

May – 2007

Research Experience

University of Kentucky

Lexington, KY

5/06 – 8/07, 1/08 – present

Graduate Research Assistant

Honors, Awards, and Activities

• Robert L. Cosgriff Award, University of Kentucky College of Engineering, 2006,
University of Kentucky.

• Otis A. Singletary Scholarship, 2002 – 2006, University of Kentucky.

• Exhibitor, IEEE ACM Supercomputing Conference, 2006, 2007, 2008.

Society Memberships

• Eta Kappa Nu

• IEEE Student Member

89

	Abstract
	Title
	Table of Contents
	List of Figures
	List of Tables
	List of Files
	Chapter 1: Introduction
	Chapter 2: Background, Methodology, and Related Work
	2.1: Background
	2.2: Methodology
	2.3: Related Work

	Chapter 3: GPU Hardware Review and Performance Factors
	3.1: Review of Current GPU Hardware
	3.2: The NVIDIA CUDA Architecture
	Figure 3.1: The NVIDIA CUDA Architecture[23]
	Table 3.1: Some NVIDIA GPUs and various properties
	Table 3.2: Compute Capabilities and their properties[23]

	3.3: NVIDIA CUDA Performance Considerations

	Chapter 4: Virtualization Constraints
	4.1: Background and Definitions
	4.2: Performance Analysis of Virtualization
	Figure 4.1: Pseudo-code for the micro-benchmark
	Figure 4.2: The register micro-benchmark
	Figure 4.3: Total execution time of the register micro-benchmark
	Figure 4.4: Per-block execution time of the register micro-benchmark
	Figure 4.5: The shared-memory micro-benchmark
	Figure 4.6: Total execution time of the shared-memory micro-benchmark
	Figure 4.7: Per-block execution time of the shared-memory micro-benchmark

	4.3: Optimal Virtualization and the MPI Constraints

	Chapter 5: The MPI Implementation
	5.1: Introduction to the Message-Passing Interface
	5.2: Design Philosophies and Restrictions
	5.3: The Point-to-Point Communication Interfaces
	Figure 5.1: MPI_Send prototype
	Figure 5.2: Pseudo-code for MPI_Send
	Figure 5.3: MPI_Recv Prototype
	Figure 5.4: Pseudo-code for MPI_Recv

	5.4: Point-to-Point Communication Performance
	Figure 5.5: Algorithm for sequential estimation of PI
	Figure 5.6: Point-to-point MPI implementation of the test algorithm
	Figure 5.7: Point-to-point CUDA-only implementation of the test algorithm, part 1
	Figure 5.8: Point-to-point CUDA-only implementation of the test algorithm, part 2
	Figure 5.9: Execution time of both implementations of the test algorithm

	5.5: The Collective Communication Interfaces
	Figure 5.10: MPI_Barrier prototype
	Figure 5.11: Pseudo-code for MPI_Barrier
	Figure 5.12: MPI_Reduce prototype macro
	Figure 5.13: MPI_Reduce prototype
	Figure 5.14: MPI_Reduce translation macro
	Figure 5.15: Pseudo-code for MPI_Reduce

	5.6: Collective Communication Performance
	Figure 5.16: Algorithm for sequential estimation of PI
	Figure 5.17: Collective MPI implementation of the test algorithm
	Figure 5.18: Collective CUDA-only implementation of the test algorithm, part 1
	Figure 5.19: Collective CUDA-only implementation of the test algorithm, part 2
	Figure 5.20: Execution time of both implementations of the test algorithm

	5.7: Other Implemented Interfaces
	5.8: Costs and Benefits of the Message-Passing Model

	Chapter 6: Conclusions and Future Work
	Appendix A: CUDA Code for the Functions
	Bibliography
	Vita

