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ABSTRACT OF DISSERTATION

EXPLOITING SPARSENESS OF COMMUNICATION PATTERNS
FOR THE DESIGN OF
NETWORKS IN MASSIVELY PARALLEL SUPERCOMPUTERS

A limited set of Processing Element (PE) pairs in a paralighputer cover the internal com-
munications of scalable parallel programs. We take adgantéthis property using the concept of
Sparse Flat Neighborhood Networks (Sparse FNNs). Sparbks ke network designs that provide
single-switch latency and full wire bandwidth for each sfied PE pair, despite using relatively few
network interfaces per PE and switches that have far fewds ftloan there are PEs. This disser-
tation discusses the design problem, runtime support, amllimg prototype (KASYO0) for Sparse
FNNs. KASYO not only demonstrated the claimed propertieg, also set world records for its
price/performance and performance on a specific applitatio

Parallel supercomputers execute many portions of an apjolic simultaneously. For scalable
programs, the more PEs the system has, the greater theipbsg®edup. Portions executing on
different PEs may be able to work independently for shortgastr but the performance desired
might not be achieved due to delays in communication betvirtesr The set of PE pairs that will
communicate often is both predictable and small relatiteéoumber of possible PE pairings. This
sparseness property can be exploited in the design andrmeptation of networks for massively
parallel supercomputers.

The sparseness of communicating pairs is rooted in the Hattetach of the human-designed
communication patterns commonly used in parallel prograassthe property that the number of
communicating pairs grows relatively slowly as the numifdPBs is increased. Additionally, the
number of pairs in the union of all communication patterresiia a suite of parallel programs grows
surprisingly slowly due to pair synergy: the same pair ofs@pears in multiple communication
patterns. Detailed analysis of communication patternarigleshows that the number of PE pairs
actually communicating is very sparse, although the straadf the sparseness can be complex.
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Chapter 1

Introduction

1.1 Scope of Work

This dissertation examines the feasibility of designingtem networks for parallel computers that
efficiently support the communications of target suitescalable parallel programs. Specifically it
shows:

1. Individual communication patterns of scalable pargilelgrams are sparse.
2. The union of many communication patterns is sparse, induarto pair synergy.

3. A Sparse Flat Neighborhood Network (Sparse FNN) effibyearid simultaneously supports
these communication patterns.

4. The complex problem of designing Sparse FNNs is solved avitombination of Heuristic
and Genetic Algorithm techniques.

5. Sparse FNNs scale to the largest size parallel machirikgdmay, with over 65 thousand
nodes.

6. The practical details in using Sparse FNNs, such as messading, are either solved or
solvable.

7. The cost and performance benefits of Sparse FNNs areldicernonstrated in a parallel
computer, KASYO.
1.2 Background

In traditional parallel computers, the Processing EleméﬁEsﬁ do the real work of a parallel
program. Thus, when building or buying a new parallel cormpone would like to maximize the

IThis dissertation uses the term PE to interchangeably mamacéssor,” “core,” “CPU,” or “uniprocessor node,” as
distinguished from hardware units that may execute sed@pendently despite being physically grouped togetheh su
as “multi-core processor” or “multiprocessor node.”



aggregate computational power of the PEs. The network atingethose PEs greatly influences
the achieved performance of a program based on how well th@rlesatisfies the program’s com-

munication requirements. Yet, any money spent on the nktw@&ans less money is spent on the
PEs, so there is a cost vs. performance trade-off betwedPBEband the network connecting them.
An engineering approach to network design seems apprepdatsolve this cost vs. performance
trade-off.

Network design is one of the fundamental problems in higligpmance parallel computing
today and has been so since the beginning of parallel comgasign. The emphasis in network
design traditionally has been on selecting a “universgtibtogy with good mathematical proper-
ties and then mapping program communications onto thatarktarchitecturé[22, 42, 58, 59]. A
given network design can be evaluated based on a varietytefiarincluding cost per PE, average
communication latency between PE pairs, available bartividtween PE pairs, and the number
of PEs that can be effectively supported by the network the. network’s scalability). A useful
secondary property of a network, bisection bandwidth[&24Jso traditionally used to compare par-
allel computer networks. Bisection bandwidth is definechadink bandwidth times the minimum
number of links that must be cut when dividing the network itwto halves with equal numbers of
PEs.

Many factors affect these network evaluation criteria, safwhich are more easily controlled
than others. Whether network links directly connect PE4, thiere are switches between the PEs,
will affect the latency of individual messages; especidlthey need to traverse multiple links.
The topology of the links between components affects thiabitidy, the bisection bandwidth, and
the average latency between PEs. The base technology implem the links determines their
minimum latency and maximum bandwidth. The broad use of stwomponents (links, switches,
etc.) outside the high performance computing market resithesr cost due to economies of scale.
The method of routing messages inside the network, suchrasitcswitched, packet switched,
wormhole switched[22], will affect the latency of messaganong other effects. The quality and
design of the software interface to the network can gredfibcethe latency and bandwidth between
PEs. Clearly, there are many factors that contribute tovhkiation of a particular network design.

1.3 Traditional Network Architectures

Parallel computer networks can be broadly classified intogmups, direct and indirect networks[22].
Direct networks are those that employ point to point linksieen PEs; indirect networks are those
where PEs connect through switches. The former usuallyinesjwouting through PEs that have
multiple Network Interfaces (NIs), while the latter usyatloes all the routing of packets in the
switches. Some of the literaturé[3.169] calls these twogzates of networks by different names,
static and dynamic, because the apparent connectivity afeatdhetwork is static, while the in-
direct networks have dynamic connectivity. Implementaido not always fit clearly into any of
these categories. For example, some commercial netwoitikze tedicated switches at each PE



so that message routing does not interfere with a PE’s catipns, but are physically wired as
direct networks. In this paper we will distinguish betwekade categories based on whether a PE
is associated with each node in the representative graghrfetwork: Direct networks have one or
more PEs associated with each node in the graph, and indieéebrks only have PEs associated
with a proper subset of the graph’s nodes.

A direct fully-connected network has the lowest latency mf aetwork, and is a great design
for small numbers of PEs. However it obviously does not staven medium-sized parallel com-
puters, due to it€)(N?) wiring complexity and theéN-1 NiIs needed per PE. A multi-dimensional
mesh is a common category of direct networks. They can bedfaura variety of commercial
machines such as the 2D mesh in the Intel Paragon XIP/S[5}th&n8D tori in the Cray T3D[17]
and IBM BlueGene/l[[24] machines. A hypercube is another moam direct network topology
found in commercial machines such as the Thinking Machinds1{60] and CM-2[62], and the
nCUBE[S0] series of machines. Both the mesh and hypercutveorietopologies scale better than
a direct fully-connected network but can suffer from higietecy between many PE pairs, especially
when scaled to large numbers of PEs. In graph theory termsydinst-case latency between PEs in
a direct network grows with the diameter of the netyioi®ne alternative, yet to be seen in a com-
mercial machine but widely discussed, is to use networkstcacted from Cayley graphs[Z,169]
with high-degree nodes to keep the graph diameter smallth&ninteresting approach to keeping
the graph diameter small is to use a binary de Bruijn diregteghl[57] which uses degree-4 nodes
and has a diameter of onlyg, V. Although a de Bruijn graph was used in JPL’s Galileo profect
an 8,192 PE signal processing computer called the Big \ifedeoder[14[ 15], de Bruijn graphs
have practical difficulties that have limited their use fengral purpose parallel supercomputers.

The fastest indirect network would contain a single crossidgtch connecting all the PEs, but a
crossbar does not scale to large numbers of PEs due®q¥¢) switch-point complexity. In order
to meet the scaling criteria, one can use multiple switcbesonstruct the network, sometimes
called a Multistage Interconnection Network (MIN)[22]. Argple tree with the PEs at the leaves
and switches at the interior nodes scales very cost eftdgtiut does not have a high bisection
bandwidth, which limits its effectiveness. To alleviate thisection bandwidth problem, additional
switches can be added to the tree topology to maintain aaanbbk count at each layer; this
topology is a Fat-TreE[42], which has been used in commencéehines such as the Thinking
Machines CM-5[4B[_63]. Alternatively, the switches in a Mifdn be arranged to form a non-
blocking Clos[I2] network. Yet another arrangement of shds in a MIN, called the Butterfly
network, was used in machines from BBN Advanced Computard4dhThere are many variants
on MINs found in the literaturg[58] that have various rogtischemes, offer differing levels of
fault-tolerance, and support various sets of conflict-freemutations.

Common to all these traditional scalable-network architess, which excludes the crossbar and

2The diameter of the graph for an indirect network is not yricelated to the worst-case latency between PEs,
because not all nodes in the graph represent PEs. The didbehween two nodes in the graph is only relevant to the
worst-case latency if both nodes represent PEs. For exathpldistance between a switch and a PE is unimportant, yet
could be larger than the distance between any two PEs in #pdhgr



the direct fully-connected network, is the need for many sages to be routed through multiple
intermediate network nodes. A message incurs a switclintig delay at each intermediate node
in its path (e.g. for each switch-hop). The amount of delgyetiels not only on the technology
used to construct the network node, but also on the switghiatpcol used. A common switching
protocol is called store-and-forward, which does as itseanplies: A packet is fully stored in a
buffer in the switch prior to it being forwarded. This buffey is done so that corrupted packets can
be detected and discarded by the switch. The primary atteena to do what is called cut-through
routing, which begins forwarding a packet as soon as enofigheoheader has been observed.
Although cut-through routing reduces latency, the switchat able to discard corrupted packets.
The IEEE standards for switched Ethernet require the udeeoftore-and-forward method for this
reason. Therefore, commodity Ethernet switches emplogttre-and-forward method that delays
a packet by at least a full wire delay, which can be quite §icamit. Thus, most high end commercial
parallel machines use non-commodity (i.e. costly) netivgrthardware that supports some form
of cut-through switching/routing, usually some variantwadrmhole routind[51]. Although cut-
through/wormhole routing helps mitigate switch-hop dethis delay can never be eliminated.
Another aspect common to all the traditional scalable-ndtvarchitectures is that many of
the interior links along the path between network nodes hegesl between multiple PE to PE
paths. This sharing can lead to either routing complexity/@rbandwidth bottlenecks and possibly
increased latency. For scalable-networks with multipkapaetween PE pairs, it can be difficult, if
not impossible, for non-centralized routing algorithmgt@rantee that none of these shared links
is oversubscribed. If the network doesn't have multipldpdtetween PE pairs (a tree for example),
multiple messages may have to contend for the bandwidthiediged link. In either case, if multiple
messages contend for a link, then either one of them bloadkexperiences increased latency, or the
effective bandwidth of the link is shared, causing each amges$o experience reduced bandwidth.

1.4 Non-topological Approaches to Improving Latency and Badwidth

For high performance parallel computing, communicaticeriay and bandwidth both are very
important. While network topologies can influence how thesdormance criteria change as one
scales a network design from tens to tens of thousands oftR&base performance of a network
at any size is constrained by its implementation technekddoth hardware and communications
support software. It generally is possible to tune the atesnd bandwidth of a given network
topology by selecting among the various implementatiohrtetogies that can support the routing
required by that topology.

As of this writing, Fast Ethernet, Gigabit Ethernet, 10G dfttet, InfiniBand[34], SCI21],
Myrinet[[Z], QsNetl56], and several other hardware implatagon technologies are available at
various performance[9, 44] and cost levels. Most of theseord technologies have very similar
conceptual properties, for example, all but SCI use bitimaal links. Due to the Spanning Tree
Protocol (STP) of the various Ethernet technologies, togies with cycles would require man-



aged Layer-3 routers, while cycle-free topologies could&enase of unmanaged Layer-2 switches,
which often are less expensive. In addition to standalomeork products, the systems architect
has the option to use custom link and/or switching techriefgghough the cost of designing and
implementing specialized new technologies is beyond thigéuconstraints of all but a few super-
computer vendors. In addition to fast signaling rates fghHink bandwidth, many of the network
technologies commonly used for supercomputing employuariatency reducing techniques such
as cut-through routing and OS-bypass methods such as theseiaed with VIA (Virtual Interface
Architecture)[59L 70]. The GAMMAIZ27] project has implented Active Messages|66] for specific
Ethernet Network Interface (NI) adapters, which greattjuees the software overhead, and thus the
communication latency, for networks using supported hardwFast Messages|55] is another sup-
port software model intended to reduce the latency of conications; it has been implemented for
Myrinet, cLAN[59], and the custom network within the CrayDa.7]].

1.5 Overgeneralization: Five Trees Do Not A Forest Make

The primary aspect of network design that this dissertatiddresses is the fact that making the
network overly general has a high complexity, performaaoel, monetary cost. KASYO, discussed
in Sectior &R, is so effective because it is specializedtalle the five communication patterns that
matter — and not all the other possible patterns that do m#aan any of the intended applications.

A small number of special-purpose application-specific gotimg systems have used networks
that are designed to provide precisely the performanceateedo more and no less. For example,
GRAPE-6[45] is the latest in a series of designs that esdntiard-wire the data paths that imple-
ment the calculation of the gravitational interaction bextwy particles: the name GRAPE actually
stands for “GRAvity piPE.” This extreme level of speciatia has yielded a variety of perfor-
mance records. GRAPE has been recognized by no fewer than &€wmrdon Bell Awards, and
did so at a very modest cost by supercomputer standards. @alkesscale, Graphics Processing
Units (GPUSs) in modern video cards have profited from the sgnmee of extreme specialization in
interconnecting function units.

Network designers for relatively general-purpose supamders have been coping with the
problem that, unlike the above examples, the hardware mpgiost more than a single fixed com-
munication pattern. Rather than trying to find a reasondbht tover for the very complex set of
communication patterns used by a large class of applicatidesigners of networks interconnect-
ing PEs within a supercomputer revert to selecting amongall sramber of “standard” network
designs that are known to give acceptable performance mynany pattern imaginable. In fact,
before the work presented in this dissertation, it was nedircthat a useful set of communication
patterns could be supported with significantly less hardwiaan the standard designs require, nor
was it clear that these customized designs would delivekedify better performance.

Historically, Non-Recurring Engineering (NRE) cost foeation of a supercomputer has been
notoriously larger than the market for any one supercomgupplication could make profitable. It



is not just that NRE cost is high, but also that creating agiesipically required building custom
components and custom interfaces between them, which @dkeg) time — and time to market is a
critical issue in a field where a six-month delay correspdngsl .4 x increase in the performance of
the competitioni[64]. However, in 1994 a new approach begamterge, most commonly known as
“Beowulf” [B1] and commodity-based cluster computing. hpproach uses mostly standard com-
ponents and interfaces to build a parallel supercomputes, dramatically reducing the NRE cost
and development time. Additionally, the useful lifesparadfystem is extended because compo-
nents and subsystems can be interchanged with newly dexdktopes without scrapping the design
or even most of the hardware and system software. More signifiy for the purpose of this dis-
sertation, use of interchangeable parts also means tkattiegp to support “mass customization” —
the ability to individually tune the design for each systeithaut incurring any major cost penalty.
If the network had to be hand-designed for each system, the &kt and development time per
system still would be prohibitive; fortunately, this digsgion proves that at least a fairly large class
of these design problems can be fully automated, produbiadutl benefit with the only NRE costs
being the formulation of the design problem and the exenutioe of the design software.

1.6 Dissertation Walk Through

ChaptefR begins by introducing the Flat Neighborhood Net{BNN) concept and continues with
a discussion of the surprisingly large size of the FNN solutspace. The middle of the chapter
presents a corpus of communication patterns as found inténature. Each pattern is discussed as
well as presented graphically. The concept of pair synesgyrésented along with tables showing
how a variety of communication patterns have significantlape The chapter concludes with a
discussion of how FNNs can be split into Universal, SparseFaactional FNNs. The Sparse FNN
concept is a core contribution of this dissertation.

Chapter B describes the tools for designing FNNs. The firdll Fldsign tool is a Genetic
Algorithm (GA) for design of Universal FNNs. Its discussi@rfollowed by a presentation of a tool,
created as part of this dissertation’s work, that geneiBpesse FNN design specifications based on
selected communication patterns. The greedy heuristiornths developed to design Sparse FNNs
is then presented in detail. That is followed by a discussibthe final Sparse FNN design tool
that was developed to directly incorporate the heuristithiwia GA. This Sparse FNN GA was
parallelized to support more efficient exploration of the&®Se FNN design space using a parallel
supercomputer to run the design searches. The chapteudesalith a discussion about how the
tools explore different parameter sets that lead to alte&parse FNN design solutions.

Chaptell# presents empirical information about scalingrgge from solving a large number
of different Sparse FNN design problems — consideringduili of potential designs to create mil-
lions of “optimized” designs exploring scalability of stilons to approximately a thousand different
parameter sets. This data reveals that a useful mixturenoframication patterns can be simultane-
ously supported by Sparse FNNs using commodity networkwemelto interconnect tens to tens of



thousands of PEs. The chapter concludes with a presentdteoSparse FNN design for a machine
with 65,536 PEs — essentially the same size as the netwotheitatgest BlueGene/L, which is
generally accepted as the fastest supercomputer ever built

Chaptel b discusses practical implementation details drafly deploying FNNs in real par-
allel systems. Specifically, several different approadhesolve the routing problem for FNNs are
presented. That discussion is followed by a section detptlie specific implementation of FNN
runtime support in the Linux OS. Following that section isiscdssion about options for fault tol-
erance on FNNs. The chapter concludes with a discussionssifge FNN implementations using
technologies such as InfiniBand.

Chaptefd presents details about KLAT2 and KASYO0, two redmahking supercomputers that
we constructed to be the first systems utilizing Universdl@parse FNNs, respectively. The section
on KLAT2 discusses its importance as the inspiration fa thissertation. The KASYO machine is
then presented in detail, with some application perforraaesults. The chapter concludes with a
discussion about KASYQ's network and its role in this ditston.

Chaptef¥ begins by listing the various institutions thatkarown to be using our FNN technol-
ogy. The chapter continues with a list of potential area$ufture study relating to FNNs. Following
this list is a philosophical discussion of the overall trefu network design.

ChapteB concludes the dissertation by summarizing treistiaed the results of this work.



Chapter 2

A New Network Design Solution

We suggest that network form should follow function: Thetlbestwork for a parallel supercom-
puter is the design which, of all feasible networks, yieldgrmance characteristics best matching
the latency and bandwidth needs of the targeted parallgrana(s) while simultaneously satisfying
the relevant cost and scalability constraints. The prinmpblem in taking this approach is that
the design space is surprisingly large and complex. Therevast numbers of possible network
designs, and there are even more possible parallel progesauol with its own communication re-
guirements. This chapter discusses our approach to sakisgomplex problem by simplifying
the design space on both fronts.

In Sectior 211, we introduce Flat Neighborhood NetworksNiENwhich are a class of networks
that are defined by set of latency and bandwidth propertigge&ricting our search to FNNs, the
overall design problem is simplified, though the solutioais still quite large as discussed in
Section[ZP. In Section 4.3 we discuss the communicatiotenpat of parallel programs which
further refine the requirements for design solutions. BnalSectiorZ% we close the chapter with
a taxonomy of FNNSs.

2.1 The Flat Neighborhood Network (FNN) Architecture

A Flat Neighborhood Network (FNN)I26] is a type of switchimgtwork that provides specific
latency and bandwidth properties. The concept of FNNs wsisd@monstrated by H.G. Dietz and
the author in early 2000 with the construction of the KLAT Zefiucky Linux Athlon Testbed 2)
supercomputer[18, 19, P0,130]. A FNN is a hybrid network tteat be symmetric or asymmetric,
with some properties seen in direct networks, yet it is taflyindirect network as described in the
literature. Like a direct network, each PE in a FNN has midtipetwork links, yet these links
generally do not connect directly to other PEs. Although BNk indirect networks, each message
should incur the latency of passing through only a singleécwo reach its destination (often called
a single switch-hop), thus yielding low latency and guagadtbandwidth between PE pairs.
Although FNNs can be built with a wide range of network impémtation technologies, it is
clear that commodity network technologies are a partibuignod match for the technique, so the
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discussion, examples, and prototypes favor Ethernet tdogy networks in a Beowulf/cluster con-

text. Sectior . 5l4 discusses the viability of some alteveatinplementation technologies. Due to
the latency overhead of Ethernet’s store-and-forward gaekitching standard, it is especially im-
portant to maintain the FNN single switch-hop design caistifor any frequently communicating

PE pair.

When executing a parallel programon anN PE parallel computer, a PEheeds to communi-
cate with a seL of other PEs. We call that sét(p, i), the neighbor list of PE for programp. To
guarantee low latency and conflict free bandwidth,iPist have a single switch-hop path to each
neighbor PE inL.. For smallN, this goal is achievable using a network consisting of just ®mitch
which is connected to every PE. For larger valued/ofnstead of using a hierarchy of switches, our
solution is to use multiple Nls from PEo connect to several switches, where each of the neighbors
in L is connected to at least one of those switches. A FNN is a mietwhich satisfies the single
switch-hop property for each(p, 7).

Finding a minimal graph that satisfies the FNN single swhiop-connectivity constraints turns
out to be surprisingly difficult. The problem is actually anoi variation of the well-known
graph/set theory problem calléd, k, t)-covering design|[13, 28, 52]. fv, k, t)-covering design is
a family of k-element subsets, called blocks, whose members are chosethe sef{1,2,...,v},
such that each-element subset is contained in at least one of the blocks.nlimber of PEs corre-
sponds ta, the number of ports per switch corresponds tand pairwise grouping of PEs implies
that¢ would be equal to 2. Finding @, &, t)-covering design with the minimum number of blocks
is an open problem in mathematics. The only known generaligtign for finding a minimal cov-
ering is through exhaustive search, which is impracticatfie numbers of PEs that are interesting
to designers of parallel supercomputers. An excellenugision of the standard covering problem,
a summary of recent research on methods for constructingricgvdesigns, and a database of the
best known solutions and bounds on solutions are given dtdah#olla Covering Repositoly[38].
The FNN design problem differs from the standard coverimdpjem primarily in that the number of
network interfaces per PE is constrained; there is no qooreting constraint ofw, k, t)-covering
design. Thus, a network that satisfies the FNN propertiealf&E pairs is also &, k, 2)-covering
design, but v, k, 2)-covering design is not necessarily a realizable FNN.

The design problem for FNNs also is similar to a very commosigite problem in statistics
and scientific experiments called Balanced Incomplete IBl@esigns (BIBD) which are subsets
of problems called-designs and Partially Balanced Incomplete Block DesifBBD)[13]. Al-
though these statistics problems have similar propeuiést FNN design problem, none of them is
as close as thev, k, t)-covering design problem. In particul&isher’s inequalityl3] states that a
FNN that is a true BIBD would have at least as many switchebergtare PEs, and each PE would
have at least as many Nlis as there are ports on each switch.

