
ABSTRACT OF DISSERTATION

Timothy Ian Mattox

The Graduate School

University of Kentucky

2006

EXPLOITING SPARSENESS OF COMMUNICATION PATTERNS
FOR THE DESIGN OF

NETWORKS IN MASSIVELY PARALLEL SUPERCOMPUTERS

ABSTRACT OF DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Timothy Ian Mattox

Lexington, Kentucky

Director: Dr. Henry G. Dietz,

Professor of Electrical and Computer Engineering and JamesF. Hardymon Chair in Networking

Lexington, Kentucky

2006

Copyright c©Timothy Ian Mattox 2006

ABSTRACT OF DISSERTATION

EXPLOITING SPARSENESS OF COMMUNICATION PATTERNS
FOR THE DESIGN OF

NETWORKS IN MASSIVELY PARALLEL SUPERCOMPUTERS

A limited set of Processing Element (PE) pairs in a parallel computer cover the internal com-
munications of scalable parallel programs. We take advantage of this property using the concept of
Sparse Flat Neighborhood Networks (Sparse FNNs). Sparse FNNs are network designs that provide
single-switch latency and full wire bandwidth for each specified PE pair, despite using relatively few
network interfaces per PE and switches that have far fewer ports than there are PEs. This disser-
tation discusses the design problem, runtime support, and working prototype (KASY0) for Sparse
FNNs. KASY0 not only demonstrated the claimed properties, but also set world records for its
price/performance and performance on a specific application.

Parallel supercomputers execute many portions of an application simultaneously. For scalable
programs, the more PEs the system has, the greater the potential speedup. Portions executing on
different PEs may be able to work independently for short periods, but the performance desired
might not be achieved due to delays in communication betweenPEs. The set of PE pairs that will
communicate often is both predictable and small relative tothe number of possible PE pairings. This
sparseness property can be exploited in the design and implementation of networks for massively
parallel supercomputers.

The sparseness of communicating pairs is rooted in the fact that each of the human-designed
communication patterns commonly used in parallel programshas the property that the number of
communicating pairs grows relatively slowly as the number of PEs is increased. Additionally, the
number of pairs in the union of all communication patterns used in a suite of parallel programs grows
surprisingly slowly due to pair synergy: the same pair oftenappears in multiple communication
patterns. Detailed analysis of communication patterns clearly shows that the number of PE pairs
actually communicating is very sparse, although the structure of the sparseness can be complex.

KEYWORDS: Parallel Supercomputer, Communication Latency, Guaranteed Bandwidth,

Scalable Interconnection Networks, Sparse CommunicationPatterns.

Timothy I. Mattox

June 29, 2006

EXPLOITING SPARSENESS OF COMMUNICATION PATTERNS

FOR THE DESIGN OF

NETWORKS IN MASSIVELY PARALLEL SUPERCOMPUTERS

By

Timothy Ian Mattox

Dr. Henry G. Dietz

Director of Dissertation

Dr. YuMing Zhang

Director of Graduate Studies

June 29, 2006

RULES FOR THE USE OF DISSERTATIONS

Unpublished dissertations submitted for the Doctor’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are tobe used only with due regard to
the rights of the authors. Bibliographical references may be noted, but quotations or summaries
of parts may be published only with the permission of the author, and with the usual scholarly
acknowledgments.

Extensive copying or publication of the dissertation in whole or in part also requires the consent of
the Dean of the Graduate School of the University of Kentucky.

A library that borrows this dissertation for use by its patrons is expected to secure the signature of
each user.

Name Date

DISSERTATION

Timothy Ian Mattox

The Graduate School

University of Kentucky

2006

EXPLOITING SPARSENESS OF COMMUNICATION PATTERNS

FOR THE DESIGN OF

NETWORKS IN MASSIVELY PARALLEL SUPERCOMPUTERS

DISSERTATION

A dissertation submitted in partial fulfillment of the
requirements for the degree of Doctor of Philosophy in the

College of Engineering
at the University of Kentucky

By

Timothy Ian Mattox

Lexington, Kentucky

Director: Dr. Henry G. Dietz,

Professor of Electrical and Computer Engineering and JamesF. Hardymon Chair in Networking

Lexington, Kentucky

2006

Copyright c©Timothy Ian Mattox 2006

For Kathleen and Samantha. . .

Acknowledgments

This dissertation would not have been possible without the financial, moral, and academic support

of a surprisingly large number of individuals and organisations. My parallel computing research has

been brewing for so many years that I fear I can not remember everyone by name that I should. Thus,

I first give thanks to all the unnamed students and researchers, including the simply curious kids (and

adults) on field trips, who peaked into our computing labs over the years, both at Purdue and the

University of Kentucky, wanting to find out what I was doing with so many racks of computers.

Their continued interest has motivated me to keep going, andto try to accomplish creative things to

inspire the next generation of computer engineers.

I must thank my committee chair, Hank Dietz, for his long hours (over so many years that I

dare not count them) dedicated to helping me make my researchwork farther reaching and more

sound. His drive to find the better answer, the more elegant approach, and his ever present belief

that I could just “make it work” has helped me achieve amazingthings under his watch. Although

I am moving on, I look forward to and will appreciate continued collaboration with Hank, and of

course his friendship.

My friend and colleague Bill Dieter deserves special mention. Bill, thanks for sharing your

white-board and the time to talk through various arcane details of FNN research. Thanks for intro-

ducing me to Yats that first week I was at UK, at a time when I hardly knew anyone. Bill, you made

me feel at home here at UK much sooner than I dared hope. I’ll miss our semi-regular game nights,

and hope we can each find more people to play Illuminati, Settlers of Catan, StarCraft, Primordial

Soup, etc.

I would like to thank the generous financial support of NASA, and the James F. Hardymon Chair

endowment, that have funded my work at the University of Kentucky. I would also like to thank

Steve Zelencik of Advanced Micro Devices, for supporting our research group at Purdue and for

donating the Athlon processors used in KLAT2, the first machine with a FNN.

My colleagues on the NASA EPSCoR grant have been a great resource. I thank Thomas Hauser

for his enthusiastic adoption of the new cluster technologies I worked on, and especially for his

efforts on our Gordon Bell award submission. Thanks go out toRay LeBeau for keeping me sane

during some stressful times, and for his continued efforts in demonstrating that my cluster research

is usable in a production setting. I thank Tim Dowling for sharing his unique perspectives with

me, and for his motivational talks which got me started writing my dissertation. Seeing my work

directly help in the pursuit of planetary atmospheric science is inspiring. I thank George Huang for

iii

his efforts in pulling three distinct research groups together to leverage each of our own strengths

towards a common goal of applying cluster computational power for real science and engineering

results.

I must thank all the students and researchers in the Comparative Planetology Laboratory (CPL)

at the University of Louisville, the Computational Fluid Dynamics (CFD) Group at the University

of Kentucky, and the KAOS (Compilers, Hardware Architectures, and Operating Systems) lab for

their efforts in constructing, testing, repairing, and making use of the various computer clusters I

was responsible for while at UK. I must especially thank Lakshmi not only for her efforts in helping

me keep KLAT2 and KASY0 operational, but also for her time spent reading and reviewing drafts

and sections of this dissertation.

There is a broader community of people that I must also thank for their efforts which made

this dissertation possible. I speak of the Free and Open Source Software (FOSS) developers which

have created Linux and all the various tools and software that go with it. Specifically, I thank Jeff

Squyres for his efforts on LAM/MPI and for his encouragementeach time we saw each other at

the Supercomputing conferences. I also thank Greg Kurtzer for developing the Warewulf cluster

management toolkit, which allowed me to get KASY0 up and operational without having to create

something like Warewulf on my own.

I wish to extend my thanks to my committee members and outsideexaminer for their construc-

tive criticisms, supportive comments, and overall enthusiasm for my work. Prof. Henry (Hank) G.

Dietz, Prof. J. Robert Heath, Prof. James E. Lumpp, Prof. Raphael A. Finkel, Prof. Kenneth L.

Calvert, and Prof. Craig C. Douglas all deserver many thanksfor serving on my committee, and

giving so generously of their time. I especially thank Prof.Finkel and Prof. Calvert for their de-

tailed help in making this dissertation a much better document. I have already thanked my advisor

for his collaboration in general during the many years I haveworked with him, but I must single

Hank out for the extraordinary effort he put in so that I coulddefend this dissertation in May 2006.

Thank you so much!

I would be remiss if I did not mention my family, especially myparents for helping me along

this path towards a Ph.D. I thank my Mom and Dad for instillingin me a wonder and awe for science

and engineering. I thank my sister Holly for the many understanding phone conversations about the

tough parts of doing research and how to cope. I thank my sister Peggy for being so supportive of

me throughout this long process.

I close my acknowledgements with a thank you for the two most important people in my life:

my wife and my daughter; the two women who have motivated me finally to finish. Thank you

Kathleen for being understanding and supportive, even whenthings didn’t seem to progress. Thank

you for making me chocolate chip cookies at just the time I needed them. And most importantly of

all, thank you Kathleen for motivating me to finish so that we could move on with our lives. Finally,

I must thank Samantha, my newborn daughter who has no knowledge of computers, of school, or

even words, for setting an all important deadline that I mustnot miss. When I hold Samantha in my

arms, I am so thankful that I am alive and able to help bring such joy into the world.

