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Abstract

GPUs (Graphics Processing Units) employ a multi-threaded execution model using mul-

tiple SIMD cores. Compared to use of a single SIMD engine, this architecture can scale to

more processing elements. However, GPUs sacrifice the timing properties which made barrier

synchronization implicit and collective communication operations fast.

This thesis demonstrates efficient methods by which these aggregate functions can be im-

plemented using unmodified NVIDIA CUDA GPUs. Although NVIDIA’s highest “compute

capability” GPUs provide atomic memory functions, they have order N execution time. In con-

trast, the methods proposed here take advantage of basic properties of the GPU architecture to

make implementations that are both efficient and portable to all CUDA-capable GPUs. A vari-

ety of coordination operations are synthesized, and the algorithm, CUDA code, and performance

of each is discussed in detail.

KEYWORDS: GPU, barrier synchronization, CUDA, constant time race resolution, global

block synchronization

5



1 Introduction

With the explosive growth of new high-end GPU systems and architectures, the use of GPUs is no

longer restricted to graphic processing applications. General-purpose parallel computation using a

GPU is now a common technique due to the good price to performance ratio, the large number of

processing elements they offer, and the emergence of high level GPU programming languages and

tools such CUDA [2], Brook+ [3], and BSGP [4]. Unfortunately, there is not yet a clear path to

implementing complex applications on a GPU; there are a variety of issues associated with each

of the alternative approaches. The primary issue that we address is common to nearly all of these

approaches: the lack of efficient barrier synchronization and collective communications.

1.1 Identification of the problem

Recent GPU architectures are no longer designed as pure Single Instruction Multiple Data (SIMD)

systems, but as a set of multiple SIMD multiprocessors glued together. Each one is capable of

performing a different instruction at the same time. Each SIMD multiprocessor also is heavily

multi-threaded to hide memory access latency. Thus, this model implicitly results in a lack of

synchronization and communication between multiprocessors and traditional coordination primitives

between SIMD cores which are not always available.

On the other hand, GPUs are now widely used to execute high performance applications, hence

it is highly desirable that efficient methods for synchronization and communication are provided.

Different GPU architectures provide different tools to reach synchronization. For example, ATI

GPUs are equipped with data and instruction cache memory which, at least in theory, would allow

the user to restore the global state of the system easily.

NVIDIA CUDA GPUs support for explicit atomic operations has gradually evolved with higher

compute capability 1 devices. Thus, while GPUs with compute capability 1.0 do not support any of

them, devices with compute capability 1.1 supports atomic functions operating on 32-bit words in

global memory, and devices with compute capability 1.2 and 1.3 support atomic functions operating

on memory shared within a SIMD core and atomic functions operating on 64-bit words in memory

shared across SIMD cores as well [2].

Although including support for atomic operations as a tool to reach synchronization in gen-

eral purpose parallel computation using GPUs was desired and expected, it is still not clear how to
1Compute capability is defined by NVIDIA [2] as the version of the core architecture presented in their systems

and the minor improvements of new features added to new GPUs. Thus, the most basic device has compute capability
1.0 and the highest performance device has compute capability 1.3
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achieve efficient synchronization between processing elements across different SIMD multiprocessors.

The lack of portability associated with use of these constructs was a major motivation for finding

alternative software solutions upon which the desired high-level operations could be efficiently im-

plemented.

1.2 Motivation and proposed solution

GPUs offer the best price to performance ratio to execute parallel computation, either graphics

applications, or general purpose. However, GPU architectures are not designed as purely SIMD

machines nor MIMD, but rather something in between, and target applications to be optimized by

the use of GPUs are mostly SIMD oriented, despite the fact that most of the emerging programming

models and languages2 are based in MIMD programming style like C [4].

This mixing of styles involved in the whole GPU system environment should make it feasible to

execute MIMD programs in those new SIMD like machines more specifically the GPU. Researchers

such as H. Dietz et al. demonstrated [5] this is possible. The concept is called MOG - MIMD On

GPU.

But to make the MIMD environment run efficiently inside the GPU, it is necessary to provide

tools to the new instruction set, compiler, or interpreter. Such tools include methods of threads syn-

chronization like barrier synchronization and atomic functions, algorithms for reduction operations

like Min, Max, Sum, And, Or, and algorithms for Voting and scheduling operations.

The solution proposed by this thesis document attempted to design, efficiently implement, and

evaluate the performance of algorithms to:

1. Reach synchronization between threads within the GPU even if they exist in different SIMD

engines.

2. Execute reduction and voting - scheduling operations within a GPU.

The algorithms are intended to provide solution to the synchronization problem independently of

the hardware capabilities of the systems. They are intended to be as simple and efficient as possible.

1.3 Related Work

The highly evolving architecture of GPUs offers the best computational power per dollar ratio

systems [6]. However, since most of the transistors on a GPU are dedicated to data processing and

2CUDA, ATI CAL, Brook+, OpenCL
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few of them deal with cache and control flow [2], some features had to be compromised. One of

those features is the synchronization between processing elements (PEs) or threads (virtual PEs)

within different SIMD engines on a GPU.

The lack of synchronization mechanisms in recent GPUs and the need of synchronization in

parallel applications was also identified in other publications [7], where a pair of synchronization

mechanisms were suggested, both of them based in atomic operations. Each thread of a SIMD core

accesses the shared memory across cores using atomic read/write operations and then a wait-free

and t-resilient synchronization objects are created. More of this paper is discussed further in Section

3.1.

It was also found that it is possible to reach synchronization between SIMD cores, using the

coalesced memory access of GPU [8] and taking advantage of the GPU memory distribution and the

fact that multiple SIMD engines have access to a shared piece of memory (which NVIDIA CUDA

refers as Global Memory). Handling the architectural restrictions, H. Phuong Hoaihave et al. [8]

have shown that threads on different SIMD engines can reach synchronization. Three different access

memory models were built by the researchers and the corresponding synchronization capabilities were

evaluated.

The main contribution of this thesis is the algorithm design, testing, and performance analysis of

several key global communication operations. Barrier synchronization between PEs across different

SIMD engines in the GPU is a fundamental algorithm by itself, and also within the implementation

of other operations. Various reduction and voting-scheduling algorithms were also implemented. All

of these implementations are designed to work on any NVIDIA CUDA GPU regardless the compute

capability, even if they do not have support for atomic operations; everything was tested using a

compute capability 1.0 system.

1.4 Thesis outline

Chapter 2 of this thesis document presents the technical background and architecture information

available for the most important high-end GPU vendors. It clarifies the concepts and the vocabulary

used by them and shows the key points explored in the development of this research. Chapter

3 introduces a summary of some commonly used methods of synchronization between processing

elements (PEs) and also presents the theory of the different synchronization methods proposed as

an alternative multi-thread solution when using GPUs for general purpose computation. The results

obtained when running kernels implementing a variety of synchronization methods are presented in
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Chapter 4. Graphs of the execution time are shown there. The final Chapter presents the conclusions

and suggestions for future work in this research area.

CUDA code for all the kernels used as benchmarks to produce the results presented in Chapter

4 are included in Appendix 5. Although they are not structured for release at this time, the intent

is that these routines will be packaged and released as open source from Aggregate.Org in the near

future.
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2 NVIDIA GPU architecture

This Chapter introduces the most important architectural features found in the NVIDIA GPUs. It

is not intended to be a complete description of the NVIDIA architecture; it serves primarily as a

review of the model used here to develop the synchronization and reduction mechanisms proposed in

this thesis. For a more detailed description of all the features of the NVIDIA CUDA GPUs, please

refer to NVIDIA CUDA official programming guide[2].

Before introducing the architecture details, it is necessary to explain some concepts and termi-

nology used with CUDA and the programming environment.

As defined by NVIDIA [2], CUDA is a general-purpose computing architecture which includes

a programming environment that allows developers to use simple extensions to the standard C and

C++ languages to develop applications for parallel computing on GPUs. In the future, it is claimed

that CUDA will support other programming interfaces, such as FORTRAN. There are other non-

CUDA environments as well [9], but this thesis restricts itself to the CUDA environment because it

is the officially native environment. Figure 2 3 shows the application stack layers used in a CUDA

environment.

Figure 1: CUDA application stack

The way that the CUDA programming environment identifies that a function must be executed

by the GPU is by defining a kernel function inside a C program. A kernel is the equivalent of a

C function that declares the variables and computations that a GPU must execute for the current

program on the top of the application stack. The kernel invocation is used by the system in order

to differentiate between the two environments (CPU and GPU), so when a kernel is invoked it is

executed simultaneously by every active thread within the GPU. Each thread is mapped to a virtual
3Figure 2 is based on the Application Stack graph described by NVIDIA in the CUDA programming guide [2].
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Figure 2: Threads, Blocks and Grids in NVIDIA GPUs

processing element within the GPU for execution.

Thus, treads in a GPU are seen as the basic unit of computation. As said above, every instruction

declared inside a kernel is executed simultaneously by multiple threads and threads can be organized

such that they form a one-, two-, or three-dimensional block. In this thesis, only one-dimensional

blocks are analyzed. At the same time, multiple blocks are put together in a one or two dimensional

grid. Figure 2 clarifies the relationship between threads, blocks, and grids.

With respect to the hardware architecture, NVIDIA GPU systems were designed as an array of

multi-threading processors or SIMD engines, each one having eight scalar processor cores and each

core having four single processing elements which are the physical fundamental computational units.

Beside the scalar processors, each SIMD engine also includes an on-chip shared memory, a set of

32-bit registers per processor, a read only constant cache, and a read only texture cache.

Figure 2 shows the GPU hardware model. Every SIMD engine creates, manages, schedules, and
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Figure 3: NVIDIA GPU hardware model

executes threads in groups of 32 threads each. To be precise, a group of 32 threads is actually

performed by multi-threading over 8 physical processing elements within a SIMD engine rather than

being executed truly simultaneously, but this minimum level of multi-threading cannot be avoided.

Each group of 32 threads is called a warp. A warp executes one common instruction at a time –

like a pure SIMD machine – so peak performance is reached when all threads within the warp agree

in the instruction path. Hence, if one thread within a warp wants to execute a branch instruction,

then this thread is put in a hold and the diverged instructions are executed serially. Once every

branch path has been completed, the entire warp is released.

This document follows the terminology used by NVIDIA with respect to the different types of

memory. The term global memory refers to the memory shared between SIMD engines. In contrast,

the term shared memory refers to the memory that is associated with a single SIMD engine, and

hence shared only between processing elements within that SIMD engine.
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3 Methods of synchronization within GPUs

In order to achieve efficient parallel execution, synchronization between processing elements (PEs)

has to be reached either by software native functions or by hardware capability. Barrier synchro-

nization is one of the most common coordination strategies used to synchronize multiple PEs within

a parallel system. A barrier forces all PEs to wait until every PE reaches the synchronization point

and then releases all of them [10]. The barrier could be defined as a synchronization mechanism

where no PE is allowed to proceed beyond the barrier until all other PEs have reached it. When the

barrier is hardware implemented, PEs have to be somehow physically connected with each other to

perform the synchronization as in KAPERS – Kentucky Adapter for Parallel Execution and Rapid

Synchronization – [11]. When the barrier is software implemented, the synchronization is achieved

as the compound effect of a set of primitive hardware operations.