Until our work on KLAT2, the supercomputing networking liééure does not seem to contain
the FNN concept of connecting each PE to multiple switches flat topology to provide single-
switch latency. One can speculate that it does not appeartprihat time due to the considerable



computational complexity of the graph problem in its geh&ran, as found in the above related
problems. The following section discusses how complex K&l Broblem really is, which leads
us to propose that a Genetic Algorithm (GA) is the key to figdiNN designs with a reasonable
amount of effort. Use of a GA is not a standard approach initeeature for finding(v, k, t)-
covering designs, but simulated annealing[53] is, and Gienoperform better than simulated
annealing on related problems with unknown smoothness amglex metrics. At the same time
we were building KLAT2, a group at Australia’s National Uaigity designed a geometrically con-
structed symmetric FNN for the Bunyip Supercomputer[1d.nieétwork design was not generalized
to other configurations. In an earlier work by R. Elbaum andSidli[23] a GA was used for com-
puter network design in 1995. However, the metrics useddh®A were not directly relevant for
parallel computers, and the resulting designs did not halld properties.

There also is prior art involving use of search procedurelesign switchless networks for paral-
lel machines. Work by groups at the University of BristoJahd the University of Essex[40,141.167]
in the 1990s applied various GA techniques to optimizinglsimragular graphs as switchless net-
works for Transputers. The work published in Fall 2002 by drakaju et all[39] is similar, but
instead of using a GA, they used a filtering technique on rartiglgenerated regular graphs. All
these approaches have some cursory similarity to our FNkbapp, but they restrict themselves to
switchless designs in which PEs are directly connecteddb ether. Most importantly, none of the
metrics that they used directly correspond to performamca wser-specified set of communication
patterns.

2.2 The Size of the FNN Solution Space

The design problem for FNNs can be viewed as a search probtemparticular set of graphs.
FNNs are members of the set of undirected bipartite graptis WiPEs on one side antl switches
on the other, with each PE having at mgdills and each switch having at mgsports. We will
call this set of graph$y s, ,. All FNNs with the given parametefsV, S, 7, p) are included in the
setBn,s,y,p» though this set might contain graphs which are not FNNs.icB{fy, the number of
switches is determined by the switch width and the total remabNIs of all the PEsS = [W] .

It is worthwhile to find the cardinality of the set of grapfBy s, ,|, to get a feel for how much
effort is worth spending on designing better algorithmsffioding FNNs. In this subsection, we
explore various upper bounds on the size of the FNN solupaices.

One approach towards estimatifigy s, ,| is to represent the bipartite graph as a matrix with
two rows andi¥ columns, wheré? = max (S x p, N x n), which is typically the number of
wires in the network. The top row represents all the switahgp@nd the bottom row represents all
the Nls, and each column is a network wire connecting thengswatch port and NI. By permuting
the entries in one of the rows (either one works), all feasit#dtworks with the given hardware can
be generated, while maintaining theand p constraints, which yieldsBy s, ,| < W!. Although
this expression is an exact count for all possible ways oingithe physical network given the
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constraints, it vastly overestimates the number of neta/dhlat are functionally different (in GA
terms, it counts genotypes rather than phenotypes). Tipioaph counts graphs that differ only
in the port and/or NI number used to connect a particular REsavitch. An improvement to
this estimate is found by dividing out the permutations @& ports within each switch, yielding

|BN,Sn,pl < ((Spf)ps)!, or similarly by dividing out the permutations of the Nis ach PE, yielding

|BN,Sn.p| < (é\;;?!. Unfortunately, one can not simultaneously divide out ts#ts of NI and port

permutations, because in some cases in this representatitia may have multiple NiIs connected
to a particular switch, and for those cases, the permutati@t divided out twice. Additionally,
this permutation construction method will generate nonpéé bipartite graphs, i.e. graphs with
multiple connections between a particular PE and switcthadigh it is possible to physically wire
a network this way, and the FNN definition includes such pastethis author believes such cases
are not particularly beneficial, though some special sii]mﬂ do warrant their use.

Another approach for estimating s ,, ,| comes from representing the graphs using & S
matrix, with each cell holding the number of connectionsaeein a particular PE and a particu-
lar switch. If we restrict our search to simple graphs (aswdised above), each cell of the ma-
trix contains either zero or one. Thus, there 20 possible matrices, which encompasses all
possible simple undirected bipartite graphs wNhPEs andS switches. By restricting our ma-
trix to have onlyWW ones, and thus simple bipartite graphs withwires, we get a better bound

N xS - .
|BN,S.pl < |Bnsw| = ( I/Ii ) When restricting the search to networks witiports per

s
, : N
switch, the number of port restricted networks| BBy s ,| = ( from the fact that each

of the S switches will connect tg PEs from the set ofV PEs. Similarly, when restricting the

search to networks with a maximum g¢fNIs per PE, the number of NI restricted networks is
N

S , .
|BN,sy| = < ) from the fact that each of th& PEs will connect to) switches from the set
n

of S switches. Each of these latter two sets of graphs are subitite bipartite graph®3y s v,
and thus their cardinalities are even better upper bound®gn;,, ,|. It is rather difficult to find a
closed form expression for the number of graphs with bottpthedr, restrictions. One can find a
simple approximation by assuming the sBtg s , and By s, are uncorrelated subsets Bfy s v,

S N
5 )C)
X
|BN,S,,J|><|BN,S,71| — p n

. Unfortunately, the two subsets are

namely| By, s,,0| &

’BN,S,W‘ N x S
w
. . . .|B B . . .
not independent. Fortunately, this approxmat:brﬁ |SBP x| B.s , is quite good because it appears
N,S,W

to be within a factor of two of the actual value fid8y s, ,|; empirically, it is approximately a 50%

1A PE in the parallel machine that is acting as a manager oeseray benefit from having multiple links to the same
switch, thus giving it more bandwidth to the collection of ker PEs also connected to that switch. However, using
multiple connections to the same switch only weakly impsofalt tolerance because the switch becomes a common
failure point.
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N|S|n|lp|W |BN.5n.p] W Ratio | Number of FNNs
3] 3/2]2] 6 6 9| 1446 6
6| 32412 90 133 1.473 90
9| 32618 1,680 2,489|  1.482 1,680
4163|212 1,860 2,761  1.484 720
8| 42416 44,730 67,002|  1.500 0
6| 6|3|3|18 297,200 451,343| 1519 21,600
5] 104|220 56,586,600 86,657,527|  1.531 3,628,800
8| 6|34 24 60,871,300 93,396,534  1.534 3,402,000
10| 6|3|5]| 30| 14,367,744,720 22,174,227,64§  1.543 152,409,600
12| 6| 4|8 48| 154,700,988,75)0 240,073,862,45]  1.552| 154,700,988,75(
12 6]3|6]36 unknown | 5,760,579,740,420 unknown | 19,196,100,000

Table 2.1: FNN Solution Space sizes

overestimate ofBy,s,,,,| for the small values oV and.S for which the author has run exhaustive
searches, as shown in Tablel2.1.

A difficulty with all these expressions is that they countsmphic graphs differing only in the
numbering of switches as distinct. Unfortunately, divigllny S! to remove these duplicate networks
is inaccurate, because it may not be feasible to eliminatgetisomorphic duplicates from the space
actually explored by our search.

In addition to theg By, s,y,,| andw values for a few small cases, Tablel2.1 shows
the exact number of FNNs for each case; these FNNs were fduondgh a pruned exhaustive
search for FNNs that supplied single-switch communicapatis for all PE pain§.As one can see,
the growth rate of By s, ,| is astronomical, and for most real-world design cases, Mg &esign
space is too large to be exhaustively searched using supputers currently available or expected
in the near future. One also can see that for a partiqlars, n, p) parameter set, if there are any
FNN solutions, there tend to be many to choose from. It ig@sting to note that for a givel,
there are a variety ofS, n, p) triples that might have a solution. Thus, when one designsiid, F
if there are several economically or otherwise viable o&®iorp and/orn, the total search space
would be the sum of the various viablBy s, ,| values. It is obvious, but perhaps disturbing, to
further note that very few of the designs in the search spage hny simple type of symmetry;
considering only symmetric designs may miss the only viablations.

Now that the reader has seen the definition of FNNs and a rostghage of the complexity of
the FNN solution space, it is appropriate to discuss detetioin of the communication patterns
which might be important to a suite of parallel programs. Tilest section discusses types of

communication patterns and how they affect the number ghtgirs each PE within a FNN must
have.

2L ater, this dissertation will distinguish FNNs as listedtiis table from the Sparse FNNs which are the primary focus
of this work. FNNs as discussed here are a subclass of Spiise €alled Universal FNNs.
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2.3 Communication Patterns

What do applications need from a particular network desih& applications need the messages
between communicating PEs to be delivered reliably and imaly manner. What resources the
network needs to accomplish that depends on the messageizatity of messages, and the pat-
tern of message source and destination pairs. A commuurnicpéittern defines a set of communi-
cating pairs in a parallel computer. Many basic commurocagiatterns aré:1 andonto mappings

of PEs onto PEspermutations For a given parallel program to perform well, its commuattian
patterns must be efficiently supported by the network, givow latency and high bandwidth for
the messages within each pattern.

It is a simple fact of arithmetic that the number of neighteash PE might need to talk to grows
linearly with the number of PEs in a machine. More precisely system withV PEs, the number
of possible communication pairs involving a particular BE(iNV — 1) for unidirectional (ordered)
pairs orN —1 for bidirectional (unordered) pairs. These formulas alswespond to the well-known
fact that a direct fully-connected network would requi¥¢ N — 1) unidirectional wires ow
bidirectional links. Thus, network complexity seems tdsesO(/N?). However, when one reviews
the various communication patterns commonly discusseukiparallel processing literature, it can
be argued that most parallel programs require high perfocaman only a small fraction of the
possible pairs for each PE. As discussed in the followindgimes, the fraction actually used in
typical applications sharply decreases as the number ofsHEsreased!

2.3.1 O(1) Scaling Patterns

It is ironic that, despite the parallel processing commmitoncerns about the complexity of large
scale networks, many commonly used communication patierpsrallel programs are patterns
that have a constant number of pairs per PE independent ofutinder of PEs. This observation
is supported by the fact that many of the largest systems Buith as the older Intel Paragon and
Cray T3D machines and the current day IBM BlueGene machivee® successfully used networks
with a simple mesh topology.

The number of bidirectional communication pairs in whichteRE is involved when communi-
cating with adjacent PEs within a 1D mesh is either one or faw.a toroidal 1D mesh (i.e., aring),
each PE participates in two bidirectional communicatioimspa non-toroidal 1D mesh differs only
in that the two end PEs participate in just one pair each. HiePi pair count is unaffected by
the total number of PEs. It is useful to consider represgrttiis pattern (and others) ashax N
connectivity matrix, with a column for each PE and a row fazteRE. The cells of the matrix con-
tain information about the connection between the cell® RE and its column PE. In the simplest
case, each cell contains either a one or a zero to indicatgectsd or not connected, respectively.
If bidirectional links are used in constructing a netwoitkere is a diagonal symmetry introduced
to that network’s connectivity matrix, because a connectiom PEx to PEy would also support
communication from Pk to PEx.
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Figure[Z.1 shows a representation of the simple bidireatidng pattern for machines with 16,
32, 64, 128, and 256 PEs. Each box in the figure shows the uigh¢tniangle of the connectivity
matrix for the PEs, turned into a pixelated image. For a PE (aiy) wherex = y the PE is
talking to itself; most networking technologies allow suzltommunication to be accomplished
without actually touching the transport layer of the netsy@o such a communication may trivially
be ignored because it imposes no requirements on the netveordport hardware. For a PE pair
(z,y) wherexz > y that is in the communication pattern, there is a black pix¢ha coordinates
(z,y) with the origin in the upper left of the box, with increasing Rumbers going from left to
right and from top to bottom. Thus for this ring pattern, thés a diagonal line that is just offset
by one pixel from the center diagonal. The lower left triangf the connectivity matrix if shown,
would simply be a mirror image of the upper right triangle.

The conceptually most complex communication patterns contyrused in parallel programs
are typically patterns consisting of a single pair per PE.dxample, théit-reversal29] commu-
nication pattern, shown in Figuke 2.2, may have a reasoraihplex formula for which PEs com-
municate with each other, but each individual PE only is wved in a single pair. The same is true
of perfect-shuffli86], which is shown in FigurE—2.3; it is significant that, givbidirectional links,
inverse-shufflés implemented by the exact same pairing thatfect-shufflauses. For a machine
with N = k2 PEs, one can definematrix-transposecommunication where each PE containing a
single element of a 2D matrix would exchange its element with other PE to form the transposed
matrix. FigurdZ¥ shows thimatrix-transposeattern for 16, 64, and 256 PEs. Notice that all these
patterns are constructed from permutations, so, with arogppte network, each permutation can
be implemented in a single message time-step. Perhapssiugjy;, for many traditional network
topologies, each permutation would take multiple timgste

The design space becomes significantly larger when 2D mesbheonsidered, because there
may be multiple ways to factor the PEs into a 2D mesh. For el@nap32-PE system could be
viewed as the 2D ordered factorizati@nx 16, 4 x 8, 8 x 4, or 16 x 2 or, more commonly, as an
unordered factorization listing dimensions in a normalipeder, such as largest dimension first:
8 x 4 and16 x 2. Where this dissertation refers to factorization withquetcfying the type, it refers
to the normalized unordered factorization.

Once a factorization is selected, the pair count per PE epieddent of the total number of PEs.
Communicating with PEs that are adjacent by row or columtdgibetween two and four pairs per
PE, with edge PEs in non-toroidal meshes having the lowergoaints. Figuré 215 shows the 2D
torus patterns with four neighbors per PE on a single fazation of each of 16, 32, 64, 128, and
256 PE patterns. When including multiple factorizationghaf same 2D torus pattern, as shown
in Figure[Z®, the number of neighbors per PE is no longer ataoh because as the number of
PEs increases, the number of possible 2D factorizationgases. However, for each individual
factorization, the number of neighbors per PE is a constant.

A 3D torus has six rectilinear neighbors per PE, which arelabffsets along each of the three
dimensions. The connectivity matrix for a single 3D torustdaization for each of 16, 32, 64, 128,
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Figure 2.1: 1D Torus with:1 offsets (a Ring)
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Figure 2.2: Bit-Reversal communication patterns
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Figure 2.3: Perfect-Shuffle communication patterns
256 PEs
64 PEs
16 PEs

Figure 2.4: 2D Matrix Transpose of a single element per PE
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and 256 PEs is shown in FigureR.7, while Figuré 2.8 showstianwof multiple factorizations for
the same cases. Similarly, the 4D torus has eight rectilinemhbors per PE, and several sample
connectivity matrices for a single factorization are shawRigure[2.9, while the union of multiple
factorizations are shown in Figure2110.

Including diagonally adjacent PEs for a multi-dimensioggdt or torus simply increases the
constant number of neighbors per PE. For a 2D torus with dialgpthere are eight neighbors per
PE and the corresponding connectivity matrices are showigiwre[Z. Tl for a single factorization,
and in FigurdZ112 for the union of multiple factorizatiorSight pairs may be a large fraction of
all possible pairs in a small parallel computer, but it beesma vanishingly small fraction of all
possible pairs as the system design is scaled to thousar@Esf For a 3D torus, the diagonal
neighbors for a PE include both the twelve edge neighborsayid corner neighbors, bringing the
total to 26 neighbors per PE. Figure 2.13 shows the singteriaations for 3D tori which include
the diagonal neighbors. Although 26 is still a constanttietao the number of PEs in the machine,
it takes a fairly large machine before 26 would be considarsthall number of neighbors per PE.
When you look at the connectivity matrices for the union ofltiple 3D factorizations shown in
Figure[Z.THh, it is clear that including diagonal neighbdomg with multiple factorizations yields a
rather dense matrix for smaller numbers of PEs.
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Figure 2.5: Single 2D Torus wittt 1 offsets
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Figure 2.6: Multiple 2D Tori witht1 offsets
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Figure 2.7: Single 3D Torus wittt 1 offsets
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Figure 2.8: Multiple 3D Tori witht1 offsets
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Figure 2.10:Multiple 4D Tori with 1 offsets
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Figure 2.11: Single 2D Torus wittt 1 offsets including diagonals
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Figure 2.12: Multiple 2D Tori witht-1 offsets including diagonals
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Figure 2.14: Multiple 3D Tori witht-1 offsets including diagonals
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2.3.2 O(log N) Scaling Patterns

In addition toO(1) scaling patterns, nearly all programs contain some comeation patterns that
scale a®(log N). FundamentallyO(log V) scaling patterns are most often an artifact of using
a network that is incapable of performing computation. Baneple,collective communications
including reductions parallel-prefix scansbroadcastmulticast andbarrier synchronizationare
really operations sampling the global state of the paralsktem. Aggregate Function Network
(AFN) hardware implements them directly within the netwB8j, but efficient message-passing
implementations typically involve a sequence of treeettmed communications.

Binary tree-structured communications follow adjacentythie familiarhypercubetopology.
Thus, each PE communicates with the PEs whose numbers fildfarthe source PE number by
only a single bit position’s value in the binary represdntat For example, in a 32-PE system, PE 5
(binary 00101) would be paired with 1 (00001), 4 (00100),F1(1), 13 (01101), and 21 (10101).
There are no more thdtog, N| bit positions, so there are at most that many PEs differiogn fany
given PE’s number by precisely one bit position, and the remobpairs per PE grows @3%(log V).
Shown in Figurd_215 are the connectivity matrices for thpengube pattern on 16, 32, 64, 128,
and 256 PEs.

Many message-passing libraries differentiate betweert WR[49] calls all-reduce and re-
duce Usingall-reducesuggests that all PEs should have their complete tree, atheneduce
requires only the tree rooted at a specific point (typicdll,0). Thusreducecan be implemented
using about half as many pairs per PE as suggesteallftgduce although the root PE still re-
quires the full set of pairs. If aall-reduceis implemented using a reduce followed bpraadcast
from the root PE, rather than by directly performingreducessimultaneously, then the complete
tree of pairs is only needed for the root PE. This differerscgignificant in thateduceis far more
common tharall-reducein parallel programs. However, to suppait-reduceor reducerooted at
any PE, we define a pattern that has a neighbor list for eachoR&isting of all PEs at an offset
of +2% for 0 < k < log, N, which we call a “1D torus witht-2* offsets”. Several connectivity
matrices for this pattern are shown in Figlire 2.16. Thisgpatalso supports implementations of
barrier synchronizationsuch as the dissemination and tournament algorithms bgdéen Finkel,
and Manbuil3R].

MPI has a feature called a “communicator” which allows thegoammer to restrict commu-
nications to a partition or subset of the machine. In practibese subsets tend to follow regular
patterns, such as the rows or columns of a 2D grid. To suppddations and barriers on these
subsets, we extend the-2* offsets” patterns to multidimensional grids, where theeffs rectilin-
early measured along a dimension of the grid. The conngctivatrix for the “4+-2* offsets” pattern
on a single 2D torus factorization for each of 16, 32, 64, B28l 256 PEs is shown in Figure 2.17.
Figure[ZIB shows the union of multiple factorizations fa same pattern. Similarly, the same pat-
terns on single factorizations of a 3D torus are shown in figiL®, while the patterns on a union
of multiple 3D factorizations are shown in Figlire 2.20. Sengqonnectivity matrices for this same
pattern on 4D tori are shown in Figure 2.21 and Figurel2.22.
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Figure 2.15: Hypercube communication patterns
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Figure 2.16: 1D Torus with-2* offsets
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Figure 2.18: Multiple 2D Tori with+2* offsets
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Figure 2.20: Multiple 3D Tori with+2* offsets
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Figure 2.22:Multiple 4D Tori with +2F offsets
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2.3.3 O(¥/N) Scaling Patterns

D-dimensionalscattetr gather, andpersonalized all-to-alcommunications involve each PE inter-
acting with every other PE in its dimension. In a 2D spacehd€ needs to be paired with every
PE in the same row or column, yieldin@(/N) pairs per PE. The solid black triangles along the
diagonal of the connectivity matrix in Figute—2123 show th# fow connectivity of this pattern,
and the diagonal lines show the full column connectivity. skewn in Figurd—2.24, the union of
multiple factorizations of 2D grids with full row and colunmennectivity does not result in a sparse
connectivity matrix. The 3D case scales pairs per PB%S{*/N), which is shown in FigurEZ2Z.25
and Figurd 2.26. FiguleZR7 and Figlire .28 presents sacopleectivity matrices for the 4D
case. The 1D case is the worst; all PEs are in the same dimemsgulting in a completely solid
connectivity matrix.

Superficially, it seems that aN — 1 pairs are needed for each PE in order to suppompéison-
alized all-to-all However, such a communication pattern can not be accameplig a single time
step unlessV — 1 messages can be simultaneously output by each PE. With feaeN — 1 Nls
per PE (i.e. fom < N — 1), this simultaneity is impossible. Further, the overhessbaiated with
sending a message is significant; thus, unless messagesitarogg, there is a significant penalty
in sendingN — 1 messages rather than sending fewer, larger, messagesahapackaged and re-
transmitted until each PE had seen the data destined fohdét.rdsult is thapersonalized all-to-all
is nearly always best implemented as a compound communigatften following a broadcast-like
tree pattern[10]. Thus, it does not make sense to specifysgmeonstraint for an abstract op-
eration likepersonalized all-to-al but rather to specify the design constraint that corredpdn
the most efficient implementation that could be used by tleeifip MPI library used by applica-
tions. The pairs in such a pattern can be determined by exagnine MPI library documentation
or source code, or by accumulating statistics on pairs comgating in test runs using a particular
MPI implementation.