iv

Contents

Acknowledgments iii

List of Tables viii

List of Algorithms ix

List of Figures x

Chapter 1 Introduction 1

1.1 Scope of Work . 1

1.2 Background . 1

1.3 Traditional Network Architectures 2

1.4 Non-topological Approaches to Improving Latency and Bandwidth 4

1.5 Overgeneralization: Five Trees Do Not A Forest Make 5

1.6 Dissertation Walk Through 6

Chapter 2 A New Network Design Solution 8

2.1 The Flat Neighborhood Network (FNN) Architecture 8

2.2 The Size of the FNN Solution Space 10

2.3 Communication Patterns 13

2.3.1 O(1) Scaling Patterns . 13

2.3.2 O(log N) Scaling Patterns . 23

2.3.3 O(D
√

N) Scaling Patterns . 28

2.3.4 Pair Synergy . 32

2.4 FNN Taxonomy: Universal, Sparse, and Fractional FNNs 37

Chapter 3 Techniques for Designing Universal and Sparse FNNs 39

3.1 A Genetic Algorithm (GA) for Finding Universal FNN Designs 39

3.2 Specification of Communication Patterns 42

3.3 A Greedy Heuristic for Finding Sparse FNN Designs 44

3.3.1 The Basic Heuristic Sparse FNN Design Algorithm 44

3.3.2 The Heuristic’s Primary Data Structures 45

v

3.3.3 Variations and Details of the Heuristic Algorithm’s Four Phases 46

3.4 Sparse FNN GA . 52

3.4.1 What is the DNA used in the Sparse FNN GA? 53

3.4.2 Sparse FNN GA Mutation Operations 53

3.4.3 Evaluation Steps in the Sparse FNN GA 54

3.4.4 The Parallel Sparse FNN GA .. 55

3.4.5 Sparse FNN Meta Search Problem .. . 57

Chapter 4 How Well do Sparse FNNs Scale? 59

4.1 Sparse FNN Scaling for Individual Patterns 59

4.1.1 The Hypercube Communication Pattern 60

4.1.2 2D Communication Patterns .. . 63

4.1.3 3D Communication Patterns .. . 68

4.2 Sparse FNN Scaling for Combinations of Patterns 73

4.2.1 Hypercube plus Tori with Single Factorizations 73

4.2.2 Hypercube plus Tori with Multiple Factorizations 76

4.2.3 Special Patterns plus Hypercube and Tori with Multiple Factorizations . . . 79

4.3 A Large Sparse FNN Example .. . 82

Chapter 5 Message Routing and Practical Details for Implementing FNNs 88

5.1 Point to Point Message Routing on FNNs 88

5.1.1 IP Layer Technique for Routing Messages on FNNs 89

5.1.2 ARP Cache Technique for Routing Messages on FNNs 91

5.1.3 Link Layer Technique for Routing Messages on FNNs 91

5.1.4 Through Routing for Sparse FNNs 94

5.2 FNN Runtime Support for Linux 95

5.2.1 Techniques for Initial PE Identification when a PE Network-Boots on a FNN 96

5.2.2 Options for IP Multicast and Ethernet Broadcast Support 97

5.2.3 Overhead of the FNN Runtime software 98

5.3 Options for Fault Tolerance and New Communication Patterns on Sparse FNNs . . 98

5.4 InfiniBand (IB), Myrinet, QsNet, SCI, and Other Link-technology Alternatives . . 99

Chapter 6 Some Real FNN Implementations 101

6.1 The KLAT2 Supercomputer with the First Universal FNN 101

6.2 The KASY0 Supercomputer with the First Sparse FNN 103

6.2.1 KASY0’s Hardware . 103

6.2.2 KASY0’s Sparse FNN . 104

6.2.3 KASY0’s Performance .105

6.2.4 Scalability of KASY0’s Supported Communication Patterns 107

Chapter 7 Adoptions and Future Advancement of the Technology 109

vi

Chapter 8 Conclusions 111

Bibliography 113

Vita 118

vii

List of Tables

2.1 FNN Solution Space sizes 12

2.2 Pair Synergy for 256 PE Tori with±1 offsets and other patterns 35

2.3 Pair Synergy for 1024 PE Tori with±1 offsets and other patterns 35

2.4 Pair Synergy for 4096 PE Tori with±1 offsets and other patterns 35

2.5 Pair Synergy for 256 PE Tori with±2k offsets and other patterns 36

2.6 Pair Synergy for 1024 PE Tori with±2k offsets and other patterns 36

2.7 Pair Synergy for 4096 PE Tori with±2k offsets and other patterns 36

viii

List of Algorithms

1 Initialize Heuristic’s Data Structures 46

2 Find Max Crosspoints .. 47

3 Find First Crosspoints 48

4 Crosspoint Closure Test 50

5 Connect Crosspoint .. 51

6 Record Buddy Connection .. 52

7 A revised Heuristic Initialization sequence 54

8 The Select First Crosspoint by RNA routine 55

9 The Select A Crosspoint by RNA routine 56

10 Revised Record Buddy Connection 56

11 C code to compute a NI’s custom MAC address 92

ix

List of Figures

2.1 1D Torus with±1 offsets (a Ring) . 15

2.2 Bit-Reversal communication patterns 15

2.3 Perfect-Shuffle communication patterns 16

2.4 2D Matrix Transpose of a single element per PE 16

2.5 Single 2D Torus with±1 offsets . 18

2.6 Multiple 2D Tori with±1 offsets . 18

2.7 Single 3D Torus with±1 offsets . 19

2.8 Multiple 3D Tori with±1 offsets . 19

2.9 Single 4D Torus with±1 offsets . 20

2.10 Multiple 4D Tori with±1 offsets . 20

2.11 Single 2D Torus with±1 offsets including diagonals 21

2.12 Multiple 2D Tori with±1 offsets including diagonals 21

2.13 Single 3D Torus with±1 offsets including diagonals 22

2.14 Multiple 3D Tori with±1 offsets including diagonals 22

2.15 Hypercube communication patterns 24

2.16 1D Torus with±2k offsets . 24

2.17 Single 2D Torus with±2k offsets . 25

2.18 Multiple 2D Tori with±2k offsets . 25

2.19 Single 3D Torus with±2k offsets . 26

2.20 Multiple 3D Tori with±2k offsets . 26

2.21 Single 4D Torus with±2k offsets . 27

2.22 Multiple 4D Tori with±2k offsets . 27

2.23 Single 2D Torus with connections between all PEs in the same row or column . . . 29

2.24 Multiple 2D Tori with connections between all PEs in thesame row or column . . . 29

2.25 Single 3DGrid with connections betweenall PEs that differ in only one dimension. . . 30

2.26 Multiple 3DGrids withconnections betweenall PEs that differ in only one dimension. 30

2.27 Single 4D Grid withconnections betweenall PEs that differ in only one dimension. . . 31

2.28 Multiple 4D Grids withconnections betweenall PEs that differ in only one dimension. 31

3.1 A Tetrahedral Universal FNN like the Bunyip supercomputer’s network 40

3.2 Heuristic’s Data Structure 46

x

3.3 Crossover Mutation 53

3.4 Meta Search example .. . 57

4.1 Solutions for the Hypercube,η = 3 . 61

4.2 Hypercube scaling results 61

4.3 Solutions for Single 2D Torus with±1 offsets including diagonals,η = 3 64

4.4 Scaling of Single 2D Torus with±1 offsets including diagonals 64

4.5 Solutions for Multiple 2D Tori with±1 offsets including diagonals,η = 2 65

4.6 Scaling of Multiple 2D Tori with±1 offsets including diagonals 65

4.7 Solutions for Multiple 2D Tori with±1 offsets,η = 3 66

4.8 Scaling of Multiple 2D Tori with±1 offsets . 66

4.9 Solutions for Single 2D Torus with±2k offsets,η = 2 67

4.10 Scaling of Single 2D Torus with±2k offsets . 67

4.11 Solutions for Single 3D Torus with±1 offsets,η = 3 69

4.12 Scaling of Single 3D Torus with±1 offsets . 69

4.13 Solutions for Single 3D Torus with±1 offsets including diagonals,η = 3 70

4.14 Scaling of Single 3D Torus with±1 offsets including diagonals 70

4.15 Solutions for Multiple 3D Tori with±1 offsets,η = 3 71

4.16 Scaling of Multiple 3D Tori with±1 offsets . 71

4.17 Solutions for Single 3D Torus with±2k offsets,η = 3 72

4.18 Scaling of Single 3D Torus with±2k offsets . 72

4.19 Solutions for Hypercube plus Single Torus with±1 offsets,η = 3 74

4.20 Scaling of Hypercube plus Single Torus with±1 offsets 74

4.21 Solutions for Hypercube plus Single Torus with±2k offsets,η = 3 75

4.22 Scaling of Hypercube plus Single Torus with±2k offsets 75

4.23 Solutions for Hypercube and Multiple Tori with±1 offsets,η = 3 77

4.24 Scaling of Hypercube and Multiple Tori with±1 offsets 77

4.25 Solutions for Hypercube and Multiple Tori with±2k offsets,η = 3 78

4.26 Scaling of Hypercube and Multiple Tori with±2k offsets 78

4.27 Solutions for Bit-reversal, Shuffle, Hypercube, and Tori with ±1 offsets,η = 3 . . 80

4.28 Scaling of Bit-reversal, Shuffle, Hypercube, and Tori with ±1 offsets 80

4.29 Solutions for Bit-reversal, Shuffle, Hypercube, and Tori with ±2k offsets,η = 3 . 81

4.30 Scaling of Bit-reversal, Shuffle, Hypercube, and Tori with ±2k offsets 81

4.31 Solutions for Hypercube and Single 3D Torus with±1 offsets,η = 3 83

4.32 Scaling of Hypercube and Single 3D Torus with±1 offsets 83

4.33 A scaled Design/Solution Map forN = 65, 536, η = 5, andρ = 48 85

4.34 A representative 4,096-PE region of theN = 65, 536 Design/Solution Map 86

4.35 A representative 256-PE region of theN = 65, 536 Design/Solution Map 87

5.1 Multiple IP addresses per PE (one per NI) 90

xi

5.2 Single IP address per PE 92

5.3 Routing Table Entry Formats 93

5.4 Combined scheme with an IP address per PE and an IP addressper NI 95

6.1 Kentucky Linux Athlon Testbed 2 (KLAT2) 102

6.2 KLAT2’s FNN Design/Solution Map 102

6.3 Kentucky ASYmmetric Zero (KASY0) 103

6.4 KASY0’s Switch Connection List 105

6.5 KASY0’s Design/Solution Map 106

6.6 Standard POV-Ray 3.5 Benchmark image 107

6.7 η = 3 NIs/PE Solutions for KASY0’s supported communication patterns 108

6.8 Scaling of KASY0’s supported communication patterns 108

xii

Chapter 1

Introduction

1.1 Scope of Work

This dissertation examines the feasibility of designing custom networks for parallel computers that

efficiently support the communications of target suites of scalable parallel programs. Specifically it

shows:

1. Individual communication patterns of scalable parallelprograms are sparse.

2. The union of many communication patterns is sparse, in part due to pair synergy.

3. A Sparse Flat Neighborhood Network (Sparse FNN) efficiently and simultaneously supports

these communication patterns.

4. The complex problem of designing Sparse FNNs is solved with a combination of Heuristic

and Genetic Algorithm techniques.

5. Sparse FNNs scale to the largest size parallel machines built today, with over 65 thousand

nodes.

6. The practical details in using Sparse FNNs, such as message routing, are either solved or

solvable.

7. The cost and performance benefits of Sparse FNNs are directly demonstrated in a parallel

computer, KASY0.

1.2 Background

In traditional parallel computers, the Processing Elements (PEs)1 do the real work of a parallel

program. Thus, when building or buying a new parallel computer one would like to maximize the

1This dissertation uses the term PE to interchangeably mean “processor,” “core,” “CPU,” or “uniprocessor node,” as
distinguished from hardware units that may execute semi-independently despite being physically grouped together, such
as “multi-core processor” or “multiprocessor node.”

1

aggregate computational power of the PEs. The network connecting those PEs greatly influences

the achieved performance of a program based on how well the network satisfies the program’s com-

munication requirements. Yet, any money spent on the network means less money is spent on the

PEs, so there is a cost vs. performance trade-off between thePEs and the network connecting them.

An engineering approach to network design seems appropriate to resolve this cost vs. performance

trade-off.

Network design is one of the fundamental problems in high-performance parallel computing

today and has been so since the beginning of parallel computer design. The emphasis in network

design traditionally has been on selecting a “universal” topology with good mathematical proper-

ties and then mapping program communications onto that network architecture[22, 42, 58, 69]. A

given network design can be evaluated based on a variety of criteria including cost per PE, average

communication latency between PE pairs, available bandwidth between PE pairs, and the number

of PEs that can be effectively supported by the network (i.e.the network’s scalability). A useful

secondary property of a network, bisection bandwidth[22],is also traditionally used to compare par-

allel computer networks. Bisection bandwidth is defined as the link bandwidth times the minimum

number of links that must be cut when dividing the network into two halves with equal numbers of

PEs.

Many factors affect these network evaluation criteria, some of which are more easily controlled

than others. Whether network links directly connect PEs, orif there are switches between the PEs,

will affect the latency of individual messages; especiallyif they need to traverse multiple links.

The topology of the links between components affects the scalability, the bisection bandwidth, and

the average latency between PEs. The base technology implementing the links determines their

minimum latency and maximum bandwidth. The broad use of network components (links, switches,

etc.) outside the high performance computing market reduces their cost due to economies of scale.

The method of routing messages inside the network, such as circuit switched, packet switched,

wormhole switched[22], will affect the latency of messages, among other effects. The quality and

design of the software interface to the network can greatly affect the latency and bandwidth between

PEs. Clearly, there are many factors that contribute to the evaluation of a particular network design.

1.3 Traditional Network Architectures

Parallel computer networks can be broadly classified into two groups, direct and indirect networks[22].