Beside barriers, another popular type of synchronization used specially in operating systems to

coordinate between processes is the atomic transaction model. This model comes from the concept of

mutual exclusion in critical transactions performed by processes that may request access to a shared

resource simultaneously; only one process should be allowed access at any given time. Basically,

an atomic transaction is an indivisible transaction unit that forces concurrently-issued instructions

to behave as if they were performed serially if they would interfere, thereby maintaining atomicity

for each action. The next Section presents an overview of the barrier synchronization and atomic

function operations present in NVIDIA hardware4.

3.1 NVIDIA Provided Operations

Various synchronization tools have been proposed and widely implemented to coordinate PEs or

multiprocesses entities such as those within the operating system or multi-threaded computations

within a GPU, either directly using primitive atomic operations or through the use of different

strategies based on higher-level atomic operations such as locks or semaphores. But what exactly

is an atomic operation? Silberschatz et al. [12] define an atomic operation as a program unit that

must be executed atomically. That is, either all the operations associated with it are executed to

completion or none of them are performed.
4Atomic operations are available in devices with compute capability 1.3
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Atomic Function Description Restriction
atomicAdd() Add 64-bit word only supported

for global memory
atomicSub() Subtraction Only supported for 32-bit word
atomicExch() Exchanges the value in memory 64-bit word only supported

with a new value for global memory
atomicMin() Finds the min between value Only supported for 32-bit word

in memory and a new value
atomicMax() Finds the max between value Only supported for 32-bit word

in memory and a new value
atomicInc() ((val in mem >= new val) Only supported for unsigned

? 0 : (val in mem+1)) 32-bit word
atomicDec() (((val in mem == 0) | Only supported for unsigned

(val in mem > new val)) 32-bit word
? new val : (val in mem-1))

atomicCAS() Compare and Swap 64-bit word only supported
for global memory

atomicAnd() Bitwise And Only supported for 32-bit word
atomicOr() Bitwise Or Only supported for 32-bit word
atomicXor() Bitwise Xor Only supported for 32-bit word

Table 1: Atomic Operations available in NVIDIA CUDA GPUs

3.1.1 NVIDIA atomic native functions

Although the first release of NVIDIA CUDA GPUs – Compute Capability 1.0 – actually has a

number of operations it performs atomically, it explicitly did not include support for any of the best

known atomic operations. The second generation of GPUs – compute capability 1.1 (and higher5)

– includes a set of atomic operations aimed to be used as synchronization tools. This evolution was

driven by NVIDIA’s desire to lead in general-purpose computing on GPUs; these atomic operations

were frequently requested by users.

Atomic operations within an NVIDIA GPU perform a Read-Modify-Write uninterruptible cycle

for 32-bit or 64-bit words in shared or global memory depending upon the compute capability

supported. The atomicity of those operations lean on the fact that it is guaranteed that no other

thread can read or write on the memory cell used by the atomic operation until it is completed.

Table 1 presents a summary of the available atomic operations along with its restrictions in NVIDIA

CUDA GPUs.

Based on the built-in functions presented in Table 1, it is possible to implement an atomic version

of the p any() kernel. It is called p atom any(). The goal of this function is to determine if at least

one of the threads carries the value datum, or in other words, the goal is to implement a global OR

using atomic functions.
5[2]describes the specifications for 1.2 compute capability systems, however they are not available in the market.
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Algorithm 1 p atom any() CUDA code

i f ( g odata [ b lockIdx . x ] == 0){
whi le ( i<n && sdata [ 0 ] == 0){

sdata [ t i d ] |= g i d a t a [ i ]
| g i d a t a [ i + blockDim . x ] ;

atomicOr(&sdata [ 0 ] , sdata [ t i d ] ) ;
i += g r i d s i z e ;

}
g odata [ b lockIdx . x ] = sdata [ 0 ] ;

}

The kernel p atom any() was implemented using the built-in function atomicOr(). Each thread

within a block executes a bitwise atomic OR operation having as inputs its own shared memory cell

and the designated cell of shared memory with the accumulated result. This way the value returned

in global memory by the kernel its guaranteed to be logic high when any location of the input data

stream analyzed by the treads has a true (non-zero) flag value. In the kernel implemented, for

example, the flag true value is represented by an integer value of 1. Listing 3.1.1 presents the CUDA

kernel of the p atom any() code.

There have been various methods published that would allow an operation like atomicOr()

to execute without blocking resources such as Fetch-and-Op [13] which permits highly concurrent

execution of synchronization primitives. Fetch-and-Op also has the property that when multiple pro-

cessing elements simultaneously fetch and write a variable in memory, the result of these operations is

the same as if they would be executed serially. Unfortunately, those implementations are somewhat

hardware intensive, and hence less likely to be used in a GPU. Current implementations of NVIDIA

CUDA GPUs cause the atomic operations to lock system resources while executing operations to

guarantee that no other thread will interfere with the memory read-modify-write process. The result

is that this function has order N execution time, much slower than the constant-time race resolu-

tion concept proposed in Section 3.2 which has constant time execution time. Chapter 4 presents a

summary of the performance test results achieved and the comparison between p atom any() and

the constant time race resolution version of ANY as well.

3.1.2 Wait-free and t-resilient

Other proposed solutions to reach coordination and synchronization between SIMD cores in NVIDIA

GPUs have been proposed before by using atomic operations [7], where the GPU was modeled as

N-SIMD machines sharing a shared memory. Each SIMD machine can process M threads in one

clock cycle, each of the M threads inside a core can read/write one memory location in one atomic
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step, then each core can read/write M memory location per atomic step.

After identifying the atomic capability of the model, researchers constructed a set of wait-free

and t-resilient synchronization objects aimed to provide synchronization tools to programmers of

parallel applications. Those objects are:

• Wait-free Long-lived Consensus Object

• Wait-free Read-Modify-Write Object

• t-Resilient Read-Modify-Write Object

The terminology used by the researchers to explain their theory is presented here as it was presented

in the original paper [7].

Consensus number refers to the maximum number of PEs for which the object can solve a

consensus problem. An n-consensus number allows n-PEs to propose their values and return only

one of these values back to all of the n-PEs. Long-lived consensus object is a consensus object in

which the variables are used more than once during the object life time. An object implementation

is wait-free if any PE can complete any operation on the object in a finite number of steps regardless

the execution speed of the other PEs. An object implementation is t-resilient if non-faulty PEs can

complete their operations as long as no more than t PEs fail.

3.1.3 Built-in barrier synchronization

As part of the synchronization tools available in GPU systems, NVIDIA CUDA GPUs include a

built in primitive called syncthreads() used to synchronize threads within a block 2. Basically,

the primitive syncthreads() acts as a barrier synchronization point where no thread is allow to

proceed before the syncthreads() is over. Once this point is reached, the threads’ execution

continues normally. This synchronization primitive was built to coordinate thread communication

within a block and make it the way to avoid data hazards such as read-after-write, write-after-read,

or write-after-write when multiple threads are wanting to access the same address in shared or global

memory.

However, since syncthreads() works only within a block and NVIDIA GPUs allocate one

block per SIMD multiprocessor, the primitive cannot be used to synchronize threads residing in

different blocks or across different multiprocessors.

The description of the synchronization mechanisms implemented by using the hardware and

software features presented in the GPUs are described within the next two Sections.
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3.2 Constant Time Race Resolution (CTRR)

What happens when multiple threads want to write simultaneously a value in memory? According

to the CUDA programming guide, it is not possible to know the number of serialized writes but it is

guaranteed that at least one of the threads writes the value in memory. Empirically we found that

the execution time of such kernels is constant rather than order N.

Although it is not exactly clear how the hardware handles the simultaneous writes to memory

and which thread gains the right to do it – the fastest, the slowest, or a random thread –, this fact

lead us to better understand the functionality of the NVIDIA CUDA GPUs and was the key to

open a new optimal method of synchronization between threads for simple operations such p any(),

p all(), used to determine the global AND or global OR state of the system, and p selectOne()

which returns the thread ID number (IPROC) of any active thread. The motivation to implement

these native function kernels in NVIDIA CUDA GPUs aroused from the fact that they were available

on the MasPar MP-1 SIMD machine [14] as part of the support for running MIMD code on SIMD

hardware [15]. As expressed in Chapter 1, part of the motivation to research the functionality of

high end GPUs was to be able to use them to implement a MIMD environment.

However, in the beginning it was not clear how NVIDIA CUDA GPUs managed the process

of multiple threads writing simultaneously to a single shared memory cell. Since the CUDA pro-

gramming guide [2] does not mention how the hardware handles this, at least two possibilities were

assumed. The first possibility was that the hardware enforced every single thread to write its content

into the memory cell, just as the original design of the MasPar MP-1. As one can imagine, following

this method to write data into memory would be extremely inefficient and would hurt the overall

performance of any process calling any of those simple functions. The second possibility was that the

hardware somehow identifies multiple writers and handles the situation. Fortunately, that was the

case and when a number of elements within a block try to write data to the same memory location,

the hardware guarantees that one of them will have access to do it and somehow picks a thread

to write its value in memory. This property is what we have called constant time race resolution -

CTRR.

The fact that the hardware identifies when multiple threads are trying to access data at the same

location is the key to making this mechanism function in constant time independent of the number

of threads involved in the operation. The documentation makes it clear that this filtering is applied

to convert multiple simultaneous reads from the same location into a single read and broadcast.

However, it is easy to use this same hardware to detect write races and pick a winner for each race,
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so that each race takes only one unit of time to complete. Empirically, this is what NVIDIA seems

to have done.

Both writing and reading constant time race resolution are used to implement the p any() kernel.

The logic behind the function kernel is simple. As soon as a thread identifies that its value is equal

to the passed argument d, it immediately decides to write the output value in memory. So it or

any of the other threads (but only one) for whom the comparison with d was true is selected by the

memory hardware to write the output value in the corresponding cell. When a thread reads that the

value held in memory correspond to the solution value, the process is interrupted. In other words,

when the solution is reached, it is broadcast to the other threads preventing them from continuing

to work toward a solution. Appendix 5 presents the CUDA kernel codes.

The CTRR is an extremely fast mechanism when the nature of the solution can be adapted to

picking a winner thread who carries a solution value. Questions like “Does any thread have the

value D?” can be solved easily by using CUDA kernels implementing CTRR. Following this logic,

common global functions like global Or, global And, and first IPROC efficiently could be executed

by CUDA GPUs regardless of the compute capability. Such algorithms are discussed later in this

Chapter.

Using CTRR to execute simple functions like p any(), p all(), or p selectOne() is fast enough

in terms of execution time, even taking into account the restriction imposed by the GPU architecture

of being designed with multiple SIMD cores and claiming that it is better to use virtualization to

divide the input data stream into multiple blocks of data, each block executed by an available SIMD

engine, which forces it to recursively execute the kernel. That is, since CTRR acts so fast within

a block of threads and the solution of such kernels can be reached without actually processing the

whole array of input data, CTRR is the most efficient mechanism known to process such functions

using CUDA GPUs.

However, CTRR is not suitable for every kind of algorithm. For example, in those functions

where the kernel needs to make sure that every single thread had been evaluated, it is necessary

to include a control mechanism. This extra mechanism inside the kernel implies more conditional

instructions adding more clock cycles to the execution. It also could serialize thread execution when

the control generates divergence between threads, further degrading performance.

