

ABSTRACT OF THESIS

LINE ASSOCIATIVE REGISTERS

As technological advances have improved processor speed, main memory speed

has lagged behind. Even with advanced RAM technologies, it has not been possible to

close the gap in speeds. Ideally, a CPU can deliver good performance when the right data

is made available to it at the right time. Caches and Registers solved the problem to an

extent. This thesis takes the approach of trying to create a new memory access model that

is more efficient and simple instead of using various “add on” mechanisms to mask high

memory latency. The Line Associative Registers have the functionality of a cache, scalar

registers and vector registers built into them. This new model qualitatively changes how

the processor accesses memory.

KEYWORDS: Cache, Register, CReg, Line Associative Register - LAR, SIMD Within A

Register - SWAR

 Krishna Melarkode

 October 11, 2004.

LINE ASSOCIATIVE REGISTERS

By

Krishna Melarkode

 Dr. Henry G. Dietz
 (Director of Thesis)

 Dr. Yu Ming Zhang

 (Director of Graduate Studies)

 October 11, 2004

RULES FOR THE USE OF THESES

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to the rights of the authors. Bibliographical references may be noted, but
quotations or summaries of parts may be published only with the permission of the
author, and with the usual scholarly acknowledgments.

Extensive copping or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate school of the University of Kentucky.

A library that borrows this thesis for use by its patrons is expected to secure the signature
of each user.

Name Date

THESIS

Krishna Melarkode

The Graduate School

University of Kentucky

2004

LINE ASSOCIATIVE REGISTERS

THESIS

A thesis submitted in partial fulfillment of the requirements for

the degree of Master of Science in Electrical and Computer
Engineering at the University of Kentucky

By

Krishna Melarkode

Lexington, Kentucky

Director: Dr. Henry G. Dietz, Professor

Electrical Engineering, Lexington, Kentucky

2004

Copyright © Krishna Melarkode 2004.

 iii

ACKNOWLEDGEMENTS

My sincere thanks and heartfelt gratitude are due to my academic advisor and thesis director, Dr.

Hank Dietz for his guidance and support throughout this thesis. I am very thankful for his

constant encouragement and support during the different phases of this thesis. I would like to

extend my thanks to Dr. J. Robert Heath and Dr. William Dieter for serving on my thesis

committee and providing me with invaluable comments and suggestions for improving this

thesis.

I extend my deepest gratitude and thanks to my parents for their support and belief in me. Finally,

no word of praise is high enough for my friends who have encouraged and supported me

throughout the course of my thesis work and my study at Kentucky.

 iv

TABLE OF CONTENTS

ACKNOWLEDGEMENTS ...III

TABLE OF CONTENTS ... IV

LIST OF TABLES..VI

LIST OF FIGURES .. VII

LIST OF FILES .. IX

1. INTRODUCTION... 1

1.1. MOTIVATION ... 2

2. HISTORY .. 3

2.1 COMPILER ISSUES – SOLUTIONS TO ALIASING, REGISTER ALLOCATION AND SOLUTIONS IN
HARDWARE .. 3
2.2 VECTOR REGISTERS AND SWAR – SIMD WITHIN A REGISTER .. 5
2.3 TAGGED MEMORY ARCHITECTURES .. 6

3. CONCEPTS... 7

3.1 CACHE – A BRIEF OVERVIEW ... 7
3.2 REGISTER – A BRIEF OVERVIEW... 9
3.3 BASIC COMPILER PROBLEMS - REGISTER ALLOCATION AND ALIASING 10
3.4 IMPORTANCE OFALIAS ANALYSIS... 12
3.5 THE SIMD/SWAR MODELS .. 12
3.6 SPECIAL PURPOSE MMX REGISTERS ... 14
3.7 SPECIAL PURPOSE XMM REGISTERS ... 14
3.8 CREGS .. 15

4. LAR .. 17

4.1 ASSUMPTIONS .. 17
4.2 THE INSTRUCTION LAR ... 18
4.3 THE DATA LAR ... 19
4.4 HIGHLIGHTS ... 22

5. INSTRUCTION SET.. 24

5.1. DATA TRANSFER OPERATIONS .. 25
5.1.1. The Load Instruction... 25
5.1.2 The Store Instruction... 28

5.2. FETCH ... 30
5.3. ALU OPERATIONS... 33

5.3.1. Scalar ALU Operations... 33

 v

5.3.2. Vector Parallel ALU Operations .. 35
5.4. SELECT ... 37

6. A HARDWARE MODEL OF LAR ARCHITECTURE... 39

7. RESULTS .. 46

8. CONCLUSION AND FUTURE WORK .. 48

APPENDIX A: LINE ASSOCIATIVE REGISTERS SIMULATOR.................................... 49

A.1. SOURCE LISTING OF “SIMPLE.G”.. 49
A.2. SOURCE LISTING OF “SIMPLE.H”.. 56
A.3. SOURCE LISTING OF “MAIN.C” .. 58

REFERENCE.. 68

VITA... 70

 vi

LIST OF TABLES

TABLE 4.1. WORD SIZE BIT SETTINGS FOR DIFFERENT WORD SIZES ... 20

TABLE 5.1. BIT SETTINGS AND THE NUMBER OF INSTRUCTION LARS LOADED................................ 31

 vii

LIST OF FIGURES

FIG 3.1.A. A SIMPLE CACHE .. 7

FIG. 3.1.B. SIMPLE CACHE.. 7

FIG 3.3. A MULTIPROCESSOR SYSTEM WITH 4 PROCESSORS TRYING TO ACCESS A CACHE LINE 8

FIG 3.4. A SIMPLE REGISTER .. 9

FIG 3.5. A SIMPLE DATA MEMORY CELL.. 9

FIG 3.6. A SIMPLE REGISTER ... 10

FIG 3.7: SISD MODEL .. 13

FIG 3.8: SIMD/SWAR MODEL .. 13

FIG 3.9: MMX REGISTERS – SUPPORTED DATA TYPES.. 14

FIG 3.10: FLOATING POINT XMM REGISTER THAT HOLDS 4 FLOATING POINT VALUES 15

FIG 3.11. A CREG STRUCTURE... 15

3.12A CONTENTS OF MEMORY LOCATION 4124 .. 16

FIG 3.12.B. CREG CONTENTS BEFORE THE ADD ... 16

FIG 3.12.C. CREG CONTENTS AFTER THE ADD ... 16

FIG 4.1. LAR STRUCTURE .. 17

FIG 4.2. INSTRUCTION LAR STRUCTURE .. 18

FIG 4.3. INSTRUCTION LAR FILE .. 19

FIG 4.4. DATA LAR STRUCTURE .. 20

FIG 4.5. LINE ASSOCIATIVE REGISTER FILE .. 21

FIG 4.6. A SCALAR OPERATION CAN BE PERFORMED ON THE ITALICIZED WORDS 22

FIG 4.7 LAR TREATING DATA OF A MEMORY LOCATION AS DIFFERENT WORD SIZES 23

FIG 5.1. DATA TRANSFER INSTRUCTION FORMAT.. 25

FIG 5.2. LAR D4 AFTER A LOAD UNSIGNED BYTE OPERATION .. 27

FIG 5.3. ASSOCIATIVE LOAD FROM AN ADDRESS MATCHING LAR .. 27

FIG 5.4. LAR D4 AFTER THE LOAD INSTRUCTION ... 29

FIG 5.5. LAR D4 AFTER THE STORE INSTRUCTION.. 29

FIG 5.6. FETCH INSTRUCTION FORMAT... 30

 viii

FIG 5.7. INSTRUCTION LARS ... 32

FIG 5.8. INSTRUCTION LARS AFTER EXECUTING THE FETCH .. 32

FIG 5.9. FORMAT OF ALU OPERATION.. 33

FIG 5.10. LAR D1 & D2 BEFORE EXECUTING THE ADD INSTRUCTION ... 34

FIG 5.11. LAR D1 AND D2 AFTER EXECUTING THE ADD INSTRUCTION ... 35

FIG 5.12. LARS D1 AND D2 BEFORE THE VECTOR ADD INSTRUCTION.. 36

FIG 5.13. LARS D1 AND D2 AFTER THE ADD INSTRUCTION ... 36

FIG 5.14 SELECT INSTRUCTION FORMAT ... 37

FIG 5.15. SELECT INSTRUCTION.. 38

FIG 6.1. DATA PATH... 40

FIG 6.2. DECODING A LOAD INSTRUCTION .. 41

FIG 6.3. A COUPLE OF 2 INPUT ADDERS TO CALCULATE EFFECTIVE ADDRESS.................................. 42

FIG 6.4. LARS D1 AND D2 BEFORE THE SCALAR ADD OPERATION... 44

FIG 6.5. SCALAR ADD: EXTRACTING THE EFFECTIVE DATA POINTED BY D1.................................... 44

FIG 6.6. SCALAR ADD: EXTRACTING EFFECTIVE DATA POINTED BY D2... 45

FIG 6.7. PUTTING BACK THE SUM INTO ITS APPROPRIATE PLACE ... 45

 ix

LIST OF FILES

Krishna.pdf …………………………………………………………………………….. 252KB

 1

1. INTRODUCTION

 In modern computers, processors always are faster than memories. Ideally, the system

performance peaks when data is supplied to the processor at the speed of data execution. Even

newer RAM technologies like DDR and RAMBUS cannot match processor speeds. Hence it is

necessary to introduce architectural mechanisms to prevent the RAM from being the bottleneck

for overall system performance. The standard solution is the introduction of a memory hierarchy

in which small, fast, memories are at the top and slower, larger, memories are at the bottom.

The bulk of the hierarchy consists of multiple levels of caches – L1, L2, and L3. The

larger the L1 cache, the better the system performance. However, cost is a very important

consideration as the L1 cache is made of the most expensive SRAM and each cache cell is made

of 4-6 transistors [5].

 Registers are on top of the memory hierarchy. When viewed from the compilers point of

view, there are many advantages in using registers over caches. However, they cannot handle

ambiguously aliased values while caches can. CRegs – the cache register hybrid structures on the

other hand offer all the advantages of a cache and a register and are compiler friendly. At the

time when CRegs were introduced, the concept of data parallelism within a processor was

deemed impractical due to the relatively high circuit complexity it implies. Even vector

processors of the day were really just heavily pipelined systems; they did not really operate on all

elements of a vector simultaneously. However, data parallelism within a processor is a common

concept today and the idea of extending the CRegs to support the data parallelism is promising.

SWAR – SIMD within a register was good step taken to build a complete SIMD programming

model. It is believed that the functionality of SWAR can be improved by integrating it with the

CRegs.

 From an architectural point of view, microprocessors like the Pentium III have

normal registers to do the scalar operations and vector MMX and SSE registers to do the

 2

parallel integer operations. They also have two or three levels of cache – L1, L2 and

sometimes L3. The concept of LAR – Line Associative Registers, a set of vector registers

that hold data type information in them, replaces all levels of Cache and all types of

Registers with a simpler structure, but is expected to give comparable performance. A

simple LAR architecture and its instruction set are proposed in this thesis. Chapter 4

introduces the basic idea of the LAR structure and architecture, Chapter 5 deals with the

instruction set, in detail, Chapter 6 discusses a possible hardware implementation,

Chapter 7 theoretically compares the results of a matrix multiplication algorithm

implementation with SWAR and LAR concepts and Chapter 8 holds the conclusion,

results and the direction of future work.

1.1. Motivation
 The goals of this thesis are to develop architecture consistent with the following

goals –

1. Simplify the Cache and memory hierarchies. In modern computers, the memory

system is a fairly complicated structure with registers at the top of the hierarchy,

followed by the L1, L2 and L3 caches, and RAM. We suggest that the functional

complexity of modern memory access mechanisms is not necessary; a logically

simpler design with comparable (or lower) total circuit complexity can yield

comparable (or better) performance.