Direct networks are those that employ point to point links between PEs; indirect networks are those

where PEs connect through switches. The former usually requires routing through PEs that have

multiple Network Interfaces (NIs), while the latter usually does all the routing of packets in the

switches. Some of the literature[3, 69] calls these two categories of networks by different names,

static and dynamic, because the apparent connectivity of a direct network is static, while the in-

direct networks have dynamic connectivity. Implementations do not always fit clearly into any of

these categories. For example, some commercial networks utilize dedicated switches at each PE

2

so that message routing does not interfere with a PE’s computations, but are physically wired as

direct networks. In this paper we will distinguish between these categories based on whether a PE

is associated with each node in the representative graph fora network: Direct networks have one or

more PEs associated with each node in the graph, and indirectnetworks only have PEs associated

with a proper subset of the graph’s nodes.

A direct fully-connected network has the lowest latency of any network, and is a great design

for small numbers of PEs. However it obviously does not scaleto even medium-sized parallel com-

puters, due to itsO(N2) wiring complexity and theN-1 NIs needed per PE. A multi-dimensional

mesh is a common category of direct networks. They can be found in a variety of commercial

machines such as the 2D mesh in the Intel Paragon XP/S[5], andthe 3D tori in the Cray T3D[17]

and IBM BlueGene/L[24] machines. A hypercube is another common direct network topology

found in commercial machines such as the Thinking Machines CM-1[60] and CM-2[62], and the

nCUBE[50] series of machines. Both the mesh and hypercube network topologies scale better than

a direct fully-connected network but can suffer from high latency between many PE pairs, especially

when scaled to large numbers of PEs. In graph theory terms, the worst-case latency between PEs in

a direct network grows with the diameter of the network2. One alternative, yet to be seen in a com-

mercial machine but widely discussed, is to use networks constructed from Cayley graphs[2, 69]

with high-degree nodes to keep the graph diameter small. Another interesting approach to keeping

the graph diameter small is to use a binary de Bruijn directedgraph[57] which uses degree-4 nodes

and has a diameter of onlylog2 N . Although a de Bruijn graph was used in JPL’s Galileo projectfor

an 8,192 PE signal processing computer called the Big Viterbi Decoder[14, 15], de Bruijn graphs

have practical difficulties that have limited their use for general purpose parallel supercomputers.

The fastest indirect network would contain a single crossbar switch connecting all the PEs, but a

crossbar does not scale to large numbers of PEs due to itsO(N2) switch-point complexity. In order

to meet the scaling criteria, one can use multiple switches to construct the network, sometimes

called a Multistage Interconnection Network (MIN)[22]. A simple tree with the PEs at the leaves

and switches at the interior nodes scales very cost effectively but does not have a high bisection

bandwidth, which limits its effectiveness. To alleviate the bisection bandwidth problem, additional

switches can be added to the tree topology to maintain a constant link count at each layer; this

topology is a Fat-Tree[42], which has been used in commercial machines such as the Thinking

Machines CM-5[43, 63]. Alternatively, the switches in a MINcan be arranged to form a non-

blocking Clos[12] network. Yet another arrangement of switches in a MIN, called the Butterfly

network, was used in machines from BBN Advanced Computers Inc.[4] There are many variants

on MINs found in the literature[58] that have various routing schemes, offer differing levels of

fault-tolerance, and support various sets of conflict-freepermutations.

Common to all these traditional scalable-network architectures, which excludes the crossbar and

2The diameter of the graph for an indirect network is not strictly related to the worst-case latency between PEs,
because not all nodes in the graph represent PEs. The distance between two nodes in the graph is only relevant to the
worst-case latency if both nodes represent PEs. For example, the distance between a switch and a PE is unimportant, yet
could be larger than the distance between any two PEs in the graph.

3

the direct fully-connected network, is the need for many messages to be routed through multiple

intermediate network nodes. A message incurs a switching/routing delay at each intermediate node

in its path (e.g. for each switch-hop). The amount of delay depends not only on the technology

used to construct the network node, but also on the switchingprotocol used. A common switching

protocol is called store-and-forward, which does as its name implies: A packet is fully stored in a

buffer in the switch prior to it being forwarded. This buffering is done so that corrupted packets can

be detected and discarded by the switch. The primary alternative is to do what is called cut-through

routing, which begins forwarding a packet as soon as enough of the header has been observed.

Although cut-through routing reduces latency, the switch is not able to discard corrupted packets.

The IEEE standards for switched Ethernet require the use of the store-and-forward method for this

reason. Therefore, commodity Ethernet switches employ thestore-and-forward method that delays

a packet by at least a full wire delay, which can be quite significant. Thus, most high end commercial

parallel machines use non-commodity (i.e. costly) networking hardware that supports some form

of cut-through switching/routing, usually some variant ofwormhole routing[51]. Although cut-

through/wormhole routing helps mitigate switch-hop delay, this delay can never be eliminated.

Another aspect common to all the traditional scalable-network architectures is that many of

the interior links along the path between network nodes are shared between multiple PE to PE

paths. This sharing can lead to either routing complexity and/or bandwidth bottlenecks and possibly

increased latency. For scalable-networks with multiple paths between PE pairs, it can be difficult, if

not impossible, for non-centralized routing algorithms toguarantee that none of these shared links

is oversubscribed. If the network doesn’t have multiple paths between PE pairs (a tree for example),

multiple messages may have to contend for the bandwidth of a shared link. In either case, if multiple

messages contend for a link, then either one of them blocks and experiences increased latency, or the

effective bandwidth of the link is shared, causing each message to experience reduced bandwidth.

1.4 Non-topological Approaches to Improving Latency and Bandwidth

For high performance parallel computing, communication latency and bandwidth both are very

important. While network topologies can influence how theseperformance criteria change as one

scales a network design from tens to tens of thousands of PEs,the base performance of a network

at any size is constrained by its implementation technologies, both hardware and communications

support software. It generally is possible to tune the latency and bandwidth of a given network

topology by selecting among the various implementation technologies that can support the routing

required by that topology.

As of this writing, Fast Ethernet, Gigabit Ethernet, 10G Ethernet, InfiniBand[34], SCI[21],

Myrinet[7], QsNet[56], and several other hardware implementation technologies are available at

various performance[9, 44] and cost levels. Most of these network technologies have very similar

conceptual properties, for example, all but SCI use bidirectional links. Due to the Spanning Tree

Protocol (STP) of the various Ethernet technologies, topologies with cycles would require man-

4

aged Layer-3 routers, while cycle-free topologies could make use of unmanaged Layer-2 switches,

which often are less expensive. In addition to standalone network products, the systems architect

has the option to use custom link and/or switching technologies, though the cost of designing and

implementing specialized new technologies is beyond the budget constraints of all but a few super-

computer vendors. In addition to fast signaling rates for high link bandwidth, many of the network

technologies commonly used for supercomputing employ various latency reducing techniques such

as cut-through routing and OS-bypass methods such as those associated with VIA (Virtual Interface

Architecture)[59, 70]. The GAMMA[27] project has implemented Active Messages[66] for specific

Ethernet Network Interface (NI) adapters, which greatly reduces the software overhead, and thus the

communication latency, for networks using supported hardware. Fast Messages[55] is another sup-

port software model intended to reduce the latency of communications; it has been implemented for

Myrinet, cLAN[59], and the custom network within the Cray T3D[17].

1.5 Overgeneralization: Five Trees Do Not A Forest Make

The primary aspect of network design that this dissertationaddresses is the fact that making the

network overly general has a high complexity, performance,and monetary cost. KASY0, discussed

in Section 6.2, is so effective because it is specialized to handle the five communication patterns that

matter – and not all the other possible patterns that do not appear in any of the intended applications.

A small number of special-purpose application-specific computing systems have used networks

that are designed to provide precisely the performance needed – no more and no less. For example,

GRAPE-6[45] is the latest in a series of designs that essentially hard-wire the data paths that imple-

ment the calculation of the gravitational interaction between particles: the name GRAPE actually

stands for “GRAvity piPE.” This extreme level of specialization has yielded a variety of perfor-

mance records. GRAPE has been recognized by no fewer than seven Gordon Bell Awards, and

did so at a very modest cost by supercomputer standards. On a smaller scale, Graphics Processing

Units (GPUs) in modern video cards have profited from the sametype of extreme specialization in

interconnecting function units.

Network designers for relatively general-purpose supercomputers have been coping with the

problem that, unlike the above examples, the hardware must support more than a single fixed com-

munication pattern. Rather than trying to find a reasonably tight cover for the very complex set of

communication patterns used by a large class of applications, designers of networks interconnect-

ing PEs within a supercomputer revert to selecting among a small number of “standard” network

designs that are known to give acceptable performance for nearly any pattern imaginable. In fact,

before the work presented in this dissertation, it was not clear that a useful set of communication

patterns could be supported with significantly less hardware than the standard designs require, nor

was it clear that these customized designs would deliver markedly better performance.

Historically, Non-Recurring Engineering (NRE) cost for creation of a supercomputer has been

notoriously larger than the market for any one supercomputing application could make profitable. It

5

is not just that NRE cost is high, but also that creating a design typically required building custom

components and custom interfaces between them, which takesa long time – and time to market is a

critical issue in a field where a six-month delay correspondsto a1.4× increase in the performance of

the competition[64]. However, in 1994 a new approach began to emerge, most commonly known as

“Beowulf” [61] and commodity-based cluster computing. This approach uses mostly standard com-

ponents and interfaces to build a parallel supercomputer, thus dramatically reducing the NRE cost

and development time. Additionally, the useful lifespan ofa system is extended because compo-

nents and subsystems can be interchanged with newly developed ones without scrapping the design

or even most of the hardware and system software. More significantly for the purpose of this dis-

sertation, use of interchangeable parts also means that it is cheap to support “mass customization” –

the ability to individually tune the design for each system without incurring any major cost penalty.

If the network had to be hand-designed for each system, the NRE cost and development time per

system still would be prohibitive; fortunately, this dissertation proves that at least a fairly large class

of these design problems can be fully automated, producing the full benefit with the only NRE costs

being the formulation of the design problem and the execution time of the design software.

1.6 Dissertation Walk Through

Chapter 2 begins by introducing the Flat Neighborhood Network (FNN) concept and continues with

a discussion of the surprisingly large size of the FNN solution space. The middle of the chapter

presents a corpus of communication patterns as found in the literature. Each pattern is discussed as

well as presented graphically. The concept of pair synergy is presented along with tables showing

how a variety of communication patterns have significant overlap. The chapter concludes with a

discussion of how FNNs can be split into Universal, Sparse and Fractional FNNs. The Sparse FNN

concept is a core contribution of this dissertation.

Chapter 3 describes the tools for designing FNNs. The first FNN design tool is a Genetic

Algorithm (GA) for design of Universal FNNs. Its discussionis followed by a presentation of a tool,

created as part of this dissertation’s work, that generatesSparse FNN design specifications based on

selected communication patterns. The greedy heuristic that was developed to design Sparse FNNs

is then presented in detail. That is followed by a discussionof the final Sparse FNN design tool

that was developed to directly incorporate the heuristic within a GA. This Sparse FNN GA was

parallelized to support more efficient exploration of the Sparse FNN design space using a parallel

supercomputer to run the design searches. The chapter concludes with a discussion about how the

tools explore different parameter sets that lead to alternative Sparse FNN design solutions.

Chapter 4 presents empirical information about scaling gleaned from solving a large number

of different Sparse FNN design problems – considering billions of potential designs to create mil-

lions of “optimized” designs exploring scalability of solutions to approximately a thousand different

parameter sets. This data reveals that a useful mixture of communication patterns can be simultane-

ously supported by Sparse FNNs using commodity network hardware to interconnect tens to tens of

6

thousands of PEs. The chapter concludes with a presentationof a Sparse FNN design for a machine

with 65,536 PEs – essentially the same size as the network in the largest BlueGene/L, which is

generally accepted as the fastest supercomputer ever built.