In general, CTRR is very likely to be efficient with functions that often can take advantage of an

early termination condition like ALL, ANY, MAX or MIN. Although verifying the early termination

condition implies the use of an extra conditional instruction, it does not hurt the overall performance

of the program because when an application needs to evaluate the kernels p any() or p all() it is
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Algorithm 2 p selectOne() algorithm

se lec tOne ( v o l a t i l e i n t ∗ g odata ) {
i n t i = blockIdx . x∗blockDim . x + threadIdx . x ;

s ync th r ead s ( ) ;
g odata [ 0 ] = i ;

}

very common to find that at least a subset of elements meet the primitive condition, that is a group

of elements are zeros or ones. In opposition, the early finish condition would hurt the performance

of those functions that require arithmetic execution over all the stream elements or those where the

early finish condition would not occur very often, e.g. 32-bit OR, or 32-bit AND. It is not very

likely to find all 32 bits being zero or all 32 bits being one. In this case, evaluating the extra branch

condition to verify the early finish state would cost more clock cycles to execute without gaining

any advantage.

3.2.1 Native Kernels

Functions implemented using the CTRR concept are the simplest aggregate functions used in GPUs

to read special features of the global state of the system at a determined point and are called native

kernels. The main characteristic of those functions is that as soon as one of the threads reaches

a positive solution for the function and writes the result back to the designated space in memory,

all other threads stop evaluating the input data parameters. In most cases, they do not have to

evaluate the whole stream of input data they receive, making them very efficient and suitable to the

architecture of NVIDIA GPUs.

Based on the CTRR concept introduced in the last Section, it is possible to construct code

for the native kernels p selectOne(), p any(), p all(), and p warp any() successfully. As an

example, a description of the algorithms and highlights of the code for such functions is presented

here as well. However, the complete sequence of code is shown in Appendix 5.

The easiest way to see how CTRR works on NVIDIA GPUs is by understanding how the

p selectOne() native kernel works. Although it is a fairly simple CUDA kernel, it practically

shows how threads race for access to memory when they need to write data there.

Algorithm 2 shows the kernel function. The idea is to identify the first thread that will write in

memory. The way in which this is done is by letting the threads write the thread Id number. The

value left in memory is the thread Id of the GPU chosen thread.

Algorithms 3 and 4 show the CUDA code for the p any() and p all() native kernels respectively.
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Algorithm 3 p any() kernel

i f ( g odata [ b lockIdx . x]==0){
whi le ( sdata [0]==0 && i < n) {

sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockIdx . x ] ;
i f ( sdata [ t i d ]==datum) sdata [ 0 ] = datum ;

i += g r i d s i z e ;
}
g odata [ b lockIdx . x]= ( sdata [0]==datum ) ;

}

Algorithm 4 p all() kernel

whi l e ( sdata [ 0 ] == 1 && i < n){
sdata [ t i d ] &= g i d a t a [ i ] & g i d a t a [ i + blockIdx . x ] ;
i f ( sdata [ t i d ] != datum) sdata [ 0 ] = 0 ;
i += g r i d s i z e ;

}
g odata [ b lockIdx . x ] = sdata [ 0 ] ;

These functions were implemented following four basic steps. First, an initial condition verifies that

any previous thread has not written the solution to the designated cell of global memory. If no thread

has reached the solution, then it is safe for the threads to keep searching for one. In the second

step, every thread verifies that no other thread within the block has reached the solution before. It

is also verified if the thread needs to process more data from the input stream. If both conditions

are met, then input stream data from global memory is loaded into the block shared memory. An

optimization suggested by NVIDIA [1] is that the first level of reduction could be executed while

loading data from global to shared memory. The third step executes the kernel function by making

each thread compare the value held in shared memory with the reference value. If a match is found,

then the thread tries to write the solution in shared memory. The final step is writing the solution

value in global memory. The kernel is executed recursively until a final solution is found or the

whole input data was analyzed.

Both p any() and p all() kernels follow the same structure, the only difference between them

is the comparison with the reference value done in step three. For p any() the solution is found

when the value in shared memory is equal to the reference value, while for p all() the solution is

found when the value in shared memory is not equal to the reference value.

Algorithm 5 implements a version of the global OR kernel by using the NVIDIA built in function

any()6. The any() function, compares the reference value passed as a parameter against the
6According to NVIDIA [2], the function any() is only supported by devices with compute capability 1.2 or higher.

As from the best of our knowledge, compute capability 1.2 devices are not available in the market.
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Algorithm 5 p warp any() algorithm

i f ( g odata [ b lockIdx . x]==0){
whi le ( i<n && sdata [0]==0){

sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockDim . x ] ;
sdata [ 0 ] = ( any (1 ) != 0 ) ;
i+=g r i d s i z e ;
}

g odata [ b lockIdx . x]= sdata [ 0 ] ;
}

value held by all the threads of the warp and returns a non zero value if the comparison is true for

any of them. Having the any() function available makes it easy to implement a p warp any()

kernel.

Basically, the algorithm follows the same steps implemented in p any() or p all(), except that

the comparison made in step 3 is made by the any(), which implies that the evaluation is made

warp by warp instead of block by block. Although the function works fine and could be seen as a

viable solution, the overhead of working warp by warp and not block by block, plus the fact that

the function any() is not available for all the devices, makes this approach undesirable.

3.2.2 Reduction operations

Reductions are aggregate operations which have a single output value which is the result of applying

an associative function to the input data. As opposed to the CTRR native kernels, reduction

operation kernels have to process the whole input data stream in order to reach an accurate solution

and in most cases including an early finish condition will affect the performance rather than make

the execution faster. This is because for some reduction operations there are required arithmetic

operations, while for some others the early finish condition rarely occurs. However, the principle

over CTRR is based on the random race access that threads have when reading from or writing

to memory. This characteristic makes the execution of the kernels easier and faster in the Section

above because the threads carrying the solution run to write the right value in the corresponding

cell of memory.

When implementing the reduction algorithms, it is necessary to know which thread has already

taken into account the operation to avoid duplicity and which thread is pending to be included

for the operation to make sure that the final result includes everybody’s data. Adding the thread

participation control into the kernel code reduces the overall performance of the reduction operation

under CTRR.

21



The aggregate reduction operations implemented using the CTRR technique are reduceOr(),

reduceAnd(), reduceMax(), and reduceMin(). As in the above Section, a description of the

algorithms and the highlights of the CUDA code are presented here. The complete code is shown

in Appendix 5.

Or reduction using CTRR can be achieved by letting each thread provide their data value to a

specific cell in memory, sdata[0] in this case. Since CTRR is used here, the mechanism to implement

the reduction operation is almost identical to that used with the native kernels. However, there is

a major difference. Native kernels do not require all of the input data stream to be analyzed and

most of the time as soon as one thread reaches the solution, the rest of them stop processing. With

the reduction operations every thread has to be analyzed in order to get the final solution, hence

a thread control must to be added to the kernel in order to deactivate threads that have already

provided the information or those who carry redundant data already written to memory.

This control was implemented by comparing the data stored previously in sdata[0] with the

data stored by each thread in a local register through the XOR operator. If the result of the value

in register XOR the value in sdata[0] is not equal to 0, then the thread still needs to write some

information to memory. Once every thread has written its value in memory, then a solution is

reached. Algorithms 6 and 7 presents the CUDA code for the reduceOr() and reduceAnd() kernels

respectively.

Again and as suggested by NVIDIA [1], the first level of reduction was executed during the initial

load of data from global memory to local registers.

The overhead of having to implement the thread control and the repeated call of the kernel

(simulating recursive application) to reach the solution, makes this mechanism a viable but not an

optimal choice. However, it is possible to find positive results by mixing the CTRR algorithms

with the Global Block Synchronization (GBS) mechanism explained later in this document. Timing

results for the execution of reduction kernels are found later in Chapter 4.

Finding the minimum and maximum of a data stream is also a kind of reduction algorithm

implemented in CUDA using the CTRR mechanism. Again, every single element of the input data

array has to be analyzed to reach the solution, so thread control has to be implemented.

This time, the control was implemented using a flag which was turned off every time the thread

attempted to write the value in memory and turned back on again when the thread finds out that

the value written in memory was not its own. Another difference with the reductions explained

before is that the reduction executed in the initial load step requires a temporary variable to be able

to compare if the new loaded value is greater (smaller in the case of minimum reduction) than the
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Algorithm 6 CTRR reduceOr() algorithm

unsigned i n t t = 0xFFFFFFFF;
sdata [ 0 ] = 0 ;
whi l e ( i<n){

r eg th r ead |= g i d a t a [ i ] | g i d a t a [ i + b lo ckS i z e ] ;
i += g r i d S i z e ;

}
whi le ( ( r eg th r ead & t ) !=0){

sdata [ 0 ] |= reg thread ;
sync th r ead s ( ) ;

t = sdata [ 0 ] ˆ r eg th r ead ;
}

Algorithm 7 CTRR reduceAnd() algorithm

unsigned i n t t = 0xFFFFFFFF;
unsigned i n t temp = 0xFFFFFFFF;
whi l e ( i<n){

temp &= g i d a t a [ i ] & g i d a t a [ i + b lo ckS i z e ] ;
i += g r i d S i z e ;

}
whi le ( (˜ temp & t )>0){

sdata [ 0 ] &= temp ;
sync th r ead s ( ) ;

t = sdata [ 0 ] ˆ temp ;
}
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Algorithm 8 CTRR reduceMax()

i n t f l a g = 1 ;
i n t temp = 0 ;
sdata [ t i d ]=0;
whi l e ( i<n){

temp = sdata [ t i d ] ;
sdata [ t i d ] = ( g i d a t a [ i ] > g i d a t a [ i + b lo ckS i z e ] ) ?

g i d a t a [ i ] : g i d a t a [ i + b lo ckS i z e ] ;
sdata [ t i d ] = ( sdata [ t i d ] > temp ) ? sdata [ t i d ] : temp ;
temp = 0 ;
i += g r i d S i z e ;

}
whi le ( f l a g == 1){

sdata [ 0 ] = ( sdata [ 0 ] < sdata [ t i d ] ) ? sdata [ t i d ] : sdata [ 0 ] ;
s ync th r ead s ( ) ;

f l a g = 0 ;
f l a g = ( sdata [ t i d ] > sdata [ 0 ] ) ;

}
f l a g = 1 ;

previous value loaded for this particular thread.

Algorithms 8 and 9 present the highlights of the CUDA code written for maximum and minimum

reductions respectively.

3.3 Global Block synchronization (GBS)

The benefits of using barrier synchronization in parallel systems are widely known, but it is not

clear how this concept could be applied to multicores SIMD GPUs. NVIDIA suggests [2, 1] the

use of multiple thread blocks to maximize the performance of the system and synchronize blocks

within the GPU by making the host CPU simulate recursive calls to CUDA kernels. Therefore,

communications between thread blocks is possible at block invocation boundaries.

The problem with this type of interaction between blocks is simply that returning control to

the CPU is expensive and, even more significantly, doing so flushes all local state in the processing

elements. The cost of reloading registers and per-block shared memory can be very significant. Thus,

the ability to interact across blocks without ending a code fragment often will be critical in achieving

acceptable performance. In particular, barrier synchronization between blocks is very useful when

executing operations like reduction of very large arrays, voting functions, or even scans (parallel

prefix) as well; without barrier synchronization, the CPU must get involved.