2. Modify a conventional register to incorporate more functionality and compensate

for the absence of caches. This is done by introducing a new structure called Line

Associative Registers that has the features of a cache and vector registers. It also

holds data type information for the data it holds.

3. Improve performance of the system in the presence of aliasing in a multi-block

cache. The LAR handles aliases efficiently.

4. Find a solution to vector register word boundary problems. In this architecture, the

contents of the same register can be treated as a byte vector or a same-size half-

word vector by appropriately adjusting the width of the ALU.

Copyright © Krishna Melarkode 2004.

 3

2. HISTORY

 The LAR concept and architecture is the result of collection of a number of

solutions developed for a variety problems viewed through different perspectives.

However, the motivation for this work is broadly categorized into 3 channels –

1. Compiler issues, namely Aliasing, Register allocation and solutions in

hardware.

2. Vector Registers and SWAR – SIMD within a Register.

3. Tagged memory architectures.

2.1 Compiler Issues – Solutions to Aliasing, Register Allocation and

solutions in hardware

 Aliasing is the problem that arises when a location in memory is referenced by

multiple names. In a conventional system, aliased variables cannot be kept in registers

across possibly-aliased updates. When aliased values are loaded into registers, the

compiler must treat them as distinct values, which results in register copies of a memory

location potentially having multiple different values. Hardware structures were proposed

to deal with this problem. Stacks and registers were integrated to form a hybrid structure

called Rack [1] that acted like a stack cache. However, it failed to provide a solution to

the aliased value referencing problem and was not associative. Next were the CRegs [2],

to reduce processor-memory traffic and handle ambiguously aliased variables.

The LAR inherits its associative load and store features from the CRegs. These

were cache – register hybrid structures that exploited the advantages of registers and

caches. The associative property of a cache, in particular, makes it feasible to profitably

handle ambiguously aliased values. Results [4, 9] proved that CRegs greatly aided in

reducing the memory traffic.

 4

During the time of the development of CRegs, a fully associative cache was a

substantial piece of hardware. Thus, although fully-associative CRegs were discussed, the

reference design had only 4 sets of 4 way associative CRegs. If the ambiguously aliased

values were outside the CRegs associative set, they were spilled. This led to new schemes

where ambiguously aliased values were not promoted to registers were proposed.

Variable forwarding proposed by Ben Heggy et.al [3] was one of them.

To exploit instruction level parallelism, compilers often employ static code

scheduling but the presence of ambiguous aliases greatly restricted it. A hardware

mechanism called Memory conflict buffer was proposed by David M Gallagher et.al. [7]

in 1994, to facilitate static code scheduling in the presence of memory Load / Store

dependences. A Smart Register File mechanism was proposed by Matthew A. Postiff and

Trevor Mudge [8], which eases some of the extremely conservative compiler assumptions

by introducing an indirect register access that simplifies alias handling and other

optimization. When data is aliased through Smart Register Files, data is kept in the

original register file entry and augments that with data information as opposed to address

information in the CRegs. The Smart Register File concept is perhaps best viewed as an

alternative implementation of CRegs in which data copies are replaced by this indirect

reference mechanism; although such an implementation is viable, we suggest that the

extra pipe stage implied by the indirection makes this a less-desirable solution.

Conventional compiler analysis cannot perform register promotion proving that a

value is free of aliases at all times. So yet another new hardware structure based on

CRegs was proposed by Matthew Postiff et. al. [10] in 2000, called SLAT – Store Load

address table. The SLAT watches all load and store instructions to see if the they already

match with the SLAT entries by explicit software mapping. When certain values cannot

be promoted to registers with conventional compiler analysis, they can with SLAT. When

aliased loads and stores are caught, a fix-up operation is performed.

 5

Overall, the LAR concept here is perhaps best viewed as CRegs gone wide.

Although caches have long taken advantage of spatial locality by using multi-word line

sizes, and even instruction CRegs as originally proposed had multiple words per register,

the combination of associative data registers and multi-word handling is new.

2.2 Vector Registers and SWAR – SIMD within a Register

 Most media and 3D applications require repetitive operation on arrays of data. A

new version of SIMD, called SWAR [16] was aimed to provide a general and consistent

programming model. It makes use of the fact that wide data path within the processor can

also be treated as multiple thinner SIMD-parallel data paths.

The concept of treating a register as a fixed-bit-length vector of data, the base

concept of SWAR, was first implemented by HP in the Hummingbird PA-RISC

processor. The first commodity SWAR incorporating a relatively complete instruction set

was Intel’s Pentium with MMX technology, which introduced the 64 bit integer MMX

registers [14]. AMD built upon MMX with their 3DNow! SWAR floating-point

technology [15], which was a set of 24 instructions to provide more detailed and sharper

3-D imaging along with micro-architectural enhancements. The next major addition to the

IA32 instruction set was the XMM floating point registers with Intel’s Streaming SIMD

Extension technology. These are 128 bit floating point vector registers that also support

Scalar operations on the low portion of each XMM register. One would expect that the

scalar operations so implemented would be useless because the core IA32 instruction set

implements similar operations, but IA32 floating point is done in extended precision

using a stack model, so SSE scalar operations are significantly simpler to implement and

hence outperform ordinary IA32 floating-point implementations by Intel. The SSE1 and

SSE2 extensions operate on single precision double precision floating point values

respectively.

 6

These multimedia extensions were targeted for specific applications. In contrast,

our goal is for LAR operations to be very general-purpose in both SWAR and scalar

support. The simple instruction set described in detail in this thesis is not intended to be

the ultimate such design, but a minimal starting point sufficient for our preliminary

investigation of LAR architecture.

2.3 Tagged Memory Architectures
In tagged memory architectures certain bits in the memory hold information about

the data type stored in that location. SWARD architecture [17] that made use of naming

and the protection concept of capability based addressing [18] was one of the early

architectures developed to enhance program reliability. It made use of tagged or typed

memories. For example, if a certain location in memory is declared to hold an integer,

a double or float cannot be stored in that location.

There are number of advantages in using tagged architectures. They are:

1. Instructions can be generalized. There can be a single instruction like

add or subtract that operates on different operands like an integer

and float.

2. Type conversions are automatically implemented. The addition of an

integer and a float, for example, yields a float.

3. Type checking is automatically done. In certain instruction sets, it is not

possible to perform certain operations on certain data types. These

operations can be avoided. Certain sensitive data can be protected by

avoiding some meaningless operations on them. For example, the

classic bug of reading or writing data past the end of an array can be

trapped by hardware.

We do not propose to use a tagged memory format, but instead tag each line of data with

type information at the time it is fetched: our LARs are type-tagged.

Copyright © Krishna Melarkode 2004.

 7

3. CONCEPTS

 Before the concept of LAR is introduced, it is essential to review some basic

concepts that are essential in understanding the working of the LAR.

3.1 CACHE – A brief overview

 A simple cache has data and address fields. The address field is further divided

into an index and a tag as shown in fig 3.1a & 3.1b. The cache makes use of the concept

of locality – which can be classified into spatial and temporal locality. Temporal locality

of reference is the concept that a resource that is referenced at one point in time will be

referenced again sometime in the near future. Spatial locality of reference is the concept

that likelihood of referencing a resource is higher if a resource near it was just referenced.

Address Data

Fig 3.1.a. A simple cache

Tag Index Data

Fig. 3.1.b. Simple Cache

 Caches can be classified into direct mapped, set associative and fully associative.

Direct mapped caches are the simplest of the three. In a direct mapped cache, a block can

be placed in exactly one location. In a set associative cache, a block can be placed in

fixed number of locations. In a two way set associative cache, data can be placed in two

locations and in a four way set associative cache; data can be placed in four locations. In a

fully associative cache a block can be placed anywhere in the cache.

 8

Caches greatly reduce memory access time if the data referenced are already

present in the cache -- a cache hit. A cache miss on the other hand considerably affects

performance. Optimizations can be made to reduce the number of cache misses.

However, cache misses can never be completely eliminated because the associativity of

the cache is in the same namespace used to identify a cache line; in other words, the

compiler would have to resolve all potentially ambiguous aliases (a problem discussed in

detail below) and know the tag hash function in order to predict when two different cache

references may interfere with each other. As a result, predictable access time is rarely

possible for a cache. A cache miss involves some memory traffic. One of the most

interesting advantages of using a cache is that ambiguously aliased values can be

profitably stored in caches. Aliases are discussed in detail in the following sections.

False sharing is a problem commonly associated with cache-based multiprocessor

systems. In multiprocessor systems with caches with multi-word cache blocks, false

sharing is the coherency overhead as a result of multiple processors accessing different

words in the same block. Even if a processor re-uses a data item, the item may no longer

be in the cache due to an intervening access by another processor to another word in the

same cache line. Consider a multi-processor system involving four microprocessors – P1,

P2, P3 and P4 and a cache line that has four words of data - A, B, C and D as shown in

fig 3.3. Processor P1 tries to accesses the value C, P2 tries to accesses B, P3 tries to

accesses D and P4 tries to accesses A. When processor P1 tries to access C, it might not

be in the cache line as P2 is trying to access B. The same argument also applies to other

processors and memory words.

A B C D

Fig 3.3. A multiprocessor system with 4 processors trying to access a cache line

P4 P2 P1 P3

 9

3.2 REGISTER – a brief overview

A simple register has a name and a data field. It is on top of the memory hierarchy

chart. A simple register is shown in fig 3.4.

Name :

Fig 3.4. A simple Register

A value stored in a register can be accessed fast in turn reducing latency. A value

in a register can be referenced with no interference with the memory processor path. As a

result, the usable memory bandwidth increases. Register access time is predictable as

there are no hit-miss issues. Once data is loaded into a register, the probability of finding

it there is a 100 percent which greatly aids in compile-time code optimizations. In a

system, there are always a small number of registers. Once a value is in a register, it is

easier to reference it with a short register name than a long memory address. Consider a

simple memory with data 5204 in address 15129714 as in fig 3.5. Consider a simple

example of adding the value 10 with contents of memory location 15129714 and

storing it back in the same location. It can be done as shown below

Address data

15129714 5204

Fig 3.5. A simple data memory cell

 Memory [15129714] = Memory [15129714] + 10

However, when the value at 15129714 is loaded into a register, r2, the

assembly code is -

5204

 10

R2:

Fig 3.6. A simple register

 R2 = Memory [15129714]

 R2 = R2 + 10

It is observed that the second piece of code looks clean and has only one memory

reference. There are some issues when using registers. A value cannot be stored in a

register permanently as there are only a limited number of registers in a system. Not all

values can be stored in registers. Consider the same example discussed above. The value

at location 15129714 is referenced with arrays of different indices – a[i] and a[j]. It is

possible that i and j point to the same location – for example, when i = j = 2. Such values

should be loaded into a register only when the compiler ascertains that a[i] and a[j]

definitely point to different or same locations and if not, the two array references are said

to be ambiguously aliased. If such values are loaded into two different registers, it would

result in an ugly situation where a single memory location has two different values. The

primary drawback of using a register is that it cannot handle ambiguously aliased values.

3.3 Basic Compiler Problems - Register Allocation and Aliasing

The placement of data items into registers is called register allocation. It is a very

important optimization as registers are the fastest storage devices in the entire computer

system. In any processor architecture there are only a limited number of registers and it is

necessary to decide which variables go into registers. It is not profitable to hold a variable

in a register permanently. The variables are promoted to registers for the regions in their

lifetimes when there are no aliases [11, 12, 13]. A value is promoted to a register for that

region by a load instruction at the top of the region just once. It is demoted back to the

memory by a store at the bottom of the region just once. In between the promotion and

5204

 11

demotion, all the accesses are through the register. The process of register allocation is

greatly affected by aliasing.

Aliasing is the problem that arises when the value in a variable is referenced by

more than one name.

 E.g.1 int a; (1)

int *p; (2)

 p=&a; (3)

 In example 1, variable ‘a’ and pointer ‘p’ refer to the same memory location.