The result is that these compound patterns are usually atble ¢fficiently implemented using
primitive patterns that scale &x1) or O(log N). Thus, for implementing many practical commu-
nication patterns, the number of communicating pairs pesédtes approximately a3(log N),
not asO(N).
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Figure 2.23: Single 2D Torus with connections between a#f iREhe same row or column
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Figure 2.24: Multiple 2D Tori with connections between diidin the same row or column
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Figure 2.25: Single 3&rid with connections betweeddl PEs that differ in only one dimension
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Figure 2.26: Multiple 3DGrids withconnections betweedll PEs that differ in only one dimension
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Figure 2.27:Single 4D Grid withconnections betweedll PEs that differ in only one dimension
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Figure 2.28:Multiple 4D Grids withconnections betweedill PEs that differ in only one dimension
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2.3.4 Pair Synergy

A suite of parallel programs generally requires not justogupfor one communication pattern, but
for the union of all communication patterns used in any of ghagrams. In the worst case, one
would expect that the number of pairs for each PE would beuhedf the pairs needed to support
each pattern, and that both the number of pairs per pattetth@number of distinct patterns that
need to be covered would grow as the number of PEs is incre&setlinately, a pair required by
one pattern very often is also required by another patteencall this propertyair synergy
For a suite of parallel programs, there are two ways in whinghrtumber of communicating

pairs can increase as the number of PEs increases:

e The individual communication patterns may have pair cothms grow with the number of
PEs, as shown in Sectiohs 2]3.2 &nd 2.3.3.

e The number of communication patterns may increase with timeber of PEs. This second
mechanism is less common, in that it is rare that an indiVigwagram invents additional
communication patterns as the number of PEs is increasgically, the number of patterns
increases because of data sets that best match grids wittufsraspect ratios. Generally,
the new patterns created are variants of grids, with theeas® in the number of patterns
deriving from the fact that the number of ordered factoitzat of the PEs generally is larger
for systems with more PEs. For example, a 32 PE system carctoedd into four 2D grids
dimensione@ x 16, 4 x 8, 8 x 4, and16 x 2; a 256 PE system can be factored into seven 2D
grids dimensioned x 128, 4 x 64, 8 x 32, 16 x 16, 32 x 8, 64 x 4, and128 x 2. Although we
have shown all ordered factorizations in these two examjtlisscommonly sufficient to limit
the number of factorizations to the number of unorderedfagitions by simply picking an
arbitrary order for listing the dimensions; for example; 16 and16 x 2 might be normalized
to 16 x 2 (i.e., the largest dimension first). The increase in un@diéactorizations depends
on the specific numbers of PEs, but approximateljog N) additional patterns is typical,
in which case the complexity of the communication pattetiseffectively multiplied by
log N. A similar source of additional patterns can come from mastipartitioning of the
system to reflect variations in machine load and problem mix.

Without pair synergy, these two mechanisms would yieldifigant complexity increases — espe-
cially where the number of PEs happens to have many factaniza The question thus becomes
how many potential pairs are removed from the complexitynida because they are covered by
pair synergy?

For simple permutation communication patterns, it is gmesio estimate the amount of pair
synergy that should occur due to random chance. A simpldreotibnal permutation communica-
tion pattern is one where each PE in the machine sends a silegleage to one other PE, or possibly
to itself, and each PE receives at most one message. Thasetatton communication patterns can
be represented as a set of source and destination ordersdAeindom unidirectional permutation
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communication orlV PEs has no internal pair synergy, however, it has an expgatad of one PE
that will be talking to itself without needing the networkgapport that pair. Given two randomly
selected unidirectional permutation communication$\oREs, the expected number of ordered PE
pairs that would be common to both patterns is one — for eagtced”E in the first permutation,
intuitively there is a one out aV chance of selecting the same destination in the second fermu
tion, thus the expected value for PEs selecting the sammdtsh isN x % = 1. However, the
reduction in pair count is slightly less, because there iseaaut of NV chance that the common case
was a PE talking to itself, which inherently does not reqgaineair to be covered by the network
hardware.

Given bidirectional network hardware, a permutation comitation pattern has twice as many
ordered pairs, one for each forward path as in the unidoeaticase, and one for each reverse
path. However, for each PE that has itself as a destinatimretis only a single ordered pair
in the set. Thus, the expected value for the number of systargiairs between two randomly
selected bidirectional permutation patterns is sligtelslthan two. Monte Carlo simulations of the
bidirectional case foiV > 64 converge on the value two.

Randomly occurring pair synergies among more than two nagselected permutations ben-
efit from the same binning effects demonstrated in the watkdn “Birthday Paradox”[[48]. Al-
though the probability of at least one pair being a duplitapiite high (corresponding roughly to
probability of at least one shared birthday), the expectedbyer of shared pairs remains quite low
for reasonable numbers of permutations.

Fortunately, many sets of useful communication patterhiémuch higher pair synergy than
one would expect given the above discussion of random indkgre permutations. The number of
shared pairs is particularly high among various mesh pettéfor example, nearly all pairs required
to support 1D adjacency also are required to support 2D exdggc only 1D pairs involving PEs in
edge positions in the 2D pattern are not in the 2D patternil&ilyy hypercubeadjacency has many
pairs that overlap those of meshes. The result is a signifreaiuction in the total number of pairs
required for the union of multiple communication pattemthough the precise amount of reduction
is highly dependent on the set of patterns specified.

Table[Z2 presents a numerical representation of the paérgy between variou®(1) com-
munication patterns and th@(log V) hypercube pattern. Specifically, each cell represents the
percentage of PE pairs for the row’s pattern that are covgydte column’s pattern. For example,
the cell in the upper right corner indicates that for a 256 RiEmNMe, the hypercube pattern covers
50% of the PE pairs in the bidirectional Ring (1D torus with offsets). In the lower left corner,
the table shows that the bidirectional Ring covers only #2d the pairs in the hypercube pattern.
Table[ZB presents the same data calculated for the 1,024%$ while Table214 shows the data
for the 4,096 PE case.

Table[Zb shows the same synergy data for the 256 PE casehwitbri with+-1 offsets patterns
replaced by theit-2* offset versions. Similarly, Tab[E2.6 is for the 1,024 PEegasd Tabl&2]7 is
for the 4,096 PE case. It is worth noting that any of the tothwi2* offsets always cover the entire
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hypercube pattern.

There also is significant pair synergy between differentoidzations of the same grid/tori pat-
terns, which is of special importance in that it mitigates gliowth in PE pairs due to the growth
in the number of possible grid/tori factorizations. For i tori patterns in the 256 PE example
shown in Figurd—216, there are four normalized unorderetbfeations,128 x 2, 64 x 4, 32 x 8,
and16 x 16, each with 512 PE pairs. If there was no pair synergy, the aoedbpattern would
have 2,048 PE pairs. Fortunately, pair synergy has redineetbtal to only 1,180 PE pairs. For the
similar 1024 PE case, with five 2D factorizations, the coraflipattern without pair synergy would
have 10,240 pairs, yet the real value is only 5,692 pairsallyirfor the 4096 PE case, with six 2D
factorizations, the number of PE pairs would have been £idithout pair synergy, yet the total is
only 26,748. This savings is significant, but higher dimenality factorizations yield even greater
savings by pair synergy.

For the 3D tori patterns in the 256 PE example shown in FigilletBere are five normalized
unordered factorization$4 x 2 x 2,32 x4 x 2,16 x 8 x 2,16 x 4 x 4, and8 x 8 x 4, each
with 768 PE pairs. If there was no pair synergy, the combirattem would have 3,840 PE pairs.
Fortunately, pair synergy has reduced the total to only&8 BE pairs, which is less than 40% of
the simplistic prediction. For the similar 1024 PE casehwight 3D factorizations, the combined
pattern without pair synergy would have 24,576 pairs, yetrdal value is only 7,544 pairs, which
is under 31% of the prediction. Finally, for the 4096 PE casith twelve 3D factorizations, the
number of PE pairs would have been 147,456 without pair gynget the total is only 39,416, less
than 27% of the prediction.

For the 4D tori patterns in the 256 PE example shown in FiguEk8,2here are five normalized
unordered factorization82 x 2 x2x 2,16 x4x2x2,8x 8 x2x2,8x4x4x2,and4d x 4 x 4 x 4,
each with 1024 PE pairs. If there was no pair synergy, the awedipattern would have 5,120 PE
pairs. The actual total is only 1,840 PE pairs, which is lbag 836% of the no-synergy estimate. For
the similar 1024 PE case, with nine 4D factorizations, thmlioed pattern without pair synergy
would have 36,864 pairs, yet the real value is only 8,816puaihich is under 24% of the prediction.
Finally, for the 4096 PE case, with fifteen 4D factorizatiotiee number of PE pairs would have
been 245,760 without pair synergy, yet the total is only @8,3ess than 19% of the prediction.

Throughout TableS2P2-2.7, only Transpose is regularlypamable to a randomly-selected per-
mutation’s level of pair synergy with the other patternsl thAé other patterns fare markedly better,
with meshes and hypercubes consistently having very higlid®f pair synergy. Note that the high
degree of overlap, for example between 2D and 3D patterres dot mean that a computer whose
network only implements one of those patterns would yiegghierformance on the other pattern —
even delivering lower performance for a single PE pair @ibjowill drop performance of a parallel
algorithm down to that level (and sometimes lower due tafatence between fast and slow paths).
It does mean that relatively little additional network haede might be needed to support multiple
patterns instead of just one.
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1D +1 offsets | 100.0% | 93.8% | 87.5% | 75.0% 0.8% 0.0% 0.0% 50.0%
2D +1 offsets | 46.9% | 100.0% | 43.8% | 75.0% 0.8% 0.0% 0.0% 50.0%
3D +1 offsets | 29.2% | 29.2% | 100.0% | 58.3% 0.8% 1.0% 0.0% 50.0%
4D +1 offsets | 18.8% | 37.5% | 43.8% | 100.0% 0.8% 0.0% 0.0% 50.0%
Perfect Shuffle 0.8% 1.6% 2.4% 3.2% | 100.0% | 11.5% 0.0% 0.0%
Bit-Reversal 0.0% 0.0% 6.7% 0.0% 24.2% | 100.0% 5.0% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% | 100.0% 0.0%
Hypercube| 12.5% | 25.0% | 37.5% | 50.0% 0.0% 0.0% 0.0% | 100.0%

Table 2.2: Pair Synergy for 256 PE Tori withl offsets and other patterns
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1D +1 offsets | 100.0% | 96.9% | 93.8% | 87.5% 0.2% 0.0% 0.0% 50.0%
2D +1 offsets | 48.4% | 100.0% | 46.9% | 43.8% 0.2% 0.0% 0.0% 50.0%
3D +1 offsets | 31.3% | 31.3% | 100.0% | 29.2% 0.2% 0.5% 0.0% 50.0%
4D +1 offsets | 21.9% | 21.9% | 21.9% | 100.0% 0.2% 0.0% 0.0% 50.0%
Perfect Shuffle 0.2% 0.4% 0.6% 0.8% | 100.0% 6.0% 0.1% 0.0%
Bit-Reversal 0.0% 0.0% 3.2% 0.0% 12.3% | 100.0% 5.6% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.2% 5.6% | 100.0% 0.0%
Hypercube| 10.0% | 20.0% | 30.0% | 40.0% 0.0% 0.0% 0.0% | 100.0%

Table 2.3: Pair Synergy for 1024 PE Tori withl offsets and

other patterns
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1D +1 offsets | 100.0% | 98.4% | 93.8% | 87.5% 0.0% 0.0% 0.0% 50.0%
2D +1 offsets | 49.2% | 100.0% | 46.9% | 87.5% 0.0% 0.0% 0.0% 50.0%
3D +1 offsets | 31.3% | 31.3% | 100.0% | 29.2% 0.0% 0.0% 0.0% 50.0%
4D +1 offsets | 21.9% | 43.8% | 21.9% | 100.0% 0.0% 0.0% 0.0% 50.0%
Perfect Shuffle 0.0% 0.1% 0.1% 0.2% | 100.0% 3.1% 0.0% 0.0%
Bit-Reversal 0.0% 0.0% 0.0% 0.0% 6.2% | 100.0% 1.4% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% | 100.0% 0.0%
Hypercube 8.3% 16.7% | 25.0% | 33.3% 0.0% 0.0% 0.0% | 100.0%

Table 2.4: Pair Synergy for 4096 PE Tori withl offsets and other patterns
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Pattern = 9 a 2 & m = T
1D +2* offsets | 100.0% | 87.5% 76.7% 70.0% 0.7% 0.4% 0.0% 53.3%
2D +2* offsets | 93.8% | 100.0% | 76.8% 78.6% 0.7% 0.0% 0.0% 57.1%
3D +2F offsets | 88.5% | 82.7% | 100.0% | 80.8% 0.6% 0.5% 0.0% 61.5%
4D +2% offsets | 87.5% 91.7% 87.5% | 100.0% 0.5% 0.0% 0.0% 66.7%
Perfect Shuffle 5.5% 4. 7% 4.0% 3.2% | 100.0% 11.5% 0.0% 0.0%
Bit-Reversal 6.7% 0.0% 6.7% 0.0% 24.2% | 100.0% 5.0% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% | 100.0% 0.0%
Hypercube| 100.0% | 100.0% | 100.0% | 100.0% 0.0% 0.0% 0.0% | 100.0%

Table 2.5: Pair Synergy for 256 PE Tori witk2* offsets and

other patterns
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Pattern = 9 a 2 & m = T
1D +2* offsets | 100.0% | 89.8% 80.9% 73.7% 0.2% 0.2% 0.0% 52.6%
2D +2F offsets | 94.8% | 100.0% | 81.3% 73.6% 0.2% 0.0% 0.0% 55.6%
3D +2% offsets | 90.4% 86.0% | 100.0% | 75.0% 0.2% 0.2% 0.0% 58.8%
4D +2F offsets | 87.5% 82.8% 79.7% | 100.0% 0.1% 0.2% 0.0% 62.5%
Perfect Shuffle 1.8% 1.6% 1.4% 1.2% | 100.0% 6.0% 0.1% 0.0%
Bit-Reversal 3.2% 0.0% 3.2% 3.2% 12.3% | 100.0% 5.6% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.2% 5.6% | 100.0% 0.0%
Hypercube| 100.0% | 100.0% | 100.0% | 100.0% 0.0% 0.0% 0.0% | 100.0%

Table 2.6: Pair Synergy for 1024 PE Tori witt2* offsets and

other patterns
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Pattern = 9 a 2 & m = T
1D +2* offsets | 100.0% | 91.4% 83.7% 77.2% 0.0% 0.1% 0.0% 52.2%
2D +2F offsets | 95.6% | 100.0% | 82.4% 84.1% 0.0% 0.0% 0.0% 54.5%
3D +2F offsets | 91.7% 86.3% | 100.0% | 77.4% 0.0% 0.1% 0.0% 57.1%
4D +2% offsets | 88.8% 92.5% 81.3% | 100.0% 0.0% 0.0% 0.0% 60.0%
Perfect Shuffle 0.5% 0.5% 0.4% 0.4% | 100.0% 3.1% 0.0% 0.0%
Bit-Reversal 1.6% 0.0% 1.6% 0.0% 6.2% | 100.0% 1.4% 0.0%
Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% | 100.0% 0.0%
Hypercube| 100.0% | 100.0% | 100.0% | 100.0% 0.0% 0.0% 0.0% | 100.0%

Table 2.7: Pair Synergy for 4096 PE Tori witt2* offsets and other patterns
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2.4 FNN Taxonomy: Universal, Sparse, and Fractional FNNs

The basic FNN properties described in Seclioh 2.1 were ithestwithout reference to a specific set
of communication patterns. At the time we invented the FNNcept, it was oblivious to knowl-
edge about specific communication patterns or PE pairs.idrs#ittion, we will introduce a simple
taxonomy extending the original FNN concept to explicitgeunformation about the communi-
cations needed by a set of programs. These new variants ofda@NRherefore take advantage of
sparseness to produce lower part-count, cheaper, highfarmance network designs.

FNNs can be divided into three categories, Universal FNIHar&: FNNs and Fractional FNNs.
A Universal FNN —the original concept — guarantees the FNN propertieslésimgitch latency and
dedicated bandwidth) faall possiblePE pairs in the machine, not just the ones that are expected
to be used. ASparse FNNguarantees the FNN properties for only a selected set of P&ipahe
machine, based on supporting a selected set of commumigagitberns. More precisely, a Sparse
FNN guarantees thatll requestedPE pairs will have the FNN properties. Feractional FNNs,
each PE pair has a weighted importance value, and only adinact these PE pairs will have the
FNN properties. A specific Fractional FNN attemptsiaximize the sum of the importance values
for the set of covered PE pairs. It is worth noting that unlikeversal FNNs, both Sparse FNNs and
Fractional FNNs are nab, k, 2)-covering designs as discussed in Sediioh 2.1 becausel iRi al
pairs have single-switch latency. Which FNN type is bestafqrarallel computer design depends
on how much is known about the expected communications, d@héra of these communication
patterns, and the desired generality vs. cost trade-offefdsulting design.

Both Sparse FNNs and Fractional FNNs take advantage of & kmiomwledge about the commu-
nication patterns that are likely to be used; in the (reddgivare) cases where no such information
is available, a Universal FNN is most appropriate. The negconcept and implementations of
FNNs from 2000 guarantee single-switch latency for allpairPEs in the machine, and they were
described by that name in a number of publicatidns [16L 1820930, 3¥F], but as we realized that
other variants could be important, we came to distinguightyfpe as Universal FNNs. A Universal
FNN has the property thany communication pattern that is a permutation will pass tghothe
network conflict freE. However, Universal FNNs have scaling constraints thait lineir cost effec-
tive applicability. For instance, it is clear that for AhPE system, wittp-port switches, that each
PE will need to connect to at leagt> % switches. With a fixed sizg, asN grows, the number
of NIs per PEy, must grow as well. Ag increases, the cost per PE of a Universal FNN increases,
and at some point it exceeds the cost of other more traditimatavork designs such as Fat-trees or
Clos networks. In practice, the cost trade-off is oftenehiby the relative cost of more Nls (for an
FNN) vs. using routers instead of switches (for Fat-tree€los networks). In situations where a
Universal FNN does not offer cost savings, it is up to theglesi to determine if the lower latency
of the Universal FNN is worthwhile. Universal FNNs also cam&times deliver more bandwidth

3Although the traffic presented to each individual switchtia ENN would be free of input and output port conflicts,
real switches might have internal constraints that canecaome packets to be delayed more than others depending on
the specifics of the traffic.

37



by simultaneously using multiple Nis per PE; which is a tegha similar to the concept called
“trunking” or “link aggregation.” With current commodityl, switches, and Nls, Universal FNNs
are both cheaper and higher performance than more conmahtiesigns for up to a few hundred
PE

For program suites that have known primary communicatidtepss, a Sparse FNN will pro-
duce a cheaper and more scalable solution than a Univerddl BNSparse FNN guarantees the
single-switch latency property for only a selected set ofpEs, rather than all possible PE pairs.
The PE pairs are selected based on the communication Eatterhare expected to be used. The
Sparse FNN has the property that any permutation pattehinitite selected communication pat-
terns will pass through the network conflict fieedCommunication patterns that include PE pairs
not covered by a Sparse FNN design are still able to be exdasiag it, but with performance
approximating that of a more conventional network. Whelizirig the same network technology,
Sparse FNNs yield comparable performance on the selectachoaication patterns and scale to
much larger numbers of PEs than Universal FNNs; tens of dralsof PEs can be supported with
commodity hardware that a Universal FNN could not use formmore than a hundred PEs.

Fractional FNNs can be most appropriate for either of twqy different reasons. Sometimes,
the communication patterns used by a program are in theawaole, but not directly available
— for example, because the author of the application hastkeglgorithms and code proprietary.
In this case, experimentally determining statistical prtips of the code’s communication patterns
can produce weightings that can guide a Fractional FNN desigt it may be difficult to deter-
mine a fixed threshold by which the “negligible” pairs coulel iemoved to create a specification
for a Sparse FNN. The other reason a Fractional FNN can be appsbpriate is that sometimes
the hardware budget simply is not sufficient to produce evBpase FNN, in which case, a Frac-
tional FNN can more intelligently select how to subset thengwinications that are given optimal
performance. This best-effort approach gives Fractiohlligadditional scalability beyond Sparse
FNNs, although supporting up to tens of thousands of PEg ia serious limitation of Sparse FNNs
at this time.

Relative to this dissertation, we view Universal FNNs asftumdation and inspiration, Sparse
FNNs as the primary contribution, and Fractional FNNs astargially important direction for the
future.

“There are more than a few public recognitions of this facipiding prestigious awards[l6.130]. The primary imped-
iments to Universal FNNs being widely adopted seem to bestbiot the asymmetry of the designs and the entire concept
of a network design being too complex for a human to createhdge that these issues will slowly fade as the design
tools and runtime software support improve, and the cumank involving Sparse FNNs certainly has helped to make
FNNs in general appear less risky.

SAlthough the traffic presented to each individual switchiia ENN would be free of input and output port conflicts,
real switches might have internal constraints that canecaame packets to be delayed more than others depending on
the specifics of the traffic.
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Chapter 3

Techniques for Designing Universal and
Sparse FNNs

There is a direct way to construct Universal FNNs using siiudlly connected graphs, otherwise
known as complete graph#,, wheren + 1 is the number of nodes in the graph. To do so,
simply replace each edge i, 1 with a p-port switch, and each node of the graph w4tiPEs.
This construction method results in symmetric UniversaNSNvith % PEs andy NlIs per PE.
These FNNs have an obvious geometric shape, such as aérigngl2) or tetrahedron:{ = 3) as
shown in Figuré=3]1. Figule3.1 is based on a similar figur8jmfhich describes the network for
the Bunyip Supercomputer. For Bunyip, each lettered cirefeesents a 24 node sub-cluster and
each numbered square is a 48-port switch. The smallest €ase-al results in the single-port
switch design withp PEs. This geometric construction technique is useful fafifig Universal
FNN designs by hand, but does not result in designs for layges that are as cost effective as
the designs found by the techniques discussed below. Alsagéometric construction technique
does not yield answers for arbitrary numbers of PEs — in génasymmetric designs are needed.
However, relative to this dissertation, the primary lirtiga to the geometric construction technique
is that it cannot be directly applied to Sparse FNN design.

3.1 A Genetic Algorithm (GA) for Finding Universal FNN Designs

As H.G. Dietz and | were working-out the basic concept of FNiN&pril 2000, the original FNN
design tool was created by H.G. Dietz; with minor changess #till the primary tool used for
designing Universal FNNs. This design tool uses GA tectmlbut is highly specialized to the
problem of designing a FNN. The genetic material for an iitlial is a direct representation of a
network wiring pattern. The primary data structure is adadfl bitmasks for each PE; each PE’s
bitmask has a one only in positions corresponding to eaafhberhood (switch) to which that PE
has a NI connected. This data structure does not allow a PB&ve imultiple NIs connected to
the same switch, thus eliminating the non-simple bipagitgphs from the search. Enforcing this
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Figure 3.1: A Tetrahedral Universal FNN like the Bunyip sugoenputer’s network

constraint and limiting the number of “one” bits in the bitskaon (NIs per PE) greatly narrows
the search space, as described in Se€fidn 2.2.