The concept of global block synchronization implemented within GPUs was derived from a pre-

vious design of a barrier synchronization function included in the AFAPI library [16] and used to
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Algorithm 9 CTRR reduceMin() algorithm

i n t f l a g = 1 ;
i n t temp = 0x7FFFFFFF ;
sdata [ t i d ]=0x7FFFFFFF ; // sdata i s type i n t
whi l e ( i<n){

temp = sdata [ t i d ] ;
sdata [ t i d ] = ( g i d a t a [ i ] < g i d a t a [ i + b lo ckS i z e ] ) ?

g i d a t a [ i ] : g i d a t a [ i + b lo ckS i z e ] ;
sdata [ t i d ] = ( sdata [ t i d ] < temp ) ? sdata [ t i d ] : temp ;
temp = 0x7FFFFFFF ;
i += g r i d S i z e ;

}
whi le ( f l a g == 1){

sdata [ 0 ] = ( sdata [ 0 ] <= sdata [ t i d ] ) ? sdata [ 0 ] : sdata [ t i d ] ;
s ync th r ead s ( ) ;

f l a g = 0 ;
f l a g = ( sdata [ t i d ] < sdata [ 0 ] ) ;

}
f l a g = 1 ;

perform multiple aggregate computation algorithms including reduction, scans, voting, scheduling,

and communications functions implemented for the SHared Memory Adapter for Parallel Execution

and Rapid Synchronization (SHMAPERS) [17]. AFAPI [16] is an abstract program interface li-

brary which provides multiple aggregate functions and operations intended to be run in Unix/Linux

multiprocessor systems with shared memory.

In the barrier synchronization primitive included in SHMAPERS AFAPI, every time a barrier is

reached each processing element places his barrier counter value and the data value in two separate

buffers in the same dedicated cache line. Then, each processing element grabs data from cache

and linearly performs local computations for the corresponding operation (reduction, scans, voting,

scheduling or communications) grabbing data from cache after the barrier counter and data value

are loaded in shared memory. The barrier is executed by the p wait() primitive which basically

assigns a barrier counter to each processing element. This counter is incremented every time a

barrier is reached and no PE is able to perform computation unless it determines that all other PEs

have reached the value. If a PE finds a barrier counter value greater that of its own, it means that

another PE found the barrier was already reached hence it is safe to continue with computations.

Since the cache lines fetched to detect the barrier hold the data as well, execution of the aggregate

functions can be started while reading the barrier synchronization values [17].

Following the AFAPI concept, a block synchronization kernel called syncblocks() was imple-

mented for NVIDIA CUDA GPUs even though the same concept could be applied generically for
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Algorithm 10 syncblocks () CUDA kernel

s y n c b l o c k s ( r e g i s t e r v o l a t i l e unsigned i n t ∗barvec ) {
/∗ Make a l l threads sync with in each block ∗/

sync th r ead s ( ) ;

/∗ Only one PE r e p r e s e n t s the block ∗/
i f ( threadIdx . x == 0) {

r e g i s t e r i n t i = ( ( b lockIdx . x + 1) % gridDim . x ) ;
r e g i s t e r i n t barno = barvec [ b lockIdx . x ] + 1 ;
r e g i s t e r i n t h i sbarno ;
barvec [ b lockIdx . x ] = barno ;

/∗ Keep look ing at o the r s u n t i l a l l are here
or somebody e l s e i s past ∗/

do {
/∗ Wait f o r t h i s one to a r r i v e ∗/
do {

hisbarno = barvec [ i ] ;
} whi le ( h i sbarno < barno ) ;

/∗ Bump to next , wrapping i f needed ∗/
i f (++i >= gridDim . x ) i = 0 ;
} whi le ( ( h i sbarno == barno ) && ( i != blockIdx . x ) ) ;

/∗ We’ re past . . . t e l l everybody ∗/
barvec [ b lockIdx . x ] = barno + 1 ;
}

}

other cards. The syncblocks() kernel and the logic behind it is presented now.

By using syncblocks(), every block running the kernel is assigned a barrier counter which is

incremented every time a barrier is passed. Thus, when all the counters hold the same value means a

barrier is completed. However, if a block sees that the value held by another block is greater than its

own value then another block is currently waiting at the next barrier. The actual block understands

that the current barrier has completed and proceeds to update its counter without having to read

every other block’s counter. This logic prevents a block from looping all the way around when a

barrier was already passed. Algorithm 10 presents the code for syncblocks().

How exactly are syncblocks() and the block synchronization used? The idea is to execute

the computation within each block, and once each block reaches its own result, then it loads the

value to global memory. Next, syncblocks() is invoked to set the synchronization point. When

the block synchronization is completed and every block has written its value in memory, then the

first block is in charge of collecting the temporary results previously found by all blocks to perform

the final computation and find the global solution. It should be noted that CUDA can be forced to
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maintain memory access order within a thread by using the volatile keyword in declarations.

As an example, algorithm p reduceAdd() follows the optimization path for the summation re-

duction operation using CUDA suggested by NVIDIA [1], and a final step is inserted calling the

syncblocks() function, resulting on better execution times for large arrays and slightly less effi-

cient for small arrays of data. The description of p reduceAdd() is included in Appendix 5.

3.3.1 Global State Restoring

The GBS mechanism restores the data held in global memory at a determined time which is equiv-

alent to restoring the global state. In order to compare the performance of the GBS mechanism, a

global state restoring algorithm was implemented.

This algorithm allows each thread in a block to read the value from global memory and transfer

it to a local set of registers, where the set of data would be available for computation. Then, data

is loaded back to global memory.

3.3.2 GBS Library

By using the kernel syncblocks() as a barrier synchronization mechanism and using the same

concept used when implementing AFAPI in SHMAPERS [17], one could implement and execute

within the GPUs most of the AFAPI library algorithms. Here, we introduce a fraction of the AFAPI

library version implemented using the GBS for NVIDIA GPUs.

The first kernel implemented was syncblocks(), which implements barrier synchronization be-

tween blocks. The reduce Or(), reduce And(), reduce Max(), and reduce Add() calls perform

the corresponding types of aggregate reductions. The p bcast() function corresponds to the broad-

casting function, p count() counts how many elements voted for a given value, and p vote() returns

an array of bits with bit 2kset if only if element k voted for the given value. Finally, p quantify()

returns 0 if no element voted for the given value, returns 1 if only one element voted for the given

value and returns 2 if two or more elements voted for the given value.

Chapter 4 presents the performance results found after running the following algorithms using

the GBS mechanism and Appendix 5 presents the detail of the CUDA code.

27



4 Performance results

To verify the effectiveness of the concepts presented in this thesis, a set of micro-benchmarks were

run in two different machines and the execution times for each of the programs were measured.

Each of the machines have a different type of GPU system. The first test machine, uses a high end

NVIDIA GPU GTX-280 with compute capability 1.3 while the second test machine uses a low end

NVIDIA GPU 8800-GTS with compute capability 1.0. Both machines run under Linux operation

system Ubuntu 8.04 “hardy” with a 2.6.24 kernel.

Table 2 presents a summary of the CPU and Memory specs for both test machines and Table 4

presents the specifications of the GPU cards included in the test machines.

Test Machine Specifications
Processor AMD Athlon(tm) 64 X2 Dual Core Processor 4200+
CPU MHz 1,000
Cache Size 512 KB

Cores 2
RAM Memory 1 GB

Table 2: Test Machines Information

Machine 1 Machine 2
GPU System GTX-280 Geforce 8800 GTS

Compute Capability 1.3 1.0
Global Memory 1 GB 320 MB

Shared Memory per Block 16 KB 16 KB
Memory Clock 1107 MHz 800 MHz

Memory Bandwidth 141.7 GB/Sec 64 GB/Sec
Multiprocessors (SIMD Engines) 30 12

Cores (Scalar Processors) 240 96
Core Clock 1296 MHz 500 MHz

Registers per Block 16384 8192
Max Threads per Block 512 512

Clock Rate (card) 1.3 GHz 1.19 GHz

Table 3: GPU specifications

After having described the technical specifications of the test machines and the GPU systems they

included, it is necessary to describe how the benchmark programs were implemented and executed

to measure the execution time of the CTRR and GBS algorithms. In order to obtain the simulation

graphics and make the results comparable with each other some restrictions were set. The number

of threads per block and the number of blocks were fixed to 128 and 64 respectively. Since the

main objective of this thesis was to probe the functionality of the new CTRR and GBS concepts

and not to find the optimal parameters under which these concepts reach the peak optimal, fixing
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the values of threads and blocks seemed like a valid procedure. Although the parameters for the

number of threads per block and the number of blocks per grid were chosen arbitrarily, they are still

representative numbers and they match the parameters used by NVIDIA to present their simulation

results [1].

The number of elements in the input data stream was used as a variable parameter to run

the benchmark programs. Eleven different values were used from 4K to 4M and the programs

were executed 50 times for each parameter value in the two test machines. The CUDA program

determines the average execution time using the cutGetAverageTimerValue() CUDA function [2]

then, the mean average time value out of the 50 results was chosen.

4.1 Native kernel p any() using atomic operations

Figures 4.1, 5, and 6 show the execution time of the atom p any() kernel when it was run on test

machine 1 using a GTX-280 GPU. The input data for this test was a random vector with values 0

or 1 and the kernel included an early finish termination condition.

Figure 4: atom p any() Execution Time

To validate the improvement achieved with the early finish condition, four more benchmarks

were run combining early and late termination when the input stream was all 1 or all 0. The results

are presented in figures 5 and 6. This set of tests could not be performed in test machine 2 because

the 8800 GTS system does not include atomic operation support (it is compute capability 1.0).

29



Figure 5: p atom any() Early vs Late finish with inputs 0

Figure 6: p atom any() Early vs Late finish with inputs 1
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It is interesting to see that for less than 64K elements to reduce, the execution time is relatively

stable and below 90 us; for 128K or more elements, the execution time slowly increases, going up

to 120 us in the worst case. The reason behind this is because an atomic operation has to lock the

hardware resources in order to enforce the read-modify-write cycle. This fact is less noticeable with

a small input data stream because it can be hidden with the high computing performance of the

single PEs, also, fewer elements imply less kernel recursion and less thread virtualization.

As expected, the early termination condition was very useful when the stream input was all 1

and saved some execution time compared with the results achieved for the late termination. Also,

it was shown that when input data is all 0, there is no gain on using the early termination condition

since the whole stream has to be read anyway.

4.2 CTRR native kernels

Figure 4.2 and 4.2 present the results of testing the basic CTRR native functions in both types of

GPUs. It is clearly shown that the time used to find the solution by the kernel is mostly constant

and very efficient compared with the performance reached with the NVIDIA built in atomicOr()

function.

Figure 7: p selectOne() Execution Time

Figure 4.2 shows the execution time of running the function p selectOne().This graph makes

it very easy to understand and verify the functionality of the NVIDIA GPU system when multiple
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threads try to reach the same spot in memory. The solution time is essentially constant, independent

of the number of elements in the input data stream. It is also possible to see that the high end GTX-

280 is slightly faster than the low end 8800 GTS. However, the difference in execution time between

them is only about 2 us. This execution time difference could be due to the higher clock rate of the

single processors included in the GTX-280, but the difference is surprisingly small no matter what

the reason.

Figure 8: p any() Execution Time

Figure 4.2 presents the execution found after running the p any() native function in the test

machines. The results follow the trend of constant time execution seen in the p selectOne()

algorithm; however, there are some differences. The data showed that for 64K elements or less the

constant time resolution stands between 40 and 50 us and for over 128K elements the time is between

50 and 60 us. The difference between the values found here and those shown before in figure 4.2

are explained by the fact that threads in p any() and p all() performs a little computation, while

threads in p selectOne() do not make any.