 E.g.2 int a[i]; (1)

 int a[j]; (2)

 In example 2 both statements may or may not point to the same memory location.

If they point to the same location it is called ambiguous alias. Consider a piece of code as

in example 3.

 E.g.3 int b;

 int *c;

 c=&b;

 …..

*c=*c-10;

print b;

b=14;

 …...

 print *c

 The memory location that holds the value of variable b is referenced by more than

one name. The variable b cannot be allocated to a register as its value can me modified

with the pointer c. The subtraction of *c cannot be completed before initializing the

value of b. Thus, such values cannot be stored in a register that has only one name.

Aliasing happens in languages like C, FORTRAN and Java. Data at a memory

location can be kept in a register only when it can be assured that the data in a memory

 12

location can be accessed by accessing a register instead. It is impossible to predict the

memory location to which an instruction points as instructions compute the address at the

time of execution. It is possible for two or more registers to hold different values of the

same variable since it is referenced by different names. From example 1, it is incorrect to

allocate statements 1 and 2 to two different registers.

The compiler examines the program before execution and cannot determine if

there is going to be address aliasing when the program runs. So it has to make

conservative assumptions, which means that data cannot be placed in registers for at least

a part of their life time. From example 2, it is incorrect to allocate statements 1 and 2 to

different registers unless they are disjoint memory locations.

From the above discussions, it is essential to ensure that variables are allocated to

registers in their non-aliased region. But such allocations do not last long as a change in

memory value with a different name will not reflect a change in value in register. So

every time the value in a memory is updated, the register should be reloaded from

memory.

3.4 IMPORTANCE OFALIAS ANALYSIS

Alias analysis is important because of the following reasons –

1. It enables optimizations to the program to be applied correctly.

2. It is used to determine potential data dependencies.

3. It determines if a variable can be allocated to a register or not.

4. It determines if code transformation is legal or not.

Aggressive alias analysis aids in good optimizations.

3.5 The SIMD/SWAR Models

SIMD stands for Single Instruction Multiple Data. There are some applications

where the same operations have to be performed on different sets of data. A classic

 13

example is the inversion of a RGB picture to produce its negative, where the same

operations have to be performed over an array of uniform integer values. A SIMD model

is handy in such cases. Microprocessors were originally designed to be SISD – Single

Instruction Single Data models (fig 3.7), but have adapted and incorporated a variant of

SIMD called SWAR (SIMD Within A Register), as shown in figure 3.8.

Data

Instruction

Result

Fig 3.7: SISD Model

Data

Instruction

Result

Fig 3.8: SIMD/SWAR Model

 14

The SIMD model makes use of data parallelism. To implement the SWAR model,

various special hardware and instructions have been developed – such as the MMX, 3D-

Now, SSE and SSE2 instruction set extensions.

3.6 Special Purpose MMX Registers

MMX was the first technology introduced to implement the SWAR model as an

extension to IA32. It was designed to accelerate the performance of advanced media and

communication applications. There were eight 64-bit integer MMX registers that held

integers of different sizes and performed a variety of operations on these registers. The

MMX

(1)

(2)

(3)

 64 bits wide

Fig 3.9: MMX Registers – supported data types

Each MMX register could hold either 8 packed bytes as in line (1), or 4 packed words as

in line (2), or 2 packed double words as in line (1) as shown in fig 3.9.

3.7 Special Purpose XMM Registers

 The XMM Registers were introduced with the SSE extension to the IA32

architecture. The MMX extension allowed SWAR operations to be performed on packed

integers. SSE extends the functionality of the SWAR implementation by adding facilities

to work on larger vectors of packed and scalar single precision floating point values.

Eight 128-bit registers, called XMM registers. were introduced. These registers

performed SWAR operations on four single precision floating point values stored in the

XMM registers. The SSE extension greatly helped computation-intensive repetitive

 15

operations for media and communication applications. The XMM registers cannot be

used to address memory. Scalar operations are performed on individual single precision

floating point values at the lower double-word of XMM register.

128 bits

Fig 3.10: Floating point XMM register that holds 4 floating point values

The SSE 2 extension further extended the functionality of SSE by enabling it to

operate on double precision floating point values. This capability enhanced scientific and

engineering applications and applications that involved complex 3-D geometry

techniques. Additional flexibility is provided to scalar operations.

3.8 CREGs

The CReg is a Cache-Register hybrid structure that exploits the advantages of

both caches and a registers. It has all the advantages a register has and it is associative

like the cache and can efficiently handle ambiguous aliases. A CReg is shown in fig 3.11.

Data Address

Fig 3.11. A CReg Structure

The CReg array is very similar to a simple 1 block cache. It has a name, a data and

an address field. When a CReg is referenced, an associative search is performed with the

neighboring CRegs, just as in a cache, for a matching address. A match found as a result

of the search is an alias of the original CReg. However, CRegs avoid making memory

references on aliased loads by using duplicate entries in the CReg array.

Name :

 16

A simple example where a memory location is accessed through multiple forms in

C is considered. Variables ‘a’ and pointer variable ‘p’ point to the same memory

location.

int a, *p;

p = &a;

a = a +10;

Address data

4124 25

3.12a Contents of memory location 4124

CReg Address Data Dirty

R0 4124 25 1

R1 4124 25 1

Fig 3.12.b. CReg Contents before the Add

CReg Address Data Dirty

R0 4124 35 1

R1 4124 35 1

Fig 3.12.c. CReg Contents after the Add

These two values are aliases. A conservative compiler does not allow the loading of these

values into ordinary registers as these values are aliases. However, they can be loaded

into CRegs and handled efficiently. Variable a is loaded into R0 and p is loaded into R1

as shown in fig 3.12. Whenever the content of p is referenced or changed, the content of

a also is updated. A match in address sets the dirty bit of the matching CReg to ‘1’.

Copyright © Krishna Melarkode 2004.

p:

a:

p:

a:

 17

4. LAR

LAR stands for Line Associative Registers. This is a new hardware structure that

inherits its features from other hardware structures previously discussed. A data LAR is a

CReg with a multiple data fields that also performs scalar operations. It has the features

of SWAR and also holds data size and type information in it. Its structure is shown in fig

4.1.

Data Address Wd-Sz Type Dirty

 Base-Pt Offset

Fig 4.1. LAR structure

It is more efficient than the cache as the hardware does not have to decide which line to

replace with schemes like the LRU. The hardware is explicitly told where to make each

entry. It is fully associative, unlike SWAR designs such as MMX, XMM and SWAR.

Moreover, each register holds data type information about the data contained in it. It can

handle vector operations and there is a lot of flexibility when it comes to scalar

operations. Unlike the XMM registers, scalar operations can be performed at any location

in a LAR.

4.1 Assumptions

In the discussion to follow, the following assumptions are made

1. There are 32 instruction LARs.

2. There are 32 data LARs.

3. The data LARs handle only on integers.

4. Instructions are fixed length – 32 bits each.

5. Memory word size is a byte.

 18

6. The address field size depends on memory size. Memory is byte addressed and

the size is left open to the hardware design. Irrespective of the size, the last

five bits of the address is always the line offset.

4.2 The Instruction LAR

The instructions from the instruction memory are loaded into the instruction LAR

with the fetch instruction and start getting executed serially. The fetch instruction is

analogous to the pre-fetch of a conventional processor. However, in a fetch, the block of

instructions to be fetched can be explicitly specified.

 Instructions (1024 bits wide) Address

Fig 4.2. Instruction LAR structure

 The instruction LARs are represented by an i followed by a number (i0, i1, i2,

… i31). The structure is shown in fig 4.2. There are 32 instruction LARs, each 1024 bits

wide, that accommodates 32 instructions. Each instruction LAR also has an address field.

Instruction blocks are loaded into the instruction LARs from the instruction memory. The

Instruction field of 32nd instruction LAR acts as the instruction register and its address

field acts as the program counter (Fig 4.3). There are two bits that specify the number of

lines to be loaded, thus, a maximum of four lines of instructions (32 x 4) can be loaded

with a single fetch. It is sufficient if the address of the first LAR is specified. If the

address of the destination LAR matches any of the already-loaded LARs, the load from

memory is cancelled and the instructions are copied from the matching LAR.

 19

Instructions (1024 bits wide) Address
I0 400
I1 800
I2 432
… …
I10 640
… …
I31 IR PC

Fig 4.3. Instruction LAR file

 Once an instruction LAR is loaded into i31, the instructions start getting

executed serially. The program counter increments itself after every instruction. From fig

4.3, assume that instructions in I0 are getting executed. PC points to 400 at the first

instruction and 431 at the last instruction of I0. If I2 has instructions starting from

memory location 432, I2 gets copied next into the IR and it starts getting executed. The

sequential execution of instructions breaks only when a jump is encountered.

 The select is the instruction to handle the jumps. With this instruction, the PC can

select between two LARs based on a condition. For example, a select instruction could

cause either I1 or I10 to be executed next based on the value in a data LAR. An

important point to note is that a select can only jump to the start of a different line. It is

not possible to jump to an instruction that is in the middle of a line.

4.3 The Data LAR

 As mentioned before, this architecture does not have a data cache or special vector

registers. The data LARs perform the functions of both. The loads handle most of the

memory traffic in this architecture. The stores are performed automatically – the function

of a store instruction in this architecture is different altogether. They are used to duplicate

the contents of a data LAR line or can be used to perform data type conversions.

 20

DATA ADDRESS WD SZ TYP DTY

D[7] D[6] D[5] D[4] D[3] D[2] D[1] D[0] BASE PT OFFSET

256 0 400 3 2 1 1

Fig 4.4. Data LAR structure

A data LAR is represented by a “d” followed by 0 -31 (d0, d1, d2 …..d31). There are 32

data LARs. The structure of a data LAR is shown in fig 4.4. It has a data, an address, an

offset, a word size, a type and a dirty field. The data field is 256 bits wide that can store

eight memory words, 32 bits each. The address field is subdivided into a base pointer and

an offset field. The last 3 bits of the address field is the offset. This is like a multi-word

cache line that has a tag, index and offset to locate a word in the middle of a line. The

word size field, 2 bits wide, stores the size information of the data in that line. It can be

either a byte (8 bits), a half-word (16 bits), a word (32 bits) or a double-word (64 bits).

The type is a 1 bit field that stores the sign information of the contents of the line. The

type bit is ‘1’ when the contents of the line are signed and ‘0’ when contents are

unsigned. The word size field bit setting for different word sizes are shown in table 4.1.

BIT

SETTING

WORD SIZE

00 Byte

01 Half word

10 Word

11 Double Word

Table 4.1. Word size bit settings for different word sizes

 The data LAR d0 is different from the others and it requires a special note. It is

analogous to R0 of the MIPS architecture. It is permanently set to ‘0’, i.e., all the fields of

d0 are set to ‘0’. All the 8 data fields of d0, the base pointer and the offset fields are set to

‘0’, to be more specific. There is never a word size field for d0 and it is always a source.

 21

It can never be a destination, i.e., it cannot be loaded with data like the other LARs.

While implementing the hardware, a write to d0 can be used to implement a no-op.

The data LARs are loaded with the load instruction. Every load instruction

calculates an effective address from where data from the data memory is loaded. The

calculated effective address is compared with the address fields of the other LARs. If

there is a match, the load from memory is cancelled and the data is copied from the

matching LAR. Every time the data in a data LAR changes as a result of an ALU

operation, it gets updated with the memory to maintain consistency. The updating process

can occur whenever there is a free bus cycle. This is the reason why stores are not

required. The dirty bit is a 1 bit field which is usually ‘0’ but gets set to ‘1’ when the

contents of an already loaded data LAR changes after an ALU operation. For example, in

the instruction below, when d1 is already loaded with a load operation, sets the dirty bit if

d1 to ‘1’.

 Loaduw d1, d0, d0, 804

Adds d1, d1, d2

After main memory has been made consistent with LAR contents, the dirty bit

gets reset to ‘0’. The Line Associative Register file is shown in fig 4.5.