Chapter 5 discusses practical implementation details for actually deploying FNNs in real par-

allel systems. Specifically, several different approachesto solve the routing problem for FNNs are

presented. That discussion is followed by a section detailing the specific implementation of FNN

runtime support in the Linux OS. Following that section is a discussion about options for fault tol-

erance on FNNs. The chapter concludes with a discussion of possible FNN implementations using

technologies such as InfiniBand.

Chapter 6 presents details about KLAT2 and KASY0, two record-breaking supercomputers that

we constructed to be the first systems utilizing Universal and Sparse FNNs, respectively. The section

on KLAT2 discusses its importance as the inspiration for this dissertation. The KASY0 machine is

then presented in detail, with some application performance results. The chapter concludes with a

discussion about KASY0’s network and its role in this dissertation.

Chapter 7 begins by listing the various institutions that are known to be using our FNN technol-

ogy. The chapter continues with a list of potential areas forfuture study relating to FNNs. Following

this list is a philosophical discussion of the overall trends in network design.

Chapter 8 concludes the dissertation by summarizing the thesis and the results of this work.

7

Chapter 2

A New Network Design Solution

We suggest that network form should follow function: The best network for a parallel supercom-

puter is the design which, of all feasible networks, yields performance characteristics best matching

the latency and bandwidth needs of the targeted parallel program(s) while simultaneously satisfying

the relevant cost and scalability constraints. The primaryproblem in taking this approach is that

the design space is surprisingly large and complex. There are vast numbers of possible network

designs, and there are even more possible parallel programs, each with its own communication re-

quirements. This chapter discusses our approach to solvingthis complex problem by simplifying

the design space on both fronts.

In Section 2.1, we introduce Flat Neighborhood Networks (FNNs) which are a class of networks

that are defined by set of latency and bandwidth properties. By restricting our search to FNNs, the

overall design problem is simplified, though the solution space is still quite large as discussed in

Section 2.2. In Section 2.3 we discuss the communication patterns of parallel programs which

further refine the requirements for design solutions. Finally in Section 2.4 we close the chapter with

a taxonomy of FNNs.

2.1 The Flat Neighborhood Network (FNN) Architecture

A Flat Neighborhood Network (FNN)[26] is a type of switchingnetwork that provides specific

latency and bandwidth properties. The concept of FNNs was first demonstrated by H.G. Dietz and

the author in early 2000 with the construction of the KLAT2 (Kentucky Linux Athlon Testbed 2)

supercomputer[18, 19, 20, 30]. A FNN is a hybrid network thatcan be symmetric or asymmetric,

with some properties seen in direct networks, yet it is trulyan indirect network as described in the

literature. Like a direct network, each PE in a FNN has multiple network links, yet these links

generally do not connect directly to other PEs. Although FNNs are indirect networks, each message

should incur the latency of passing through only a single switch to reach its destination (often called

a single switch-hop), thus yielding low latency and guaranteed bandwidth between PE pairs.

Although FNNs can be built with a wide range of network implementation technologies, it is

clear that commodity network technologies are a particularly good match for the technique, so the

8

discussion, examples, and prototypes favor Ethernet technology networks in a Beowulf/cluster con-

text. Section 5.4 discusses the viability of some alternative implementation technologies. Due to

the latency overhead of Ethernet’s store-and-forward packet switching standard, it is especially im-

portant to maintain the FNN single switch-hop design constraint for any frequently communicating

PE pair.

When executing a parallel programp on anN PE parallel computer, a PEi needs to communi-

cate with a setL of other PEs. We call that setL(p, i), the neighbor list of PEi for programp. To

guarantee low latency and conflict free bandwidth, PEi must have a single switch-hop path to each

neighbor PE inL. For smallN, this goal is achievable using a network consisting of just one switch

which is connected to every PE. For larger values ofN , instead of using a hierarchy of switches, our

solution is to use multiple NIs from PEi to connect to several switches, where each of the neighbors

in L is connected to at least one of those switches. A FNN is a network which satisfies the single

switch-hop property for eachL(p, i).

Finding a minimal graph that satisfies the FNN single switch-hop connectivity constraints turns

out to be surprisingly difficult. The problem is actually a minor variation of the well-known

graph/set theory problem called(v, k, t)-covering design[13, 28, 52]. A(v, k, t)-covering design is

a family ofk-element subsets, called blocks, whose members are chosen from the set{1, 2, . . . , v},
such that eacht-element subset is contained in at least one of the blocks. The number of PEs corre-

sponds tov, the number of ports per switch corresponds tok, and pairwise grouping of PEs implies

thatt would be equal to 2. Finding a(v, k, t)-covering design with the minimum number of blocks

is an open problem in mathematics. The only known general algorithm for finding a minimal cov-

ering is through exhaustive search, which is impractical for the numbers of PEs that are interesting

to designers of parallel supercomputers. An excellent discussion of the standard covering problem,

a summary of recent research on methods for constructing covering designs, and a database of the

best known solutions and bounds on solutions are given at theLa Jolla Covering Repository[38].

The FNN design problem differs from the standard covering problem primarily in that the number of

network interfaces per PE is constrained; there is no corresponding constraint on(v, k, t)-covering

design. Thus, a network that satisfies the FNN properties forall PE pairs is also a(v, k, 2)-covering

design, but a(v, k, 2)-covering design is not necessarily a realizable FNN.

The design problem for FNNs also is similar to a very common design problem in statistics

and scientific experiments called Balanced Incomplete Block Designs (BIBD) which are subsets

of problems calledt-designs and Partially Balanced Incomplete Block Designs (PBIBD)[13]. Al-

though these statistics problems have similar properties to the FNN design problem, none of them is

as close as the(v, k, t)-covering design problem. In particular,Fisher’s inequality[13] states that a

FNN that is a true BIBD would have at least as many switches as there are PEs, and each PE would

have at least as many NIs as there are ports on each switch.

Until our work on KLAT2, the supercomputing networking literature does not seem to contain

the FNN concept of connecting each PE to multiple switches ina flat topology to provide single-

switch latency. One can speculate that it does not appear prior to that time due to the considerable

9

computational complexity of the graph problem in its general form, as found in the above related

problems. The following section discusses how complex the FNN problem really is, which leads

us to propose that a Genetic Algorithm (GA) is the key to finding FNN designs with a reasonable

amount of effort. Use of a GA is not a standard approach in the literature for finding(v, k, t)-

covering designs, but simulated annealing[53] is, and GAs often perform better than simulated

annealing on related problems with unknown smoothness and complex metrics. At the same time

we were building KLAT2, a group at Australia’s National University designed a geometrically con-

structed symmetric FNN for the Bunyip Supercomputer[1]. Its network design was not generalized

to other configurations. In an earlier work by R. Elbaum and M.Sidi[23] a GA was used for com-

puter network design in 1995. However, the metrics used in that GA were not directly relevant for

parallel computers, and the resulting designs did not have FNN properties.

There also is prior art involving use of search procedures todesign switchless networks for paral-

lel machines. Work by groups at the University of Bristol[11] and the University of Essex[40, 41, 67]

in the 1990s applied various GA techniques to optimizing small irregular graphs as switchless net-

works for Transputers. The work published in Fall 2002 by Lakamraju et al.[39] is similar, but

instead of using a GA, they used a filtering technique on randomly generated regular graphs. All

these approaches have some cursory similarity to our FNN approach, but they restrict themselves to

switchless designs in which PEs are directly connected to each other. Most importantly, none of the

metrics that they used directly correspond to performance on a user-specified set of communication

patterns.

2.2 The Size of the FNN Solution Space

The design problem for FNNs can be viewed as a search problem on a particular set of graphs.

FNNs are members of the set of undirected bipartite graphs with N PEs on one side andS switches

on the other, with each PE having at mostη NIs and each switch having at mostρ ports. We will

call this set of graphsBN,S,η,ρ. All FNNs with the given parameters(N,S, η, ρ) are included in the

setBN,S,η,ρ, though this set might contain graphs which are not FNNs. Typically, the number of

switches is determined by the switch width and the total number of NIs of all the PEs:S =
⌈

N×η
ρ

⌉

.

It is worthwhile to find the cardinality of the set of graphs|BN,S,η,ρ|, to get a feel for how much

effort is worth spending on designing better algorithms forfinding FNNs. In this subsection, we

explore various upper bounds on the size of the FNN solution space.

One approach towards estimating|BN,S,η,ρ| is to represent the bipartite graph as a matrix with

two rows andW columns, whereW = max (S × ρ,N × η), which is typically the number of

wires in the network. The top row represents all the switch ports, and the bottom row represents all

the NIs, and each column is a network wire connecting the given switch port and NI. By permuting

the entries in one of the rows (either one works), all feasible networks with the given hardware can

be generated, while maintaining theη andρ constraints, which yields|BN,S,η,ρ| ≤ W !. Although

this expression is an exact count for all possible ways of wiring the physical network given the

10

constraints, it vastly overestimates the number of networks that are functionally different (in GA

terms, it counts genotypes rather than phenotypes). This approach counts graphs that differ only

in the port and/or NI number used to connect a particular PE and switch. An improvement to

this estimate is found by dividing out the permutations of the ports within each switch, yielding

|BN,S,η,ρ| ≤ (S×ρ)!

(ρ!)S , or similarly by dividing out the permutations of the NIs foreach PE, yielding

|BN,S,η,ρ| ≤ (N×η)!

(η!)N . Unfortunately, one can not simultaneously divide out bothsets of NI and port

permutations, because in some cases in this representation, a PE may have multiple NIs connected

to a particular switch, and for those cases, the permutations get divided out twice. Additionally,

this permutation construction method will generate non-simple bipartite graphs, i.e. graphs with

multiple connections between a particular PE and switch. Although it is possible to physically wire

a network this way, and the FNN definition includes such patterns, this author believes such cases

are not particularly beneficial, though some special situations1 do warrant their use.

Another approach for estimating|BN,S,η,ρ| comes from representing the graphs using aN × S

matrix, with each cell holding the number of connections between a particular PE and a particu-

lar switch. If we restrict our search to simple graphs (as discussed above), each cell of the ma-

trix contains either zero or one. Thus, there are2N×S possible matrices, which encompasses all

possible simple undirected bipartite graphs withN PEs andS switches. By restricting our ma-

trix to have onlyW ones, and thus simple bipartite graphs withW wires, we get a better bound

|BN,S,η,ρ| ≤ |BN,S,W | =
(

N × S

W

)

. When restricting the search to networks withρ ports per

switch, the number of port restricted networks is|BN,S,ρ| =

(

N

ρ

)S

from the fact that each

of the S switches will connect toρ PEs from the set ofN PEs. Similarly, when restricting the

search to networks with a maximum ofη NIs per PE, the number of NI restricted networks is

|BN,S,η| =
(

S

η

)N

from the fact that each of theN PEs will connect toη switches from the set

of S switches. Each of these latter two sets of graphs are subsetsof the bipartite graphsBN,S,W ,

and thus their cardinalities are even better upper bounds on|BN,S,η,ρ|. It is rather difficult to find a

closed form expression for the number of graphs with both theρ andη restrictions. One can find a

simple approximation by assuming the setsBN,S,ρ andBN,S,η are uncorrelated subsets ofBN,S,W ,

namely|BN,S,η,ρ| ≈ |
BN,S,ρ|×|BN,S,η|
|BN,S,W | =

(

N

ρ

)S

×

(

S

η

)N

(

N × S

W

) . Unfortunately, the two subsets are

not independent. Fortunately, this approximation,
|BN,S,ρ|×|BN,S,η|
|BN,S,W | , is quite good because it appears

to be within a factor of two of the actual value for|BN,S,η,ρ|; empirically, it is approximately a 50%

1A PE in the parallel machine that is acting as a manager or server may benefit from having multiple links to the same
switch, thus giving it more bandwidth to the collection of worker PEs also connected to that switch. However, using
multiple connections to the same switch only weakly improves fault tolerance because the switch becomes a common
failure point.