Figures 9, 10, 11 and 12 present the results obtained when running the early and late termination

conditions with input data stream either all 0 or all 1 for the p any() native function. The same

test could have been run for the p all() kernel but since p any() and p all() only differ in the

evaluation condition, we believe that the results found with p any() also apply for p all().

The execution times obtained by running the benchmarks confirm the expected behavior. As in
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Figure 9: p any() Early vs Late finish with inputs 0 - GTX 280

the atom p any() test, the early termination condition kernel with input data stream being all 1

was the fastest function in both GTX-280 and 8800 GTS systems. There was no effect on runtime

for the kernel with early termination condition and input data stream being all 0 as compared to

the performance obtained when running the kernel without the early termination verification and

the same input data stream. Thus, the early termination test appears to be harmless even in the

case in which it logically serves no purpose.

An interesting observation was found after running the p any() benchmarks. In both test systems

the difference between the execution times obtained with the high end machine and those found with

the low end GPU are not significantly different. In fact for some of the tests, execution times found

for the low end machine were slightly faster that those found on the GTX-280. This observation

demonstrates that the CTRR mechanism appears to be a fundamental component of the GPU

architecture and one would expect to obtain similar results with different machines even if they have

different compute capabilities.
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Figure 10: p any() Early vs Late finish with inputs 0 - GTX 280

Figure 11: p any() Early vs Late finish with inputs 0 - 8800GTS
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Figure 12: p any() Early vs Late finish with inputs 1 - 8800GTS

Figure 13: p all() Execution Time

Figure 4.2 presents the results of running p all() in the test machines. The results are almost

identical to those findings in 4.2. It is interesting to see how for 4M elements the execution time

for the GTX-280 and the 8800 GTS are very close in the case of p all() and exact in the case of
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p any().

Comparing the graphics 4.1, p atom any() and 4.2 p any(), one can see the difference of using the

atomic method of synchronization with the CTRR. The major difference between the performance

of these two methods is that the execution time of p atom any() increases considerably with the

number of elements, while this is not the case for p any(). The big gap existing between execution

times suggests that the system locks from the atomic nature of p atom any() definitely hurts the

performance of running p atom any() over big input data streams. Another large difference between

the two schemes is that atomic operations cannot be executed in systems with compute capability

1.0, like the 8800 GTS, whereas p any() does not present any hardware restriction.

4.3 GBS kernels

The basic unit of the global block synchronization mechanism is the syncblocks() kernel. The

execution time performance reached when running the function in the test machines is presented in

figure 4.3.

Unlike the rest of the benchmarks run in this thesis, the test for the syncblocks() kernel took

into account the variable number of blocks to synchronize rather than the number of elements to

reduce. This was done due to the nature of the kernel and the objective wanted to reach with it

which is to synchronize multiple blocks using global memory.

Figure 14: syncblocks() Execution Time
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By seeing the performance data, it was shown that the execution time increases almost linearly

with the number of blocks to synchronize. This behavior was expected since the kernel runs a barrier

synchronization counter within each block or SIMD engine, hence it is valid to assume that the more

blocks to synchronize the more counters to evaluate, and more time computing the operation.

However, there was an interesting result found when running the test. For the 8800 GTS system

the execution time raised up to almost 8 seconds when the number of blocks needed to synchronize

was over 90. Although it is not completely clear why this happens, it is believed that the number of

SIMD engines within the GPU affects the behavior of syncblocks(), suggesting that for a tuned

performance, a parametric optimum number of blocks must be set.

Figures 15, 16, 17, 18 and 19 present the performance results of the reduction operations Add,

Or, And, Max and Min respectively. These algorithms used the GBS mechanism to find the reduced

value. However, the reduction within each block was computed using the optimized reduction algo-

rithm developed by NVIDIA [1]. A comparison between the pure NVIDIA reduceAdd() algorithm

and the GBS reduceAdd() was also done and presented.

Figure 15: reduceAdd() using global block synchronization

Figure 15 corresponds to the execution time of running the reduceAdd() function on the test

machines. Beside the optimizations explained by NVIDIA [1] in the process of finding the reduced

value inside each block, the GBS algorithm presents an extraordinary performance almost matching

the time values reached by the CTRR kernels.
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The final solution is reached in two barriers. During the first barrier, each block computes its

own result and writes it back to the designated cell memory in global memory. During the second

barrier only the first block is in charge of gathering the partial results, computing the final result,

and placing it in global memory.

It is interesting to see how for 2M elements and above, the timing results of running the bench-

mark in the low end 8800 GTS almost ties the execution time reached with the high end GTX-280.

Figure 16: reduceOr() using global block synchronization

Figure 16 presents the performance results of running the reduceOr() benchmark on the test

machines. The results are consistent with the findings in previous GBS algorithms presented here.
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Figure 17: reduceAnd() using global block synchronization

Figure 17 shows the results of the execution time of running the reduceAnd() benchmark. Once

again, since the techniques used by the algorithms are exactly the same, the results were expected

to be similar.

Figure 18: reduceMax() using global block synchronization
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Figure 19: reduceMin() using global block synchronization

Figure 18 and figure 19 include the execution time of running the reduceMax() and reduceMin()

algorithms respectively.

Figure 20: NVIDIA reductionAdd() Execution Time [1]

Figure 20 was included here as a reference value used to compare the effectiveness of the GBS
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mechanism. The main difference between the two concepts is that while the NVIDIA algorithm

reaches global synchronization by recursively calling and executing the kernel, GBS uses a barrier

synchronization function syncblocks() to coordinate blocks – thus avoiding kernel recursion calls.

Comparing the results of figure 15 of reduceAdd() using GBS with figure 20 of reduceAdd()

using NVIDIA style, it is clearly seen that for larger input data streams GBS produces a speedup

of 13%, 50% and 69% for input data streams of 1M, 2M and 4M respectively with the GTX-280.

For smaller input data streams (4K to 512K), NVIDIA reduction style is about 28% faster. Note

that these numbers are biased in favor of NVIDIA’s methods, because the (usually very significant)

cost of saving and restoring the state of GPU registers and shared memory is present with their

algorithms, but not accounted here.

When testing the 8800 GTS system, GBS produces a speedup of 16%, 45%, 68% and 83% for

input data streams of 512K, 1M, 2M and 4M respectively and NVIDIA style is approximately a 32%

faster for 4K to 128K input data stream reductions.

This result confirms the fact that recursively calling the kernel hurts the overall performance of

a computation and, because fewer input elements implies fewer kernel recursive calls, it is expected

to reach better performance results for smaller input data streams.

Another observation made from this performance comparison is the confirmation of the trend

followed by NVIDIA in terms of adjusting the architecture of their new systems to make kernel

recursion less frequent in order to obtain better results. The old 8800 GTS system efficiently reduces

up to 128K elements and the new GTX-280 efficiently reduces up to 512K elements.

Figures 21, 22, 4.3 and 24 present the performance results of testing the reduction operations

Or, And, Max and Min combining the two methods, CTRR mechanism to find the partial reduction

result within each block, and GBS to coordinate blocks in global memory to find the final result.

The idea was to compare how different the execution time results between CTRR and NVIDIA

styles are when reducing elements within a block of 128 threads.
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Figure 21: reduceAnd() using CTRR and global block synchronization

First, reduceAnd() is analyzed in figure 21. The performance information says that both methods

of finding the partial reduction result within a block produce very similar results. However, using

the NVIDIA style is an average of 2% faster than the CTRR style when using the GTX-280, but

CTRR is an average of 1% faster when the test was executed in the 8800 GTS system.

Figure 22: reduceOr() using CTRR and global block synchronization
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Figure 22 shows the execution time for reduceOr(). In comparison with NVIDIA style, CTRR

is an average 6% slower with GTX-280. For the 8800 GTS system, there is no average difference in

execution time.

Figure 23: reduceMax() using CTRR and global block synchronization

The CTRR style is an average of 4% slower with GTX-280 when running the reduceMax()

reduction and no average difference in execution time when running the benchmark in the 8800

GTS. Figure 4.3 presents the execution time results.
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Figure 24: reduceMin() using CTRR and global block synchronization

Figure 24 shows the execution time results for the reduceMin() benchmark. Comparing the

results with the NVIDIA style, CTRR style is also an average of 4% slower with GTX-280. Again,

no differences were found when running the benchmark in the 8800 GTS.

4.4 Using GBS to implement some AFAPI functions

The next group of figures show the performance reached when testing some of the programs from

the original AFAPI library using the syncblocks() kernel instead of the original p wait() func-

tion used back then. The new GBS mechanism seems to work efficiently with both GTX-280 and

8800 GTS. Figures 25, 4.4, 27, 28 and 29 presents the execution time of the functions p bcast(),

p count(), p first(), p quantify() and p vote().
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Figure 25: p bcast() Execution Time

The results found when broadcasting data using the GBS concept to reach barrier synchronization

between different blocks using global memory are shown in figure 25. As expected, the timing

information of p bcast() is highly affected by the behavior of syncblocks() and it is consistent

with the shape of previous GBS graphics.

Figure 4.4 to figure 29 demonstrate very similar behavior for the p bcast() function described

above.
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Figure 26: p count() Execution Time

Figure 27: p first() Execution Time
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Figure 28: p quantify() Execution Time

Figure 29: p vote() Execution Time
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5 Conclusion and future work

Based on the architecture model of the GPUs presented in Chapter 2 and the performance results

in terms of execution time found in Chapter 4 we conclude that even though new GPU systems are

no longer designed as a pure Single Instruction Multiple Data (SIMD) model, but as multiple SIMD

multiprocessors, it is still possible to reach synchronization between threads in different SIMD cores

in an efficient way using techniques like CTRR or barrier synchronization through the global block

synchronization mechanism.

Using techniques such as CTRR and GBS offer a new approach for performing reduction op-

erations and native functions within GPUs without the overhead produced by recursively calling

and executing the kernel – the strategy suggested by NVIDIA in the CUDA programming guide

[2]. Although the same functions could be implemented using the built in atomic functions of com-

pute capability 1.3, CTRR and GBS offer better execution times. CTRR and GBS are mechanisms

available to every NVIDIA GPU system independently of their compute capability or architecture.

Despite the compute capability difference between the test systems GTX-280 and 8800 GTS with

compute capability 1.3 and 1.0 respectively, it was shown that the difference of execution time for

the constant time race resolution algorithms between them is only 2us. The use of CTRR functions

within low end GPUs makes them seen almost as powerful as a high end system, raising their

price/performance ratio. Perhaps the extra circuit complexity invested in adding atomic instructions

could be better used in other ways?

The constant time race resolution concept was determined to be useful when implementing

algorithms that follow the race condition or those where randomly picking a winner thread provide

an acceptable solution. Additional improvements to the CTRR algorithms were done for such

functions that commonly present an early finish condition, like p any() or p all(). On the other

hand, the extra branch instruction necessary to verify the early finish should generate a loss of

performance for functions that imply arithmetic operations or those where the early finish condition

is rarely met – although this performance loss was found to be generally negligible.

The functions where CTRR was tested and proved to work well were global OR, global AND,

and Select One. Some other algorithms for which using CTRR is a possibility are Max, and Min. An

extra thread control function must be included in those kernels to guarantee that every thread was

analyzed; however, other types of algorithms like summations or scans are not easy to implement

using CTRR.