Data Addr Wd-Sz Type Dirty
d0
d1
d2
….
d31

Fig 4.5. Line Associative Register file

 22

4.4 Highlights

 The LAR concept has many advantages when compared to previous structures -

1. They can efficiently handle aliases, as they have been derived from CRegs. They

handle aliases the same way as CRegs.

2. Scalar or Vector ALU operations are performed on words, parts of words, and

multiple words with the same set of LARs.

3. Scalar operation can be performed on aligned data residing in any location in the

LAR. It is possible to work on any word in a line with any word in another line

without affecting the other words, as shown in fig 4.6. This flexibility is not available

in any other vector register. Although the XMM registers allow scalar operation, they

are restricted to always access the lower bits. The restriction to access only the low

object in a register not only requires shifting, but also would destroy the surrounding

data if applied to a LAR because of the association of an address with the LAR. Thus,

the ability to access anywhere within a LAR is critical not only for performance, but

also for correctness.

Data Address W-Sz Type Dirty

 42 ………………. 24 34 32 56 400 8 0 0

 ………… 424 345 ………… 532 109 1200 16 0 0

Fig 4.6. A scalar operation can be performed on the italicized words

4. They store type information in them. Attempts were made to store data type

information only in the memory till now. They offer atomicity in handling data types.

This is explained with an example. Consider an example where the data from a

location, 400, is

d4
d18

 23

Data Address W-

Sz

Type Dirty

 00100101 11110000 10001010 10111000 400 8 0 0

 0010010111110000 1000101010111000 400 16 0 0

 00100101111100001000101010111000 400 32 0 0

Fig 4.7 LAR treating data of a memory location as different word sizes

required at different locations of a code segment as different word sizes. When

required as a byte, the whole line is loaded into d4 and word size is set to a byte. Any

reference to d4 will refer to the contents of location 400 as bytes. When the same

contents are required as half-word in a different segment of the code, the same

contents are copied into another LAR, d18, and the word size is set as half-word as

shown in fig. Any reference to d18 will refer to the contents of location 400 as half-

words. Similarly, by copying the same value to d28 and setting the word size of d28

to a word, the contents of memory location 400 can be accessed as a word. Whenever

the contents either one - d4, d18 or d28 change, it also updates the value of the others.

5. They also perform type conversions (or at least type relabeling or casting). Two LARs

with data size of bytes can take participate in an ALU operation and the result can be

converted to a word with a Store instruction.

6. It solves the problem of false sharing (discussed in the previous chapter) because

different references within the same line, whether to the same or different type of

object, always can have separate LARs allocated without performance penalties.

Copyright © Krishna Melarkode 2004.

d4:

d18:

d28:

 24

5. INSTRUCTION SET

The instruction set has 32 instructions, each 32 bits wide. There are 32 instruction

LARs and 32 data LARs, thus a 5-bit field can encode a LAR number. The opcode also is

encoded in a 5-bit field. There are basically 4 types of instructions

1. Data Transfer

2. Fetch

3. ALU

a. Scalar

b. Vector

4. Select

The data transfer and the fetch instructions have a similar format and have similar

functionality. The ALU instructions have the same format as the select, but differ

considerably in functionality.

The Data transfer operations transfer data between the memory and the data

LARs. The load instruction is the primary data transfer operations. The load instruction

loads values from the main memory into a data LAR. The store operation has a different

functionality than the conventional store. It performs type and size conversions in the data

LARs.

The fetch has functionality similar to that of a conventional pre-fetch, but it is

generally a mandatory operation, not a performance-enhancing suggestion as pre-fetch is

commonly used. Fetch is the only instruction with which instructions can be loaded into

instruction LARs. With a single fetch instruction, a maximum of four consecutive

instruction LAR lines can be loaded.

The ALU operations have two forms – scalar and vector. They include the basic

arithmetic operations -add, subtract, multiply and logic operations like AND, OR and

EXOR in both scalar and vector forms.

 25

The Select operation is used for branches. It selects between two instruction LARs

based on the value present in a data LAR. All these instructions are explained in the

following sections.

5.1. Data Transfer Operations

As mentioned in the previous section, the data transfer operations move data

between the memory and the data LARs. Load is the primary data transfer instruction. A

load operation loads an entire LAR (256 bits of data or 8 memory words, 32 bits each)

from the memory at a time.

OPCODE DST SRC1 SRC2 IMMEDIATE

5 5 5 5 12

Fig 5.1. Data transfer instruction format

The Load / Store instruction has the format as shown in fig 5.1. The opcode is a 5

bit field which selects 1 of the 32 instructions. The destination field (DST) selects 1 of 32

data LARs as the destination. The SRC1 and the SRC2 point to two other data LARs and

the immediate is a 12 bit field. It can be any value between 0 – 4095.

5.1.1. The Load Instruction

The load instruction operates on a variety of data types -

1. Load unsigned byte

2. Load signed byte

3. Load unsigned half-word

4. Load signed half-word

5. Load unsigned word

6. Load signed word

7. Load unsigned double word

 26

8. Load signed double word

All these types are basically two’s-complement integer bit patterns, the only

difference being the word size and sign tag that they assign to the data LARs. Floating-

point types also can be supported in the same way, but have been omitted from the

preliminary design in order to facilitate prototype implementation.

The load operation has 3 steps –

1. Calculate the effective address

2. Compare the effective address with the address field of the other LARS

3. Transfer data to the destination from the matching LAR or the data memory.

The effective address of the destination can be calculated by adding

 Ea. destination = d[source1]. Address + d[source2]. Data + Immediate

This is explained with the following example.

Loadub d4, d0, d0, 122

 Every data LAR points to an address and data in that address. The above instruction can

be interpreted as

 d4. Destination = d0. Address + d0. Data + Immediate

The address and data fields of d0 are always ‘0’. So the effective address is

d4. Destination = 0 + 0 + 122

Once the effective address is calculated this is rounded to the closest multiple of

32 words before it. The remainder is the offset. For example, effective address 122 is split

into a base pointer with the value 96 and the offset 26. This is more meaningful from the

hardware’s point of view. The last 5 digits in the binary form are the offset and the

remaining digits form the base pointer.

(122)10 = (11 11010)2

Base pointer: (1100 000)2 = (96)10

Offset: + (11010)2 = (26)10

 27

DATA BASE PTR OFFSET WD SZ TYPE D
127 … 122 … … 98 97 96 96 26 8 0 0

Fig 5.2. LAR d4 after a Load unsigned byte operation

Since the load is of unsigned type, the type is set to 0. The data LAR d4 after the load is

shown in fig 5.2.The base pointer of the destination is compared with the base pointer of

the other data LARs. If there is a match, the load from memory is cancelled and the data

from the matching data LAR is copied into the destination. Neither the size nor the type

of the destination is considered while performing an associative load. It is sufficient if

there is a match in address as shown. Figure 5.3 shows this case where the matching LAR

has a data of size 16 while the destination is of size 8. If there is no match in address, data

is loaded from the main memory. A load from memory results in loading thirty two bytes

from contiguous memory locations starting from the base pointer.

DATA BASE PTR OFFSET WD SZ TYPE D
152 151 150 … … 122 121 120 120 7 8 0 0

Destination data LAR

Matching data LAR

DATA BASE PTR OFFSET WD SZ TYPE D
152 151 150 … … 122 121 120 120 10 16 0 0

Fig 5.3. Associative load from an address matching LAR

The size and type information for a data LAR is set by the load instruction. The load byte,

load half-word, load word and load double-word set the word sizes to 8, 16, 32 and 64

respectively. The type can be signed or unsigned. A load unsigned word sets the type as

unsigned and a load word sets the type to be signed. The dirty bit is normally at ‘0’. The

 28

dirty bit is set to ‘1’ when the contents of a data LAR change after they are loaded. Once

memory has been made consistent with the LAR contents, the dirty bit is reset to‘0’.

5.1.2 The Store Instruction

The store instruction operates on a variety of data types -

1. Store unsigned byte

2. Store signed byte

3. Store unsigned half-word

4. Store signed half-word

5. Store unsigned word

6. Store signed word

7. Store unsigned double word

8. Store signed double word

The LAR architecture is designed in such a way that stores are unnecessary. Every

time there is a change in the contents of a data LAR, data is automatically updated (or

scheduled for lazy update) with the memory and other matching LARs to keep data

consistent. The Store instruction has more functionality than a regular store. It is performs

type casting – it changes the address, size and type information of a data LAR.

There are 2 steps in a store operation –

1. Calculate the effective address.

2. Replace the address, size and type pointed by the data LAR.

This is explained with the following example.

Loadub d4, d0, d0, 120

Storeuw d4, d0, d0, 200

The first instruction loads d4 with data from memory location 120 or from some

other matching data LAR and sets the base pointer, offset, word size and type fields to 96,

24, 8 and 1 (signed) respectively as shown in fig 5.4. The second instruction does nothing

 29

to the data contents of the LAR; the type conversion is simply a relabeling of the same bit

pattern as having a different type. It changes the address, size and type information of d4.

DATA BASE PTR OFFSET WD SZ TYPE D
127

10

…

124

30

… 104

80

… 97

50

96

60

96 26 8 0 0

Fig 5.4. LAR d4 after the Load instruction

 The Store works in the same way as a load till a certain point. The effective

address is calculated in the same way as in the load.

 Effective address d4 = d0. Address + d0. Data + Immediate

It would be worthwhile to note that d0.addr and d0.data are always ‘0’. So the effective

address would be

 Effective address d4 = 0 + 0 + 200

The calculated effective address at the destination is compared with all the other data

LARs, if there is a matching LAR, the address field of the matching LAR are also

updated before the value is written into memory.

DATA BASE PTR OFFSET WD SZ TYPE D
223

10

… 220

30

… 200

80

… 193

50

192

60

192 8 32 0 0

Fig 5.5. LAR d4 after the Store Instruction

After executing the store instruction, d4 appears as in Fig 5.5. The base pointer,

offset, size and type fields have new values. The word size is now 32 and the type is

unsigned.

d4:

d4:

 30

5.2. Fetch

 The fetch operation loads the instruction LARs with instructions from the

instruction memory. A fetch operation loads an entire instruction LAR with instructions.

For our example design, an instruction LAR is 1024 bits wide and it can accommodate 32

instructions. With each fetch operation, 1, 2, 3 or 4 instruction LARs can be loaded.

 The Fetch instruction has a format similar to a load.

OPCODE DST SRC1 SRC2 IMMEDIATE

 NUM IMM

5 5 5 5 2 10

Fig 5.6. Fetch Instruction Format

The opcode is a 5 bit field and has a particular bit setting for a fetch instruction.

The DST refers to an instruction LAR to be the destination. The SRC1 refers to the data

pointed by a data LAR and SRC2 refers to the address pointed by an instruction LAR.

The Immediate field is split into 2 – a 2 bit field to denote the number of contiguous

instruction LARs to be loaded and a 10 bit regular immediate field that can be assigned

an integer value between 0 – 1024.

The fetch instruction has 3 steps –

1. Calculate the effective address for the instruction memory

2. Determine the number of contiguous instruction LARs to be loaded

3. Compare the effective address of the destination with the other instruction LARs.

If there is a match, cancel the load from memory and copy the instructions from

the matching LAR. If there are no matches, load instructions from the instruction

memory into the destination

The instruction LAR has 1024 bits to store instructions plus an address field. Every

address in the instruction LAR is multiple of 32 words. If the effective address is

calculated to be 6235 the corresponding value in the address field would be 6208 i.e.,

(6235 / 32) * 32. The instruction LAR holds 32 instructions starting from location 6208.

The fetch instruction is explained in detail with the following examples.

 31

Fetch i4, d0, i6, 900

Before calculating the effective address it is important to separate the immediate field into

the number and immediate fields.