To quickly converge on a good solution, the GA is applied in tistinct phases. Large network
design problems with complex evaluation functlﬂ)ase first converted into smaller problems to be
solved for a simplified evaluation function. This rephrapeablem often can be solved very quickly
and then scaled up, yielding a set of initial configuratidreg tnake the full search converge faster.

The simplified evaluation function only values basic FNNmectivity, making each PE directly
reachable from every other. The problem is made smallenhgidg both/V (PE count) ang (ports
per switch) by the same number while keepin¢NIs per PE) unchanged. For example, a design
problem using 24-port switches and 48 PEs is first scaledamr2switches and 4 PEs; if no solution
is found within the alloted time, then 3-port switches and® Rre tried, then 4-port switches and 8
PEs, etc. This scaling technique is an extension of the gemneenstruction technique discussed
at the beginning of this chapter. A number of generationerdihding a solution to one of the
simplified network design problems, the population of netdesigns is scaled back to the original
problem size, and the GA resumes using the designer-spkeifaduation function.

The initial population for the GA is constructed for the sthtown problem using a very
straightforward process in which each PE’s Nls are condertehe lowest-numbered switch that
still has ports available and is not connected to the samei®@Bnother NI. Additional dummy
switches are created if the process runs out of switch psirtslarly, dummy Nlis are assigned to
virtual PEs to absorb any unused real switch ports. Thetiegudcaled down initial FNN design
satisfies all the constraints except PE-to-PE connectiBiégcause the full-size GA search typically
begins with a population created from a scaled-down pojoulait also satisfies all the basic design
constraints except connectivity. By making all the GA tfanmations preserve these properties,
the evaluation process needs to check only connectivityswiich port usage, NI usage, etc.

The GA's generation loop begins by evaluating all new memloéra population of potential
FNN designs. Determining which switches are shared by twei®& simple matter of bitwise AND
of the two bitmasks; counting the ones in that result measihwe available bandwidth between the

1The complex evaluation function for a network design miglebirporate additional criteria beyond measuring how
well the basic FNN properties have been satisfied. For ex@rtim number of single-switch-hop paths between PE pairs
that form a 2D torus might be important.
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pair of PEs. Which evaluation function is used depends orilvelnghe problem has been scaled
down. The complete population is then sorted in order of@Bsing fitness, so that the t&EEP
entries will be used to build the next generation’s popatati In order to ensure some genetic
variety, the lasFUDGE FNN designs that would be kept intact are randomly exchamg@dothers
that would not have been kept. If a new FNN design is the bedtiitreported.

Aside from the GA using different evaluation functions fbetfull size and scaled-down prob-
lems, there are also different stopping conditions apietiis point in the GA. Because we cannot
know what the evaluation value would be for the optimum dedar the full-size search, it ter-
minates only when the maximum number of generations hasetlapn contrast, the scaled-down
search will terminate in fewer generations if a FNN desigthwhe basic connectivity is found
earlier in the search.

Crossover is then used to synthedtROSS new FNN designs by combining aspects of pairs of
parent FNN designs that were marked to be kept. The procedekbegins by randomly selecting
two different parent FNN designs, one of which is copied asstiarting design for the child. This
child then has a random number of substitutions made, ondi@ttea by randomly picking a PE
and making its set of NI connections match those for that REdrother parent. This forced match
process works by exchanging NI connections with other PE#cfwmay be real or dummy PES) in
the child that had the desired NI connections. Thus, thdtiegichild has properties taken from
both parents, yet always is a complete specification of theoMWwitch mapping. In other words,
crossover is based on exchange of closed sets of connectiorthe new configuration always
satisfies the designer-specified constraintg andp.

Mutation is used to create the remainder of the new populdtiom the kept and crossover
designs. Two different types of mutation operation are ubeth applied a random number of
times to create each mutated FNN design:

1. The first mutation technique swaps individual NI-to-glitonnections between PEs selected
at random.

2. The second mutation technique simply swaps the conmsotibone PE with those of another
PE, essentially exchanging PE numbers.

Thus, the mutation operators are also closed and presegveasicn and p design constraints.
The generation process is then repeated with a populatiosisting of the kept designs from the
previous generation, crossover products, and mutatedrdesi

The output of the FNN GA is simply a table that represents tR&l Rviring pattern found.
Each line begins with a switch number followed by a colon, alibis then followed by the list of
PE numbers connected to that switch. This list is given itesborder, but for ideal switches, it
makes no difference which PEs are connected to which pansjded that the ports are on the
correct switch. It also makes very little difference whicksNvithin a PE are connected to which
switch. However, to construct routing tables, it is necgssa know which NlIs are connected to
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each switch, so we find it convenient to also order the Nlis $hah within each PE, the lowest-
numbered NI is connected to the lowest-numbered switch Vé@é&cuse this simple text table as the
input to the other FNN tools for generating colored wiringdés, routing tables, etc.

Although the original Universal FNN design tool did not ngeatonsider specific communica-
tion patterns, we found that it was possible to allocatetamdil unit-latency bandwidth to specific
communication patterns within a Universal FNN at virtuallyadditional cost in complexity. Thus,
we began exploring communication patterns. This transititso became the point at which the
work of this dissertation began to diverge from the tool iodd)y created by H.G. Dietz.

3.2 Specification of Communication Patterns

To design Sparse FNNs, it is necessary to first specify thefsstmmunication patterns that we
wish the Sparse FNN to support with guaranteed pairwisewaiaitid and unit latency. This set can
be represented by aN x N weighted connectivity matrix fofV PEs, with the value at matrix
element(x, y) being the relative importance of the communications betwriex and PEy. If the
weights are restricted to zero and one, the matrix is in theedarm as an adjacency/connectivity
matrix; two PEs are considered adjacent if they are conddota common switch. There are three
primary approaches for determining these connectivityrices.

1. Literature search within the target applications’ danfs)i
2. Examination of the source code for the target application

3. Analysis of instrumented test runs of the target appboat

The first approach tends to yield a higher level represemtati the communication patterns, which
has to be converted into the connectivity matrix. For exangbme frequency-domain transforma-
tion algorithms (such as various codings of FFT) commueicaing a bit-reversal pattern in which
PE z communicates with P wherey’s binary value is equal to the bits of the binary value of
x listed in reverse order. Another example application dongiComputational Fluid Dynamics
(CFD). CFD communication patterns commonly include theestaneighbors on a rectilinear grid
usually of two or three dimensions. Yet another example antum chromodynamics (QCID)[8]
code which favors four dimensional nearest neighbor conications. Using such a literature
search, one can construct the connectivity matrix for arddssparse FNN based on the genre of
applications and algorithms that are expected to run on #ichine. Of course, issues such as the
particular mesh factorization used in a code often are regiipd in the papers discussing its algo-
rithms, so a significant degree of uncertainty remains aften the most careful reading of research
publications.

The second approach constructs the connectivity matrixifegttly examining the source code
for the applications that will be run on the machine or cotisglthe code’s author or documen-
tation. Care must be taken to distinguish between how thieoautr application code views a
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communication and how it really is implemented. Librarigg IMPICH or LAM-MPI do not al-
ways implement high-level communications, such as MPIdcasat[49], in the way that one might
expect. For example, broadcast could be done using a reWhes broadcast (which few systems
support), a sequence &f messages, & -ary tree of messages, etc. Perhaps the most seriously
misleading operation is the personalized all-to-all, wilseems to imply all PE pairs communicate,
but is almost never implemented using a technigue like thiké the literature search, this approach
also results in high level descriptions of the communicapatterns that need to be converted into
a connectivity matrix.

The third approach involves automated determination ofraanication patterns using instru-
mented runs of target applications. To do this task regainesready existing computer sufficiently
powerful to run the target application on a representatata det, and for that computer system
to have the ability to collect and count the communicatioangs. This raw communication event
trace would then need to be converted into a desired conitgathatrix. Some thresholding of
the data would be required to prevent code startup or otlherc@mmunication events from overly
influencing the contents of the connectivity matrix.

To assist in the third approach of using an instrumentedrtgsof the target applications, the
runtime support for FNNs discussed in Secfion$.1.3 indwadeata collection and reporting module
that directly counts the packets sent from each PE to evesr ®E. This data can be processed by
a script to generate a connectivity matrix suitable for tharSe FNN design tools.

To assist in creating the connectivity matrices for the fisst approaches, @onpat t er n tool
was written by the author. Theonpat t er n software allows the communication matrix to be
specified as the union of any of the patterns we found to be ammima literature search. Each
communicating pair yields a one entry in the matrix, evetyeotpair yields a zero. The patterns
available include:

Hypercube, single bit difference in PE ID numbé¥ (nust be a power of 2)

Bit-Reversal of the PE ID numbeN must be a power of 2)

Perfect-Shuffle V. must be even)

2D Matrix Transpose of a single element per PE ihust be a square)

1D, 2D, 3D, 4D Grids or Tori with various sub-patterns indegently selectable:

Distance 1 offsetsin W, X, Y, or Z

Distance 1 diagonals in 2D and 3D

Power of 2 offsetsin W, X, Y, or Z

All PEs that differ in only one dimension (e.g. every PE in saiow, column, etc.)

Graphical representations of a variety of these patteraslaown in FigureBE_2I=ZP8 in Section
[Z3. Each of those figures shows the upper right triangle efcttnnectivity matrix for 16, 32,
64, 128, and 256 PEs. For 2D, 3D, and 4D grids/tori, one casctéb use just one balanced
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factorization of NV, or a set of normalized unordered factorizations. For exarafpl2 PE cluster
can be specified as having any of the following 3D grids: 122x264x4x2, 32x8x2, 32x4x4,
16x16x2, 16x8x4, or 8x8x8; the default would be 8x8x8. Orue PE count, communication
patterns, and grid factorization are selected,dbepat t er n tool creates a connectivity matrix
that can be used by the Sparse FNN design tools discusses et two sections.

3.3 A Greedy Heuristic for Finding Sparse FNN Designs

The problem of finding a wiring pattern that satisfies a specifit of communication patterns is
different from finding a wiring pattern that satisfies all pitde communication patterns. Initially,

we encoded the communication patterns into the evaluatioctibn used in the Universal FNN GA,
but the geometric scaling trick is completely ineffective Eparse FNNs, and the GA trajectory
toward a solution was unusably slow and unsteady. We needeydo force the GA to make

changes that had more direct relevance to the problem aiilaia the potential network designs
being considered. In effect, the system uses a greedy tiewdsncorporate memetic information

to help direct the search.

One can represent the communication patterns by assigaatgRE a list of desired neighboring
PEs, which we call a buddy list. For a Universal FNN, each BE&dy list would consist of every
PE except itself. For a Sparse FNN, an individual PE’s budktyd specific to the PE’s position in
the various communication patterns selected for the Sgakdé The important difference is that
the buddy list of an individual PE in a Sparse FNN is highly elegent on its PE number. This
difference dramatically reduces the effectiveness of tN&l FGA described in Sectioh—3.1 when
applied to Sparse FNN designs.

First, the two mutation operations in the Universal FNN GA aruch less likely to improve
an individual PE’s connectivity, relative to its buddy Jisiecause two randomly selected PEs are
not likely to have much similarity in their lists. Second,chase Universal FNNs require that
all pairwise communications are covered, it is relativahaightforward to scale a solution up by
multiplying both the number of ports per switgh,and the number of PE4/, by the same factor;
thus, the FNN GA starts by searching the much smaller spdsEaled-down designs for a design
which it could scale up to solve the specified problem. Thadisg heuristic can be quite effective
for Universal FNNs, however, it rarely helps for Sparse FNSIsarse FNN design needs a heuristic
that respects the sparse nature of the buddy lists. To tlhtleteveloped a greedy allocation
heuristic to design Sparse FNNSs, as described below.

3.3.1 The Basic Heuristic Sparse FNN Design Algorithm

The basic premise used by the heuristic Sparse FNN designithlp is that, at each step in con-
structing a wiring pattern, the number of remaining uncate buddies is maximally reduced.
These steps are demarcated by deciding to connect a partlRHlIto a particular switch. We call
each possible decision point a crosspoint, because whecteg] a crosspoint connects one PE to
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one switch. Here are the four basic phases that the heulgticithm follows:

1. Find the list of crosspoints that would maximally reduice global number of unconnected
buddies

2. Check for and eliminate crosspoints from the list that Malirectly lead to a failed design
3. Select one crosspoint from the remaining candidates list

4. Connect that crosspoint and update all affected datetstas, then if not finished go back to
phase 1

Each of those phases has various possible implementatigthssome of the tested variations dis-
cussed in Sectidn3.3.3. First, however, it is appropriaigigcuss the primary data structures used
by the heuristic.

3.3.2 The Heuristic’'s Primary Data Structures

The current state of the Sparse FNN design problem is repexbéy a crosspoint matrix, with a
column for each ofS switches and a row for each &f PEs as shown in FigufeB.2. Each entry
of this crosspoint matrix represents a potential connediietween a PE and a switch. Initially, all
of the crosspoints are marked as unconnected. Each crosgmbiy holds two integer reference
counts and two single bit flags, all stored together as Hiddign a signed 32-bit integer. The
least significant 16 bits represents the amount that theaflaficonnected buddy count would be
reduced if this crosspoint is connected next. In other wdtds field holds the number of currently
unconnected buddies that the given PE would now be conngxtithis crosspoint was connected.
The next 14 bits, the full reference count, indicates howyafrthose unconnected buddies have
already used all their Nls. If the full count is nonzero, navrswitches can be used to satisfy that
buddy pair. Finally, the connected flag is the sign bit, arel akailable flag is in the next most
significant bit. By using a signed integer, all connectedspoints have a negative value regardless
of the values in other fields, which simplifies the search iagghone of the heuristic. This particular
bit-level encoding is not a fundamental requirement of theristic, but it dramatically reduces the
execution time on the systems we have used to execute tlgndesirches relative to other encoding
schemes that we tested.

When the heuristic compares the importance of two crossparsigned 32-bit integer compare
is all that is required. In this scheme, connected or otlsrwinavailable crosspoints rank below
any crosspoint that is still available to be connected. Afsvavailable crosspoint with any full
references will outrank a crosspoint with none. This laféature allows the heuristic to quickly
select crosspoints that must be connected to satisfy buaidy fhat have run out of Nls, although
the particular crosspoint may not maximally reduce the glloimconnected buddy count.

There also is an array that holds the number of remainindadnlaiports on each switch, initial-
ized to their port counts. Each PE has a list of which switétiexonnected to, as well as a running
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Figure 3.2: Heuristic's Data Structure

Algorithm 1 Initialize Heuristic’s Data Structures
procedure INITHEURISTIC
{active switche} « )
{active PE$ « 0
for all p € {PEs in the design specificatipdo
5: {active PE$ «— {active PE$ U {p}
peAvailp] — 0
niAvail [p] < n > maximum allowed NlIs per PE
{switches thap is connected tp« ()
{unconnected buddies p} < list from design specification > a.k.a. the ubSet
10: unconnectedBuddy@f — value from design specification
end for
end procedure

total of available ports across that set of switches. Eachd3 list of currently unconnected bud-
dies, calledubSet in Figure[3.2, initialized to its entire buddy list. For spaeasons, the columns
of the crosspoint matrix are only instantiated on an as-egddsis. Thus, the crosspoint columns
for switches that are full, or not yet in use, are not actustibred. The initialization of these various
data structures is shown in AlgoritHth 1.

3.3.3 \Variations and Details of the Heuristic Algorithm’s Four Phases

Shown in Algorithm2 is the first phase of the heuristic — whigltonceptually simple, although
time consuming. It scans through each crosspoint on all ¢tieeaswitches collecting a list with
the maximum rank. Various priority queue data structuresewensidered to reduce the time com-
plexity of this phase, such as a Fibonacci heap. Howevemglphase four, such a priority queue
needs to support both increasing and decreasing the key faldthany crosspoints. Thus, the time
complexity of phase four would be greatly increased by theeafsa priority queue for the cross-
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Algorithm 2 Find Max Crosspoints
function FINDMAXXPTS
{candidate Xpts « ()
max «— AVAILABLE - 1
for all s € {active switches do
5: for all p € {active PE$ do
v — Xpt[s, p]
if v > max then
need < unconnectedBuddy@f - referenceG) > needed ports
avail «— swAvails| - 1 + peAvailp] > available ports
10: if (niAvail[p] = 1) A (need > avail) then
Xpt[s, p] < v - AVAILABLE > mark it as unavailable
else ifv > max then
maxr <— v
{candidate Xpts — {(s,p)}
15: else
{candidate Xpts < {candidate XptsU {(s,p)}
end if
end if
end for
20: end for
return {candidate Xpts
end function

points relative to using a linear array where crosspointsbmupdated independently in constant
time. The slowness of using a search through an array in stepfiase instead of a priority queue
is mitigated by the search using a linear access patteraghrmemor.

At the end of phase one, if the list is empty, a new switch itvatetd and a candidate list of
crosspoints is selected to be the first connected to the néahs\as shown in Algorithril3. These
first crosspoints are selected based on the PEs requiringdbeadditional ports. In other words,
each selected crosspoint corresponds to a PE with the momtnected buddies that cannot fit onto
any of the switches to which the PE is already connected.eltlare any PEs that have only one
NI left, the candidate crosspoints are only selected froms With only one NI remaining. This last
rule helps the heuristic abort early if there is already aliR ¢an not be satisfied.

The second phase of the heuristic goes through the candistatbecking for crosspoints that
would directly lead to a failed design. It is possible to dlyadetermine when connecting a partic-
ular PE’s last NI to a switch, if its remaining unconnecteddies cannot be satisfied. For example,
if a PE would have five unconnected buddies after connectinigst NI to a particular switch, that
switch must have at least five additional ports availabldgtiose buddies to join the PE there. This
test is quick enough that it is actually performed inside lvdige one before a crosspoint is added
to the candidate list. This quick check is not sufficient ttedeall obviously bad crosspoint con-

’Linear access patterns on modern commodity processors amm systems are much faster then random access
patterns.
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Algorithm 3 Find First Crosspoints

10:

15:

20:

25:

function FINDFIRSTXPTS

s «—a new unused switch
{members of switch} « 0
swAvail[s] < p
{active switche} « {active switchesU {s}
last < false
for all p € {active PE$ do

if niAvail[p] = 1 then

last «— true

end if

Xpt[s, p] < AVAILABLE
end for
{candidate Xpts « 0
max <— —0o0
for all p € {active PE$ do

if last = (niAvail[p] = 1) then

need < unconnectedBuddy@f - peAvail[p]

if need > max then
if need > max then
maz < need
{candidate Xpts — {(s,p)}
else

> maximum allowed ports per switch

{candidate Xpts < {candidate XptsU {(s,p)}

end if
end if
end if
end for
return {candidate Xpts

end function
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ditions. The second phase really looks for crosspointsvitoaild overflow a switch with required
connections from friend of a friend constraints, which iswh in Algorithm[4. Specifically, when
connecting the last NI of a PE to a switch, not only do its remmg unconnected buddies need to
join it there, but for each of those buddies that would be gisireir last NI to do so, their uncon-
nected buddies would also have to connect to this switchs fEsit recurses until either the switch
would overflow, or no more full buddies are created. Any qoros® that fails this test is removed
from the candidate list, and the crosspoint’'s available iagjeared so that it would not be picked
again in the future. By skipping these crosspoints, theNdgif a PE could instead be connected
sometime later to a switch with enough open ports to satisfyriconnected buddies.

The third phase must select one crosspoint from the camdidgatto be sent on to the fourth
phase. If the list has only one member, selecting one is éayerwise, some mechanism must
differentiate the equally ranked crosspoints. One appraeauld be to try them all in sequence,
and backtrack from failed designs. Unfortunately, thatrapph does not yield answers in a timely
fashion, spending an exorbitant amount of time trying déffé connections on the last few switches,
when the design needs to have connections changed on one eétly switches. Another alter-
native would be to select the candidates based on the maximanknthat would be subsequently
found during the next first phase. This lookahead approachfeumnd to be extremely costly, and
made the heuristic take a very long time to find solutions. Gémt approach for the third phase of
the heuristic seemed to be to just select one candidatepoiossandomly from the list and move
on. If the resulting design failed, try again from the beggnwith a different random seed. With
this approach for the third phase, the heuristic was ablentbsfolutions for some Sparse FNN de-
sign problems very quickly (a fraction of a second runtimeadaptop for designs with hundreds
of PEs). This random selection approach turned out to alghéokey for combining the heuristic
with a GA, which is discussed in the next section.