Global block synchronizationwas was reached by using a kernel called syncblocks(). It was
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implemented and tested, the execution time analysis suggests that reaching global synchronization

through that way avoids the use of kernel recursion, while reaching similar results in terms of

coordination. Although it is still necessary to find an optimum parameter for the maximum number

of blocks to synchronize, this thesis demonstrated that it is possible to use GPUs to effectively

implement some of the algorithms included in the original AFAPI library [17] and according to

analysis of the performance graphs by using the GBS kernel the difference of execution time between

GTX-280 and 8800 GTS is unnoticeable.

Although this thesis introduced the concepts of global synchronization and reduction algorithms

within NVIDIA GPUs and probed whether it is possible to include those concepts in CUDA kernels,

there are still some improvements and future work needed.

It is necessary to implement the synchronization mechanisms in other types of GPUs, specifically

in ATI models.

It is also necessary to implement the codes of the algorithms using the OpenCL language.

OpenCL is an architecture independent high level language that can be used by various vendors. In

April 2009, NVIDIA released the OpenCL driver and SDK [18].
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APPENDIX

The Appendix presents the code for the different functions implemented in the CUDA kernels used

in this thesis. It first shows the atomic and constant time race resolution native kernels, then it

shows the code for the block synchronization kernel and the reduction operations implemented with

it. Finally, the CUDA kernel functions of a subset of the functions included in the AFAPI library

are also shown.

Most of the functions follow the same code structure. A definition of the function using the

global reserved word which is a special requirement of the CUDA language [2], the declaration

of the type and name of the input parameters of the kernel. Then the declaration of the local variables

and the declaration of the space in shared memory with the extern shared int sdata[] line.

The size of sdata[] is determined at launch time with the parameter specifying the amount of bytes

that will be dynamically allocated per block [2].

Now, a brief description of each function is presented along with the input parameters.

p atom any()

This is the version of p any() using the atomicOr() built in function of the NVIDIA GTX-280. It

is intended to determine if any of the elements of the input stream data has a value of 1.

g l o b a l void p atom any ( i n t ∗ g idata , i n t ∗g odata , i n t n) {
extern s h a r e d i n t sdata [ ] ;
i n t i = blockIdx . x∗blockDim . x∗2 + threadIdx . x ;
i n t g r i d s i z e = blockDim . x∗2∗ gridDim . x ;
i n t t i d = threadIdx . x ;
i f ( g odata [ b lockIdx . x]==0){

whi le ( i<n && sdata [0]==0){
sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockDim . x ] ;
atomicOr(&sdata [ 0 ] , sdata [ t i d ] ) ;
i+=g r i d s i z e ;

}
g odata [ b lockIdx . x]= sdata [ 0 ] ;
}

sync th r ead s ( ) ;
}
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p warp any()

This is the version of p any() using the any() built in vote function of the NVIDIA GTX-280. It

is intended to determine warp by warp if any of the elements of the input stream data has a value

of 1.

g l o b a l void p warp any ( i n t ∗ g idata , i n t ∗g odata , i n t n) {
extern s h a r e d i n t sdata [ ] ;
i n t i = blockIdx . x∗blockDim . x∗2 + threadIdx . x ;
i n t g r i d s i z e = blockDim . x∗2∗ gridDim . x ;
i n t t i d = threadIdx . x ;
i f ( g odata [ b lockIdx . x]==0){

whi le ( i<n && sdata [0]==0){
sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockDim . x ] ;
sdata [ 0 ] = ( any (1 ) != 0 ) ;
i+=g r i d s i z e ;
}

g odata [ b lockIdx . x]= sdata [ 0 ] ;
}

sync th r ead s ( ) ;
}

p selectOne()

This function returns the thread ID of the first thread to write in global memory. This function

describes clearly the concept of constant time race resolution.

g l o b a l void p se l ec tOne ( v o l a t i l e i n t ∗ g odata ) {
i n t i = blockIdx . x∗blockDim . x + threadIdx . x ;

s ync th r ead s ( ) ;
g odata [ 0 ] = i ;

}

p any()

This function determines if any of the elements of the input stream data has a value of 1, although

this could be easily modified to evaluate any condition. The final version of the kernel includes the

early finish validation.
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g l o b a l void p any ( i n t ∗ g idata , i n t ∗g odata , i n t n) {
extern s h a r e d i n t sdata [ ] ;
i n t t i d = threadIdx . x ;
i n t i = blockIdx . x∗blockDim . x∗2 + threadIdx . x ;
i n t g r i d s i z e = blockDim . x∗2∗gridDim . x ;
sdata [ t i d ] = 0 ;

sync th r ead s ( ) ;

i f ( g odata [ b lockIdx . x]==0){
whi le ( sdata [0]==0 && i < n) {

sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockIdx . x ] ;
i f ( sdata [ t i d ]==1) sdata [ 0 ] = 1 ;
i += g r i d s i z e ;
}

g odata [ b lockIdx . x]= ( sdata [0 ]==1);
}

sync th r ead s ( ) ;
}

p all()

This function determines if all of the elements of the input stream data has a value of 1, although

this could be easily modified to evaluate any condition. The final version of the kernel includes the

early finish validation.

g l o b a l void p a l l ( i n t ∗ g idata , i n t ∗ g odata in , unsigned i n t n) {
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
sdata [ t i d ] = 0 ;

whi l e ( i < n){
sdata [ t i d ] &= g i d a t a [ i ] & g i d a t a [ i+b lo ckS i z e ] ;
i += g r i d S i z e ;
i f ( sdata [ t i d ] == 0) sdata [ 0 ] = 0 ;
}

sync th r ead s ( ) ;
i f ( threadIdx . x == 0) g oda ta in [ b lockIdx . x ] = sdata [ 0 ] ;
}
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syncblocks()

This function implements the barrier synchronization mechanism used to coordinate different blocks.

Variables barno and hisbarno represent the barrier counter of current block and next block respec-

tively.

g l o b a l void s y n c b l o c k s ( r e g i s t e r v o l a t i l e unsigned i n t ∗barvec ) {
sync th r ead s ( ) ;

i f ( threadIdx . x == 0) {
r e g i s t e r i n t i = ( ( b lockIdx . x + 1) % gridDim . x ) ;
r e g i s t e r i n t barno = barvec [ b lockIdx . x ] + 1 ;
r e g i s t e r i n t h i sbarno ;
barvec [ b lockIdx . x ] = barno ;
do {

do {
hisbarno = barvec [ i ] ;
} whi le ( h i sbarno < barno ) ;

i f (++i >= gridDim . x ) i = 0 ;
} whi le ( ( h i sbarno == barno ) && ( i != blockIdx . x ) ) ;

barvec [ b lockIdx . x ] = barno + 1 ;
}

}

reduceAdd GBS()

Reduction summation using global block synchronization. The reduction within each block follows

the optimized reduction algorithm presented by NVIDIA [1].

g l o b a l void reduceAdd GBS ( i n t ∗ g idata , i n t ∗ g odata in ,
unsigned i n t n)

{
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
r e g i s t e r v o l a t i l e i n t ∗ g odata = g oda ta in ;
r e g i s t e r v o l a t i l e i n t ∗barvec = ( g odata + gridDim . x ) ;
sdata [ t i d ] = 0 ;

whi l e ( i < n){
sdata [ t i d ] += g i d a t a [ i ] + g i d a t a [ i+b lo ckS i z e ] ;
i += g r i d S i z e ;
}

sync th r ead s ( ) ;
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i f ( b l o ckS i z e >= 512){
i f ( t i d < 256) {

sdata [ t i d ] += sdata [ t i d + 2 5 6 ] ;
}

sync th r ead s ( ) ;
}
i f ( b l o ckS i z e >= 256){

i f ( t i d < 128) {
sdata [ t i d ] += sdata [ t i d + 1 2 8 ] ;

}
sync th r ead s ( ) ;

}
i f ( b l o ckS i z e >= 128) {

i f ( t i d < 64) {
sdata [ t i d ] += sdata [ t i d + 6 4 ] ;

}
sync th r ead s ( ) ;

}
#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( b l o ckS i z e >= 64) {
sdata [ t i d ] += sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 32) {

sdata [ t i d ] += sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 16) {

sdata [ t i d ] += sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 8) {

sdata [ t i d ] += sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 4) {

sdata [ t i d ] += sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 2) {

sdata [ t i d ] += sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
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i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;
s y n c b l o c k s ( ( v o l a t i l e unsigned i n t ∗) barvec ) ;

i f ( b lockIdx . x == 0) {
i f ( t i d < gridDim . x ) {

sdata [ t i d ] = g odata [ t i d ] ;
}

sync th r ead s ( ) ;
i f ( gridDim . x >= 128) {

i f ( t i d < 64) {
sdata [ t i d ] += sdata [ t i d + 6 4 ] ;

}
sync th r ead s ( ) ;

}
#i f n d e f DEVICE EMULATION

i f ( t i d < 32)
#e n d i f

{
i f ( gridDim . x >= 64) {

sdata [ t i d ] += sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 32) {

sdata [ t i d ] += sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 16) {

sdata [ t i d ] += sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 8) {

sdata [ t i d ] += sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 4) {

sdata [ t i d ] += sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 2) {

sdata [ t i d ] += sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;

}
}
#e n d i f // #i f n d e f REDUCE KERNEL H
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reduceOr GBS()

Reduction OR operation over 32-bit words using global block synchronization. The reduction within

each block follows the optimized reduction algorithm presented by NVIDIA [1].

g l o b a l void reduceOr GBS
( i n t ∗ g idata , i n t ∗ g odata in , unsigned i n t n) {
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
r e g i s t e r v o l a t i l e i n t ∗ g odata = g oda ta in ;
r e g i s t e r v o l a t i l e i n t ∗barvec = ( g odata + gridDim . x ) ;
sdata [ t i d ] = 0 ;
whi l e ( i < n) {

sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i+b lo ckS i z e ] ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

i f ( b l o ckS i z e >= 512) {
i f ( t i d < 256) {

sdata [ t i d ] |= sdata [ t i d + 2 5 6 ] ;
}

sync th r ead s ( ) ;
}
i f ( b l o ckS i z e >= 256) {

i f ( t i d < 128) {
sdata [ t i d ] |= sdata [ t i d + 1 2 8 ] ;

}
sync th r ead s ( ) ;

}
i f ( b l o ckS i z e >= 128) {

i f ( t i d < 64) {
sdata [ t i d ] |= sdata [ t i d + 6 4 ] ;

}
sync th r ead s ( ) ;

}
#i f n d e f DEVICE EMULATION

i f ( t i d < 32)
#e n d i f
{

i f ( b l o ckS i z e >= 64) {
sdata [ t i d ] |= sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 32) {

sdata [ t i d ] |= sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
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i f ( b l o ckS i z e >= 16) {
sdata [ t i d ] |= sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 8) {

sdata [ t i d ] |= sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 4) {

sdata [ t i d ] |= sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 2) {

sdata [ t i d ] |= sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( ( v o l a t i l e unsigned i n t ∗) barvec ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) {
sdata [ t i d ] = g odata [ t i d ] ;

}
sync th r ead s ( ) ;

i f ( gridDim . x >= 128) {
i f ( t i d < 64) {

sdata [ t i d ] |= sdata [ t i d + 6 4 ] ;
}

sync th r ead s ( ) ;
}

#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( gridDim . x >= 64) {
sdata [ t i d ] |= sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 32) {

sdata [ t i d ] |= sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 16) {

sdata [ t i d ] |= sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 8) {

sdata [ t i d ] |= sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 4) {

sdata [ t i d ] |= sdata [ t i d + 2 ] ;
EMUSYNC;