 (900)10 = (001 110 000 100)2

In this case, the binary equivalent of 900 has just 10 digits. The number of instruction

LARS to be loaded depends on the 11th and 12th bits of the immediate field. As a result

the immediate field is padded with zeros till the 12th digit. Since the most significant 2

bits of 900 are ‘00’ only 1 instruction LAR line is loaded. The number of instruction

LARs loaded for different 11th and 12th bit settings are listed in the table 5.1.

12th and

11th bits

of Inst

LARS Loaded

00 1

01 2

10 3

11 4

Table 5.1. Bit settings and the number of instruction LARs loaded

The effective address is first calculated using

Eff Addr[DST]= d [SRC1] .data + i [SRC2].addr + immediate

Assuming i6 has an address field set to 96, the effective address would be 996 and the

address of the instruction LAR i4 is 992. The first instruction at I4 would be the

instruction at instruction memory location 992. There would be 32 contiguous

instructions starting from contiguous memory locations 992.

 32

INSTRUCTIONS (1024 bits wide) ADDR

I@1024 – I@992 992

… …

INSTRUCTION REGISTER PRG CTR

Fig 5.7. Instruction LARS

 Consider the instruction below. Proceeding in the same way as before

Fetch i4, d0, i6, 2085

 (2085)10 = (100 000 100 101)2

In this case the 11th and 12th bits are 0 and 1 respectively. From the table 5.1, it can be

inferred that 3 instruction LARs are to be loaded. For this case the effective address is

128, adding (100 101)2 with (96)10 . The instruction LARs after loading are shown in

fig 5.8.

INSTRUCTIONS (1024 bits wide) ADDR

I@128 - I@159 128

I@160 – I@191 160

I@192 – I@224 192

… …

I31: INSTRUCTION REGISTER PRG CTR

Fig 5.8. Instruction LARs after executing the Fetch

I4:

I31:

I4:

I5:

I6:

I31:

 33

5.3. ALU Operations
 The general format of the ALU operations is shown in fig 5.9. The format is very

similar to a Load / Store; however there is no immediate field. The instruction is still 32

bits and the immediate field is padded with zeros (or could be used to provide extended

opcode bits, much as is done in the MIPS instruction set encoding). The basic ALU

operations are

1. Add

2. Subtract

3. Multiply

4. AND

5. OR

6. EXOR

Each one of the above has a Scalar and a vector form. Both the scalar and vector ALU

operations have the same format.

OPCODE DST SRC1 SRC2

5 5 5 5

Fig 5.9. Format of ALU operation

5.3.1. Scalar ALU Operations

 The Scalar ALU operations operate on selected data fields of the data LAR. They

operate only on the data pointed by the address field (base pointer and offset together) of

the data LAR. The Scalar ALU operations have 3 steps –

1. Determine and isolate the data pointed to by both source data LARs, taking

the word size into account

2. Operate only on the isolated data from both the sources

3. Replace only the data pointed by the address of the destination data LAR with

the sum. Word size of destination plays an important part in determining the

result as it sets the ALU field boundaries

 34

The scalar ALU operation ADD is explained in detail with an example.

Loadub d1, d0, d0, 68

Loaduw d2, d0, d0, 130

Adds d2, d1, d2

DATA BASE

PTR

OFFSET WD SZ TYPE D

95

55

.. .. 69

130

68

120

.. 65

32

64

24

64 4 8 0 0

159

126

..133 132 131 130

800

129

120

128

119

128 2 32 0 0

Fig 5.10. LAR d1 & d2 before executing the Add instruction

In the above example d1 is one source and d2 is the other. The data LAR d1, points to

base address 64 and d2 points to 128 as shown in figure 5.10. Both d1 and d2 hold

unsigned values. The destination is d2. The address pointed by d1 is 68 and the address

pointed by d2 is 130. It is assumed that the data at location 68 is (120)10 and four bytes

starting from 130-133 together store (800)10. The word size of d1 is 8 and the word size

of d2 is 32. The Scalar ADD adds only the two values - (120)10 and (800)10. The

remaining values in d1 and d2 remain untouched.

 The destination d2 has a size of 32. The ALU boundary is set to 32 bits. So

marked 8 bits of d1 are added with the marked 32 bits of d2 and the result replaces the

originally marked contents of d2. From this example 920 replaces 800 as shown in figure

5.11.

d1:

d2:

 35

DATA BASE

PTR

OFFSET WD SZ TYPE D

95

55

.. .. 69

130

68

120

.. 65

32

64

24

64 4 8 0 0

159

126

..133 132 131 130

920

129

120

128

119

128 2 32 0 0

Fig 5.11. LAR d1 and d2 after executing the Add instruction

The data LARs d1 and d2 were previously loaded with some values and after the ALU

operation, the value in d1 has changed. To make a note of this the dirty bit of d1 is set to

1. The address of the destination is also checked with other data LARs and if there is a

match, the new value of d1 is also copied to the matching LARs. This dirty bit becomes 0

when the contents of d1 are written back into memory.

 This tagged-type field extraction may seem complex, but actually is no different

from the extraction done using a conventional level-one cache when a processor makes a

byte or other non-native-word-size reference. Further, although the promotion semantics

may seem complex because they allow, for example, addition of two 16-bit values to

store a legitimate17-bit result in a 32-bit destination, this is precisely the same behavior

obtained when a similar operation is performed in a convention processor with word-size

registers.

5.3.2. Vector Parallel ALU Operations

The Vector ALU operations operate on all the data within a data LAR. The Vector ALU

operations have 2 steps –

1. Determine the word sizes of both the source data LARs and perform the ALU

operation on all the data fields of the two sources, aligning the least significant

bits of both sources

2. Determine the word size of the destination LAR and set the word size markers

to the ALU to set word boundaries and the result appropriately to point to the

right data size.

The Vector / Parallel ALU instruction Add is explained with an example

d1:

d2:

 36

Loaduw d1, d0, d0, 72

Loaduw d2, d0, d0, 328

Addp d1, d1, d2

In this example, the first instruction loads d1 with 8 words of data starting from memory

locations 64. The second instruction loads d2 with 8 words of data starting from

memory locations 320. The data-LAR d1 is a source and d2 is the second source and

also the destination. The sources d1 and d2 point to four bytes of data starting from 72

and 328 respectively as shown in fig 5.12.

DATA BASE PTR OFFSET WD SZ TYPE D
92

127

88

126

84

125

80

124

76

123

72

122

68

121

64

120

64 8 32 0 0

348

726

344

725

340

724

336

723

332

722

328

721

324

720

320

719

320 8 32 0 0

Fig 5.12. LARs d1 and d2 before the vector add instruction

The address field – base pointer and offset are not important to the Vector ALU

operations as they operate on all the data fields of the source data LARS. However, it is

important to take the word size of the destination into consideration as it decides word

boundaries in the ALU for the ADD operation. The sum of d1 and d2 replace the

contents of the destination d1 as shown in figure 5.13.

DATA BASE PTR OFFSET WD SZ TYPE D
92

853

88

851

84

849

80

847

76

845

72

843

68

841

64

839

64 8 32 0 0

348

726

344

725

340

724

336

723

332

722

328

721

324

720

320

719

320 8 32 0 0

Fig 5.13. LARs d1 and d2 after the add instruction

d1:

d2:

d1:

d2:

 37

The data LARs d1 and d2 were previously loaded with some values and after the

ALU operation, the value in d1 has changed. However, the memory location still holds

the old values. To make a note of this the dirty bit of d1 is set to 1. The address of the

destination is also checked with other data LARs and if there is a match, the new value of

d1 is also copied to the matching LARs. This dirty bit becomes 0 when the contents of

d1 are written back into memory.

In both the scalar and vector cases discussed, the destination data LAR is one of

the sources. It is also possible that the destination is not one of the sources and it is never

loaded before with a load. As a result the address pointers and word size fields will be

empty. It would not be possible to complete a Scalar or Vector ALU instruction. To

overcome this shortcoming, the data portion of all the data LARS are initialized to zero

and the base pointer, offset and word size fields are set to some predetermined value. A

good choice for the initial value might be an offset of 0 and a native-word-size integer as

the default tagging.

5.4. SELECT

The Select instruction is the only instruction that works with the instructions of the

instruction LAR. It selects between two instructions based on the value in a data LAR. It

has the format as shown in Fig 5.14.

OPCODE D-LAR I-LAR1 I-LAR2

5 5 5 5

Fig 5.14 Select instruction format

The D-LAR refers to a data LAR and I-LAR1 and I-LAR2 refer to 2 instruction LARs. If

the data LAR referred by D-LAR points to a value ‘0’ then the instructions in instruction

LAR I-LAR1 get executed, otherwise the instructions in instruction LAR I-LAR2 get

executed. This is explained with an example.

 38

 Select d0, i12, i14

 If (d0.data = 0)

 Execute i12 (really i31=i12)

 Else

 Execute i14 (really i31=i14)

Instructions (1024 bits wide) Address

I0 400

... ...

I12 I@671 … I@640 640

I14 I@831 … I@800 800

... ...

I31 PC

Fig 5.15. Select Instruction

 When i12 is selected, from fig 5.15, instructions starting from instruction

memory location 640 start getting executed. When i14 is selected, instructions from

instruction memory 800 start getting executed.

Copyright © Krishna Melarkode 2004.

 39

6. A HARDWARE MODEL OF LAR ARCHITECTURE

The basic LAR model has a data and an instruction memory. There are no L1, L2

or L3 caches. There are two arrays of associative registers – the data LAR and the

Instruction LAR. The instruction LARs are loaded with a Fetch instruction, equivalent to

a pre-fetch. An instruction LAR can hold 32 instructions, each 32 bits wide. Once the

instructions are loaded, they start getting executed. One of the instruction LARs acts as

the instruction register and its address part acts as the program counter. After executing

each instruction, the program counter increments itself by 1.

 40

Instruction
Memory

Data
LARs

Data
Memory

Instruction
LARs

IR PC

ALU

1

Mux 1 Mux 2

Inv Reg 1 Inv Reg 2

Mask Reg 1 Mask Reg 2

Shifter Shifter

DeMux 1

Shifter

Inv Reg 3

mux

 Fig 6.1. Data Path

 41

Instructions are loaded into the instruction LARs with the fetch instruction. The

data LARs have to be loaded next. The load points to three data LARs and has an

immediate field. Consider an example

 Loadw d15, d5, d20, 100

From the figure below, data1, address 6312 are added with 100. This is the

effective address.

Opcode Destination Src1-Addr Src2-Data Immediate

Loadw d15 d5 d10 100

LAR Data Address

d5 data1 2124

d10 data2 6312

d15 data3 9816

d20 data4 5275

Fig 6.2. Decoding a load instruction

 Effective address = data1 + 6312 +100

The effective address calculation is implemented with a 3 input adder that can

function either as a two or three input adder, based on whether the instruction is an ALU

or load/store instruction. Alternately, there can be two 2-input adderss. The contents of

the two source LARs form the 2 inputs of the first adder. The output of the first adder is

the sum of the contents of the two source data LARs. The output of this adder is fed into

another 2-input adder. The other input of the second adder is the immediate field. The

output of the second adder is the effective address.

 42

Source1 Source2 Immediate

 Effective Address

Fig 6.3. A couple of 2 input adders to calculate effective address

This effective address is then compared with the address fields of all the other

data LARs. This can be done with a subtract or exclusive-or operation and if there is a hit

the zero flag of the ALU gets set. If there is a match, the data values are loaded from the

matching LAR. If there are no matches, the contents are loaded from the memory. The

word size bits are appropriately set based on the type of load instruction. A load-byte, for

example, sets the word size to 8 and a load half-word sets the word size to 16. There are 2

bits in each data LAR that are used to specify the size of data in each data LAR. The bit

setting for different word sizes were shown in the table 4.1.