11

N S η ρ W |BN,S,η,ρ| |BN,S,ρ|×|BN,S,η|
|BN,S,W | Ratio Number of FNNs

3 3 2 2 6 6 9 1.446 6
6 3 2 4 12 90 133 1.473 90
9 3 2 6 18 1,680 2,489 1.482 1,680
4 6 3 2 12 1,860 2,761 1.484 720
8 4 2 4 16 44,730 67,092 1.500 0
6 6 3 3 18 297,200 451,343 1.519 21,600
5 10 4 2 20 56,586,600 86,657,527 1.531 3,628,800
8 6 3 4 24 60,871,300 93,396,534 1.534 3,402,000

10 6 3 5 30 14,367,744,720 22,174,227,646 1.543 152,409,600
12 6 4 8 48 154,700,988,750 240,073,862,451 1.552 154,700,988,750
12 6 3 6 36 unknown 5,760,579,740,420 unknown 19,196,100,000

Table 2.1: FNN Solution Space sizes

overestimate of|BN,S,η,ρ| for the small values ofN andS for which the author has run exhaustive

searches, as shown in Table 2.1.

A difficulty with all these expressions is that they count isomorphic graphs differing only in the

numbering of switches as distinct. Unfortunately, dividing byS! to remove these duplicate networks

is inaccurate, because it may not be feasible to eliminate these isomorphic duplicates from the space

actually explored by our search.

In addition to the|BN,S,η,ρ| and
|BN,S,ρ|×|BN,S,η|
|BN,S,W | values for a few small cases, Table 2.1 shows

the exact number of FNNs for each case; these FNNs were found through a pruned exhaustive

search for FNNs that supplied single-switch communicationpaths for all PE pairs.2 As one can see,

the growth rate of|BN,S,η,ρ| is astronomical, and for most real-world design cases, the FNN design

space is too large to be exhaustively searched using supercomputers currently available or expected

in the near future. One also can see that for a particular(N,S, η, ρ) parameter set, if there are any

FNN solutions, there tend to be many to choose from. It is interesting to note that for a givenN ,

there are a variety of(S, η, ρ) triples that might have a solution. Thus, when one designs a FNN,

if there are several economically or otherwise viable choices forρ and/orη, the total search space

would be the sum of the various viable|BN,S,η,ρ| values. It is obvious, but perhaps disturbing, to

further note that very few of the designs in the search space have any simple type of symmetry;

considering only symmetric designs may miss the only viablesolutions.

Now that the reader has seen the definition of FNNs and a rough estimate of the complexity of

the FNN solution space, it is appropriate to discuss determination of the communication patterns

which might be important to a suite of parallel programs. Thenext section discusses types of

communication patterns and how they affect the number of neighbors each PE within a FNN must

have.
2Later, this dissertation will distinguish FNNs as listed inthis table from the Sparse FNNs which are the primary focus

of this work. FNNs as discussed here are a subclass of Sparse FNNs called Universal FNNs.

12

2.3 Communication Patterns

What do applications need from a particular network design?The applications need the messages

between communicating PEs to be delivered reliably and in a timely manner. What resources the

network needs to accomplish that depends on the message sizes, quantity of messages, and the pat-

tern of message source and destination pairs. A communication pattern defines a set of communi-

cating pairs in a parallel computer. Many basic communication patterns are1:1 andontomappings

of PEs onto PEs (permutations). For a given parallel program to perform well, its communication

patterns must be efficiently supported by the network, giving low latency and high bandwidth for

the messages within each pattern.

It is a simple fact of arithmetic that the number of neighborseach PE might need to talk to grows

linearly with the number of PEs in a machine. More precisely,in a system withN PEs, the number

of possible communication pairs involving a particular PE is2(N − 1) for unidirectional (ordered)

pairs orN−1 for bidirectional (unordered) pairs. These formulas also correspond to the well-known

fact that a direct fully-connected network would requireN(N − 1) unidirectional wires orN(N−1)
2

bidirectional links. Thus, network complexity seems to scale asO(N2). However, when one reviews

the various communication patterns commonly discussed in the parallel processing literature, it can

be argued that most parallel programs require high performance on only a small fraction of the

possible pairs for each PE. As discussed in the following sections, the fraction actually used in

typical applications sharply decreases as the number of PEsis increased!

2.3.1 O(1) Scaling Patterns

It is ironic that, despite the parallel processing community’s concerns about the complexity of large

scale networks, many commonly used communication patternsin parallel programs are patterns

that have a constant number of pairs per PE independent of thenumber of PEs. This observation

is supported by the fact that many of the largest systems built, such as the older Intel Paragon and

Cray T3D machines and the current day IBM BlueGene machines,have successfully used networks

with a simple mesh topology.

The number of bidirectional communication pairs in which each PE is involved when communi-

cating with adjacent PEs within a 1D mesh is either one or two.For a toroidal 1D mesh (i.e., a ring),

each PE participates in two bidirectional communication pairs; a non-toroidal 1D mesh differs only

in that the two end PEs participate in just one pair each. The per-PE pair count is unaffected by

the total number of PEs. It is useful to consider representing this pattern (and others) as aN × N

connectivity matrix, with a column for each PE and a row for each PE. The cells of the matrix con-

tain information about the connection between the cell’s row PE and its column PE. In the simplest

case, each cell contains either a one or a zero to indicate connected or not connected, respectively.

If bidirectional links are used in constructing a network, there is a diagonal symmetry introduced

to that network’s connectivity matrix, because a connection from PEx to PEy would also support

communication from PEy to PEx.

13

Figure 2.1 shows a representation of the simple bidirectional ring pattern for machines with 16,

32, 64, 128, and 256 PEs. Each box in the figure shows the upper right triangle of the connectivity

matrix for the PEs, turned into a pixelated image. For a PE pair (x, y) wherex = y the PE is

talking to itself; most networking technologies allow sucha communication to be accomplished

without actually touching the transport layer of the network, so such a communication may trivially

be ignored because it imposes no requirements on the networktransport hardware. For a PE pair

(x, y) wherex > y that is in the communication pattern, there is a black pixel at the coordinates

(x, y) with the origin in the upper left of the box, with increasing PE numbers going from left to

right and from top to bottom. Thus for this ring pattern, there is a diagonal line that is just offset

by one pixel from the center diagonal. The lower left triangle of the connectivity matrix if shown,

would simply be a mirror image of the upper right triangle.

The conceptually most complex communication patterns commonly used in parallel programs

are typically patterns consisting of a single pair per PE. For example, thebit-reversal[29] commu-

nication pattern, shown in Figure 2.2, may have a reasonablycomplex formula for which PEs com-

municate with each other, but each individual PE only is involved in a single pair. The same is true

of perfect-shuffle[36], which is shown in Figure 2.3; it is significant that, given bidirectional links,

inverse-shuffleis implemented by the exact same pairing thatperfect-shuffleuses. For a machine

with N = k2 PEs, one can define amatrix-transposecommunication where each PE containing a

single element of a 2D matrix would exchange its element withone other PE to form the transposed

matrix. Figure 2.4 shows thismatrix-transposepattern for 16, 64, and 256 PEs. Notice that all these

patterns are constructed from permutations, so, with an appropriate network, each permutation can

be implemented in a single message time-step. Perhaps surprisingly, for many traditional network

topologies, each permutation would take multiple time-steps.

The design space becomes significantly larger when 2D meshesare considered, because there

may be multiple ways to factor the PEs into a 2D mesh. For example, a 32-PE system could be

viewed as the 2D ordered factorization2 × 16, 4 × 8, 8 × 4, or 16 × 2 or, more commonly, as an

unordered factorization listing dimensions in a normalized order, such as largest dimension first:

8×4 and16×2. Where this dissertation refers to factorization without specifying the type, it refers

to the normalized unordered factorization.

Once a factorization is selected, the pair count per PE is independent of the total number of PEs.

Communicating with PEs that are adjacent by row or column yields between two and four pairs per

PE, with edge PEs in non-toroidal meshes having the lower pair counts. Figure 2.5 shows the 2D

torus patterns with four neighbors per PE on a single factorization of each of 16, 32, 64, 128, and

256 PE patterns. When including multiple factorizations ofthe same 2D torus pattern, as shown

in Figure 2.6, the number of neighbors per PE is no longer a constant, because as the number of

PEs increases, the number of possible 2D factorizations increases. However, for each individual

factorization, the number of neighbors per PE is a constant.

A 3D torus has six rectilinear neighbors per PE, which are at±1 offsets along each of the three

dimensions. The connectivity matrix for a single 3D torus factorization for each of 16, 32, 64, 128,

14

Figure 2.1: 1D Torus with±1 offsets (a Ring)

Figure 2.2: Bit-Reversal communication patterns

15

Figure 2.3: Perfect-Shuffle communication patterns

Figure 2.4: 2D Matrix Transpose of a single element per PE

16

and 256 PEs is shown in Figure 2.7, while Figure 2.8 shows the union of multiple factorizations for

the same cases. Similarly, the 4D torus has eight rectilinear neighbors per PE, and several sample

connectivity matrices for a single factorization are shownin Figure 2.9, while the union of multiple

factorizations are shown in Figure 2.10.

Including diagonally adjacent PEs for a multi-dimensionalgrid or torus simply increases the

constant number of neighbors per PE. For a 2D torus with diagonals, there are eight neighbors per

PE and the corresponding connectivity matrices are shown inFigure 2.11 for a single factorization,

and in Figure 2.12 for the union of multiple factorizations.Eight pairs may be a large fraction of

all possible pairs in a small parallel computer, but it becomes a vanishingly small fraction of all

possible pairs as the system design is scaled to thousands ofPEs. For a 3D torus, the diagonal

neighbors for a PE include both the twelve edge neighbors andeight corner neighbors, bringing the

total to 26 neighbors per PE. Figure 2.13 shows the single factorizations for 3D tori which include

the diagonal neighbors. Although 26 is still a constant relative to the number of PEs in the machine,

it takes a fairly large machine before 26 would be considereda small number of neighbors per PE.

When you look at the connectivity matrices for the union of multiple 3D factorizations shown in

Figure 2.14, it is clear that including diagonal neighbors along with multiple factorizations yields a

rather dense matrix for smaller numbers of PEs.

17

Figure 2.5: Single 2D Torus with±1 offsets

Figure 2.6: Multiple 2D Tori with±1 offsets

18

Figure 2.7: Single 3D Torus with±1 offsets

Figure 2.8: Multiple 3D Tori with±1 offsets

19

Figure 2.9:Single 4D Torus with±1 offsets

Figure 2.10:Multiple 4D Tori with±1 offsets

20

Figure 2.11: Single 2D Torus with±1 offsets including diagonals

Figure 2.12: Multiple 2D Tori with±1 offsets including diagonals

21

Figure 2.13: Single 3D Torus with±1 offsets including diagonals

Figure 2.14: Multiple 3D Tori with±1 offsets including diagonals

22

2.3.2 O(log N) Scaling Patterns

In addition toO(1) scaling patterns, nearly all programs contain some communication patterns that

scale asO(log N). Fundamentally,O(log N) scaling patterns are most often an artifact of using

a network that is incapable of performing computation. For example,collective communications

including reductions, parallel-prefix scans, broadcast/multicast, andbarrier synchronizationare

really operations sampling the global state of the parallelsystem. Aggregate Function Network

(AFN) hardware implements them directly within the network[33], but efficient message-passing

implementations typically involve a sequence of tree-structured communications.