During the fourth phase of the heuristic, the selected paiss is marked as connected, and
the various data structures are incrementally updated@spyiate, as shown in Algorithid 5. The
newly connected buddies are removed from the appropriaterunected buddy lists and some ref-
erence counts affected by this new connection are increabide some others are decreased. For
formerly unconnected buddies that were already on thischwiheir crosspoints on other switches
are decremented, since they are now connected to this PHEsosvilich, as shown in Algorithm
[B. For unconnected buddies that are not on this switch, tnesspoints on this switch are incre-
mented. Also, the port availability counts are updated &mhePE connected to this switch and for
the switch itself. If this connection uses the last NI for a Bte available flags for crosspoints in
its row are cleared, to prevent the PE from being connectexore switches than it has Nls, thus
satisfying then constraint. Also, for each switch this PE is on that has pavéslable, the full ref-
erence counts for each of its unconnected buddies are ieatech As mentioned in Sectibn313.2,
this step has the effect of promoting those crosspointsatdtipse critical connections will be pref-
erentially selected during subsequent phase one passes Whlast port on a switch is used, the
crosspoint column for that switch is marked as unavailadohgl, it's storage is freed, which satisfies
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Algorithm 4 Crosspoint Closure Test

10:

15:

20:

25:

30:

35:

function CLOSURESKIP(s, p)
room «— SWAvail[s] — 1
P — {members of switch} U {p}
Q — {p}
forall p € Q do
Q«— Q—{p}
other «— peAvaillp]
for all b € ({unconnected buddies p} — P) do

must < true
if other > 0then
for all ¢ € {switches thap is connected tpdo
if Xpt[c,b] > AVAILABLE then
other < other — 1
must «— false
break
end if
end for
end if
if must then > buddy must join this switch
P+« PU {b}
room «— room — 1
if room < 0then

return true > switch would run out of room
else ifniAvail[b] = 1 then
Q — QuU{b} > must check his friends too
end if
end if

end for
end for
return false
end function

function XPTCLOSURETEST({candidate Xpt})
for all (s,p) € {candidate Xptsdo
if CLOSURESKIP(s, p) then

{candidate Xpts < {candidate Xpts — {(s,p)}
Xpt[s, p] < Xpt[s, p] - AVAILABLE > mark it as unavailable

end if
end for
return {candidate Xpts

40: end function
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Algorithm 5 Connect Crosspoint

procedure CONNECTXPT(s, p)
Xpt[s, p] < Xpt[s, p] - AVAILABLE
full — (niAvail[p] = 1)
for all b € {unconnected buddies p} do
5: v« Xpt[s, b]
if connectef) then
RECORDBUDDY CONNECTION(s, p, b)
else if full then
Xpt[s,b] < v+ 1+ FULLREF

10: for all ¢ € {switches thap is connected tpdo
Xpt[c, b] — Xpt[c, b] + FULLREF
end for
else
Xpt[s,b] —v+1
15: end if
end for

for all m € {members of switcz} do
peAvailm| « peAvailm| — 1
end for
20:  Xpt[s,p] «— CONNECTED
{switches thap is connected tp < {switches thap is connected tpuU {s}
niAvail [p] < niAvail[p] — 1
{members of switchs} «— {members of switch} U {p}
swAvail[s] < swAvall[s] — 1

25: if swAvail[s] = 0 then
{active switches}— {active switches} - {s}
end if
if full then
{active PE$ — {active PE$ — {p}
30: end if

end procedure
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Algorithm 6 Record Buddy Connection
procedure RECORDBUDDY CONNECTION(s, p, b)
{unconnected buddies 6f < {unconnected buddies 6f — {p}
unconnectedBuddy@i{ — unconnectedBuddy@{ — 1
{unconnected buddies p} — {unconnected buddies p} — {b}
5: unconnectedBuddy@f — unconnectedBuddy@Gt — 1
61
for all ¢ € {switches thap is connected tpdo
Xpt[c, b] < Xpt[c,b] — &
end for
10: if niAvail[b] < 0then
6 «— 1+ FULLREF
end if
for all ¢ € ({switches thab is connected tp— {s}) do
Xpt[C,p] — Xpt[c7p] -0
15: end for
end procedure

the p constraint. When updating the various data structuresiguhiis phase, a variety of simple
tests are performed to check for a failed design due to thisaomnection. Unless backtracking is
used in phase three, this failed design state forces thestiewo halt early. Otherwise, the heuristic
halts when there are no more Nls or switch ports left unusedhen the unconnected buddy lists
are all empty.

3.4 Sparse FNN GA

As discussed in Sectidn-8.3, the Universal FNN GA is not paldily suited to finding Sparse FNN
designs. | developed a new steady state GA specifically oSfarse FNN design problem which
leveraged the approach taken by the Sparse FNN heuristiconitnast to the Universal FNN GA,
the Sparse FNN GA uses genetic material (DNA) that is notectirepresentation of the network
wiring pattern. Instead, the Sparse FNN DNA is used to infteathe running of the Sparse FNN
heuristic. In brief, the Sparse FNN GA uses DNA to select ditbecandidate crosspoints during
phase three of the heuristic described in Sedfion13.3.3.sldwaly state Sparse FNN GA has these
five basic algorithmic steps, with further discussion inghbsections following:

1. Randomly select DNA from one or two parents in the curremiation
2. Generate new DNA using crossover or point mutations upemparental DNA
3. Evaluate the network design that results from the newhegeted DNA

4. Attempt to add the new individual to the current populatipossibly removing a less fit
individual to make room

5. If the selected end condition has not been reached, répeastep one
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Figure 3.3: Crossover Mutation

3.4.1 What is the DNA used in the Sparse FNN GA?

To design a Sparse FNN, a target set of communication pattkeat are to be efficiently supported
by the network must be specified. This specification can beesepted as a list of PE pairs that
require single switch-hop communication path(s). Thisdén be directly generated in a canonical
order from a connectivity matrix described in Secfiod 3.Be DNA for an individual in the Sparse
FNN GA is a particular permutation of that list, assigningledesired PE pair a unique rank within
the list. The third phase of the heuristic uses this rankingréak ties when selecting a crosspoint,
which is described in Sectidn"3:%.3. The permutation isest@s an array of integers, each an index
into the master PE pair list. There is also an RNA representihat is a copy of the master list in
the order specified by the DNA.

3.4.2 Sparse FNN GA Mutation Operations

A new individual in the Sparse FNN GA can be created eitherdyig or by sexual reproduction.
For clones, a random number of point mutations are appliat ékchange the ranking of two
randomly selected PE pairs in the DNA. At most one half of tidADwill be mutated in this way.

If the parent's DNA evaluated to a failed design, the firsnpoiutation exchange is biased to have
a 25% chance of modifying the rank of the last PE pair used énfdiied design. This targeted
mutation greatly increased the speed at which the GA fouhdisps in a few simple test cases.
With a bias of under 5% this improvement effect was not natibe, and when the bias was over
33% there was no apparent further improvement in conveggspeed.

For sexual reproduction, a crossover mutation operatiaisésl, which is shown in FiguEe=B.3.
The DNA from parent A is copied into the child’s DNA. A randorargiguous range of PE pairs is
selected from parent B that is at most half the DNA. For eaclp&iElisted in parent B’s selected
DNA, those PE pairs are removed from the child's DNA. The katethe child’s DNA are then
coalesced together to form one empty block in the same posits the parent B's selected DNA
range. Finally, the parent B's selected DNA is copied inte émpty block in the child’s DNA.
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Algorithm 7 A revised Heuristic Initialization sequence
procedure NEWINITHEURISTIC
{active switche} « )
{active PE$ « 0
for all p € {PEs in the design specificatipao
5: {active PE$ «— {active PE$ U {p}
peAvailp] — 0
niAvail [p] < maximum allowed NIs per PE
{switches thap is connected tp « ()
unconnectedBuddy@Gf < 0
10: end for
n < number of DNA elements
fori — 0,n —1do
RNA[i] < (a,b) < pairLisDNA[]]
RNAndxXa,unconnectedBuddy@i]] < i
15: RNAndx[b,unconnectedBuddy@{] < i
unconnectedBuddy@i < unconnectedBuddy@i + 1
unconnectedBuddy@i < unconnectedBuddy@i + 1
end for
end procedure

This crossover mutation operation preserves the reladimkings within the set of DNA taken from
parent A, and it preserves the absolute rankings of the DiKéntdrom parent B.

3.4.3 Evaluation Steps in the Sparse FNN GA

The cost of evaluating an individual in the Sparse FNN GA iasiderably higher than for the
Universal FNN GA due to the more abstract DNA representatiblowever, this more abstract
DNA representation allows the GA to search the Sparse FNiglepace much more efficiently
than the Universal FNN GA. To evaluate an individual in thaiSp FNN GA, the DNA is converted
into two primary data structures that will influence the nmgnof the Sparse FNN heuristic. The
initialization of the heuristic as discussed in Section.3.8 modified to set up these two data
structures, as shown in Algorithid 7. Specifically, a custoesithtd PE pairs list, the RNA, is
generated in the order selected by the DNA. Each PE pair @anthe RNA is initially marked as
unsatisfied. A second data structure is created that is ttenmected buddy list for each individual
PE. These individual buddy lists are also in the order spatbiy the DNA, and each entry is simply
an index into the RNA. Then the Sparse FNN heuristic is ruth wifew changes to phases three
and four.

In phase three, if the set of candidate crosspoints is forva sweitch, select the crosspoint
involving the earliest unsatisfied PE pair in the RNA. Thigestion step is simply a matter of
finding the minimum RNA index value that any of the PEs from thadidate list has, as shown
in Algorithm[8. In other words, of the given PEs, the PE is sield that has an unsatisfied buddy
pair that is earliest in the RNA. If the candidate list is not &n empty switch, the crosspoint is
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Algorithm 8 The Select First Crosspoint by RNA routine
function SELECTFIRSTXPT({candidate Xpt})
min < number of DNA elements
selected < NULL
for all (s,p) € {candidate Xptsdo
5: i «— RNANdX[p, 0]
if © < min then
min < 1
selected «— (s,p)
end if
10: end for
return selected
end function

selected that would satisfy the buddy pair that is earlieshé RNA, as shown in Algorithrial 9. In
either situation, the RNA selects which PE pairs get satisgfalier than others, if the basic heuristic
would have just picked a winner randomly. Also, as a hint ®rthutation operation, the last RNA
index that was used is recorded, so that if and when a designtfee DNA that was most likely
responsible can be preferentially mutated.

In phase four, as PE pairs are satisfied, their entry in the RiNWarked as such, and the
corresponding entries in each PE’s unconnected buddyaistsemoved, as shown in Algorithm
Id. This incremental update to the RNA and buddy lists makegiine complexity of the third
phase be only) (k) for a candidate list of length.

3.4.4 The Parallel Sparse FNN GA

The parallel Sparse FNN GA uses a manager/worker compuoghticheme. Both the manager and
the workers run the same basic serial Sparse FNN GA code &t enodifications. On the man-
ager, the evaluation function does not directly call therSgp&NN heuristic. Instead, the manager
sends the DNA of the new individual to an idle worker, who \sied its population with that new
DNA. If there are no idle workers, the manager will first wait & worker to finish and collect its
results, prior to sending a new individual to the worker. iLthe manager gets results back from the
workers, it defers adding individuals to its own populatidrhus, the manager’'s GA runs in three
phases: during one phase it generates new individuals wutithaiting for their evaluation results.
In another phase it is both generating new individuals andrpporating evaluation results from the
workers. The last phase is when the manager ceases to semebourdividuals to the workers and
simply collects the results from previously given work.

After receiving a seed individual from the manager, the workins the evaluation function on
the new individual, then adds it to its local population. fitliee worker runs the full serial Sparse
FNN GA, and after a specified time limit, returns the bestirtilial found so far to the manager. The
worker then waits for a new seed individual from the manaBefore adding each seed individual,
the worker removes the lower half of its population to makenndfor the new individual and its
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Algorithm 9 The Select A Crosspoint by RNA routine
function SELECTXPT({candidate Xpt})
min < number of DNA elements
selected < NULL
for all (s,p) € {candidate Xptsdo
5: 7«0
while (j < unconnectedBuddy@f) A (RNAndX)p, j] < min) do
(a,b) «— RNA[RNANdXp, j]]
if b= pthen > a is the buddy fop
b—a
10: end if
if Xpt[s,b] = CONNECTEDthen
min —RNAndXp, j]
selected «— (s,p)
end if
15: end while
end for
return selected
end function

Algorithm 10 Revised Record Buddy Connection
procedure NEWRECORDBUDDY CONNECTION(s, p, b)
> remove the entry correspondingpdrom the list RNAndxb, 7]
{unconnected buddies 6f < {unconnected buddies 6f — {p}
unconnectedBuddy@i{ < unconnectedBuddy@{ — 1
> remove the entry correspondingitdrom the list RNAndxXp, 7]
{unconnected buddies p} — {unconnected buddies p} — {b}
5: unconnectedBuddy@f < unconnectedBuddy@t — 1
61
for all ¢ € {switches thap is connected tpdo
Xpt[c, b] <+ Xpt[c,b] —
end for
10: if niAvail[b] < 0 then
0 «— 1+ FULLREF
end if
for all ¢ € ({switches thab is connected tp— {s}) do
Xpt[c, p| < Xpte,p] — 6
15: end for
end procedure
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early offspring. If the design parameters of a new seed iddal are different from the previous
one, the worker invalidates the evaluation results of itsaaly existing population, but keeps their
DNA around in case it is already close to finding a solutione @asign parameters that are allowed
to change are the number of ports per switgh the number of Nis per Pg;), and the maximum
allowed number of switchesS). None of those parameter changes would require a new cahonic
PE pair list, and thus all the worker’s existing DNA wouldIdiie usable as input to the heuristic.

3.4.5 Sparse FNN Meta Search Problem

The manager is able to change some of the basic network dpargmeters on the fly, allowing
one invocation of the program to search for solutions forglken communication pattern set with
varying values fom, p, and.S. Specifically, the manager is given a range of viable Nis fger P
(usually from 2 to 8), and a set of switch widths, such as 48,15} and 8-ports. The search
proceeds from widest switch to narrowest switch, attengptinfind a solution for a given switch
size (p) that uses the smallest number of NIs per RE Once the minimum value af for a
particularp is reasonably known, narrower switches should ngtbe the same or Iar@arThus,
searches of narrower switch sizes with fewer NIs/PE arepskip

Ports per Switch (p)

48 24 16 8

Nls per PE (n)
N w B 6] o

Figure 3.4: Meta Search example

Also, it is clear that for a particular switch wid{#) once a solution witly = j is found, it is
trivial to find a solution withn = j + 1. Thus, once a solution for a givenis found, it is not
necessary to try with a largeron that switch width. For each switch width,is first tried at the
same point as the next wider switch, increasingntil a solution is found in a reasonable amount
of time. A hypothetical example is shown in Figlirel3.4, whie dark green boxes in the upper
left are known to have solutions, and the pink boxes in thestorght are suspected to not have
solutions. The black box in the lower right corner is knowmad be viable because the number of
buddies of at least one PE is greater than 14. In this casedRkEmam possible neighbors for a PE
connected to two 8-port switchesssx (p — 1) = 2 x (8 — 1) = 14. The search proceeds from
the lower left to the upper right following the path indicdtey the arrows. This search approach

3This relationship is not strictly true, because there isckipa problem involved. In some cases, a specific switch
width may more easily cover a given communication pattetrttsgn any other arbitrary width, even wider switches.
However, if there is a solution with switches of widthit is trivial to construct a solution using switches of widt x p,
for any positive integek, by concatenating groups éfswitches together to form the larger switches.
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attempts to follow the dividing line between viable desigmsl non-viable designs. For any given
switch width (p), it is possible that the GA gave up too soon for the= j — 1 case, so after a
first pass over all viable switch widths, a second pass is rattdenpting to find a solution using
n = j — 1 for the widest switch that succeeded with= j, as shown by the boxes with a yellow X
in the figure.

It is also be feasible to follow the dividing line in the opfiesdirection, starting from the
narrowest switches using the most NIs/PE. In the limit, tarawest switch has two ports and is
equivalent to a wire connecting two PEsylis not constrained, the solution to this degenerate case
can be directly derived from the desired PE pair list. We ditl choose this direction along the
dividing line between viable and non-viable designs begdhe time and space complexity of the
Sparse FNN heuristic, as it is currently written, is tunedtfee number of switches to be no more
than the number of PEs.
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Chapter 4

How Well do Sparse FNNs Scale?

Now that we have a way to design Sparse FNNs, one wonders vzbgbarallel machines can ef-
fectively use Sparse FNNs. There is no closed form scalingtian for Sparse FNNs, primarily
because the design of an individual Sparse FNN is based oriiragy combination of communi-
cation patterns selected specifically for that individugdign. The amount of networking equipment
required for a given number of PEs can be dramatically difiedepending on the overlap and den-
sity of the selected communication patterns. The scalingpafrse FNNs also is dependent on the
number of NIs per PEn) that can be used, and on the wid) of the switches used. However, it
is possible to explore a variety of Sparse FNN designs torgegeends in scalability. The follow-
ing sections of this chapter present scaling data for oveoasand different Sparse FNN designs,
spanning many combinations of input parameters. The chapteludes with a presentation of a
Sparse FNN design for a machine with 65,536 PEs.

4.1 Sparse FNN Scaling for Individual Patterns

In this and subsequent sections, a series of figure pairesepted that represent the scaling of
Sparse FNN designs for various sets of communication patter machines from only 8 PEs in
size to machines with 16,384 PEs. The first figure in each pagmts the connectivity matrices
for a few sample solutions for a given communication pattat) typically for 16, 32, 64, 128,
and 256 PEs. Also for this specific pattern set, many desiganpeter combinations for a wider
range of machine sizes are condensed and presented in treldegure of the pair. The second
figure contains information about the underlying commutivcapattern, as well as a summary of
the results of many Sparse FNN designs that cover that coigation pattern. The first pair of
these figures will be discussed in greater detail to elueitta meaning of the various elements in
each figure.
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4.1.1 The Hypercube Communication Pattern

As discussed in Sectidn_Z2.B.2, the neighbors for a PE in tiperdeybe communication pattern
include all PEs that differ by a single binary digit in thele Rumbers. In other words, a hypercube
has direct connectivity between all PE pairs that have arpil@mming distance of one. In the
case of a Sparse FNN that covers the hypercube communigattern, each PE pair with a binary
Hamming distance of one can communicate with the latencysofgle switch hop. As the number
of PEs in a hypercube increases, the number of requestetboesyfor any given PE grows as
O(log, N), while the number of possible PE pairs grows much fasté @¢2).

Sample Sparse FNN solutions using 3 NIs(RE= 3) are shown in Figurig4.1 for the hypercube
pattern. Like the figures in SectibnP.3 that showed the upgletrtriangle of the connectivity matrix
for specific communication patterns, this figure shows thgeuapight triangle of the single-switch
connectivity matrix for Sparse FNN solutions on a varietyn@chine sizes. The black pixels are
the requested coverage, and the green pixels are extra PEtpat also are covered with single-
switch connectivity. If one looks closely at the figure, oa@ notice that not all the pixels have the
same intensity. Darker pixels indicate that multiple sirglvitch paths are available between the
corresponding PE pair. Because all these images reprepargeéSFNN solutions, it is guaranteed
thateveryrequested PE pair has at least one single-switch path ciimgpée pair. While this figure
gives some detailed information about a few Sparse FNNisakito the hypercube pattern, it does
not convey much information about how well the solutiondesc&8hown in Figur€412 is the Sparse
FNN scaling results for the hypercube communication patbera much larger set of solutions.

The colored lines generally going from the lower left cort@the upper right of Figure4.2
represent Sparse FNN solutions using the narrowest swit{chaallesp) of all the solutions found
using a fixed numbefn) of NIs per PE. For example, the solid red line representsisas using
only two Nls per PE, where the vertical coordinate of the igyhe minimum width of the switches
used by those solutions. Eight NiIs per PE was the maximum auoded in any attempted solution
during the Sparse FNN design searches for all the figuresoidth the data in these figures come
from extensive runs of the Sparse FNN GA on the KASYO supepeaer[35,.4¥], there is no
guarantee that these solutions are the best possible Spdiédesigns. Thus, the colored lines in
the figure represent upper bounds on the minimuneeded for a given; there may exist not-yet-
found solutions using narrower switches.

The shaded gray region in Figurel4.2 shows the percentagepfssible PE pairings that are
actually covered by the Sparse FNN solutions representadebgolored lines. The black line just
below the gray region represents the percentage of alllged3E pairings that need to be covered
to satisfy the hypercube communication pattern. Cleaslyahy successful Sparse FNN design, its
coverage must not be below the black line. For comparisoa,Umiversal FNN design, the black
line would be across the top of the figure at a constant 100%reage. Yet, for this Sparse FNN
problem of covering the hypercube communication pattesntha number of PEs increases, the
requested fraction of possible PE pairings decreases ticatha It is this downward sloped black
line that allows Sparse FNNs to scale to much larger panaithines than Universal FNNs.
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Figure 4.2: Hypercube scaling results
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In most cases, arbitrarily wider switches can be used in as8FeNN design for a given, if
desired. Because there is a packing problem involved, afepgwitch width may more easily cover
a given communication pattern set than any other arbitradghyweven wider switches. However,
if there is a solution with switches of width it is trivial to construct a solution using switches of
width k& x p, for any positive integek, by concatenating groups éfswitches together to form the
wider switches. These alternative Sparse FNN designs willervswitches are not shown in the
figures to reduce the visual clutter. Also not shown in therfguare the number of switchésS)
used for any particular solution. In general, the numbemodfches used is as many as are needed
to supply enough total ports to connect all the Nlis of all tlsHS = {%W Thus Sparse FNN
designs with wider switches tend to have fewer of them, wdhilsigns with more Nls per PE tend to
have a larger number of switches. A continuous range of bw¥idths was not practical to explore
due to the already large search space. Thus, the primargtesithat were used when finding these
solutions had the following number of ports per switch: 8,24, 32, 48, 64, 80, 96, 128, 256, and
512 ports. For comparison purposes, the figures includenammpw switches from seven ports all
the way down to two ports — sizes that are not commerciallplgieoften costing more per port than
wider switches.

A switch that has just two ports is equivalent to a directiynoected cable between two PEs.
So, for the hypercube pattern, the data points along thermowof Figure[ZP represent traditional
switchless implementations of the hypercube. In thesetlijreonnected cases, the requested com-
munication pattern is covered precisely by the Sparse FNIN mo extraneous PE pairs. These
cases can be seen where the shaded gray region of the figohesahe black line for 256 or fewer
PEs in a hypercube. Thus, for these few special caseswitl2, there is a guarantee that no tighter
cover exists, because the wiring pattern is a one-for-ortelmta the requested communication pat-
tern. In most other cases with wider switches, extra PE pagreovered by the Sparse FNN design
that were not requested by the set of communication patt&swe shall see, these extra pairs tend
to dominate the coverage by Sparse FNN designs with wideclses.

This trend easily can be explained by casting the Sparse FddNl problem as a graph match-
ing problem. The set of communication patterns specified f8parse FNN design witN PEs can
be represented as a request graph Wwithertices with edges between PEs for each desired commu-
nication path. Eaclp-port switch in a Sparse FNN can be modeled as a fully condesttbgraph,

K ,, with p vertices. The problem of designing a Sparse FNN is the samepastedly replacing
p-vertex subgraphs of the request graph withsubgraphs, until there are no more original edges
in the graph, with the constraint that each PE can be a menilarmostn subgraphs. Clearly,
each time ai, subgraph is substituted for an original subgraph that wasutig connected, the
new graph will have extra connectivity compared to the aagjrequest graph. For wider switches,
it becomes more and more likely that the original subgrapasdre being replaced had fewer edges
than theK, subgraph that replaces them. In other words, attemptingwera requested commu-
nications graph with largés, subgraphs is not likely to be as precise a cover as one dong usi
smallerK, subgraphs, witli, yielding the tightest covers.
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4.1.2 2D Communication Patterns

The first solutions for 2D patterns that we examine are for adts where the neighbors of a PE
are the 8 nearest PEs, which includes the four diagonalspl@a®parse FNN solutions with= 3

are shown in Figure—4l.3 for this pattern. Figlrel 4.4 showsstiading results for the pattern. The
number of neighbors per PE is a constant, and as can be sdenfigure, the directly connected
solution withn = 8 is valid for all sizes of machines. Also, as a historical nate case with

n = 4 andp = 4 corresponds to the wiring pattern of the X-net on the BLITZ&|Nind MasPar
MP-1|4€] SIMD machines. A Sparse FNN that supports a sinBléc2us for any particular number
of PEs is not very interesting in itself, but leads us to thet set of 2D communications. Shown
in Figure[Z5 are several solutions for the same 2D torugipa#ts just described, but repeated for
multiple factorizations of each machine size. For examfulethe 256 PE case, not only is the
16 x 16 factorization included, but also tHe8 x 2, 64 x 4, and32 x 8 factorizations. These sample
solutions have only 2 NIs/PE, because for this combinatiopatterns and machine sizes, there
appear to be few cases that required just 3 NIs/PE, but rattiesr used 2 or 4 NIs/PE. Shown in
Figure[4® are the scaling results for this pattern. Thekblae in this figure is higher and does
not fall as rapidly as before with increasing machine sizeusl as can be seen by the slopes of the
colored lines, Sparse FNN designs for this combinationrepattequire more networking resources
to be covered compared to the single 2D torus pattern. Fo24 P& machine using 4 NIs/PE, the
minimum switch width for a found solution was 48 ports. In trast the previous single 2D torus
example needed switches with only 4 ports each for the saaidgon.