Initially at start-up, all the data fields of the data LARs are initialized to ‘0’. In a

case where an ALU operation has to be performed with the destination LAR never loaded

before with a load, it is not possible to determine the data type of the result computed.

Thus, the data types of the data LARs must be initialized before such use.

 43

A LAR is a vector register that can hold multiple memory words and perform

SWAR operations. The data LAR is 256 bits wide and can hold eight memory words.

Parallel ALU operations can be performed with a wide ALU. An interesting point to note

here is that the ALU unit adjusts its internal partitioning in accordance with the data type

of the LAR. As a result, the contents of a LAR can be treated as different size datum in

different instructions. For example, if the data size in a LAR is 16, an ALU operation

adjusts the width of the ALU inputs to 16.

To perform a Parallel / vector ADD operation with two LARs, the size of the

destination is determined. The size of the destination sets the ALU field partitioning. All

the contents of the two sources get added and the sum replaces the contents of the

destination. This is better explained with an example:

Loaduw d1, d0, d0, 80

Loaduw d2, d0, d0, 188

Addp d1, d1, d2

 In the above example, d1 is loaded with unsigned-words and the second LAR d2,

is also loaded with unsigned words. A vector-add operation is performed between d1 and

d2 and the result is stored in d2. The size of the destination is 32. So the ALU performs

an add operation of 8 words (32 bits each) and the sum replaces the contents of the

destination. If the two LARs have words of unequal sizes, the destination size again

decides the ALU width for the operation.

 The scalar operations are slightly different from the vector operations. A scalar

operation selects a small portion of the entire LAR line, neglecting the others. It extracts

either a byte, half word or a word from the LAR line to operate on. To implement them in

hardware a set of invisible and masking registers are required. The required data to be

isolated is masked and copied into an invisible register, shifted to right justify, operated

on, and then sent back to its original position and then stored. It is better explained with

the following example.

 44

 Figure 6.4 shows two data LARs. Both have a word size of 8. It is assumed that

the first LAR is d1 and the second is d2. d1 has an offset of 2 and d2 has an offset of 5.

The scalar add instruction extracts the bits pointed by the instruction and performs

addition on the extracted bits.

Adds d1, d1, d2

Data B-Ptr Offset W-Sz

.. 135 125 100 95 85 xxx 2 8

.. .. 130 120 110 100 90 80 xxx 5 8

Fig 6.4. LARs d1 and d2 before the scalar add operation

 The data LAR d1 points to 100 and d2 points to 120. A mask register allows

only the word pointed by that LAR to pass through. The contents are then shifted for right

justification. The sequence of operations for d1 is shown in the figure 6.5. The offset is

field retains the data position information in the LAR line.

.. 135 125 100 95 85

 &

0 0 0 0 0 -1 0 0

 =

0 0 0 0 0 100 0 0

 >>2

0 0 0 0 0 0 0 100

Fig 6.5. Scalar Add: Extracting the effective data pointed by d1

 45

The word size of d1 is a byte – so the last 8 binary digits of 100 are taken into

consideration for the ALU operation.

 The sequence of operations for LAR d2 is shown in fig 6.6.

701 702 130 120 110 100 90 80

 &

0 0 0 -1 0 0 0 0

 =

0 0 0 120 0 0 0 0

 >>5

0 0 0 0 0 0 0 120

Fig 6.6. Scalar Add: Extracting effective data pointed by d2

 (100)10 = (0110 0100)2

 (120)10 = (0111 1000)2

 + (220)10 = (1101 1100)2

 On addition, the 100 and 120 alone get added resulting in 220.. The size of d1 is 8.

So the result is also a 8 bit value, 220. The result is also stored in an invisible register. It

is then shifted to its original position by shifting it by the number of times specified in the

offset as shown in fig 6.7. The sum replaces the data pointed at the destination LAR.

0 0 0 0 0 0 0 220

 2<<

0 0 0 0 0 220 0 0

.. 125 135 220 95 85

Fig 6.7. Putting back the sum into its appropriate place

Copyright © Krishna Melarkode 2004.

 46

7. RESULTS

Given the large scale of the differences between the proposed LAR architecture

and conventional designs, it was not possible to create a highly-accurate simulation from

which timing information could be obtained. However, a functional simulator was

constructed using C and PCCTS. This simulator accepts assembly language code,

translates it into bit patterns, and simulates the execution of the code at the instruction

level. Complete source code for the simulator is freely available from the author.

Although the concepts and preliminary design of LAR architecture itself are

considered to be the primary contributions of this thesis, qualitative evaluation of the

resulting architecture also has been done.

First, it is clear that the proposed LAR mechanism has all the same benefits

claimed for CRegs, since ignoring the parallel operations reduces LAR architecture to a

mode of operation that is indistinguishable from CRegs. It is unfortunate that the CRegs

simulators constructed years ago were not available to be modified to become a LARs

simulator. In any case, the CRegs benefits are primarily:

1. The ability to place ambiguously aliased objects in registers, allowing

predictable and efficient compiler management of all data references

2. The ability to replace most store operations with implicit, lazy, stores of

values that are marked as dirty

3. Efficient handling of instruction blocks rather than individual instructions

4. The ability to explicitly prefetch instruction blocks, which eliminates the

need for brach prediction logic while simultaneously allowing the compiler

to manage instruction fetch (for example, hoisting instruction fetches out of

loops)

However, the original CRegs concepts were somewhat coupled to the architectural

ideas and constraints of the late 1980s, and these issues make CRegs awkward to

implement in a modern processor and less efficient than they would have been. As a

modern adaptation of CRegs, LARs provide solutions to problems that were not

 47

important when CRegs were invented. Thus, in addition to the CRegs benefits, LARs

provides:

1. A cleaner, more appropriate, implementation directly using the

wide memory paths which modern systems require for good

performance; data CRegs were only one word wide

2. SWAR parallelism, with the ability to handle greatly increased

parallelism widths if appropriate

3. Type-tagging that allows objects of various sizes and types to be

directly manipulated with a simple and very regular instruction set

4. Scalar operations that, using type-tagging and addresses within

LARS (offsets), allow field extraction and insertion within a LAR

operation on any type of data; CRegs required different instructions

for operating on different data types and required other CRegs to

be used as temporaries (e.g., a byte operation could not be done in-

place without affecting all bytes in a word)

5. The ability to fetch multiple instruction blocks with a single fetch

instruction

Copyright © Krishna Melarkode 2004.

 48

8. CONCLUSION AND FUTURE WORK

 In this thesis, a new concept called LAR was introduced and a simple instruction

set, suitable for creation of a first prototype, was proposed. An instruction-level

functional simulator was built to demonstrate LAR processor operation.

LARs offer a very different way to efficiently handle memory access, both for data

and instructions, in a modern processor. Instead of adding complexity and layers to the

memory and cache structures, it handles memory traffic through a set of typed,

associative registers that can replace multiple levels of caches, vector registers, and scalar

registers. It also is compiler-friendly and deals with aliases efficiently.

 LARs offer greater parallelism and hence better throughput for parallel operations

when compared to the MMX and XMM registers. Unlike the SSE-1 or SSE-2 extensions,

it performs flexible scalar operations. It also offers atomicity in handling different data

types and sizes. The LARs instruction set proposed here is deliberately kept simple; it

does not take full advantage of lessons learned from these and other SWAR models, but it

easily can be extended to do so.

Future work should be directed toward designing a specific hardware

organization, building a cycle-accurate simulator, and extending the instruction set to be

more complete. The type system also should be extended to support floating point data,

providing serial and parallel operations on both 32-bit and 64-bit floats. Only after these

steps have been taken can quantitative comparisons between LARs and other memory

access architectures be made.

Copyright © Krishna Melarkode 2004.

 49

APPENDIX A: LINE ASSOCIATIVE REGISTERS SIMULATOR

The following files are for the LAR based simulator developed using PCCTS – Purdue Compiler

Construction Tool Set. The simulator developed is a functional simulation of the LAR concept.

The source code is available at the “swdev.ece.engr.uky.edu” server.

A.1. Source listing of “simple.g”

#header <<#include "simple.h">>

#lexclass START
#token "[,\ \t\r]+" << zzskip(); >>

#token "\n" << ++zzline; >>

#token "/*" << zzreplstr("");
 zzmode(LEXCOM);
 zzmore();
 >>

#token "\-\-" << zzreplstr("");
 zzmode(LEXCOM2);
 zzmore();
 >>

#lexclass LEXCOM
#token "\n" << ++zzline;
 zzreplstr("");
 zzmore();
 >>

#token "*/" << zzmode(START);
 zzskip();
 >>

#token "~[]" << zzreplstr("");
 zzmore();
 >>

#lexclass LEXCOM2
#token "\n" << zzmode(START);
 zzskip();
 >>

#token "~[]" << zzreplstr("");
 zzmore();
 >>

#lexclass START

input:

(sep |("loadub"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

 50

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=8;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 d[dst].edu8 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].du8[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loadb"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=8;d[dst].s=1;//if dst.s=1 ->>signed number
 calc(dst,srca,srcd,immed);
 d[dst].ed8 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].d8[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);

>>

)|("loaduh"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=16;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 d[dst].edu16 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].du16[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loadh"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=16;d[dst].s=1;//if dst.s=1 ->>signed number
 calc(dst,srca,srcd,immed);
 d[dst].ed16 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].d16[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loaduw"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

 51

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=32;d[dst].s=0; //d[dst].s=0 ->> unsigned number
 calc(dst,srca,srcd,immed);
 d[dst].edu32 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].du32[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loadw"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=32;d[dst].s=1;
 calc(dst,srca,srcd,immed);
 d[dst].ed32 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].d32[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loadud"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=64;d[dst].s=0; //d[dst].s ->>0 unsigned number
 calc(dst,srca,srcd,immed);
 d[dst].ed64 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].du32[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("loadd"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=64;d[dst].s=1; //d[dst].s ->>1 signed number
 calc(dst,srca,srcd,immed);
 d[dst].ed64 = dm[efa];
 assoc(dst,basep);
 efd = d[dst].du32[offset];
 d[dst].ed = efd;
 dirty1[dst]=1;
 printstuff(dst);
>>

)|("storeub"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

 52

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=8;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("storeb"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=8;d[dst].s=1;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("storeuh"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=16;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("storeh"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=16;d[dst].s=1;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("storeuw"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=32;d[dst].s=1;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("storew"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=32;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);

 53

 upgrade(dst);
 printstuff(dst);
>>

)|("storeud"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=64;d[dst].s=0;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("stored"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);
 d[dst].ws=64;d[dst].s=1;//if dst.s=0 ->>unsigned number
 calc(dst,srca,srcd,immed);
 upgrade(dst);
 printstuff(dst);
>>

)|("addp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=1;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("adds"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=1;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("subp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=2;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("subs"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

 54

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=2;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("mulp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=3;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("muls"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=3;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("andp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=4;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("ands"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=4;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("orp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=5;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);

 55

 d[dst].dty[dst]=0;
>>

)|("ors"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=5;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("exorp"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=6;siplu=2;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("exors"{sep}"d"dcr{sep}"d"dcr{sep}"d"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 operation=6;siplu=1;
 ALU(dst,src1,src2,operation,siplu);
 upgrade(dst);
 d[dst].dty[dst]=0;
>>

)|("fetch"{sep}"i"dcr{sep}"d"dcr{sep}"i"dcr{sep}imm{sep}

<<
 immed=atoi($14.num);dst=atoi($5.num);
 srca=atoi($8.num);srcd=atoi($11.num);

 icroutlook();

 int i,j;
 top2=((immed & 3072)\>>10);
 bot10=(immed & 1023);
 icr[dst].addr = ((d[srca].ed32 + icr[srcd].addr + bot10)/8)*8;
 effadd=icr[dst].addr;
 temp2=icr[dst].addr;

 if (top2==0) //load 1 ICREG
 {
 icrop(dst);
 }
 else
 if (top2==1)
 {
 icrop(dst);
 icrop(dst+1);
 }