Binary tree-structured communications follow adjacency in the familiarhypercubetopology.

Thus, each PE communicates with the PEs whose numbers differfrom the source PE number by

only a single bit position’s value in the binary representation. For example, in a 32-PE system, PE 5

(binary 00101) would be paired with 1 (00001), 4 (00100), 7 (00111), 13 (01101), and 21 (10101).

There are no more than⌈log2 N⌉ bit positions, so there are at most that many PEs differing from any

given PE’s number by precisely one bit position, and the number of pairs per PE grows asO(log N).

Shown in Figure 2.15 are the connectivity matrices for the hypercube pattern on 16, 32, 64, 128,

and 256 PEs.

Many message-passing libraries differentiate between what MPI[49] calls all-reduceand re-

duce. Using all-reducesuggests that all PEs should have their complete tree, whereas areduce

requires only the tree rooted at a specific point (typically,PE 0). Thus,reducecan be implemented

using about half as many pairs per PE as suggested byall-reduce, although the root PE still re-

quires the full set of pairs. If anall-reduceis implemented using a reduce followed by abroadcast

from the root PE, rather than by directly performingN reducessimultaneously, then the complete

tree of pairs is only needed for the root PE. This difference is significant in thatreduceis far more

common thanall-reducein parallel programs. However, to supportall-reduceor reducerooted at

any PE, we define a pattern that has a neighbor list for each PE consisting of all PEs at an offset

of ±2k for 0 ≤ k < log2 N , which we call a “1D torus with±2k offsets”. Several connectivity

matrices for this pattern are shown in Figure 2.16. This pattern also supports implementations of

barrier synchronization, such as the dissemination and tournament algorithms by Hensgen, Finkel,

and Manbur[32].

MPI has a feature called a “communicator” which allows the programmer to restrict commu-

nications to a partition or subset of the machine. In practice, these subsets tend to follow regular

patterns, such as the rows or columns of a 2D grid. To support reductions and barriers on these

subsets, we extend the “±2k offsets” patterns to multidimensional grids, where the offset is rectilin-

early measured along a dimension of the grid. The connectivity matrix for the “±2k offsets” pattern

on a single 2D torus factorization for each of 16, 32, 64, 128,and 256 PEs is shown in Figure 2.17.

Figure 2.18 shows the union of multiple factorizations for the same pattern. Similarly, the same pat-

terns on single factorizations of a 3D torus are shown in Figure2.19, while the patterns on a union

of multiple 3D factorizations are shown in Figure 2.20. Sample connectivity matrices for this same

pattern on 4D tori are shown in Figure 2.21 and Figure 2.22.

23

Figure 2.15: Hypercube communication patterns

Figure 2.16: 1D Torus with±2k offsets

24

Figure 2.17: Single 2D Torus with±2k offsets

Figure 2.18: Multiple 2D Tori with±2k offsets

25

Figure 2.19: Single 3D Torus with±2k offsets

Figure 2.20: Multiple 3D Tori with±2k offsets

26

Figure 2.21:Single 4D Torus with±2k offsets

Figure 2.22:Multiple 4D Tori with±2k offsets

27

2.3.3 O(D
√

N) Scaling Patterns

D-dimensionalscatter, gather, andpersonalized all-to-allcommunications involve each PE inter-

acting with every other PE in its dimension. In a 2D space, each PE needs to be paired with every

PE in the same row or column, yieldingO(
√

N) pairs per PE. The solid black triangles along the

diagonal of the connectivity matrix in Figure 2.23 show the full row connectivity of this pattern,

and the diagonal lines show the full column connectivity. Asshown in Figure 2.24, the union of

multiple factorizations of 2D grids with full row and columnconnectivity does not result in a sparse

connectivity matrix. The 3D case scales pairs per PE asO
(

3
√

N
)

, which is shown in Figure 2.25

and Figure 2.26. Figure 2.27 and Figure 2.28 presents sampleconnectivity matrices for the 4D

case. The 1D case is the worst; all PEs are in the same dimension, resulting in a completely solid

connectivity matrix.

Superficially, it seems that allN−1 pairs are needed for each PE in order to support 1Dperson-

alized all-to-all. However, such a communication pattern can not be accomplished in a single time

step unlessN − 1 messages can be simultaneously output by each PE. With fewerthanN − 1 NIs

per PE (i.e. forη < N − 1), this simultaneity is impossible. Further, the overhead associated with

sending a message is significant; thus, unless messages are quite long, there is a significant penalty

in sendingN − 1 messages rather than sending fewer, larger, messages that are repackaged and re-

transmitted until each PE had seen the data destined for it. The result is thatpersonalized all-to-all

is nearly always best implemented as a compound communication, often following a broadcast-like

tree pattern[10]. Thus, it does not make sense to specify a design constraint for an abstract op-

eration likepersonalized all-to-all, but rather to specify the design constraint that corresponds to

the most efficient implementation that could be used by the specific MPI library used by applica-

tions. The pairs in such a pattern can be determined by examining the MPI library documentation

or source code, or by accumulating statistics on pairs communicating in test runs using a particular

MPI implementation.

The result is that these compound patterns are usually able to be efficiently implemented using

primitive patterns that scale asO(1) or O(log N). Thus, for implementing many practical commu-

nication patterns, the number of communicating pairs per PEscales approximately asO(log N),

not asO(N).

28

Figure 2.23: Single 2D Torus with connections between all PEs in the same row or column

Figure 2.24: Multiple 2D Tori with connections between all PEs in the same row or column

29

Figure 2.25: Single 3DGrid with connections betweenall PEs that differ in only one dimension

Figure 2.26: Multiple 3DGrids withconnections betweenall PEs that differ in only one dimension

30

Figure 2.27:Single 4D Grid withconnections betweenall PEs that differ in only one dimension

Figure 2.28:Multiple 4D Grids withconnections betweenall PEs that differ in only one dimension

31

2.3.4 Pair Synergy

A suite of parallel programs generally requires not just support for one communication pattern, but

for the union of all communication patterns used in any of theprograms. In the worst case, one

would expect that the number of pairs for each PE would be the sum of the pairs needed to support

each pattern, and that both the number of pairs per pattern and the number of distinct patterns that

need to be covered would grow as the number of PEs is increased. Fortunately, a pair required by

one pattern very often is also required by another pattern. We call this propertypair synergy.

For a suite of parallel programs, there are two ways in which the number of communicating

pairs can increase as the number of PEs increases:

• The individual communication patterns may have pair countsthat grow with the number of

PEs, as shown in Sections 2.3.2 and 2.3.3.

• The number of communication patterns may increase with the number of PEs. This second

mechanism is less common, in that it is rare that an individual program invents additional

communication patterns as the number of PEs is increased. Typically, the number of patterns

increases because of data sets that best match grids with particular aspect ratios. Generally,

the new patterns created are variants of grids, with the increase in the number of patterns

deriving from the fact that the number of ordered factorizations of the PEs generally is larger

for systems with more PEs. For example, a 32 PE system can be factored into four 2D grids

dimensioned2× 16, 4× 8, 8× 4, and16× 2; a 256 PE system can be factored into seven 2D

grids dimensioned2×128, 4×64, 8×32, 16×16, 32×8, 64×4, and128×2. Although we

have shown all ordered factorizations in these two examples, it is commonly sufficient to limit

the number of factorizations to the number of unordered factorizations by simply picking an

arbitrary order for listing the dimensions; for example,2×16 and16×2 might be normalized

to 16 × 2 (i.e., the largest dimension first). The increase in unordered factorizations depends

on the specific numbers of PEs, but approximatelyO(log N) additional patterns is typical,

in which case the complexity of the communication pattern set is effectively multiplied by

log N . A similar source of additional patterns can come from runtime partitioning of the

system to reflect variations in machine load and problem mix.

Without pair synergy, these two mechanisms would yield significant complexity increases – espe-

cially where the number of PEs happens to have many factorizations. The question thus becomes

how many potential pairs are removed from the complexity formula because they are covered by

pair synergy?

For simple permutation communication patterns, it is possible to estimate the amount of pair

synergy that should occur due to random chance. A simple unidirectional permutation communica-

tion pattern is one where each PE in the machine sends a singlemessage to one other PE, or possibly

to itself, and each PE receives at most one message. These permutation communication patterns can

be represented as a set of source and destination ordered pairs. A random unidirectional permutation

32

communication onN PEs has no internal pair synergy, however, it has an expectedvalue of one PE

that will be talking to itself without needing the network tosupport that pair. Given two randomly

selected unidirectional permutation communications onN PEs, the expected number of ordered PE

pairs that would be common to both patterns is one – for each source PE in the first permutation,

intuitively there is a one out ofN chance of selecting the same destination in the second permuta-

tion, thus the expected value for PEs selecting the same destination isN × 1
N

= 1. However, the

reduction in pair count is slightly less, because there is a one out ofN chance that the common case

was a PE talking to itself, which inherently does not requirea pair to be covered by the network

hardware.

Given bidirectional network hardware, a permutation communication pattern has twice as many

ordered pairs, one for each forward path as in the unidirectional case, and one for each reverse

path. However, for each PE that has itself as a destination, there is only a single ordered pair

in the set. Thus, the expected value for the number of synergistic pairs between two randomly

selected bidirectional permutation patterns is slightly less than two. Monte Carlo simulations of the

bidirectional case forN > 64 converge on the value two.

Randomly occurring pair synergies among more than two randomly selected permutations ben-

efit from the same binning effects demonstrated in the well-known “Birthday Paradox” [48]. Al-

though the probability of at least one pair being a duplicateis quite high (corresponding roughly to

probability of at least one shared birthday), the expected number of shared pairs remains quite low

for reasonable numbers of permutations.

Fortunately, many sets of useful communication patterns exhibit much higher pair synergy than

one would expect given the above discussion of random independent permutations. The number of

shared pairs is particularly high among various mesh patterns. For example, nearly all pairs required

to support 1D adjacency also are required to support 2D adjacency; only 1D pairs involving PEs in

edge positions in the 2D pattern are not in the 2D pattern. Similarly, hypercubeadjacency has many

pairs that overlap those of meshes. The result is a significant reduction in the total number of pairs

required for the union of multiple communication patterns,although the precise amount of reduction

is highly dependent on the set of patterns specified.

Table 2.2 presents a numerical representation of the pair synergy between variousO(1) com-

munication patterns and theO(log N) hypercube pattern. Specifically, each cell represents the

percentage of PE pairs for the row’s pattern that are coveredby the column’s pattern. For example,

the cell in the upper right corner indicates that for a 256 PE machine, the hypercube pattern covers

50% of the PE pairs in the bidirectional Ring (1D torus with±1 offsets). In the lower left corner,

the table shows that the bidirectional Ring covers only 12.5% of the pairs in the hypercube pattern.

Table 2.3 presents the same data calculated for the 1,024 PE case, while Table 2.4 shows the data

for the 4,096 PE case.

Table 2.5 shows the same synergy data for the 256 PE case, withthe tori with±1 offsets patterns

replaced by their±2k offset versions. Similarly, Table 2.6 is for the 1,024 PE case, and Table 2.7 is

for the 4,096 PE case. It is worth noting that any of the tori with±2k offsets always cover the entire

33

hypercube pattern.

There also is significant pair synergy between different factorizations of the same grid/tori pat-

terns, which is of special importance in that it mitigates the growth in PE pairs due to the growth

in the number of possible grid/tori factorizations. For the2D tori patterns in the 256 PE example

shown in Figure 2.6, there are four normalized unordered factorizations,128 × 2, 64 × 4, 32 × 8,

and16 × 16, each with 512 PE pairs. If there was no pair synergy, the combined pattern would

have 2,048 PE pairs. Fortunately, pair synergy has reduced the total to only 1,180 PE pairs. For the

similar 1024 PE case, with five 2D factorizations, the combined pattern without pair synergy would

have 10,240 pairs, yet the real value is only 5,692 pairs. Finally, for the 4096 PE case, with six 2D

factorizations, the number of PE pairs would have been 49,152 without pair synergy, yet the total is

only 26,748. This savings is significant, but higher dimensionality factorizations yield even greater

savings by pair synergy.