}
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i f ( gridDim . x >= 2) {
sdata [ t i d ] |= sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;

}
}
#e n d i f // #i f n d e f REDUCE KERNEL H

reduceAnd GBS()

Reduction AND operation over 32-bit words using global block synchronization. The reduction

within each block follows the optimized reduction algorithm presented by NVIDIA [1].

reduceAnd GBS ( i n t ∗ g idata , i n t ∗ g odata in , unsigned i n t n) {
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
r e g i s t e r v o l a t i l e i n t ∗ g odata = g oda ta in ;
r e g i s t e r v o l a t i l e i n t ∗barvec = ( g odata + gridDim . x ) ;
sdata [ t i d ] = 0 ;
whi l e ( i < n) {

sdata [ t i d ] &= g i d a t a [ i ] & g i d a t a [ i+b lo ckS i z e ] ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

i f ( b l o ckS i z e >= 512) {
i f ( t i d < 256) {

sdata [ t i d ] &= sdata [ t i d + 2 5 6 ] ;
}

sync th r ead s ( ) ;
}
i f ( b l o ckS i z e >= 256) {

i f ( t i d < 128) {
sdata [ t i d ] &= sdata [ t i d + 1 2 8 ] ;

}
sync th r ead s ( ) ;

}
i f ( b l o ckS i z e >= 128) {

i f ( t i d < 64) {
sdata [ t i d ] &= sdata [ t i d + 6 4 ] ;

}
sync th r ead s ( ) ;

}
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#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( b l o ckS i z e >= 64) {
sdata [ t i d ] &= sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 32) {

sdata [ t i d ] &= sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 16) {

sdata [ t i d ] &= sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 8) {

sdata [ t i d ] &= sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 4) {

sdata [ t i d ] &= sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 2) {

sdata [ t i d ] &= sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( ( v o l a t i l e unsigned i n t ∗) barvec ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) {
sdata [ t i d ] = g odata [ t i d ] ;

}
sync th r ead s ( ) ;

i f ( gridDim . x >= 128) {
i f ( t i d < 64) {

sdata [ t i d ] &= sdata [ t i d + 6 4 ] ;
}

sync th r ead s ( ) ;
}

#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( gridDim . x >= 64) {
sdata [ t i d ] &= sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 32) {

sdata [ t i d ] &= sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
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i f ( gridDim . x >= 16) {
sdata [ t i d ] &= sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 8) {

sdata [ t i d ] &= sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 4) {

sdata [ t i d ] &= sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 2) {

sdata [ t i d ] &= sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;

}
}
#e n d i f // #i f n d e f REDUCE KERNEL H

reduceMax GBS()

Reduction MAX operation over 32-bit words using global block synchronization. The reduction

within each block follows the optimized reduction algorithm presented by NVIDIA [1].

g l o b a l void reduceMax GBS
( i n t ∗ g idata , i n t ∗ g odata in , unsigned i n t n)
{
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
r e g i s t e r v o l a t i l e i n t ∗ g odata = g oda ta in ;
r e g i s t e r v o l a t i l e i n t ∗barvec = ( g odata + gridDim . x ) ;
sdata [ t i d ] = 0 ;
i n t temp = 0 ;

whi l e ( i < n) {
temp = sdata [ t i d ] ;
sdata [ t i d ] = ( g i d a t a [ i ] > g i d a t a [ i + b lo ckS i z e ] ) ?

g i d a t a [ i ] : g i d a t a [ i + b lo ckS i z e ] ;
sdata [ t i d ] = ( sdata [ t i d ] > temp ) ? sdata [ t i d ] : temp ;
temp = 0 ;
i += g r i d S i z e ;

}
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sync th r ead s ( ) ;
i f ( b l o ckS i z e >= 512) {

i f ( t i d < 256) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 2 5 6 ] ) ?

sdata [ t i d ] : sdata [ t i d +256] ;
}

sync th r ead s ( ) ;
}
i f ( b l o ckS i z e >= 256) {

i f ( t i d < 128) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 1 2 8 ] ) ?

sdata [ t i d ] : sdata [ t i d +128] ;
}

sync th r ead s ( ) ;
}
i f ( b l o ckS i z e >= 128) {

i f ( t i d < 64) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 64 ] ) ?

sdata [ t i d ] : sdata [ t i d +64] ;
}

sync th r ead s ( ) ;
}
#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( b l o ckS i z e >= 64) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 3 2 ] ) ?

sdata [ t i d ] : sdata [ t i d +32] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 32) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 1 6 ] ) ?
sdata [ t i d ] : sdata [ t i d +16] ;

EMUSYNC;
}
i f ( b l o ckS i z e >= 16) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 8 ] ) ?
sdata [ t i d ] : sdata [ t i d +8] ;

EMUSYNC;
}
i f ( b l o ckS i z e >= 8) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 4 ] ) ?
sdata [ t i d ] : sdata [ t i d +4] ;

EMUSYNC;
}
i f ( b l o ckS i z e >= 4) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 2 ] ) ?
sdata [ t i d ] : sdata [ t i d +2] ;

EMUSYNC;
}
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i f ( b l o ckS i z e >= 2) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 1 ] ) ?

sdata [ t i d ] : sdata [ t i d +1] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( ( v o l a t i l e unsigned i n t ∗) barvec ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) sdata [ t i d ] = g odata [ t i d ] ;
s ync th r ead s ( ) ;

i f ( gridDim . x >= 128){
i f ( t i d < 64){

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d +64]) ?
sdata [ t i d ] : sdata [ t i d +64] ;

}
sync th r ead s ( ) ;

}
#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( gridDim . x >= 64) {
sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 3 2 ] ) ?

sdata [ t i d ] : sdata [ t i d +32] ;
EMUSYNC;

}
i f ( gridDim . x >= 32) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 1 6 ] ) ?
sdata [ t i d ] : sdata [ t i d +16] ;

EMUSYNC;
}
i f ( gridDim . x >= 16) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 8 ] ) ?
sdata [ t i d ] : sdata [ t i d +8] ;

EMUSYNC;
}
i f ( gridDim . x >= 8) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 4 ] ) ?
sdata [ t i d ] : sdata [ t i d +4] ;

EMUSYNC;
}
i f ( gridDim . x >= 4) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 2 ] ) ?
sdata [ t i d ] : sdata [ t i d +2] ;

EMUSYNC;
}
i f ( gridDim . x >= 2) {

sdata [ t i d ] = ( sdata [ t i d ] > sdata [ t i d + 1 ] ) ?
sdata [ t i d ] : sdata [ t i d +1] ;

EMUSYNC;
}

}
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i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;
}
}
#e n d i f // #i f n d e f REDUCE KERNEL H

reduceAnd CTRR GBS()

Reduction AND operation over 32-bit words using global block synchronization. The reduction

within each block follows the constant time race resolution algorithm.

g l o b a l void reduce And
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,

v o l a t i l e i n t ∗ g b a r r i e r , i n t n , i n t b l o ckS i z e )
{
unsigned i n t t i d = threadIdx . x ;
unsigned i n t bid = blockIdx . x ;
unsigned i n t i = blockIdx . x∗ b lo ckS i z e ∗2 + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗ gridDim . x ;
unsigned i n t t = 0xFFFFFFFF;
unsigned i n t temp = 0xFFFFFFFF;
extern s h a r e d i n t sdata [ ] ;
sdata [ 0 ] = temp ;
whi l e ( i<n) {

temp &= g i d a t a [ i ] & g i d a t a [ i + b lo ckS i z e ] ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

whi l e ( (˜ temp & t ) > 0) {
sdata [ 0 ] &= temp ;

sync th r ead s ( ) ;
t = sdata [ 0 ] ˆ temp ;

}
i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( g b a r r i e r ) ;
i f ( bid == 0) {

i f ( t i d < gridDim . x ) temp = g odata [ t i d ] ;
s ync th r ead s ( ) ;

whi l e ( (˜ temp & t ) > 0) {
sdata [ 0 ] &= temp ;

sync th r ead s ( ) ;
t = sdata [ 0 ] ˆ temp ;

}
i f ( t i d == 0) g odata [ 0 ] = sdata [ 0 ] ;
}

}
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reduceOr CTRR GBS()

Reduction OR operation over 32-bit words using global block synchronization. The reduction within

each block follows the constant time race resolution algorithm.

g l o b a l void reduceOr
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,
v o l a t i l e i n t ∗ g b a r r i e r , i n t n , i n t b l o ckS i z e )
{
unsigned i n t t i d = threadIdx . x ;
unsigned i n t bid = blockIdx . x ;
unsigned i n t i = blockIdx . x∗ b lo ckS i z e ∗2 + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
unsigned i n t t = 0xFFFFFFFF;
unsigned i n t temp = 0 ;
extern s h a r e d v o l a t i l e unsigned i n t sdata [ ] ;
sdata [ 0 ] = 0 ;
whi l e ( i<n) {

temp |= g i d a t a [ i ] | g i d a t a [ i + b lo ckS i z e ] ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

whi l e ( ( temp & t ) != 0) {
sdata [ 0 ] |= temp ;

sync th r ead s ( ) ;
t = sdata [ 0 ] ˆ temp ;

}
i f ( t i d == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( g b a r r i e r ) ;
i f ( bid == 0) {

i f ( t i d < gridDim . x ) temp = g odata [ t i d ] ;
s ync th r ead s ( ) ;

whi l e ( ( temp & t ) != 0) {
sdata [ 0 ] |= temp ;

sync th r ead s ( ) ;
t = sdata [ 0 ] ˆ temp ;

}
i f ( t i d == 0) g odata [ 0 ] = sdata [ 0 ] ;
}

}
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reduceMax CTRR GBS()

Reduction MAX operation over 32-bit words using global block synchronization. The reduction

within each block follows the constant time race resolution algorithm.

g l o b a l void barr ie r max
( v o l a t i l e i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,
v o l a t i l e i n t ∗ g b a r r i e r , i n t n , i n t b l o ckS i z e )
{
extern s h a r e d v o l a t i l e i n t sdata [ ] ;
i n t t i d = threadIdx . x ;
i n t i = blockIdx . x∗ b lo ckS i z e ∗2 + threadIdx . x ;
i n t g r i d S i z e = b lo ckS i z e ∗2∗ gridDim . x ;
i n t f l a g = 1 ;
i n t temp = 0 ;
sdata [ t i d ]=0;
whi l e ( i<n) {

temp = sdata [ t i d ] ;
sdata [ t i d ] = ( g i d a t a [ i ] > g i d a t a [ i + b lo ckS i z e ] ) ?

g i d a t a [ i ] : g i d a t a [ i + b lo ckS i z e ] ;
sdata [ t i d ] = ( sdata [ t i d ] > temp ) ? sdata [ t i d ] : temp ;
temp = 0 ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

whi l e ( f l a g == 1) {
sdata [ 0 ] = ( sdata [ 0 ] < sdata [ t i d ] ) ?

sdata [ t i d ] : sdata [ 0 ] ;
s ync th r ead s ( ) ;

f l a g = 0 ;
f l a g = ( sdata [ t i d ] > sdata [ 0 ] ) ;