 56

 else
 if (top2==2)
 {
 icrop(dst);
 icrop(dst+1);
 icrop(dst+2);
 }
 else
 if (top2==3)
 {
 icrop(dst);
 icrop(dst+1);
 icrop(dst+2);
 icrop(dst+3);
 }
>>

)|("select"{sep}"d"dcr{sep}"i"dcr{sep}"i"dcr{sep}

<<
 dst=atoi($5.num);src1=atoi($8.num);
 src2=atoi($11.num);
 icroutlook();int i;
 if (d[dst].edu64 == 0)
 {
 printf("i%d ->\t",src1);
 for (i=0;i<8;i++)
 printf("%d\t",icr[src1].inst[i]);
 printf("%d",icr[src1].addr);
 printf("\n");
 }
 else
 {
 printf("i%d ->\t",src2);
 for (i=0;i<8;i++)
 printf("%d\t",icr[src2].inst[i]);
 printf("%d",icr[src2].addr);
 printf("\n");
 }
>>
))+
;

dcr:
 "[0-9]" | "[12][0-9]" | "30" | "31"
;

imm:
 ("[0-9]"| "[12][0-9]" | "30" | "31"| "32" | "33" | "34" | "35" | "36" |
"37" | "38" | "39" |"4[0-9]" |"[5-9][0-9]" |"[1-9][0-9][0-9]" | "[1-3][0-9][0-
9][0-9]" | "4000" | "400[1-9]"|"40[1-9][0-5]")
;

sep:
 ("\n" | "," | "\ ")+
;

A.2. Source listing of “simple.h”

 57

/* simple.h

 general header file....
*/

#include <stdio.h>
#include <string.h>
#include <stdlib.h>

#ifndef SIMPLE_H
#define SIMPLE_H
#define mem 99999

void error(char *s);
void warn(char *s);
void syntaxerror(char *s);
void icroutlook();
void calc(int p,int q,int r,int s);
void simplify(int p,int q,int s,int t,int y);
void assoc(int p,int b);
void upgrade(int p);
void ALU(int p,int q,int r,int s,int t);
void vectoropnorm(int p,int q,int r,int s);
void vectoroplong(int p,int q,int r,int s);
void scalarop(int p,int q,int r,int s);
long int todo(long int a,long int b,long int c);
void getsize(int t);
void printstuff(int z);
void dirtymech(int y);
void icrop(int j);

struct dlar {
 int s,ed,ea,bp,off,ws,dty[32];
 union {
 unsigned char edu8;
 char ed8;
 unsigned short edu16;
 short ed16;
 unsigned int edu32;
 int ed32;
 unsigned long long edu64;// <<-BASE
 long long ed64;
 };
 union {
 unsigned char du8[32];
 char d8[32];
 unsigned short du16[16];
 short d16[16];
 unsigned int du32[8];
 int d32[8];
 unsigned long long du64[4];// <- BASE
 long long d64[4];
 };
 }d[32];

struct ilar {
 int effec,inst[8],addr,dirtyicr[32],officr;
 }icr[32];

int efa,efd,basep,offset,size,size1,size2,temp3,temp1,temp2;
int dst,srcd,srca,immed;

 58

int dm[mem];
int im[mem];
int dirty1[32],dirty2[32];
int src1,src2;
int limit,incr;
long int temdoub[4];

int operation,siplu;

int top2,bot10,effadd;

/* PCCTS stuff...
*/
typedef union {
 char *text; /* lexeme text */
 int num; /* number value */
} Attrib;

#define zzdef0(a) { /* nothing */ }
#define zzd_attr(a) { /* nothing */ }

extern void
zzcr_attr(Attrib *a, int tok, char *s);

#endif

A.3. Source listing of “main.c”

/* main.c

 Main program...
 process the command line, invoke the parser, etc.

 Fall 2002 by Hank Dietz
*/

#include "stdpccts.h"
#include "simple.h"

main(void)
{
 int i,j=0;
 for (i=0;i<100000;i++)
 {
 dm[i]=j;
 im[i]=j;
 j=j+1;
 }

 for (i=0;i<32;i++)
 {
 dirty1[i]=0;
 dirty2[i]=0;
 d[i].dty[i]=0;
 }

 d[0].bp=0;d[0].off=0;d[0].ws=8;d[0].ea=0;d[0].edu64=0;

 59

 d[1].bp=0;d[1].off=0;d[1].ws=8;d[1].s=0;
 d[2].bp=0;d[2].off=1;d[2].ws=8;d[2].s=0;
 d[3].bp=0;d[3].off=2;d[3].ws=8;d[3].s=0;
 d[4].bp=0;d[4].off=3;d[4].ws=8;d[4].s=0;

 d[5].bp=0;d[5].off=0;d[5].ws=16;d[5].s=0;
 d[6].bp=0;d[6].off=1;d[6].ws=16;d[6].s=0;
 d[7].bp=0;d[7].off=2;d[7].ws=16;d[7].s=0;
 d[8].bp=0;d[8].off=3;d[8].ws=16;d[8].s=0;

 d[9].bp=0;d[9].off=4;d[9].ws=32;d[9].s=1;
 d[10].bp=0;d[10].off=5;d[10].ws=32;d[10].s=1;
 d[11].bp=0;d[11].off=6;d[11].ws=32;d[11].s=1;
 d[12].bp=0;d[12].off=7;d[12].ws=32;d[12].s=1;

 d[13].bp=0;d[13].off=0;d[13].ws=64;d[13].s=1;
 d[14].bp=0;d[14].off=1;d[14].ws=64;d[14].s=1;
 d[15].bp=0;d[15].off=2;d[15].ws=64;d[15].s=1;
 d[16].bp=0;d[16].off=3;d[16].ws=64;d[16].s=1;

 d[17].bp=0;d[17].off=0;d[17].ws=32;d[17].s=1;
 d[18].bp=0;d[18].off=1;d[18].ws=32;d[18].s=1;
 d[19].bp=0;d[19].off=2;d[19].ws=32;d[19].s=1;
 d[20].bp=0;d[20].off=3;d[20].ws=32;d[20].s=1;

 d[21].bp=0;d[21].off=3;d[21].ws=16;d[21].s=1;
 d[22].bp=0;d[22].off=2;d[22].ws=16;d[22].s=1;
 d[23].bp=0;d[23].off=1;d[23].ws=16;d[23].s=1;
 d[24].bp=0;d[24].off=0;d[24].ws=16;d[24].s=1;

 d[25].bp=0;d[25].off=7;d[25].ws=32;d[25].s=0;
 d[26].bp=0;d[26].off=6;d[26].ws=32;d[26].s=0;
 d[27].bp=0;d[27].off=5;d[27].ws=32;d[27].s=0;
 d[28].bp=0;d[28].off=4;d[28].ws=32;d[28].s=0;

 d[29].bp=0;d[29].off=3;d[29].ws=16;d[29].s=0;
 d[30].bp=0;d[30].off=2;d[30].ws=16;d[30].s=0;
 d[31].bp=0;d[31].off=1;d[31].ws=16;d[31].s=0;

ANTLR(input(), stdin);
 exit(0);

d[0].bp=0;d[0].off=0;d[0].ws=8;d[0].ea=0;d[0].edu64=0;

}

void icroutlook()
{
 int i;
 printf("\n");
 for (i=0;i<38;i++)
 printf("--");
 printf("\n\tADDR\tI[0]\tI[1]\tI[2]\tI[3]\tI[4]\tI[5]\tI[6]\tI[7]");
 printf("\n");
 for (i=0;i<38;i++)
 printf("--");
 printf("\n");
}

void calc(int p,int q,int r,int s)

 60

{
 //p=dst q=srca r=srcd s=immed
 efa = d[q].ea + d[r].ed + s;
 d[p].ea = efa;
 basep = (efa/8)*8;
 d[p].bp = basep;
 if (d[p].ws ==64)
 {
 offset=efa-basep;
 if ((offset==0) || (offset==1))
 offset=0;
 else if ((offset==2) || (offset==3))
 offset=1;
 else if ((offset==4) || (offset==5))
 offset=2;
 else if ((offset==6) || (offset==7))
 offset=3;
 d[p].off=offset;
 }
 else
 {
 offset = efa - basep;
 d[p].off=offset;
 return;
 }

}

void assoc(int p,int b)
{
//p=dst b=basep
 int i;
 temp1=0;temp3=0;
 for (i=1;i<32;i++)

{
 if ((d[i].bp == b) && (i !=p))
 {
 temp3=i;temp1=1;
 printf("\nAssociative Load - Matching LAR d%d!",temp3);
 }
 }
 for (i=0;i<8;i=i+1)

{
 if (temp1 == 1)
 {
 d[p].du32[i]=d[temp3].du32[i];
 }
 else if (temp1 == 0)
 {
 d[p].du32[i]=dm[b];
 }
 b++;
 }
}

void printstuff(int z)
{
 printf("\n");
 printf("\n 32 Bytes of DATA in the data LAR
\n");

 61

 printf(" MSB ---
LSB \n\n");
 int i,j=0;

if (d[z].ws == 8)

 {
 printf("d%d ->\t",z);
 for (i=31;i>-1;i--)
 {
 if (d[z].s ==0)
 {
 printf("%d ",d[z].du8[i]);
 j++;
 if ((j%4)==0)
 printf(" ");
 }
 else if (d[z].s ==1)
 {
 printf("%d ",d[z].d8[i]);
 j++;
 if ((j%4)==0)
 printf(" ");
 }
 }
 printf("\n");
 printf("\nBase Ptr Offset WordSize Type
 Dirty\n");
 printf("%d\t\t %d\t\t %d\t\t %d\t\t %d
",d[z].bp,d[z].off,d[z].ws,d[z].s,d[z].dty[z]);
 printf("\n");
 }
 else

if (d[z].ws == 16)

 {
 printf("d%d ->\t",dst);

 for (i=15;i>-1;i--)
 {

if (d[z].s ==0)
 {
 printf("%d ",d[z].du16[i]);
 j++;
 if ((j%2)==0)
 printf(" ");
 }
 else if (d[z].s ==1)
 {
 printf("%d ",d[z].d16[i]);
 j++;
 if ((j%2)==0)
 printf(" ");
 }
 }
 printf("\n");
 printf("\nBase Ptr Offset WordSize Type
 Dirty\n");
 printf("%d\t\t %d\t\t %d\t\t %d\t\t %d
",d[z].bp,d[z].off,d[z].ws,d[z].s,d[z].dty[z]);
 printf("\n");
 }
 else

 62

if (d[z].ws == 32)

 {
 printf("d%d ->\t",dst);
 for (i=7;i>-1;i--)
 {
 if (d[z].s ==0)
 {
 printf("%d ",d[z].du32[i]);
 printf(" ");
 }
 else if (d[z].s ==1)
 {

 printf("%d ",d[z].d32[i]);
 printf(" ");
 }
 }
 printf("\n");
 printf("\nBase Ptr Offset WordSize Type
 Dirty\n");
 printf("%d\t\t %d\t\t %d\t\t %d\t\t %d
",d[z].bp,d[z].off,d[z].ws,d[z].s,d[z].dty[z]);
 printf("\n");
 }
 else

if (d[z].ws == 64)
 {
 printf("d%d ->\t",dst);
 for (i=3;i>-1;i--)
 {
 if (d[z].s ==0)
 {
 printf("%lg ",d[z].du32[i]);
 j++;
 if ((j%2)==0)
 printf(" ");
 }
 else if (d[z].s ==1)
 {
 printf("%lg ",d[z].d32[i]);
 j++;
 if ((j%2)==0)
 printf(" ");
 }
 }

printf("\n");
 printf("\nBase Ptr Offset WordSize Type
 Dirty\n");
 printf("%d\t\t %d\t\t %d\t\t %d\t\t %d
",d[z].bp,d[z].off,d[z].ws,d[z].s,d[z].dty[z]);
 printf("\n");
 }
}

void vectoropnorm(int p,int q,int r,int s)
{
 int i;
 for(i=0;i<8;i++)
 {

 63

 if (d[p].s==0)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].du32[i] =
todo(d[q].du32[i],d[r].du32[i],s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].du32[i] =
todo(d[q].du32[i],d[r].d32[i],s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].du32[i] =
todo(d[q].d32[i],d[r].du32[i],s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].du32[i] =
todo(d[q].d32[i],d[r].d32[i],s);
 }
 else
 if (d[p].s==1)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].d32[i] =
todo(d[q].du32[i],d[r].du32[i],s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].d32[i] =
todo(d[q].du32[i],d[r].d32[i],s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].d32[i] =
todo(d[q].d32[i],d[r].du32[i],s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].d32[i] = todo(d[q].d32[i],d[r].d32[i],s);
 }