For the 3D tori patterns in the 256 PE example shown in Figure 2.8, there are five normalized

unordered factorizations,64 × 2 × 2, 32 × 4 × 2, 16 × 8 × 2, 16 × 4 × 4, and8 × 8 × 4, each

with 768 PE pairs. If there was no pair synergy, the combined pattern would have 3,840 PE pairs.

Fortunately, pair synergy has reduced the total to only 1,528 PE pairs, which is less than 40% of

the simplistic prediction. For the similar 1024 PE case, with eight 3D factorizations, the combined

pattern without pair synergy would have 24,576 pairs, yet the real value is only 7,544 pairs, which

is under 31% of the prediction. Finally, for the 4096 PE case,with twelve 3D factorizations, the

number of PE pairs would have been 147,456 without pair synergy, yet the total is only 39,416, less

than 27% of the prediction.

For the 4D tori patterns in the 256 PE example shown in Figure 2.10, there are five normalized

unordered factorizations,32×2×2×2, 16×4×2×2, 8×8×2×2, 8×4×4×2, and4×4×4×4,

each with 1024 PE pairs. If there was no pair synergy, the combined pattern would have 5,120 PE

pairs. The actual total is only 1,840 PE pairs, which is less than 36% of the no-synergy estimate. For

the similar 1024 PE case, with nine 4D factorizations, the combined pattern without pair synergy

would have 36,864 pairs, yet the real value is only 8,816 pairs, which is under 24% of the prediction.

Finally, for the 4096 PE case, with fifteen 4D factorizations, the number of PE pairs would have

been 245,760 without pair synergy, yet the total is only 45,808, less than 19% of the prediction.

Throughout Tables 2.2-2.7, only Transpose is regularly comparable to a randomly-selected per-

mutation’s level of pair synergy with the other patterns. All the other patterns fare markedly better,

with meshes and hypercubes consistently having very high levels of pair synergy. Note that the high

degree of overlap, for example between 2D and 3D patterns, does not mean that a computer whose

network only implements one of those patterns would yield high performance on the other pattern –

even delivering lower performance for a single PE pair typically will drop performance of a parallel

algorithm down to that level (and sometimes lower due to interference between fast and slow paths).

It does mean that relatively little additional network hardware might be needed to support multiple

patterns instead of just one.

34

Pattern 1D
±

1
of

fs
et

s

2D
±

1
of

fs
et

s

3D
±

1
of

fs
et

s

4D
±

1
of

fs
et

s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±1 offsets 100.0% 93.8% 87.5% 75.0% 0.8% 0.0% 0.0% 50.0%

2D ±1 offsets 46.9% 100.0% 43.8% 75.0% 0.8% 0.0% 0.0% 50.0%

3D ±1 offsets 29.2% 29.2% 100.0% 58.3% 0.8% 1.0% 0.0% 50.0%

4D ±1 offsets 18.8% 37.5% 43.8% 100.0% 0.8% 0.0% 0.0% 50.0%

Perfect Shuffle 0.8% 1.6% 2.4% 3.2% 100.0% 11.5% 0.0% 0.0%

Bit-Reversal 0.0% 0.0% 6.7% 0.0% 24.2% 100.0% 5.0% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 100.0% 0.0%

Hypercube 12.5% 25.0% 37.5% 50.0% 0.0% 0.0% 0.0% 100.0%

Table 2.2: Pair Synergy for 256 PE Tori with±1 offsets and other patterns

Pattern 1D
±

1
of

fs
et

s

2D
±

1
of

fs
et

s

3D
±

1
of

fs
et

s

4D
±

1
of

fs
et

s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±1 offsets 100.0% 96.9% 93.8% 87.5% 0.2% 0.0% 0.0% 50.0%

2D ±1 offsets 48.4% 100.0% 46.9% 43.8% 0.2% 0.0% 0.0% 50.0%

3D ±1 offsets 31.3% 31.3% 100.0% 29.2% 0.2% 0.5% 0.0% 50.0%

4D ±1 offsets 21.9% 21.9% 21.9% 100.0% 0.2% 0.0% 0.0% 50.0%

Perfect Shuffle 0.2% 0.4% 0.6% 0.8% 100.0% 6.0% 0.1% 0.0%

Bit-Reversal 0.0% 0.0% 3.2% 0.0% 12.3% 100.0% 5.6% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.2% 5.6% 100.0% 0.0%

Hypercube 10.0% 20.0% 30.0% 40.0% 0.0% 0.0% 0.0% 100.0%

Table 2.3: Pair Synergy for 1024 PE Tori with±1 offsets and other patterns

Pattern 1D
±

1
of

fs
et

s

2D
±

1
of

fs
et

s

3D
±

1
of

fs
et

s

4D
±

1
of

fs
et

s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±1 offsets 100.0% 98.4% 93.8% 87.5% 0.0% 0.0% 0.0% 50.0%

2D ±1 offsets 49.2% 100.0% 46.9% 87.5% 0.0% 0.0% 0.0% 50.0%

3D ±1 offsets 31.3% 31.3% 100.0% 29.2% 0.0% 0.0% 0.0% 50.0%

4D ±1 offsets 21.9% 43.8% 21.9% 100.0% 0.0% 0.0% 0.0% 50.0%

Perfect Shuffle 0.0% 0.1% 0.1% 0.2% 100.0% 3.1% 0.0% 0.0%

Bit-Reversal 0.0% 0.0% 0.0% 0.0% 6.2% 100.0% 1.4% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 100.0% 0.0%

Hypercube 8.3% 16.7% 25.0% 33.3% 0.0% 0.0% 0.0% 100.0%

Table 2.4: Pair Synergy for 4096 PE Tori with±1 offsets and other patterns

35

Pattern 1D
±

2
k

of
fs

et
s

2D
±

2
k

of
fs

et
s

3D
±

2
k

of
fs

et
s

4D
±

2
k

of
fs

et
s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±2
k offsets 100.0% 87.5% 76.7% 70.0% 0.7% 0.4% 0.0% 53.3%

2D ±2
k offsets 93.8% 100.0% 76.8% 78.6% 0.7% 0.0% 0.0% 57.1%

3D ±2
k offsets 88.5% 82.7% 100.0% 80.8% 0.6% 0.5% 0.0% 61.5%

4D ±2
k offsets 87.5% 91.7% 87.5% 100.0% 0.5% 0.0% 0.0% 66.7%

Perfect Shuffle 5.5% 4.7% 4.0% 3.2% 100.0% 11.5% 0.0% 0.0%

Bit-Reversal 6.7% 0.0% 6.7% 0.0% 24.2% 100.0% 5.0% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 5.0% 100.0% 0.0%

Hypercube 100.0% 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 100.0%

Table 2.5: Pair Synergy for 256 PE Tori with±2k offsets and other patterns

Pattern 1D
±

2
k

of
fs

et
s

2D
±

2
k

of
fs

et
s

3D
±

2
k

of
fs

et
s

4D
±

2
k

of
fs

et
s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±2
k offsets 100.0% 89.8% 80.9% 73.7% 0.2% 0.2% 0.0% 52.6%

2D ±2
k offsets 94.8% 100.0% 81.3% 73.6% 0.2% 0.0% 0.0% 55.6%

3D ±2
k offsets 90.4% 86.0% 100.0% 75.0% 0.2% 0.2% 0.0% 58.8%

4D ±2
k offsets 87.5% 82.8% 79.7% 100.0% 0.1% 0.2% 0.0% 62.5%

Perfect Shuffle 1.8% 1.6% 1.4% 1.2% 100.0% 6.0% 0.1% 0.0%

Bit-Reversal 3.2% 0.0% 3.2% 3.2% 12.3% 100.0% 5.6% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.2% 5.6% 100.0% 0.0%

Hypercube 100.0% 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 100.0%

Table 2.6: Pair Synergy for 1024 PE Tori with±2k offsets and other patterns

Pattern 1D
±

2
k

of
fs

et
s

2D
±

2
k

of
fs

et
s

3D
±

2
k

of
fs

et
s

4D
±

2
k

of
fs

et
s

P
er

fe
ct

S
hu

ffl
e

B
it-

R
ev

er
sa

l

T
ra

ns
po

se

H
yp

er
cu

be

1D ±2
k offsets 100.0% 91.4% 83.7% 77.2% 0.0% 0.1% 0.0% 52.2%

2D ±2
k offsets 95.6% 100.0% 82.4% 84.1% 0.0% 0.0% 0.0% 54.5%

3D ±2
k offsets 91.7% 86.3% 100.0% 77.4% 0.0% 0.1% 0.0% 57.1%

4D ±2
k offsets 88.8% 92.5% 81.3% 100.0% 0.0% 0.0% 0.0% 60.0%

Perfect Shuffle 0.5% 0.5% 0.4% 0.4% 100.0% 3.1% 0.0% 0.0%

Bit-Reversal 1.6% 0.0% 1.6% 0.0% 6.2% 100.0% 1.4% 0.0%

Transpose 0.0% 0.0% 0.0% 0.0% 0.0% 1.4% 100.0% 0.0%

Hypercube 100.0% 100.0% 100.0% 100.0% 0.0% 0.0% 0.0% 100.0%

Table 2.7: Pair Synergy for 4096 PE Tori with±2k offsets and other patterns

36

2.4 FNN Taxonomy: Universal, Sparse, and Fractional FNNs

The basic FNN properties described in Section 2.1 were described without reference to a specific set

of communication patterns. At the time we invented the FNN concept, it was oblivious to knowl-

edge about specific communication patterns or PE pairs. In this section, we will introduce a simple

taxonomy extending the original FNN concept to explicitly use information about the communi-

cations needed by a set of programs. These new variants of FNNcan therefore take advantage of

sparseness to produce lower part-count, cheaper, higher-performance network designs.

FNNs can be divided into three categories, Universal FNNs, Sparse FNNs and Fractional FNNs.

A Universal FNN– the original concept – guarantees the FNN properties (single-switch latency and

dedicated bandwidth) forall possiblePE pairs in the machine, not just the ones that are expected

to be used. ASparse FNNguarantees the FNN properties for only a selected set of PE pairs in the

machine, based on supporting a selected set of communication patterns. More precisely, a Sparse

FNN guarantees thatall requestedPE pairs will have the FNN properties. ForFractional FNNs,

each PE pair has a weighted importance value, and only a fraction of these PE pairs will have the

FNN properties. A specific Fractional FNN attempts tomaximize the sum of the importance values

for the set of covered PE pairs. It is worth noting that unlikeUniversal FNNs, both Sparse FNNs and

Fractional FNNs are not(v, k, 2)-covering designs as discussed in Section 2.1 because not all PE

pairs have single-switch latency. Which FNN type is best fora parallel computer design depends

on how much is known about the expected communications, the nature of these communication

patterns, and the desired generality vs. cost trade-off of the resulting design.