Shown in Figur€Z]7 are several solutions for the same nhei@P tori pattern as just described,
but without the diagonal neighbors. By removing the diagjoméghbors from the underlying 2D
torus patterns, one can greatly improve the scaling costsufgporting multiple 2D factorizations,
as shown in FigureZ4.8. In this case, for the same 1024 PE mawlithn = 4 NIs/PE, a solution
was found that used switches with only 8 ports. Clearly, & thrget program’s performance is
not critically affected by direct diagonal communicatioms a 2D grid, this design would be a
much cheaper than the previous one using 48 port switchegraims for 2D problems commonly
piggyback diagonal neighbor communications with commatindnis to either of the two common
rectilinear neighbors. For example, when sending datadd\thrthern neighbor, also include the
data that is relevant to the North-East neighbor in the saanmemwnication. Thus, in a subsequent
communication step, the North neighbor can send the data Eastern neighbor.
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Figure 4.5: Solutions for Multiple 2D Tori with-1 offsets including diagonalg, = 2
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Figure 4.7: Solutions for Multiple 2D Tori with-1 offsets,n = 3
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Figure 4.9: Solutions for Single 2D Torus witt2* offsets,n = 2
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If the target applications need to perform reductions withrow or column, it would be bene-
ficial for each PE to have connectivity with more than its tlmsest neighbors within the row (or
column). FiguréZ19 shows several sample solutions usintsfPH for a single 2D torus factoriza-
tion, but instead of the 4 (or 8) nearest neighbors per PEcitides all PEs in the row (or column)
that have a power of 2 distance along the row (or column). Thérg results for this pattern are
shown in Figur€Z4.70. The minimum solution found for thisteat on 1024 PEs with = 4 NIs/PE
needed 24-port switches. Also of note are the solutions Witk p? PEs that useg = 2 NIs/PE.
These particular solutions also cover the pattern showigwre[Z.2B in Sectioh2.3.3. Thege= 2
solutions are a rare symmetric Sparse FNN where one NI ctb@a@ switch to cover the PE'’s
row, and the other NI connects to a column switch, where eatilshasp = VN ports.

4.1.3 3D Communication Patterns

The first solutions for 3D patterns that we examine are for a@Ds where the neighbors of a PE
are the the six rectilinear nearest PEs that correspone teixtiaces of a cube. Sample Sparse FNN
solutions withn = 3 NIs/PE are shown in Figufe~4]11 for this pattern, while F&JdrI2 shows
the scaling results. As in the first 2D torus example in thigptér, the number of neighbors per
PE is a constant, and thus not particularly interesting @aaralsalone Sparse FNN design problem.
However, in that first 2D torus example, we included the drejoeighbors. If we do the equivalent
for the 3D case, we need to include many more neighbors. Yigpthie PEs as a tightly packed stack
of cubes, there are twelve neighbors that touch a centrahREs@dges, and eight PEs that touch it
at the corners, yielding twenty additional neighbors fatttentral PE. Sample solutions to this 26-
neighbors-per-PE pattern are shown in Fidurel4.13, whgare[Z. I shows the scaling results. The
discussion in the previous section about a programmingnigdition for eliminating direct diagonal
communications can also be applied to the 3D case. Thuserins¢he added cost of supporting
direct 3D diagonal communications is generally excessive.

The next pattern of interest is the 3D torus with six neigkymer PE, but repeated for multiple
factorizations of each machine size. For example, for th®B4ase, not only is thé x 4 x 4
factorization included, but also thH& x 2 x 2, and8 x 4 x 2 factorizations. Sample solutions are
shown in Figuré 415 withy = 3, while Figurd/ZTb presents the scaling results for thitepat For
comparison purposes, a 1024 PE solution found for this attéh = 4 used a minimum of 16
ports per switch, which is not too different from the simiid case which used 8-port switches.

As before in the 2D case, if instead of needing different fairtorizations, the target applica-
tions need to perform reductions along one or more dimeasibwould be beneficial for each PE
to have connectivity with more than its two closest neigkbwithin a dimension. A few sample
solutions withn = 3 are shown in Figure 417 for a single 3D torus factorizatharn,instead of the
six nearest neighbors per PE, it includes all PEs in the rowdlumn, etc.) that have a power of 2
offset along one dimension. The scaling results for thisepatare shown in FigufeZ118. For this
pattern, the 1024 PE with = 4 case needed 16-port switches for the minimum solution found
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Figure 4.13: Solutions for Single 3D Torus withl offsets including diagonals;, = 3
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4.2 Sparse FNN Scaling for Combinations of Patterns

Although the scaling results for individual communicatfmatterns presented in the previous section
are informative, they do not encompass designs that areylarty advantageous for Sparse FNNs.
This section presents scaling results for combinationsistindt communication patterns that to-
gether would not be covered efficiently by a traditional r@twtopology. In contrast, as we shall
see, a Sparse FNN is able to simultaneously support a vafiegmmunication patterns efficiently.

4.2.1 Hypercube plus Tori with Single Factorizations

Figure[4.IP shows sample solutions with= 3, while FigurdlZ2D shows the scaling results for the
following combination of communication patterns that urdé a single factorization for each torus
sub-pattern:

e Hypercube

e Ring with distance 1 offsets in X

e Single 2D torus with distance 1 offsetsin X, or Y

e Single 3D torus with distance 1 offsetsin X, Y, or Z

e Single 4D torus with distance 1 offsetsin W, X, Y, or Z

For this combination of patterns, the 1024 PE wijth= 4 case needed 24-port switches for the
minimum solution found. If the hypercube pattern is not sidfit for the expected global com-

munications (such as for reductions on subsets of the PEs)can include the power of 2 offset

neighbors for the 2D, 3D, and 4D torus sub-patterns. Sanoéi@ns for this expanded pattern are
shown in FiguréZ.21, while scaling results are shown in EEliIZ2. With this change in patterns,

the 1024 PE withy = 4 case needed 32-port switches for the minimum solution found
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Figure 4.21: Solutions for Hypercube plus Single Torus witf offsets,n = 3
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4.2.2 Hypercube plus Tori with Multiple Factorizations

Sample solutions and the scaling results for the followiegnbination of communication pat-
terns that include multiple factorizations for each torub-pattern are shown in Figure“4123 and
FiguréZ.2h:

Hypercube

Ring with distance 1 offsets in X

Multiple 2D torus with distance 1 offsets in X, or Y

Multiple 3D torus with distance 1 offsets in X, Y, or Z

Multiple 4D torus with distance 1 offsets in W, X, Y, or Z

For this combination of patterns, the 1024 PE wijth= 4 case needed 32-port switches for the
minimum solution found. The same pattern with the additibthe power of 2 offset neighbors for
the 2D, 3D, and 4D torus sub-patterns has sample solutiaversim FigurdZ.2b and scaling results
shown in Figurd~2.26. With this change in patterns, the 10R24vith » = 4 case needed 48-port
switches for the minimum solution found.
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Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with 1 offsets (0140070176)
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Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with power of 2 offsets (0240016176)
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Figure 4.26: Scaling of Hypercube and Multiple Tori witi2* offsets
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4.2.3 Special Patterns plus Hypercube and Tori with Multipke Factorizations

If the preceding examples didn’t cover the communicatiditegpas of a target application, it is likely
that application needs a pattern tailored specifically ttoAs an example of two such patterns that
are found in the literature are the bit-reversal pattern nedperfect shuffle and inverse-shuffle
patterns, which were discussed in Secfion2.3.1. Samplgi@es and scaling results for the fol-
lowing combination of communication patterns that includeltiple factorizations for each torus
sub-pattern are shown in Figure4.27 and Figurel4.28:

e Bit-reversal

e Perfect Shuffle and Inverse-Shuffle

Hypercube

Ring with distance 1 offsets in X

Multiple 2D tori with distance 1 offsets in X, or Y

Multiple 3D tori with distance 1 offsetsin X, Y, or Z

e Multiple 4D tori with distance 1 offsetsin W, X, Y, or Z

For this combination of patterns, the 1024 PE wijth= 4 case needed 64-port switches for the
minimum solution found. The same pattern with the additibthe power of 2 offset neighbors for
the 2D, 3D, and 4D torus sub-patterns has sample solutiaversim Figurd 2,20 and scaling results
shown in Figurd~2.30. With this change in patterns, the 1024vith » = 4 case needed 80-port
switches for the minimum solution found.

As can be seen in the two scaling figures, it may be appropidat®nsider an additional NI
per PE rather than using larger switches. For example, tBé P& withn = 5 case in Figur€&4.28
needed 32-port switches for the minimum solution found,clwhis comparable to the = 4 case
without the special purpose patterns. Similarly, the 10B4nith » = 5 case in Figur&Z4.30 needed
48-port switches, which is also the same width switches adetfor the case without the special
purpose patterns with = 4.
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Figure 4.27: Solutions for Bit-reversal, Shuffle, Hyperepand Tori with+1 offsets,n = 3

Bit-reversal, Shuffle, Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with +1 offsets (0143070176)

T T T T T ] 100
512 R ]
256 | e x|
o
128 | Actual % {10 &
Requested % w
= —+— n=2 NISIPE S
S el o ommNsPE N 2
< ---%-- n=4 NIs/PE 2
S ~@- n=5NIs/PE 8
& ~ = n=6NIs/PE - =
5 32 v  n=7NIslPE Ve <
= ~a-- n=8NISlPE, N v 11 5
2 (]
g 16t x Koo g
[}
>
. S
8 | B X
5| " & °
4 T e e 4 01
*x o / v
2 v
1 1 1 1 1 1 1 1 1 1 1 1

8 16 32 64 128 256 512 1024 2048 4096 8192 16384
Number of PEs (N)
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4.3 A Large Sparse FNN Example

Sparse FNN networks for very large systems, covering a wadgea of communication patterns,
can be built using commodity network hardware. The primamnjtation in making larger designs

appears to be simply the time and memory requirements of phes® FNN design tools. As the
machines available to run the design tools become fastecamiin more memory, even larger
Sparse FNN designs can be found in a reasonable amount oftmeeefficiency of the design tool

programs have been dramatically improved since the iffslrse FNN Heuristic was developed,
enabling the design of dramatically larger Sparse FNNs.

The largest Sparse FNN designs we have thus far createdrc@8:®36 PEs. Not coinciden-
tally, 65,536 is the same number of nodes that are in the Blnek Supercomputer at the Lawrence
Livermore National Laboratory. BlueGenel/L is the fasteathine in the world today (March 2006)
as measured by the HPL benchmiark[64], achieving over 28@HA%.of performance; no other ma-
chine on the Top500 ligt[64] has close to as many noded] s065, 536 seems a good upper bound
on what people might be designing in the near future. Alttotige BlueGene/L's nodes contain
two PEs each, the primary data network for BlueGene/L is &3&belement 3D torus factored as
64 x 32 x 32 with the traditional six neighbors per node. As discusse8dotio 4113 and shown
in Figure[4.1R, designing a Sparse FNN that supports justgdesBD torus with six neighbors per
PE is not interesting. Thus, the 65,536 PE example Sparsedésign was selected to cover both
a 3D torus with six neighbors per PE and the hypercube patErncomparison purposes, Figure
.31 shows sample solutions of this pattern combinatioséweral smaller machines. The scaling
results for this combined pattern are shown in Figurel4.833 to 16,384 P@

To find solutions to thisv = 65,536 problem, the parallel Sparse FNN GA described in
Section[3 W was run on KASYO for 56 hours, with the search espiacited to5 < n < 6 and
p € {24,32,48,64,96,128}. These limits were selected based on the scaling resuttadsifound
for this pattern as shown in Figure-4132. During this run,@#efound a solution for each of the six
switch sizes: solutions with = 5 were found forp € {48,64, 96,128} and solutions with) = 6
were found forp € {24,32}. Solutions withy = 5 andp € {64, 96, 128} were found in the first six
hours of the run. Over the next four hours, 15,343 individurithe GA were evaluated as potential
solutions withn = 5 andp = 48 before the program gave up and tried solving the problem with
n = 6. Over the next seven hours of the run, the program foundiesokiwithn = 6 for each of
the remaining switch sizeg, € {24, 32,48}. The GA returned to the = 5 andp = 48 prob-
lem, and after an additional 14 hours and 36,885 evaluatdididimala, the GA found a solution
with S = 6,827 switches. The remaining time of almost 25 hours was speainating to solve
the problem fom = 5 andp = 32, in which 71,669 individuals were evaluated without findang
solution.

1The figure does not include the 65,536 PE designs so that ¢isopsa to the other figures in this chapter would be
easier because the axes are scaled identically.

The time to evaluate an individual varies considerably ddpey on how early in the heuristic a failed design is
detected. As the gene pool evolves towards designs thakoeser ¢o working, each individual takes longer to evaluate.
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Figure[4.3B shows a Design/Solution Map for the 65,536 P#tisol withn = 5 andp = 48,
much like the figures showing smaller sample Sparse FNNisakithroughout this chapter. In
the upper right is a representation of the requested conuation patterns, the Design, shown in
black. Also in the upper right is a representation of theagtverage achieved by the Sparse FNN
solution, shown in green. The vertical axis goes from PE Gatdp to PE 65535 at the bottom.
Similarly, the horizontal axis goes from PE 0 on the left to5535 on the right. Each coordinate
in the figure represents the single-switch-hop connegtofia pair of PEs. Because the links in the
network are assumed to be bidirectional, the coverage Wsho the lower left would be a mirror
image along the diagonal.

Due to the large scale of this example, it is impossible ferfiure to show individual PE pair
connections at any reasonable pixel resolution. So, eativable pixel in Figur&Z4.33 is actually
a summation of the connectivity oféa x 64 PE region, representing the connectivity of 4,096 PE
pairs. Near the upper left cornerfd x 64 pixel region is outlined by a blue box. That region is
shown at almost full scale in Figure-4134, which covers softieeoconnectivity for 4,096 PEs. This
representative region is slightly off the diagonal axistiovg more of the actual area representing
coverage by the Sparse FNN design. In that figure, a blue bthxesi yet anothe64 x 64 pixel
region, which is shown at full scale in Figure4.35. This kgtire shows a 256 PE section, where
each connection can be distinctly seen.

For this large example the total number of possible PE pai&147,450,880. The requested
communication pattern has 622,592 pairs — just 0.029% gfadkible pairs! The actual design
covers 7,529,833 pairs, or 0.351% of the possible pairduditg all the requested pairs. From
one perspective, this coverage is 12 times more than resjeshich may seem excessive. Yet,
the solution has 285 times less coverage than a Universal, BNélwould thus be considerably
less expensive to construct than a Universal FNN. More itapdly, the exampley = 5 solution
would be less expensive than any of the= 6 solutions. As of May 2006, the component cost
for constructing the 5 NIs/PE solution using 48-port Gigdfthernet switches would be around
$9.7 million. Although the 6 NIs/PE solution found using 2drpGigabit Ethernet switches has
a tighter coverage of only 0.21% of possible PE pairs, itsmmment cost today would be around
$10.2 million. Because the commodity prices of individuaimponents change significantly over
time, there is no general way of selecting the “best” Spahé Bolution for a given problem.

Clearly, the Sparse FNN design technology presented irdikgertation is able to find inter-
esting alternative network designs for machines at theetdrgcales currently being built. For this
N = 65,536 problem, a weekend of runtime on a machine worth $40,000smde network that
would cost on the order of $10 million is sufficient for an aeauc example. However, a much
greater amount of computation time and power would be apjatepto apply towards finding a
Sparse FNN design that would actually be implemented aetkeales. It is not clear how much
the example Sparse FNN design could be improved upon, biatirgrthe greater amounts of com-
putational power that routinely will be able to be investediesigning larger machines is likely to
result in even better designs.
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Figure 4.33: A scaled Design/Solution Map f¥r= 65,536, n = 5, andp = 48
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Figure 4.34: A representative 4,096-PE region of dhe- 65, 536 Design/Solution Map
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Figure 4.35: A representative 256-PE region of Me= 65,536 Design/Solution Map
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Chapter 5

Message Routing and Practical Detalils
for Implementing FNNs

In the preceding chapters we covered FNNs primarily fromrapmztive that was independent of
the details of the underlying network hardware and pro®d¢bat one would use in a real FNN

implementation. In this chapter, we cover issues that cdarbacso easily separated from these
implementation details. For this work, we choose commadthernet networking hardware and IP

protocols for the target implementations, as well as thexi@S as the base software platform. The
primary detail that this chapter covers is: how do the parglitogram’s messages get routed in an
FNN? Following that discussion are subsections on Linuximmsupport, network booting of PEs,

IP Multicast, and the potential for fault tolerance on FNNke final section discusses alternatives
to using Ethernet to implement FNNs.

5.1 Pointto Point Message Routing on FNNs

The two primary issues in routing point to point packets oifrBIiN are simply how to get from one
PE to another within an arbitrary topology, and how to wilihe bandwidth available in a FNN
when there are multiple paths between PE pairs. For Sparisks Ei¢ first issue must also deal with
PE pairs that are not connected to a common switch.

In traditional IP networking, the task of routing a packeinfr one host to another is broken
down into several steps. The first step is the selection égrasent of IP addresses to the hosts
(PEs). Once the source and destination IP addresses arenkaomguting table is consulted as
the second step to determine if the destination is on a la@lark, or if the packet must be sent
through a gateway host. Either way, the third step is to fireditik-layer MAC address of the next
host in the route, be it a gateway or the final destination efgdicket. On Ethernet-like link layers,
the Address Resolution Protocol (ARP) is used to obtain the host's MAC address from its IP
address. In the process of this third step, the outgoingar&timterface is also selected so that the
packet can reach the next host directly. The fourth step @& toally transmit the packet, and then
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if the packet is not yet at its final destination, the procesgpeated from step two. By a sequence
of these four steps, a message can be delivered from oneotexsbther on any properly configured
IP network.

It is constructive to view the first three steps using the tratogy of tuples, where a 2-tuple
is an ordered collection of two values, i.e. an ordered pBor a FNN, each PE is assigned a
sequential number, called a PE number, and each message assoaiated 2-tuple of source and
destination PE numbers. The first three steps of IP messategalescribed above can be viewed
as translating tuples from one address space into anotiegro8e translates from a PE number into
an IP address. Step two translates from a destination IRessldinto a local-network IP address,
e.g. the next “hop”. Step three translates from the locakok IP address to the link layer MAC
address. Thus, prior to step one, we have a 2-tuple of sonttdestination PE numbers, and after
step three we have a 2-tuple of source and destination MAGases.

Thus ultimately, the problem to be solved for routing a pdmtpoint packet on a FNN is
to translate from the initial PE number 2-tuple into an appiste MAC address 2-tuple. The
following subsections discuss several alternative wayseoforming these tuple translations, with
various trade-offs for performance, portability and edsenplementation.

5.1.1 IP Layer Technique for Routing Messages on FNNs

The first alternative is to fully leverage the traditionalriBtworking layer. Each NI in the FNN is
assigned a unique IP address, such that NIs connected tartteessvitch have IP addresses that are
members of an IP subnet dedicated to that switch. A smaléssmtative example of this method is
shown in Figur&€hll. Given a destination IP address, the aldirouting mechanisms can perform
all the work to select the proper NI to egress from, and toinhitee destination NI's MAC address
using the ARP system. Thus, effectively, the FNN routingwafe only needs to translate from a
PE number tuple, to an IP address tuple.

This tuple translation is done using a hostname to IP addabss. Each PE number is associ-
ated with a hostname, for example PE 42 would be assignedt8iadme k42. Each PE would be
given a custom “hosts” file that would store its PE number tadBress tuple translations. When a
PE A first communicates with a neighboring PE B, it will perfoa hostname lookup to get an IP
address of PE B. This hostname lookup is not done per pacictsaisually done at most once per
invocation of an application.

This technique has the advantage that a sequence of paetetsen a pair of PEs in a FNN
should not be delivered out of order under normal operatinglitions, because only a single path
between a PE pair will be used. A disadvantage is that a mawiofua single unit of bandwidth
will be used between any pair of PEs, even if there are malspigle-hop paths available between
the PE pairs. Another disadvantage is that the ARP systertt neressarily get the pro&answer

10One may wonder how could the ARP system not get the proper Mddess for a given IP address, if each IP
address is uniquely assigned to a single NI. However, foafipicable RFCs, it is not defined as to which object owns
an IP address, be it a NI and/or the host that the NI belongBhes, at least for Linux, the default choice was made that
the host owns all the IP addresses of all its NIs so that inythieal ad-hoc networking setup, things would “just work”.
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Figure 5.1: Multiple IP addresses per PE (one per NI)

if there are switch to switch connections in the FNN, such emthere are up-links to a top-level
switch. This problem can be alleviated by pre-loading théPAfache with permanent entries. This
solution adds the burden of collecting and maintaining alde of all the MAC addresses used
in the FNN, which would have to be updated each time a Nl isagmal. Also, the Linux in-kernel
ARP cache is limited to 256 entries, which limits the sizehaf tluster that can effectively use this
technique to fewer than 256 PEs. This 256 entry limit coulcth&nged by modifying the Linux
kernel source.

The primary disadvantage of this IP-layer technique is dua general assumption found in
many High Performance Computing (HPC) software packagd®relis an assumed one-to-one
and onto mapping of IP addresses and PE numbers. In otheswiie assumption is that PE
A and PE B would use the same IP address to refer to PE X, andttiausafe to exchange IP
addresses between PEs to be used as their identifiers. WéthPtlayer FNN routing technique,
that assumption is not true. In the example shown in Fifuiedne can see that PE A would use
IP address 10.1.X to talk to PE X, while PE B would use 10.Sstaad. For this scheme to work,
each PE must perform its own hostname/PE number to IP addaestation. A custom “hosts” file
per PE can be used to store these tuple translations. The MRMgoftware layer was modified
by the author to support this context-sensitive addresdihg patches were fully incorporated into
the main LAM/MPI software distribution by July 2001 in thebBzersion series. An investigation
of what would be needed to similarly make Parallel Virtualdtlime (PVM) support this technique
was performed by a colleague, but the level of effort reqlivas deemed excessive.