 }
}

void vectoroplong(int p,int q,int r,int s)
{
 int i;
 for(i=0;i<4;i++)
 {
 if (d[p].s==0)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].du64[i] =
todo(d[q].du64[i],d[r].du64[i],s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].du64[i] =
todo(d[q].du64[i],d[r].d64[i],s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].du64[i] =
todo(d[q].d64[i],d[r].du64[i],s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].du64[i] =
todo(d[q].d64[i],d[r].d64[i],s);
 }
 else if (d[p].s==1)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].d64[i] =
todo(d[q].du64[i],d[r].du64[i],s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].d64[i] = (d[q].du64[i],d[r].d64[i],s);

 64

 else if((d[q].s==1) && (d[r].s==0))
 d[p].d64[i] = (d[q].d64[i],d[r].du64[i],s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].d64[i] = (d[q].d64[i],d[r].d64[i],s);
 }
 }
}

void scalarop(int p,int q,int r,int s)
{
//p=dst q=src1 r=src2 s=operation t=(if t=1 scalar) (if t=2 vector)

 if (d[p].s==0)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].du32[d[dst].off] = todo(d[q].edu32,d[r].edu32,s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].du32[d[dst].off] = todo(d[q].edu32,d[r].ed32,s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].du32[d[dst].off] = todo(d[q].ed32,d[r].edu32,s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].du32[d[dst].off] = todo(d[q].ed32,d[r].ed32,s);
 }
 else
 if (d[p].s==1)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].d32[d[dst].off] =
todo(d[q].edu32,d[r].edu32,s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].d32[d[dst].off] =
todo(d[q].edu32,d[r].ed32,s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].d32[d[dst].off] =
todo(d[q].ed32,d[r].edu32,s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].d32[d[dst].off] =
todo(d[q].ed32,d[r].ed32,s);
 }
}

void ALU(int p,int q,int r,int s,int t)
{
//p=dst q=src1 r=src2 s=operation t=(if t=1 scalar) (if t=2 vector)
 if (t==2) //Parallel operation
 {
 if ((d[src1].ws==64) && (d[src2].ws==64) && (d[dst].ws==64))
 vectoroplong(p,q,r,s);
 else if ((d[src1].ws == 64) && (d[src2].ws == 64) || (d[dst].ws ==
64))
 goto oops;
 else if ((d[src1].ws == 64) || (d[src2].ws == 64) && (d[dst].ws ==
64))
 goto oops;
 else if ((d[src2].ws == 64) && (d[dst].ws==64) && (d[src1].ws ==
64))
 goto oops;
 else if ((d[src1].ws == 64) || (d[src2].ws == 64) || (d[dst].ws ==
64))
 {
 oops: printf("\nDouble words are special cases !\n");
 printf("This Operation cannot be performed !!\n");

 65

 goto end;
 }
 else if ((d[src1].ws != 64) && (d[src2].ws != 64) && (d[dst].ws !=
64))
 vectoropnorm(p,q,r,s);

 dirtymech(p);
 printstuff(p);
 end:;
 }
 else if (t==1)
 {
 if ((d[src1].ws==64) && (d[src2].ws==64) && (d[dst].ws==64))
 goto ooh;
 else if ((d[src1].ws == 64) && (d[src2].ws == 64) ||
(d[dst].ws == 64))
 goto ooh;
 else if ((d[src1].ws == 64) || (d[src2].ws == 64) &&
(d[dst].ws == 64))
 goto ooh;
 else if ((d[src2].ws == 64) && (d[dst].ws==64) && (d[src1].ws
== 64))
 goto ooh;
 else if ((d[src1].ws == 64) || (d[src2].ws == 64) ||
(d[dst].ws == 64))
 {
 ooh: printf("\nDouble words are special cases !\n");

 printf("This Operation cannot be performed !!\n");
 goto theend;
 }
 else if ((d[src1].ws != 64) && (d[src2].ws != 64) &&
(d[dst].ws != 64))
 scalarop(p,q,r,s);

 dirtymech(p);
 printstuff(p);
 theend:;
}

void scalarop(int p,int q,int r,int s)
{
//p=dst q=src1 r=src2 s=operation
 if (d[p].s==0)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].du32[d[dst].off] = todo(d[q].edu32,d[r].edu32,s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].du32[d[dst].off] = todo(d[q].edu32,d[r].ed32,s);
 else if((d[q].s==1) && (d[r].s==0))
 d[p].du32[d[dst].off] = todo(d[q].ed32,d[r].edu32,s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].du32[d[dst].off] = todo(d[q].ed32,d[r].ed32,s);
 }
 else
 if (d[p].s==1)
 {
 if ((d[q].s==0) && (d[r].s==0))
 d[p].d32[d[dst].off] = todo(d[q].edu32,d[r].edu32,s);
 else if((d[q].s==0) && (d[r].s==1))
 d[p].d32[d[dst].off] = todo(d[q].edu32,d[r].ed32,s);

 66

 else if((d[q].s==1) && (d[r].s==0))
 d[p].d32[d[dst].off] = todo(d[q].ed32,d[r].edu32,s);
 else if ((d[q].s==1) && (d[r].s==1))
 d[p].d32[d[dst].off] = todo(d[q].ed32,d[r].ed32,s);
 }

 }

}
long int todo(long int a,long int b,long int c)
{
 if (c==1)
 return (a+b);
 else if (c==2)
 return (a-b);
 else if (c==3)
 return (a*b);
 else if (c==4)
 return (a&b);
 else if (c==5)
 return (a|b);
 else if (c==6)
 return (a^b);
}

void upgrade(int p)
{
 int i,j,k;
 k=d[p].bp;
 for (i=1;i<32;i++)
 {
 if (d[p].bp == d[i].bp)
 {
 for (j=0;j<8;j++)
 d[i].d32[j] = d[p].d32[j];
 }
 }
 for (j=0;j<8;j++)
 {
 dm[k] = d[p].d32[j];
 k++;
 }
}

void dirtymech(int y)
{
 int i;
 dirty2[y]=1;
 if ((dirty1[y]) && (dirty2[y]) ==1)
 d[y].dty[y]=1;
 if (d[y].dty[y]==1)
 {
 for (i=d[y].bp;i<(d[y].bp+8);i++)
 {
 dm[i] = d[y].du64[i];
 }
 }
}

void icrop(int j)
{

 67

 int i;
 printf("i%d ->\t",j);
 printf("%d\t",temp2);
 temp2=temp2+8;
 for (i=0;i<8;i++)
 {
 icr[j].inst[i]=im[effadd];
 printf("%d\t",icr[j].inst[i]);
 effadd++;
 }
 printf("\n\n");
}

void error(char *s)
{
 printf("error(%s)\n", s);
 exit(0);
}

void warn(char *s)
{
 printf("warn(%s)\n", s);
 exit(0);
}

void
syntaxerror(char *s)
{
 printf("syntaxerror(%s) in line %d\n",
 s,
 zzline);
}

void
zzcr_attr(Attrib *a, int tok, char *s)
{
 a->text = malloc(strlen(s) + 1);
 if (a->text == 0) {
 syntaxerror("out of memory while reading input");
 a->text = "";
 } else {
 strcpy(a->text, s);
 }
}

 68

REFERENCE

1. Guy Lewis Steele, Jr. , Gerald Jay Sussman, “The dream of a lifetime: A lazy
variable extent mechanism”, Proceedings of the 1980 ACM conference on LISP and
functional programming, pp.163-172, August 1980.

2. H. Dietz, C. H. Chi, “CRegs: a new kind of memory for referencing arrays and pointers”,
Supercomputing ’88, pp.360-367, Jan 1988.

3. Ben Heggy, Mary Lou Soffa, “Architectural support for register allocation in the presence

of aliasing”, Proc., Supercomputing ’90, pp. 730-739, Feb 1990.

4. Peter Dahl, Matthew O'Keefe, “Reducing memory traffic with CRegs”, Proceedings of
the 27th annual international symposium on Microarchitecture, pp 100-104, Nov 1994.

5. John Stokes, “Understanding CPU caching and Performance,”

http://arstechnica.com/paedia/c/caching/caching-1.html

6. David. A. Patterson, John L. Henessey, “Computer Organization and Design – The
Hardware / Software Interface”.

7. David M. Gallagher, William Y. Chen, Scott A. Mahlke, John C. Gyllenhaal, Wen-mei

W. Hwu, “Dynamic memory disambiguation using the memory conflict buffer”, ACM
SIGPLAN Notices, Vol 29 No. 11, pp.183-183, Nov, 1994.

8. Matthew A. Postiff, Trevor Mudge, “Smart Register Files for High Performance

Microprocessors”, Technical Report CSETR -403-99, June 1999.

9. David R. Engebretsen, Peter E. Bergner, Matthew T. O’Keefe, “Register Allocation and
Code Scheduling for CRegs using SUIF”, The First SUIF Compiler Workshop, Stanford
University, January 11-13, 1996.

10. Matthew Postiff, David Greene, Trevor Mudge, “The store-load address table and

speculative register promotion”, Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, pp.235-244, December 2000.

11. John Lu, Keith D. Cooper, “Register promotion in C programs”, Proceedings ACM

SIGPLAN Conf. Programming Language Design and Implementation (PLDI-97), pp.
308-319, June 1997.

12. A. V. S. Sastry, Roy D. C. Ju, “A new algorithm for scalar register promotion based on

SSA form”, Proceedings ACM SIGPLAN ’98 Conf. Programming Language Design and
Implementation (PLDI), pp. 15-25, May 1998.

http://arstechnica.com/paedia/c/caching/caching-1.html

 69

13. Raymond Lo, Fred Chow, Robert Kennedy, Shin-Ming Liu, Peng Tu,” Register
promotion by sparse partial redundancy elimination of loads and stores”, Proceedings
ACM SIGPLAN ’98 Conf. Programming Language Design and Implementation (PLDI),
pp. 26-37, May 1998.

14. IA32 Intel Architecture Software Developers Manual, Volume 1: Basic Architecture.

15. AMD Extensions to the 3DNow! And MMX Instruction Sets Manual.

16. Randall J. Fisher, Henry G. Dietz, “Compiling For SIMD Within A Register”, Proc. 11th

International workshop on Languages and Compilers for Parallel Computing, pp. 290 –
304, 1998.

17. G. J. Myers, B. R. S. Buckingham, “A Hardware implementation of capability based

addressing”, ACM SIGOPS Operating Systems Review, Volume 14 Issue 4, pp. 13-25,
October 1980.

18. R. S. Fabry, “Capability-based addressing”, Communications of the ACM, Volume 17

Issue 7, pp. 403 – 412, July 1974.

 70

VITA

 This thesis was done by Krishna Melarkode. He was born on the 25th of April, 1980 at

Chennai, INDIA. He got his Bachelors of Engineering degree in Electronics and Communication

Engineering from the University of Madras, INDIA in 2001. He worked as a Teaching assistant

in the Department of Physics, University of Kentucky for a year. He also worked as a Research

Assistant for Dr. Hank Dietz in the department of Electrical and Computer Engineering,

University of Kentucky.