}
g odata [ b lockIdx . x ] = sdata [ 0 ] ;
f l a g = 1 ;

sync th r ead s ( ) ;
s y n c b l o c k s ( g b a r r i e r ) ;

i f ( b lockIdx . x == 0) {
i f ( t i d < gridDim . x ) sdata [ t i d ] = g odata [ t i d ] ;

s ync th r ead s ( ) ;
whi l e ( f l a g == 1) {

sdata [ 0 ] = ( sdata [ 0 ] < sdata [ t i d ] ) ?
sdata [ t i d ] : sdata [ 0 ] ;

s ync th r ead s ( ) ;
f l a g = 0 ;
f l a g = ( sdata [ t i d ] > sdata [ 0 ] ) ;

}
g odata [ 0 ] = sdata [ 0 ] ;
}

}
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reduceMin CTRR GBS()

Reduction MIN operation over 32-bit words using global block synchronization. The reduction

within each block follows the constant time race resolution algorithm.

g l o b a l void reduce Min
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,
v o l a t i l e i n t ∗ g b a r r i e r , i n t n , i n t b l o ckS i z e )
{
extern s h a r e d v o l a t i l e i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗ b lo ckS i z e ∗2 + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗ gridDim . x ;
v o l a t i l e i n t f l a g = 1 ;
i n t temp = 0x7FFFFFFF ;
sdata [ t i d ]=0x7FFFFFFF ;
whi l e ( i<n) {

temp = sdata [ t i d ] ;
sdata [ t i d ] = ( g i d a t a [ i ] < g i d a t a [ i + b lo ckS i z e ] ) ?

g i d a t a [ i ] : g i d a t a [ i + b lo ckS i z e ] ;
sdata [ t i d ] = ( sdata [ t i d ] < temp ) ? sdata [ t i d ] : temp ;
temp = 0x7FFFFFFF ;
i += g r i d S i z e ;

}
sync th r ead s ( ) ;

whi l e ( f l a g == 1) {
sdata [ 0 ] = ( sdata [ 0 ] <= sdata [ t i d ] ) ?

sdata [ 0 ] : sdata [ t i d ] ;
s ync th r ead s ( ) ;

f l a g = 0 ;
f l a g = ( sdata [ t i d ] < sdata [ 0 ] ) ;

}
g odata [ b lockIdx . x ] = sdata [ 0 ] ;
f l a g = 1 ;

sync th r ead s ( ) ;
s y n c b l o c k s ( g b a r r i e r ) ;

i f ( b lockIdx . x == 0) {
i f ( t i d < gridDim . x ) sdata [ t i d ] = g odata [ t i d ] ;

s ync th r ead s ( ) ;
whi l e ( f l a g == 1) {

i f ( sdata [ t i d ] < sdata [ 0 ] ) sdata [ 0 ] = sdata [ t i d ] ;
s ync th r ead s ( ) ;

f l a g = 0 ;
f l a g = ( sdata [ t i d ] < sdata [ 0 ] ) ;

}
g odata [ 0 ] = sdata [ 0 ] ;
}

}
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p bcast()

Broadcast function. If thread ID corresponds to the parameter b cast, then thread[b cast] writes

its value to global memory where is available for all other threads.

g l o b a l void p bcas t
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata , v o l a t i l e i n t ∗ g b a r r i e r ,

i n t b ca s t )
{

i n t i = blockIdx . x∗blockDim . x + threadIdx . x ;
i f ( b ca s t == i ) g odata [ 0 ] = g i d a t a [ i ] ;

s y n c b l o c k s ( g b a r r i e r ) ;
g i d a t a [ i ] = g odata [ 0 ] ;

s y n c b l o c k s ( g b a r r i e r ) ;
}

p count()

Count function. Evaluates how many threads are ON and works similarly as the reduce summation

function.

g l o b a l void p count ( i n t ∗ g idata , i n t ∗ g odata in , unsigned i n t n)
{
extern s h a r e d i n t sdata [ ] ;
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗( b l o ckS i z e ∗2) + threadIdx . x ;
unsigned i n t g r i d S i z e = b lo ckS i z e ∗2∗gridDim . x ;
r e g i s t e r v o l a t i l e i n t ∗ g odata = g oda ta in ;
r e g i s t e r v o l a t i l e i n t ∗barvec = ( g odata + gridDim . x ) ;
sdata [ t i d ] = 0 ;

whi l e ( i < n){
sdata [ t i d ] += g i d a t a [ i ] + g i d a t a [ i+b lo ckS i z e ] ;
i += g r i d S i z e ;}

sync th r ead s ( ) ;

i f ( b l o ckS i z e >= 512){
i f ( t i d < 256) {

sdata [ t i d ] += sdata [ t i d + 2 5 6 ] ;}
sync th r ead s ( ) ;

}
i f ( b l o ckS i z e >= 256){

i f ( t i d < 128) {
sdata [ t i d ] += sdata [ t i d + 1 2 8 ] ;}

sync th r ead s ( ) ;
}
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i f ( b l o ckS i z e >= 128) {
i f ( t i d < 64) {

sdata [ t i d ] += sdata [ t i d + 6 4 ] ;
}

sync th r ead s ( ) ;
}
#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( b l o ckS i z e >= 64) {
sdata [ t i d ] += sdata [ t i d + 3 2 ] ;
EMUSYNC; }

i f ( b l o ckS i z e >= 32) {
sdata [ t i d ] += sdata [ t i d + 1 6 ] ;
EMUSYNC; }

i f ( b l o ckS i z e >= 16) {
sdata [ t i d ] += sdata [ t i d + 8 ] ;
EMUSYNC; }

i f ( b l o ckS i z e >= 8) {
sdata [ t i d ] += sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 4) {

sdata [ t i d ] += sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( b l o ckS i z e >= 2) {

sdata [ t i d ] += sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( ( v o l a t i l e unsigned i n t ∗) barvec ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) {
sdata [ t i d ] = g odata [ t i d ] ;

}
sync th r ead s ( ) ;

i f ( gridDim . x >= 128) {
i f ( t i d < 64) {

sdata [ t i d ] += sdata [ t i d + 6 4 ] ;
}

sync th r ead s ( ) ;
}

#i f n d e f DEVICE EMULATION
i f ( t i d < 32)

#e n d i f
{

i f ( gridDim . x >= 64) {
sdata [ t i d ] += sdata [ t i d + 3 2 ] ;
EMUSYNC;

}
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i f ( gridDim . x >= 32) {
sdata [ t i d ] += sdata [ t i d + 1 6 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 16) {

sdata [ t i d ] += sdata [ t i d + 8 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 8) {

sdata [ t i d ] += sdata [ t i d + 4 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 4) {

sdata [ t i d ] += sdata [ t i d + 2 ] ;
EMUSYNC;

}
i f ( gridDim . x >= 2) {

sdata [ t i d ] += sdata [ t i d + 1 ] ;
EMUSYNC;

}
}
i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;

}
}
#e n d i f // #i f n d e f REDUCE KERNEL H
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p first()

This function evaluates what is the lower thread ID corresponding to an ON thread.

g l o b a l void p f i r s t
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,

v o l a t i l e i n t ∗ g b a r r i e r , i n t f , i n t b l o ckS i z e )
{
unsigned i n t t i d = threadIdx . x ;
unsigned i n t i = blockIdx . x∗blockDim . x + threadIdx . x ;
i n t temp ;
i n t f l a g = 1 ;
extern s h a r e d v o l a t i l e i n t sdata [ ] ;
sdata [ 0 ] = blockDim . x∗gridDim . x ;
temp = g i d a t a [ i ] ;

s ync th r ead s ( ) ;

whi l e ( f l a g == 1) {
i f ( temp == f ) sdata [ 0 ] = t i d ;
f l a g = 0 ;

sync th r ead s ( ) ;
i f ( sdata [ 0 ] > t i d && temp == f ) f l a g = 1 ;

}
g odata [ b lockIdx . x ] = sdata [0 ]+ blockDim . x∗blockIdx . x ;

s y n c b l o c k s ( g b a r r i e r ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) {
temp = g odata [ t i d ] ;
f l a g = 1 ;

}
sync th r ead s ( ) ;

i f ( t i d == 0) {
sdata [ 0 ] = temp ;
f l a g = 0 ;

}
whi le ( f l a g == 1) {

i f ( temp < sdata [ 0 ] ) sdata [ 0 ] = temp ;
f l a g = 0 ;

sync th r ead s ( ) ;
i f ( temp < sdata [ 0 ] ) f l a g = 1 ;

}
i f ( t i d == 0) g odata [ 0 ] = sdata [ 0 ] ;
}

}
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p quantify()

This function returns 0 if no threads are ON, returns 1 if only one thread is ON, or returns 2 if two

or more threads are ON.

g l o b a l void p quant i f y
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,

v o l a t i l e i n t ∗ g b a r r i e r , i n t n)
{
extern s h a r e d v o l a t i l e i n t sdata [ ] ;
i n t t i d = threadIdx . x ;
i n t i = blockIdx . x∗blockDim . x∗2 + threadIdx . x ;
i n t g r i d s i z e = blockDim . x∗2∗ gridDim . x ;
sdata [ 0 ] = 0 ;
whi l e ( i<n) {

sdata [ t i d ] |= g i d a t a [ i ] | g i d a t a [ i + blockDim . x ] ;
i += g r i d s i z e ;

}
sync th r ead s ( ) ;

i f ( sdata [ t i d ] != 0) sdata [ 0 ] = 1 ;
sdata [ 0 ] = ( sdata [ 0 ] != 0 ) ;

s ync th r ead s ( ) ;
i f ( sdata [ 0 ] != 0) {

i f ( sdata [ t i d ] == 1) { sdata [ 0 ] = t i d ; s ync th r ead s ( ) ;
i f ( sdata [ 0 ] == t i d ) { sdata [ t i d ] = 0 ; sync th r ead s ( ) ; }
i f ( sdata [ t i d ] == 1) { sdata [ 0 ] = 2 ; sync th r ead s ( ) ; }
e l s e sdata [ 0 ] = 1 ;

}
}

sync th r ead s ( ) ;
i f ( threadIdx . x == 0) g odata [ b lockIdx . x ] = sdata [ 0 ] ;

s y n c b l o c k s ( g b a r r i e r ) ;
i f ( b lockIdx . x == 0) {

i f ( t i d < gridDim . x ) sdata [ t i d ] = g odata [ t i d ] ;
s ync th r ead s ( ) ;

i f ( sdata [ t i d ]==2) { sdata [ 0 ] = 2 ; goto L1 ; }
i f ( sdata [ t i d ]==1) { sdata [ 0 ] = 1 ; goto L1 ; }
i f ( sdata [ t i d ]==0) { sdata [ 0 ] = 0 ; goto L1 ; }

L1 :
i f ( threadIdx . x == 0) g odata [ 0 ] = sdata [ 0 ] ;
}

}
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p vote()

Returns a bit vector with element 2K set to 1 iff thread K voted for thread with threadID = V.

g l o b a l void p vote
( i n t ∗ g idata , v o l a t i l e i n t ∗g odata ,

v o l a t i l e i n t ∗ g b a r r i e r , i n t v )
{
unsigned i n t i = blockIdx . x∗blockDim . x + threadIdx . x ;

s y n c b l o c k s ( g b a r r i e r ) ;
g odata [ i ] = ( g i d a t a [ i ] == v ) ;

s y n c b l o c k s ( g b a r r i e r ) ;
}
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