Unfortunately for FNNs with switch to switch connectionsistchoice means that when an ARP broadcast packet is sent
asking for the MAC address that can reach a particular IPesddia Linux based PE with default configurations would
respond with several different answers, one for each NIttt@tARP packet arrived on. The requesting PE might not
choose the ARP response that results in the shortest patiedrethe two PEs.
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5.1.2 ARP Cache Technique for Routing Messages on FNNs

Another alternative is to actively rely on preloaded ARPheaentries on each node to perform the
IP to MAC address translations. Each PE would be assignetyiedP address, and although each
NI in a particular PE would have the same IP address, theydiaiill have unique MAC addresses.
In Linux, a neighbor cache entry includes the egress NI nanaldition to the destination MAC
address. This technique solves the problem of multi-hontesiAth respect to the HPC software.
However, this method still has the problem of collecting araintaining a database of all the MAC
addresses used in the FNN, which would have to be updatedigaxh NI is replaced. Also, again,
this technique is limited to 256 PEs due to the ARP cache #iztslin the Linux kernel. And, this
approach does not take advantage of the bandwidth avaltebleeen PE pairs that have multiple
single switch paths in the FNN.

5.1.3 Link Layer Technique for Routing Messages on FNNs

A third alternative method for tuple translation from PE rhers to MAC addresses is to push the
entire task down into the link layer of the network stack.egfively, the PE numbers are directly
used as IP addresses, and the entire FNN appears as a sirgylbri& to the network stack as
shown in Figurd_5]2. In addition, the NlIs in the FNN are assihoustom MAC addresses that are
derived from the PE number and the device name/number, #@, ethl, etc. In this method, the
IP software layer communicates through a virtual netwoniaeshown aondO0 in the figure.
The ARP system is replaced by a FNN link-layer routing akbponi that translates directly from
PE number tuples to these custom MAC address tuples. If Hrerenultiple single switch paths
between a PE pair, on a per packet basis, alternating MAGzages can be selected by the FNN
link-layer routing algorithm. In a sense, this techniquedsy similar to the ARP cache technique
described above, but instead of fixed one-to-one and ontslations, this technique is able to
utilize the bandwidth of multiple single switch paths betwdPE pairs. This method also avoids
the other disadvantages of the previous methods. Our digdrlrouting algorithm can be written
without a 256 PE limit, and can avoid having to maintain a base of MAC addresses for all the
NlIs in the machine, because the MAC addresses are preddiginamputed values.

The primary disadvantage of this method is the difficultyrplementing the virtual network
device software which would have to also replace the ARPegaydtnctionality. The standard
Linux channel bonding module was not capable of accomplisttiis technique without extensive
modification. The channel bonding module works as a virtealvorking device, e.goond0, with
which the upper layers of the networking stack communictRepackets are given to theondO
device, and then based on the bonding modepthred0 device selects which “enslaved” NI will
actually send the packet. This egress selection phase weeliito be changed for a FNN, because
which Nls are valid choices are dependent on the FNN wiriniepaand on the destination PE. On
the receiving side, the Linux channel bonding code in thevoeking stack makes all the packets
that arrive via an “enslaved” NI appear to come from the “rmdstlevice, e.g.bond0. In most
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FNN subnet: 10.0.0.0/16
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Figure 5.2: Single IP address per PE

Algorithm 11 C code to compute a NI's custom MAC address

MACaddrByte[0] = 2; /*+ Set the locally adm nistered bit =*/
MACaddr Byt e[ 1] nodel D >> 24;

MACaddr Byt e[ 2] nodel D >> 16;

byte = MACaddrByte[3] = nodel D >> 8;

byte += MACaddr Byt e[ 4] = nodel D

byte ~= (N _Number & 0x7) << b5;

MACaddr Byt e[ 5] = byte;

bonding modes, the enslaved NIs on a PE are assigned a comGnabidress, obtained from
the first NI added to the bond. This cloning of MAC addressésnal the bond module to use
the standard ARP system to translate from IP addresses to Miél@ass& However, for a FNN
each NI needs to have a unigue MAC address, and thus the ARrsfisnctionality would need
to be replaced, as well as replacing the MAC address clomatufe of the bonding module with
code to do our custom MAC address assignments. To initiallylément this method, the author
added a new mode calldchn- r out i ng to the Linux channel bonding module. This new mode
accomplished three primary things. First, when Nls areasesl to the bonding module, they are
assigned computed MAC addresses rather than a cloned MA€ssddSecond, the egress device
selection phase was replaced by a FNN routing table lookaptly, a Linux kernel pr oc interface
was added so that this routing table could be populated fraseaspace program.

The C code snippet in Algorithfa L1 shows how the MAC addressescomputed, where

2This scheme of cloning of MAC addresses introduced its owrok@roblems that have plagued naive Beowulf
cluster implementors for years. Basically, unless the agtvgwitches are properly configured to handle cloned MAC
addresses, or the network is wired such that no individudickweould ever notice the cloned MAC addresses, things
won’'t work well at all.
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32-bit Routing Entry Formats: Current Pair of Nls

dst src|dst src|dst src|dst src|dst src|3

unused | dst src|dst src|dst src|dst src|2

unused | unused | dst src|dst src|dst src|1

Next 16-bit NodelD reserved |dst src|O

Mode Field —f

Figure 5.3: Routing Table Entry Formats

nodel D is the 32-bit IPv4 address of a PE, with the nominally 16-t# ®umber as its least
significant bits. The format of these computed MAC addres&s selected to meet two key re-
guirements. First the computed MAC address must not comflibtany other MAC addresses that
might be reachable on the same broadcast domain. This eeqgitt is satisfied by setting the lo-
cally administered flag bit in each MAC, so that they do nofflictrwith any vendor supplied MAC
addresses. Because the FNN is presumed to be isolated fyovampus or corporate network by at
least a router or head node, these locally administered MiEess would also not conflict with any
other special MAC addresses that might be used by the loddetWworking staff/department. Sec-
ond, the MAC addresses must work well with commodity Ethesmétches. Commaodity Ethernet
network switches tend to use hash tables to maintain thei€CMddress to switch port mappings.
We discovered that the hash functions in a variety of comtydethernet switches do not use the
entire 48 bits of the MAC address. To avoid overflowing hastkbts in the switches, it was found
to be sufficient for packets flowing through an individual ®hito differ in the least significant
eight bits of the MAC address. Thus an encoding was chosé¢rcdlnges the last byte of the MAC
address to be potentially different if either the PE numbelbnumber is different between two
destinations. With a design target of supportii€ PEs, it is impossible to guarantee that the least
significant byte of a computed MAC address is unique acrassittire FNN.

The routing table within each PE consists of a 32-bit entryefach PE in the FNN, as shown
in Figure[5.8. Nominally, this entry contains up to five 64iéids, followed by a mode field in the
least significant two bits. Each 6-bit field is a 2-tuple of meuand destination NI numbers. The
mode field indicates if there are 5, 4, 3, or only 1 valid 6-l@#tds. The case with only one valid
6-bit field allows room for the upper 16 bits of the entry to t@in the PE number of an intermediary
PE that must be used to reach the destination when usinggtfmmuting as discussed in Section
ET.4. Thus, the destination MAC is reconstructed from #st 6-bit field, plus the PE number of
the destination, or the PE number of the specified intermgdiade. The source NI 3-bit number
is used to select the outgoing NI, as well as the source MACeadd To facilitate load balancing
over multiple Nls, the 6-bit fields are shifted down a positiand the used 6-bit field is placed at
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the beginning of the list. This encoding scheme can accomatedd 2, 3, 4, or 5 NIs in a sequence,
where the two-NI case uses four 6-bit entries, two for eachiséd. The single NI case can either
use the through-routing mode, or any of the other modes, thiétsingle 6-bit entry replicated as
many times as needed.

This encoding scheme also allows the designer to take aatyamtf imbalanced NI speeds on
the source and destination, such as a server with a Gigdigtiiegtt NI, and a regular PE with only
100 Mbit/s NIs. On the server side, the same Gigabit Etheraetbe selected to send packets to
up to 5 different NIs on the client. And the client can send patkets through up to 5 NlIs while
selecting the server’s single Gigabit Ethernet NI. Manfedént situations can be handled, all from
how the individual routing entries are constructed. If mitr@n 8 NlIs are used per PE in a FNN
(n > 8), this encoding scheme would need to be expanded to use nanesthits per NI pair.
Also, if there are more than 65,536 PEs, the through-routimgpding would need to be modified
to accommodate more than 16 bits for the intermediary PE sundthis (temporary) restriction is
consistent with the largest machine size explored to dat8€ctiol Z13).

5.1.4 Through Routing for Sparse FNNs

For Sparse FNNs, a given PE pair might not have a connectiandommon switch. To send
messages between these non-neighboring PEs, a routehifonegr more intermediary PEs should
be selected. Ideally, the selected route should be theestigrbssible, and thus involve the fewest
intermediary PEs. Also, to maximize performance of these-mgighboring communications, it
is desirable for two simultaneously active through-roytaths to not share any intermediary PEs.
Unfortunately it is rather difficult to guarantee that noeimbediary PEs are shared. One obvious
approach to reduce the chance of conflicting paths would Ess@n intermediary PEs evenly
across all the through-routed paths.

At boot time, each PE selects its routes to other PEs basdd posdition in the graph represent-
ing the Sparse FNN. Specifically, the PE executes a a breasttedarch on the graph to construct a
breadth first tree (BFT) rooted at the current PE that reaalh#ise non-neighbor PEs. Then, a pass
for each non-neighbor PE is performed where the BFT is ineraally rebalanced to spread out the
load on the intermediary PEs. This rebalancing is done byrfinall the possible first intermediary
PEs, and then, using a pseudo random number generatot, aeéeof the candidate PEs to be the
parent in the BFT for the non-neighbor PE. The pseudo randomber generator is a simple equa-
tion set up so that, for a PE pair that needs only one interang®E, the same intermediary PE will
be picked for both communication directions. For PE paias #re further apart, no effort is made
to guarantee the same path is used in both directions.

Once these paths are selected, the current PE’s routing i&filled such that for each non-
neighbor PE, the first intermediary PE on the path to the rks#din is recorded. In effect, these
intermediary PEs will then act as gateways that are clostdraalestination. This scheme would
work with any of the tuple translation techniques discusHzale.
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Figure 5.4: Combined scheme with an IP address per PE andaddtgss per NI

5.2 FNN Runtime Support for Linux

The FNN runtime support for Linux consists of a loadable kémodule, a user space FNN router
program, and a data file that describes the specific FNN wipgitern, along with appropriate
scripts to configure the FNN at PE boot time. This implemeéntatises a combination of the
message routing techniques described in Secliond 1.8, and 5. TM. The technique employed
assigns a unique IP address to each PE, and also assignaia Uigddress to each Nl in each PE
such that there is a unique IP subnet for each s@i'mhhe FNN, as well as an IP subnet for the
entire FNN, as shown in FiguEe™.4.

This technique is accomplished with an improved implemtémeof the link layer routing de-
scribed in Sectiof 5.71.3 that does not use the Linux charmdihg module. Instead, the author
developed a standalone kernel module that implements d ‘@ay” virtual network devicef nn0.
Although based on the original code for than- r out i ng bonding mode, this module does not
enslave any Ethernet devices, though it does still assigipated MAC addresses to the Nlis used
in the FNN. It also forwards packets to the appropriate Etbiedevices based on the information in
the FNN routing table, as described previously. One of tivagmy effects of not enslaving the Eth-
ernet devices is that when a packet arrives at a PE, the rléhgastack does not make it appear to
have arrived via that PEfsnn0 device. Other than firewall rules and the ARP system, thex_iRu
network stack ignores the information about which netwarkick the packets arrived on. Because
the PEs in a parallel machine are not likely to be running answe firewall, and because the ARP

3For large FNNs with more than 255 switches, the |P addrességreed to the individual NIs and the subnets assigned
to each switch would need to be constructed in a differentmaathan shown in the figure. Because the IP address of
each individual NI is only used in special situations, thedfics of the encoding scheme is not important, as long as
each switch is assigned a unique subnet, and each NI attéxhieat switch is assigned a unique IP address within that
subnet.
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system was intentionally bypassed for this link-layer magiiapproach, the fact that packets never
arrive via thef nn0 device is not noticed by any IP layer software.

This runtime support that combines the link layer and IP dageting techniques helps solve
two complications of using FNNs in real systems. The first plication is how to support network
booting of PEs within a FNN. The second complication is howeéal with broadcast and multicast
protocols within a FNN. These complications and their sohg are discussed in the following two
subsections.

5.2.1 Techniques for Initial PE Identification when a PE Netvork-Boots on a FNN

It is common practice to build cluster computers with diskl€Es, where the PE obtains its OS
from a server via a network-booting scheme. During thedhjihases of the network-boot of a PE,
the software/firmware running on the booting PE will not beasavof the FNN. In other words,
the FNN runtime support software just described is not eaedad the network boot firmware of a
PE. Thus, the other PEs and/or servers in the FNN must be @béspond appropriately to some
kinds of non-FNN traffic. There are many schemes for bootingraputer over a network, with the
Pre-boot eXecution Environment (PXE) boot ROM as the mastraon method. The network boot
ROM in the client contacts a boot server using either the DyoaHost Configuration Protocol
(DHCP) or the Bootstrap Protocol (BOOTP), and in so doin® alses the Address Resolution
Protocol (ARP). Thus, the FNN runtime software must supp®P, DHCP, and BOOTP in some
way.

There are three scenarios that need to be dealt with to sitbpse protocols on a FNN. The first
scenario is the easy case where each PE’s boot NI is conrnecteldroadcast domain that reaches
the boot server directly through a single NI. The server §impeds to respond to the requests via
that same NI. The second scenario is the case where the et bas multiple NlIs connected to
the broadcast domain on which PE’s send their boot requérstihis case, the server must select
a single NI to use when responding. The third scenario is éise gvhere the boot server does not
share a broadcast domain with the PE that attempts to netvemrt In this case, another PE must
intercept the request and forward it to the boot server.

We solve this network boot problem by assigning each NI inRNN a unique IP address,
separate from the PEfsnnO IP address. These Nl-specific IP addresses allow normakFhdh-
protocols to work through individual Nls, totally oblivisdo thef nn0 virtual network device. This
technique directly solves the problem for the first two sc@sawhen a server's DHCP (Dynamic
Host Configuration Protocol) daemon is configured to listareach of its individual Nis that are
reachable by each network boot capable NI of the PEs. To sbbs¢hird scenario, it should be
sufficient to set up designated PEs in the FNN as DHCP/BOO®®/mervers, and then guarantee
that these proxy PEs are booted prior to any of their cliers. F¥election of these proxy PEs could
be done similarly to the selection of intermediary PEs vaattirough routing scheme described in
Sectior 5. TH, with the primary boot server acting as thel lnéghe breadth first tree.
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5.2.2 Options for IP Multicast and Ethernet Broadcast Suppaot

Because the combined technique for FNN routing describedeabas unique IP addresses per
NI, and each PE could act as an IP Multicast router, any of ditodé of dynamic IP Multicast
routing techniques found in the networking literature dook utilized. Specifically, the Protocol
Independent Multicast (PIM) Dense mode routing schemeldhmisufficient to enable the use of
IP Multicast within the FNN. If IP Multicast on a FNN is perfoance critical, static IP Multicast
routes could be configured to reduce the overhead of dyndyna@afiguring routes.

The author briefly investigated how to support Ethernet dicaat across an entire Sparse FNN
without a common physical broadcast domain. Because the ieiNtime support uses the IP ad-
dress of outgoing packets to index into the FNN routing tablgas not going to be a simple matter
to directly support routing Ethernet packets that did nattaim an IP header. Although it was ex-
pected that this problem would need to be solved to allow BEOBP protocol to work for network
booting the PEs, as discussed above, Ethernet broadcgstrsums ultimately not required. Thus
the primary use and motivation for supporting Ethernet #caats across the entire Sparse FNN
was eliminated. The one known network protocol that remainigh would benefit from support
for Ethernet broadcast would be UDP broadcast packets. u8eddDP broadcast packets are IP
packets, it should be easier to augment the current FNNmersupport to handle UDP broadcast
packets directly, as described below.

The most promising approach for UDP broadcast support woelkd use a minimum spanning
tree (MST) of broadcast domains that covers the entire FNdghEode in this MST would be an
Ethernet broadcast domain including all the PEs reachapke dingle physical broadcast. These
MST nodes would be connected by edges labeled with the sdE®that are common between a
pair of broadcast domains. For each edge in this MST, a sojleway PE would be determinis-
tically selected for forwarding packets between the twaaboast domains. With a deterministic
method for constructing this MST and for selecting the gaieWEs, each PE in the Sparse FNN
would on its own be able to arrive at the same MST based on tli¢ WiNng table. Because the
UDP broadcast packet would contain a source IP addressthatlied the source PE number, each
gateway PE receiving the UDP packet could determine whetieeiMST the packet came from,
and thus whether that gateway PE needed to rebroadcast attdmy packet out one or more of
its links. This way the UDP broadcast packets would be routitdout encountering any loops,
by simply following all outgoing edges of the MST until it ifeed the leaves of the tree. The one
remaining guestion is what should the initiating PE do with UDP broadcast packet in the first
place. The PE should not broadcast the packet out all of gshidtause doing so could cause the
packet to simultaneously arrive at multiple nodes in the M&fTich would cause the packet to be
sent throughout the MST multiple times. Instead, if theidtiing PE is not a gateway PE of the
MST, it should deterministically select one NI to use to lolwast the packet, thus selecting a single
node in the MST for the broadcast to start from. If the initigtPE is a gateway PE, then it should
send the packet to both of the broadcast domains that the@atmnnects in the MST.
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5.2.3 Overhead of the FNN Runtime software

When a PE in a FNN is ready to send a packet to another PE, tketpatianded over to the virtual
network devicef nnO before it leaves the machine. On our KASYO cluster, whichissussed

in Section[6.R, we ran experiments to determine what levelvefhead was added by tfi@n0
device. For each outgoing packet, we measured how muctciatam be attributed to the FNN
runtime software. The CPU performance register counters weed to get timing results within
a few tens of CPU clock cycles. When a PE sent one packet eaghcto PE of KASYO, the
overhead per packet was 2,324 CPU clock cycles or about hd &hen averaged over a thousand
rounds. For repeated packet sends to the same destinatiarofre PE, the overhead measured on
KASYO0 was about 210 CPU clock cycles or about 100 ns when gedraver a thousand packets.
The much smaller overhead for the repeated sends is claarty the routing table entry staying
in the processor’s L1 cache (64 KB), while the larger ovedheslue comes from having to pull a
not-recently-used routing table entry into the CPU’s cache

5.3 Options for Fault Tolerance and New Communication Pattens on
Sparse FNNs

Due to the typically large number of available paths betwEr in a Sparse FNN, especially when
including paths through intermediary PEs, it is clear thihwome work, Sparse FNNs should be
able to be fairly fault tolerant. Also, with the diversity obnnectivity in a typical Sparse FNN,
it would seem that there should be a way to remap PE numbers @xigting Sparse FNN to
support a new communication pattern that was unanticipatede time the original Sparse FNN
was designed.

As initially proposed for this Ph.D. work, it was assumed: tive GA developed for designing
Sparse FNNs could be easily modified into a re-targeting fimothe above purposes. This as-
sumption was based on the structure of the Universal FNN Giglwhsed DNA that was a direct
representation of the network wiring pattern. As discusseflection[ 3.}, the DNA used by the
Sparse FNN GA as developedrist a direct representation of a network wiring pattern. This, t
Sparse FNN GA can not take as input an already existing wipattern. It is possible that a new
GA could be developed to find PE renumberings for an existipay$ FNN that would either avoid
specific faults or support a new communication pattern. Hewet appears that such a GA would
not be very practical, because the time to completion of a Gdlccvery well exceed the time to
simply fix a fault in a machine. As for the case where an ungratied communication pattern
needs to be supported, there exist a variety of techniquéne ititerature for mapping one network
topology onto another with bounds on the amount of dilati&tudying and implementing these
remapping technigues were beyond the scope of the currekt wo

As implemented, the runtime support software for Sparse $Nblves open the possibility for
a user space fault-tolerance daemon to reconfigure the Fiiisgatable for a PE on demand. To
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implement this daemon, there would need to be a method fectiefy and identifying a fault in
the network. Once the fault has been identified, a revised B&Bdription file that reflects the new
state of the working network hardware could be created. @reated, this file would need to be
propagated to the PEs, and then used to rebuild the FNN gptahies for each PE. Further study
of this approach or other dynamic fault tolerance approathevarranted, though such studies are
beyond the scope of the current work.

5.4 InfiniBand (IB), Myrinet, QsNet, SCI, and Other Link-tec hnology
Alternatives

The previous sections of this chapter discussed variouslsi¢hat were specific to Ethernet im-
plementations of FNNs. Here we discuss how these same dsrumdd be developed and imple-
mented for other types of networking hardware. There areKey requirements of any candidate
link technology that must be true for their use in FNNs:

1. Allows multiple independently routable Nls per PE

2. Availability of switches or routers with a reasonablygemnumber of ports

3. Aflexible packet routing scheme that allows for route ct@@ using a lookup table
4. An addressing scheme that supports the total number oinRBs machine

Because a FNN is built with as many Nls as it has total switctispghere also needs to be a
reasonable balance between the cost of the NIs and the aogbpef the switches. In contrast,
typical (non-FNN) switched network topologies have manyede NIs than the total number of
switch ports in the network, which makes the cost of the Nis Important to the total cost. Network
technologies such as Myringl[[7,144] have NlIs which tend tarheh more expensive than the
average port cost on a switch. Thus, Myrinet is not likely écalm economically effective candidate
for FNN implementations, although, there appear to be nonieel limitations preventing the use
of Myrinet.

The lack of wide switches for commaodity link technologiesisias FireWire/IEEE1394[25]
and USBI65] generally precludes their use in FNNs. The 62raattiress limitation of IEEE1394
might also hinder its use for FNNs. For the various custork tachnologies used in many su-
percomputer architectures with directly connected togiels such as the Cray T3DI17] and the
IBM BlueGene/L[Z4] architectures, the custom routing shiit each node have very little routing
flexibility and could not be used without modification in a FNN

The Quadrics QsNé&t[9, 44,756] link technology should be iapple to FNNs because it has
wide switches and support for multiple Nis per PE. It is unkndf the software layer that interfaces
with the Nis is flexible enough for use in FNNs.

The Scalable Coherent Interface (SCI)[31] link technolegyployed in the Dolphin WulfKif[21]
products is at first glance not applicable to FNNs due to jpécst use in directly connected torus
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topologies. However, 8-port switches are available for ®&t would allow the implementation of
FNNSs using SCI link technology.

The InfiniBand (IB)I[9,034/°44] link technology appears to @ahe full flexibility for use in
FNNs. There are a variety of multi-port IB Host Channel AdafHCA) cards can be configured
as independent Nls, and there are a variety of switch widtagadle from many vendors.

For all of the link technology alternatives, it appears thienpry limitation for use in a FNN
would be the level of difficulty in configuring the softwareyéa(s) that interface with the NiIs and
that control the route selection for the network. Becaussdlvarious alternative link-technologies
have not yet been used in a FNN, the author can not guararaeedime firmware or proprietary
software limitation would not preclude their use in a FNN.wdéwer, having talked with various
vendors and examined the documentation for these techiee|afpe author believes there are no
such limitations for Myrinet, InfiniBand, Dolphin/SCI, ai@uadrics QsNet. Especially significant,
is that for all four of those high speed link technologiesgréhare open-source software drivers
available for use with the Linux OS. Such open-source safiwdavers should allow the implemen-
tation of the needed FNN runtime routing software, if thev@asoftware’s configuration tables, etc.
do not have the flexibility to directly support FNNs.
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Chapter 6

Some Real FNN Implementations

In the preceding chapter, various possible Sparse FNN niesigre presented. This chapter dis-
cusses two real parallel machines, one built with a Univérsi?N and the other with a Sparse FNN.

In addition to their network designs, both machines are rkatde for their achieved price/performance
ratio on real applications.

6.1 The KLATZ2 Supercomputer with the First Universal FNN

Figure[G.1 shows KLAT?2 (Kentucky Linux Athlon Testbed[2Z2)[,18 64 PE supercomputer with the
world’s first Universal FNN. Its FNN consisted of nine 31-pewitches(p = 31) and had four
NIs per PE(n = 4). KLAT2 was built in the Spring of 2000, and was the first geh@rpose
supercomputer to achieve over a GFLOPS of performance &br £000 spent on the machine.

The significance of the KLAT2 machine in regards to this disgmn is not in its awards[16, B0]
or performance characteristics. Rather, KLAT2 was a machinich facilitated the study of FNNs,
which inspired the thesis for Sparse FNNs. The network on KLAad much more connectivity
than was nominally usable. To write an application that wdkgep all the wires busy at once
would have been a rather difficult challenge. This challeisggdear when we look at a graphical
representation of KLAT2's Universal FNN.

It is natural to think of both design constraints and soh#iin terms of a square connectivity
matrix, with node sources listed down the left side and sligtsd across the top, that shows how
many links worth of bandwidth are requested/dedicated &b directed pairwise communication.
Although such a graph for a design specification can be cdasiplasymmetric, because all com-
monly used network hardware employs bidirectional cablivmdirectly useful information is lost
if the matrix is folded along the diagonal; the bandwidthuested for A-B is made equal to that
requested for B-~A by giving both the maximum value of either. Taking advaetafjthis property,
we can represent the design requirements and solution ilglessquare matrix: the lower left tri-
angle defines the requirements while the upper right treangbws the bandwidth delivered by the
solution. This matrix is trivially shown in graphical forns a square image in which the color (gray
shade) of each point corresponds to the number of links redjair dedicated.
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Figure 6.2: KLAT2's FNN Design/Solution Map

Figure[G.2 is a representation similar to the connectiviatrines elsewhere in this dissertation.
However, instead of showing the desired connectivity askbfzixels in the upper right triangle,
the desired connectivity is shown in the lower left triangecause a Universal FNN implicitly
requires that all PE pairs have single-switch latency, filgisre instead emphasizes the number of
links, e.g. bandwidth, between each PE pair, representsbaates of gray.

The white center line represents nodes talking to themsgeivhich neither requires nor uses
network bandwidth. The lower left triangle specifies conglnnectivity with a single unit band-
width per pair and, additionally, two or more units bandittir the communication patterns shown
in a somewhat darker gray. KLAT2’s network actually delsras much as four units of bandwidth
per pair (a black pixel corresponds to four units of bandidentirely covering the single-unit re-
guirement region. Although KLAT2's design does not quitearothe two-unit requirement region
with two or more units of bandwidth, it comes very close toerivg it with an average of more
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Figure 6.3: Kentucky ASYmmetric Zero (KASYO0)

than two units bandwidth per pair. This shortfall is becaa$d¢he time KLAT2 was designed, our
FNN design tool favored a higher average over complete egecof the two-or-more region.
Several higher-level properties of KLAT2’s network areilyagsible in this graphic. One is the
asymmetric nature of KLAT2's network design; the upper rigiangle is a random-looking pattern
of one to four units bandwidth per pair. Additionally, whemeoviews KLAT2's network in this way
it seems clear that the network is seriously over designadretare many low-importance pairs that
are given high-bandwidth coverage. Suppose that we renheveanstraint that all pairs must have
at least one unit of reserved, single-hop latency, bandiwi@®ur concern is thus shifted to finding
a design which covers all node pairs that we expect will hayeificant communications between
them. This shift in design constraints is how the basic cphoéSparse FNNs was formed.

6.2 The KASYO Supercomputer with the First Sparse FNN

In the Summer of 2003 we built a cluster supercomputer thatidvdemonstrate the Sparse FNN
concept in a real system, in addition to giving us a powerfathine for use in our lab. The KASY0
(Kentucky ASYmmetric Zero) supercompufer[85] 47] showRigure[6.8 has 128 PEs and a Sparse
FNN using three NIs/PEy = 3) and a total of seventeen 23-port switcipes= 23).

6.2.1 KASYO’s Hardware

The 128 PEs in KASYO0 were constructed from interchangeadtts from the commodity PC in-
dustry, each of which contained these items:
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One Retail AMD Athlon XP 2600+ (2.075GHz clock, 256 KB L2 ca¢cB833 MHz FSB)

One 512MB PC2700 DDR SDRAM DIMM (Crucial part #CT6464Z335)

One BioStar M7VIT Pro motherboard with onboard Fast Etheletwork Interface

Two Linksys LNE100TX v4.1 Fast Ethernet NICs

e One Codegen 6042L case with 400W power supply, plus two 80ams f

To meet the design goals of KASYO, we considered a varietyesfghs for the PEs to achieve the
best price/performance ratio using a fixed budget for thel tochine cost. Although processors
were available with faster peak GFLOPS numbers, higher mglmendwidth, and/or lower mem-
ory latency, the price premium for those alternatives wddtle reduced the size of the machine
by more than the gains in individual PE performance. A paralipercomputer is a design that
converts great PE price/performance into great raw pedooa.

KASYO is able to achieve a very good price/performance ratipart, because of its low cost.
Including all parts, shipping, and assembly Iﬂ)tbre total cost was $39,604.31. The remarkable
thing about KASYO'’s price is that, while network hardwareften the dominant cost for a system
of its size (128 plus 4 spare nodes), less than 11% of thersygist went for the network hardware.
The AMD Athlon XP 2600+ processors were more than 35% of tted &ystem cost; memory was
21%. In fact, the annual electric bill for operating KASY Galsout the same as the cost of KASYOQ'’s
network.

6.2.2 KASYOQ's Sparse FNN
KASYO0's Sparse FNN was designed to cover the following comication patterns:
e Hypercube
e Bit reversal
¢ Ring with distance-1 offsets
e Single 2D torus 16 x 8) with full row and column adjacency

e Single 3D torus§ x 4 x 4) with adjacency to all PEs that differ in only one dimension

The lines in Figur&gl4, starting with a number followed Byspecify the actual wiring pattern
for KASYQ's Sparse FNN: the first number is the switch numlret e remaining numbers on each
line are the node numbers connected to that switch. Whitet#itile of numbers may be an exact
description of KASYO0's wiring pattern, it is not particularhelpful in revealing patterns or other

1The students who helped assemble KLAT2 were volunteers whatdd their time. The students were compensated
for their efforts with $188 worth of food total, and an immeessble amount of education about the internals of PCs and
their construction.
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0: 0O 15 16 31 32 47 48 63 64 79 80 95 96 111 112 120 121 122 123 124 125 126 127
1: o 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 24 40 56 72 88 104 120
2: 7 23 39 55 71 87 103 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127
3: 2 10 18 26 33 34 35 37 42 43 44 45 46 50 58 66 74 82 90 98 106 114 122
4: 5 13 21 29 37 45 53 61 69 77 81 83 84 85 86 89 92 93 94 101 109 117 125
5: 1 9 17 25 33 41 49 57 64 65 67 68 70 73 75 76 78 81 89 97 105 113 121
6: 4 12 16 18 19 20 22 23 27 28 30 36 44 52 60 68 76 84 92 100 108 116 124
7: 3 11 19 27 35 43 51 59 67 75 83 91 96 98 99 102 103 104 107 109 110 115 123
8: 6 14 22 30 38 46 48 50 53 54 55 56 59 60 62 70 78 86 94 102 110 118 126
9: 32 36 38 39 40 41 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
10: 2 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 69 71 72 73 74 79
11: 64 65 66 67 68 69 70 71 72 74 75 76 77 78 79 80 82 87 8 90 91 93 95
12: 5 17 20 21 24 26 29 31 80 81 82 83 84 85 86 87 8 8 90 91 92 94 95
13: 7 8 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 100 101 105 111
14: 66 73 77 85 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 117 119
15: 49 51 52 54 57 58 61 62 63 65 93 97 99 106 107 108 113 114 115 116 118 119 127
16: o 1 3 4 6 8 9 10 11 12 13 14 25 28 34 42

Figure 6.4: KASYQ’s Switch Connection List

interesting features of the design. To that end, Figurk 6oSvs a graphical Design/Solution Map
for KASYO's Sparse FNN. In the upper right is a representatwd the actual coverage achieved
by the Sparse FNN solution, with black indicating coveraf¢he requested pattern, and green
indicating coverage of extra non-requested PE pairs. Theakaxis goes from PE 0 at the top to
PE 127 at the bottom. Similarly, the horizontal axis goesnffleE 0 on the left to PE 127 on the
right. Each coordinate in the figure represents the singltels-hop connectivity of a pair of PEs.

Because the links in the network are bidirectional, the caye if shown in the lower left would be

a mirror image along the diagonal. The intensity of the coloithe upper right indicate the number
of single-switch paths that connect each PE pair, with darkors indicating more available paths.

6.2.3 KASYO’s Performance

KASYO's theoretical peak performance numbers are 531 GFL.&@Ri 1.06 TFLOPS, respectively,
for 64/80—biﬁ and 32-bit floating point. Real applications will achievevés numbers. This section
summarizes performance results for the HPL benchmark anB@/-Ray benchmark.

A well-known reference for supercomputer performance ésTibp500[64], which lists the 500
supercomputers that obtain the highest GFLOPS speed gt HPL (High Performance Lin-
pack) benchmark program. Performance on HPL depends parthe theoretical peak GFLOPS of
the processors, but also on the parallel implementatioreffitiency of the network that allows the
processors to work together. In the June 2003 Top500 lis$t Bystems use expensive, specialized,
network hardware. The machines explicitly listed as ustagdard 100Mb/s Fast Ethernet achieved
an average of less than 8.5% of peak. The average for thersyfitded as using Gigabit Ethernet is
better, at about 30% of peak. In contrast, KASY achieved3d&FLOPS, over 35% of peak using
a double-precision version of HPL. For the HPL benchmarkSKA achieved a price/performance
ratio of $0.21/MFLOPS (64/80-bit).

’The floating-point registers and internal results have &dfiprecision, though each value in RAM only has 64-bits
of storage.
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Figure 6.5: KASYO0's Design/Solution Map

Building on our work from KLAT2’s Gordon Bell submission[BOwe wrote a newly tuned
SGEMM corE that uses the 3DNow! multi-media instruction set of the athlUsing this newly
tuned SGEMM core, KASYO0 gets 482.6 GFLOPS on a single-piatigersion of the Linpack
benchmark. Thatis over 45% of theoretical peak performanddess than $82 per 32-bit GFLOPS,
or an astounding price/performance ratio of $0.082/MFLQ&23bit).

As of August 22, 2003, KASYO set a new world record for renaigrthe complex bench-
mark image shown in Fig.8.6 using the Persistence of VisiaytiRcer (POV-Rayl)[54]. Executing
pvnpovray 3. 5c on KASYO to render the standaltenchmar k. pov scene took 72 seconds,
which beat the previous record of 107 seconds set on Aug(3. This POV-Ray benchmark
has a communication pattern commonly found in manager-evgkrallel codes, with many small
messages between a central manager node and individuaémwookles. This asymmetric com-
munication pattern was best supported by placing the mamageess on KASYQ's boot server,
yielding two switch-hop latency to any worker node in thestdw. Despite recent submissions from
other systems, KASYA®till holds the world record on this benchmark as of April 6, 2006Gfan
than two and a half years after setting the re(H)rd!

30ur tuned 3DNow! SGEMM core is available in the 3.6 and latgsions of ATLAS[EB].

“We are certain that there are machines that easily couldks&8Y 0's record. However, the records list the system
cost, and the benchmark code’s structure is such that sgaisimg conventional network designs that can beat KASY0
would outrun it by a very small margin at much higher cost. réhie a newer machine costing significantly more than
KASYO0 proudly positioned below it on the list.
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Figure 6.6: Standard POV-Ray 3.5 Benchmark image

6.2.4 Scalability of KASYQ’s Supported Communication Patérns

The two torus sub-patterns in KASYOQ's Sparse FNN fall inte @ ¥/N) category discussed in
SectionZ.31, so they do not scale as well as the varioudstisssed previously in Chapfér 4.
Figure[6.Y shows example solutions to this combination dtepas for 16, 32, 64, 128, and 256
PEs. This more difficult scaling property can be seen in K8, which shows summary results
for this combination of patterns on other size machines.

At the time KASYO0 was designed, our knowledge of how Sparsbi§btale was limited. The
design tool was a cruder and much slower version of the norb&?%d heuristic described in Sec-
tion[3:3. The selection of communication patterns for the¥® design was aimed at determining
how many “awkward” patterns we could cover using 24-portt FEdkernet switches, which were
the cheapest per port at the time. In retrospect, includid/N) scaling patterns in KASY0's
Sparse FNN probably was not justified; certainly, the cod@S¥X0 usually runs do not need them.

With the improved design technology discussed in this diggen, a Sparse FNN supporting
the same patterns specified for KASYO could be built usingg@@-switches. Similarly, the runtime
support software was in very early development when KASY® llt, so it was safer to connect
each switch in the Sparse FNN to a top level switch to allowaliaccess to each PE from a single
manager machine. Thus, KASYQ's Sparse FNN was designedressivitches were 23-ports each,
reserving the 24th port to be an uplink to a top level switch.

Even with the above caveats, KASYQ's Sparse FNN was dragiigticheaper than any other
conceivable network of comparable performance for a 128 RBEhime at the time KASYO was
built. It cost only $39,604.31 to build KASYO, with only 119 the total cost spent on the net-
work. Yet, achieved performance on real applications antthmmarks that clearly demonstrated
the superior effectiveness of its remarkably inexpensatevark. We also were able to use KASY0
very effectively to further develop and refine the Sparse Rdlitinologies that are the core of this
dissertation.
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Figure 6.7:n = 3 NIs/PE Solutions for KASY0'’s supported communication eats

Bit-reversal, Hypercube, Ring with +1 offsets, and Single 2D 3D Tori with full row col. (0002010770)
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Figure 6.8: Scaling of KASYQ's supported communicationteras
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Chapter 7

Adoptions and Future Advancement of
the Technology

Beyond our laboratory’s KLAT2 and KASYO clusters, FNN teology has been adopted and used
in clusters in the Mechanical Engineering Department athhigersity of Kentucky, Keele Univer-
sity, Cornell University, Utah State University, Xavier Marsity, and the University of Louisville.
There are probably others as well; both Linux Labs (a clustedor and developer of system soft-
ware) and the Massachusetts Institute of Technology hasusiied with us their interest in using
FNN technology. Various versions/generations of the FNRBtinwe support software have been
deployed on clusters using FNNs at the sites listed. The Fijpart software also can improve
performance of more traditional networks, especially ¢hasing channel bonding.

As of this writing, KASYO still is the onlySparseFNN implementation. However, there has
been very recent interest in deploying Sparse FNN basedmgsat other institutions. It is only
with the completion of this dissertation that we are relegishe support in a sufficiently polished
form that Sparse FNN design and implementation will be fdssivithout substantial consulting
assistance from our research group.

There are several areas for future research that have badmapparent by the work reported
in this dissertation:

e The design and characteristics of Fractional FNNs, definegectiol 2K, are worth explor-
ing. There is great potential to achieve a significant foactf the performance of a Sparse or
Universal FNN at a dramatically lower cost. Further, Fiatdl FNNs are more amenable to
the process of automatically creating designs based orrigalmvaluation of an application
code’s execution.

e An area deserving additional research would be the clasetwianks that are not strictly
FNNs yet utilize knowledge of the expected communicatiottepas in their design. Specifi-
cally, networks that guarantee at maswitch hops between selected PE pairs, wiierel,
would not be Sparse FNNs, yet they would give further flekipih the cost/performance
trade-off decisions when designing a particular machine.
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e Work on implementing fault tolerance in a FNN is an area ripef@irther research. Fault
tolerance is a major concern for machines of the size thas8@aNNs have the most impact.

e The current trend towards multiple processor cores peraipthe use of multiple chips per
machine node in a parallel machine indicates the need toexpte effects on communica-
tion patterns that occur within a node, as well as betweee$iod

e Is it practical to increase the pair synergy between diffemmmunication patterns by se-
lecting alternate PE numberings for the various pattemd/oa alternate factorizations of the
grid/torus patterns? Increasing pair synergy may be a kayntque toward both support of
fault tolerance and improved efficiency using multipleeZotultiprocessor nodes.

e The implementation of runtime support for FNNs on anothghtipeed link layer technol-
ogy, such as InfiniBand, would be a very practical path towandking it possible for FNNs
to be more widely used. Unfortunately, KASYO was built in thst days when cost favored
100Mb/s Fast Ethernet, and the fact that KASYO uses a “slomglémentation technology
has sometimes blinded potential users from seeing the foedél importance of Sparse
FNNs. This problem is now quickly disappearing, as Gigalitenet has become the ac-
cepted norm for supercomputer network implementationneldyy and it is fully supported
by our current runtime software. As of the 26th Top500 lisbyRmber 2005), more than
half the systems implement their primary interconnectietwork using Gigabit Ethernet
technology.

We believe that, even if Sparse FNNs are thetanswer, the era of hand-designed network topolo-
gies is coming to a close. From the complexities of high de@ayley graphs to the asymmetries
of FNNs, it seems clear that computational tools such as Gildoacome standard engineering
practice for design of future supercomputer networks. Tmeputational power that can be applied
towards the design problem will continue to advance. Thesheagnitude of the computations
performed to design the networks presented in Chépter 4dvmilhave been available for the task
a decade ago. In the decades that follow this work, currents predict that all the above compu-
tations will be able to be replicated in a few hours (or lessa@ommodity laptop computer. With
such a low cost for taking this approach, the benefits of uaingmputer to design networks will
make this approach irresistible.

110



Chapter 8

Conclusions

For scalable parallel programs, the set of PE pairs that aomuate often is both predictable and
small relative to the number of possible PE pairings. Exiplgithis sparseness property can greatly
enhance the design and implementation of networks for meggarallel supercomputers.

The sparseness of communicating pairs is rooted in the Hattetach of the human-designed
communication patterns commonly used in parallel prograassthe property that the number of
communicating pairs grows relatively slowly as the numidPBs is increased. Additionally, the
number of pairs in the union of all communication patterresiis a suite of parallel programs grows
surprisingly slowly due to pair synergy: the same pair ofs@pears in multiple communication
patterns. The detailed analysis of communication pattprasented in Sectidn 2.3 clearly shows
that the number of PE pairs actually communicating is vegrsm although the structure of the
sparseness can be complex.

The exploitation of this sparseness can be accomplishedaityways. Here, our focus is on
producing Sparse FNNs: network designs which use the spasef communicating PE pairs to
provide single-switch latency and full wire bandwidth fach of the PE pairs specified. Sparse
FNNs achieve these performance properties despite udatiyety few network interfaces per PE
and switches that have far fewer ports than there are PEs.Sphese FNN design problem is
discussed in Chaptél 3, the runtime support needed to makerkt is described in Sectidn.2,
and Sectiof 6]2 overviews a working prototype (KASYQ0) whicti only demonstrated the claimed
properties, but also set world records for its price/penfance and performance on a specific appli-
cation (the POV-Ray 3.5 benchmark rendering problem [54]).

The concept of matching the network topology to the expectedmunication pattern for an
application is not new; JPL’s Big Viterbi Decoder|15] is atample of this concept. However, cov-
ering a few patterns with single-hop latency and full linkevidth was done either by constructing
a network that was literally the union of the networks for ithaividual patterns or by finding ways
to map other topologies onto the hardware topology (e.gheslding a mesh in a hypercube). The
contribution of Sparse FNNs is that they view covering maatggyns as a single problem, creating
a network that is a cover of the union rather than the uniomefdovers. For two-port switches,
there would be no difference: a two-port switch is essdgteduivalent to a wire, covering just a
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single pair. However, switches with three or more portsvalloe network design to be cheaper — a
three-port switch implements 3 pairings, four-port impéams 6, and 48-port implements 1,128.

Perhaps the reason Sparse FNNs were not invented earlistishey would not have been
feasible just a decade ago. The graph covering probleérhi@j8u@on which Sparse FNN design
is based, has no known solution algorithm that has less thponential time complexity; it was
necessary to develop new Genetic Algorithm (GA) technoltmgolve the design problem, and
the computational power needed is beyond what would have teselily available a decade ago.
Design problems small enough to be solved by hand are nat éargugh to have significant sparse-
ness. The benefits of sparseness only become apparent foinesevith at least 128 PEs and
fairly wide switches, and both of these features have becmmamon only in the last few years.
However, it is clear that the future will be filled with machidesign problems well-suited to Sparse
FNN solutions.
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