Both Sparse FNNs and Fractional FNNs take advantage of a priori knowledge about the commu-

nication patterns that are likely to be used; in the (relatively rare) cases where no such information

is available, a Universal FNN is most appropriate. The original concept and implementations of

FNNs from 2000 guarantee single-switch latency for all pairs of PEs in the machine, and they were

described by that name in a number of publications [16, 18, 19, 20, 30, 37], but as we realized that

other variants could be important, we came to distinguish this type as Universal FNNs. A Universal

FNN has the property thatany communication pattern that is a permutation will pass through the

network conflict free3. However, Universal FNNs have scaling constraints that limit their cost effec-

tive applicability. For instance, it is clear that for anN PE system, withρ-port switches, that each

PE will need to connect to at leastη ≥ N−1
ρ−1 switches. With a fixed sizeρ, asN grows, the number

of NIs per PE,η, must grow as well. Asη increases, the cost per PE of a Universal FNN increases,

and at some point it exceeds the cost of other more traditional network designs such as Fat-trees or

Clos networks. In practice, the cost trade-off is often driven by the relative cost of more NIs (for an

FNN) vs. using routers instead of switches (for Fat-trees orClos networks). In situations where a

Universal FNN does not offer cost savings, it is up to the designer to determine if the lower latency

of the Universal FNN is worthwhile. Universal FNNs also can sometimes deliver more bandwidth
3Although the traffic presented to each individual switch in the FNN would be free of input and output port conflicts,

real switches might have internal constraints that can cause some packets to be delayed more than others depending on
the specifics of the traffic.

37

by simultaneously using multiple NIs per PE; which is a technique similar to the concept called

“trunking” or “link aggregation.” With current commodity PEs, switches, and NIs, Universal FNNs

are both cheaper and higher performance than more conventional designs for up to a few hundred

PEs.4

For program suites that have known primary communication patterns, a Sparse FNN will pro-

duce a cheaper and more scalable solution than a Universal FNN. A Sparse FNN guarantees the

single-switch latency property for only a selected set of PEpairs, rather than all possible PE pairs.

The PE pairs are selected based on the communication patterns that are expected to be used. The

Sparse FNN has the property that any permutation pattern within the selected communication pat-

terns will pass through the network conflict free5. Communication patterns that include PE pairs

not covered by a Sparse FNN design are still able to be executed using it, but with performance

approximating that of a more conventional network. When utilizing the same network technology,

Sparse FNNs yield comparable performance on the selected communication patterns and scale to

much larger numbers of PEs than Universal FNNs; tens of thousands of PEs can be supported with

commodity hardware that a Universal FNN could not use for much more than a hundred PEs.

Fractional FNNs can be most appropriate for either of two very different reasons. Sometimes,

the communication patterns used by a program are in theory knowable, but not directly available

– for example, because the author of the application has keptthe algorithms and code proprietary.

In this case, experimentally determining statistical properties of the code’s communication patterns

can produce weightings that can guide a Fractional FNN design, but it may be difficult to deter-

mine a fixed threshold by which the “negligible” pairs could be removed to create a specification

for a Sparse FNN. The other reason a Fractional FNN can be mostappropriate is that sometimes

the hardware budget simply is not sufficient to produce even aSparse FNN, in which case, a Frac-

tional FNN can more intelligently select how to subset the communications that are given optimal

performance. This best-effort approach gives Fractional FNNs additional scalability beyond Sparse

FNNs, although supporting up to tens of thousands of PEs is not a serious limitation of Sparse FNNs

at this time.

Relative to this dissertation, we view Universal FNNs as thefoundation and inspiration, Sparse

FNNs as the primary contribution, and Fractional FNNs as a potentially important direction for the

future.

4There are more than a few public recognitions of this fact, including prestigious awards[16, 30]. The primary imped-
iments to Universal FNNs being widely adopted seem to be rooted in the asymmetry of the designs and the entire concept
of a network design being too complex for a human to create. Wehope that these issues will slowly fade as the design
tools and runtime software support improve, and the currentwork involving Sparse FNNs certainly has helped to make
FNNs in general appear less risky.

5Although the traffic presented to each individual switch in the FNN would be free of input and output port conflicts,
real switches might have internal constraints that can cause some packets to be delayed more than others depending on
the specifics of the traffic.

38

Chapter 3

Techniques for Designing Universal and

Sparse FNNs

There is a direct way to construct Universal FNNs using smallfully connected graphs, otherwise

known as complete graphs,Kη+1, whereη + 1 is the number of nodes in the graph. To do so,

simply replace each edge inKη+1 with a ρ-port switch, and each node of the graph withρ
2 PEs.

This construction method results in symmetric Universal FNNs with ρ×(η+1)
2 PEs andη NIs per PE.

These FNNs have an obvious geometric shape, such as a triangle (η = 2) or tetrahedron (η = 3) as

shown in Figure 3.1. Figure 3.1 is based on a similar figure in [1], which describes the network for

the Bunyip Supercomputer. For Bunyip, each lettered circlerepresents a 24 node sub-cluster and

each numbered square is a 48-port switch. The smallest case of η = 1 results in the singleρ-port

switch design withρ PEs. This geometric construction technique is useful for finding Universal

FNN designs by hand, but does not result in designs for large systems that are as cost effective as

the designs found by the techniques discussed below. Also, the geometric construction technique

does not yield answers for arbitrary numbers of PEs – in general, asymmetric designs are needed.

However, relative to this dissertation, the primary limitation to the geometric construction technique

is that it cannot be directly applied to Sparse FNN design.

3.1 A Genetic Algorithm (GA) for Finding Universal FNN Designs

As H.G. Dietz and I were working-out the basic concept of FNNsin April 2000, the original FNN

design tool was created by H.G. Dietz; with minor changes, itis still the primary tool used for

designing Universal FNNs. This design tool uses GA technology, but is highly specialized to the

problem of designing a FNN. The genetic material for an individual is a direct representation of a

network wiring pattern. The primary data structure is a table of bitmasks for each PE; each PE’s

bitmask has a one only in positions corresponding to each neighborhood (switch) to which that PE

has a NI connected. This data structure does not allow a PE to have multiple NIs connected to

the same switch, thus eliminating the non-simple bipartitegraphs from the search. Enforcing this

39

103 4 52DB C
A

Figure 3.1: A Tetrahedral Universal FNN like the Bunyip supercomputer’s network

constraint and limiting the number of “one” bits in the bitmask toη (NIs per PE) greatly narrows

the search space, as described in Section 2.2.

To quickly converge on a good solution, the GA is applied in two distinct phases. Large network

design problems with complex evaluation functions1 are first converted into smaller problems to be

solved for a simplified evaluation function. This rephrasedproblem often can be solved very quickly

and then scaled up, yielding a set of initial configurations that make the full search converge faster.

The simplified evaluation function only values basic FNN connectivity, making each PE directly

reachable from every other. The problem is made smaller by dividing bothN (PE count) andρ (ports

per switch) by the same number while keepingη (NIs per PE) unchanged. For example, a design

problem using 24-port switches and 48 PEs is first scaled to 2-port switches and 4 PEs; if no solution

is found within the alloted time, then 3-port switches and 6 PEs are tried, then 4-port switches and 8

PEs, etc. This scaling technique is an extension of the geometric construction technique discussed

at the beginning of this chapter. A number of generations after finding a solution to one of the

simplified network design problems, the population of network designs is scaled back to the original

problem size, and the GA resumes using the designer-specified evaluation function.

The initial population for the GA is constructed for the scaled-down problem using a very

straightforward process in which each PE’s NIs are connected to the lowest-numbered switch that

still has ports available and is not connected to the same PE via another NI. Additional dummy

switches are created if the process runs out of switch ports;similarly, dummy NIs are assigned to

virtual PEs to absorb any unused real switch ports. The resulting scaled down initial FNN design

satisfies all the constraints except PE-to-PE connectivity. Because the full-size GA search typically

begins with a population created from a scaled-down population, it also satisfies all the basic design

constraints except connectivity. By making all the GA transformations preserve these properties,

the evaluation process needs to check only connectivity, not switch port usage, NI usage, etc.

The GA’s generation loop begins by evaluating all new members of a population of potential

FNN designs. Determining which switches are shared by two PEs is a simple matter of bitwise AND

of the two bitmasks; counting the ones in that result measures the available bandwidth between the

1The complex evaluation function for a network design might incorporate additional criteria beyond measuring how
well the basic FNN properties have been satisfied. For example, the number of single-switch-hop paths between PE pairs
that form a 2D torus might be important.

40

pair of PEs. Which evaluation function is used depends on whether the problem has been scaled

down. The complete population is then sorted in order of decreasing fitness, so that the topKEEP

entries will be used to build the next generation’s population. In order to ensure some genetic

variety, the lastFUDGE FNN designs that would be kept intact are randomly exchangedwith others

that would not have been kept. If a new FNN design is the best fit, it is reported.

Aside from the GA using different evaluation functions for the full size and scaled-down prob-

lems, there are also different stopping conditions appliedat this point in the GA. Because we cannot

know what the evaluation value would be for the optimum design for the full-size search, it ter-

minates only when the maximum number of generations has elapsed. In contrast, the scaled-down

search will terminate in fewer generations if a FNN design with the basic connectivity is found

earlier in the search.

Crossover is then used to synthesizeCROSS new FNN designs by combining aspects of pairs of

parent FNN designs that were marked to be kept. The procedureused begins by randomly selecting

two different parent FNN designs, one of which is copied as the starting design for the child. This

child then has a random number of substitutions made, one at atime, by randomly picking a PE

and making its set of NI connections match those for that PE inthe other parent. This forced match

process works by exchanging NI connections with other PEs (which may be real or dummy PEs) in

the child that had the desired NI connections. Thus, the resulting child has properties taken from

both parents, yet always is a complete specification of the NIto switch mapping. In other words,

crossover is based on exchange of closed sets of connections, so the new configuration always

satisfies the designer-specified constraints onη andρ.

Mutation is used to create the remainder of the new population from the kept and crossover

designs. Two different types of mutation operation are used, both applied a random number of

times to create each mutated FNN design:

1. The first mutation technique swaps individual NI-to-switch connections between PEs selected

at random.

2. The second mutation technique simply swaps the connections of one PE with those of another

PE, essentially exchanging PE numbers.

Thus, the mutation operators are also closed and preserve the basicη and ρ design constraints.

The generation process is then repeated with a population consisting of the kept designs from the

previous generation, crossover products, and mutated designs.

The output of the FNN GA is simply a table that represents the FNN wiring pattern found.

Each line begins with a switch number followed by a colon, which is then followed by the list of

PE numbers connected to that switch. This list is given in sorted order, but for ideal switches, it

makes no difference which PEs are connected to which ports, provided that the ports are on the

correct switch. It also makes very little difference which NIs within a PE are connected to which

switch. However, to construct routing tables, it is necessary to know which NIs are connected to

41

each switch, so we find it convenient to also order the NIs suchthat, within each PE, the lowest-

numbered NI is connected to the lowest-numbered switch, etc. We use this simple text table as the

input to the other FNN tools for generating colored wiring labels, routing tables, etc.

Although the original Universal FNN design tool did not needto consider specific communica-

tion patterns, we found that it was possible to allocate additional unit-latency bandwidth to specific

communication patterns within a Universal FNN at virtuallyno additional cost in complexity. Thus,

we began exploring communication patterns. This transition also became the point at which the

work of this dissertation began to diverge from the tool originally created by H.G. Dietz.

3.2 Specification of Communication Patterns

To design Sparse FNNs, it is necessary to first specify the setof communication patterns that we

wish the Sparse FNN to support with guaranteed pairwise bandwidth and unit latency. This set can

be represented by anN × N weighted connectivity matrix forN PEs, with the value at matrix

element(x, y) being the relative importance of the communications between PEx and PEy. If the

weights are restricted to zero and one, the matrix is in the same form as an adjacency/connectivity

matrix; two PEs are considered adjacent if they are connected to a common switch. There are three

primary approaches for determining these connectivity matrices.

1. Literature search within the target applications’ domain(s)

2. Examination of the source code for the target applications

3. Analysis of instrumented test runs of the target applications

The first approach tends to yield a higher level representation of the communication patterns, which

has to be converted into the connectivity matrix. For example, some frequency-domain transforma-

tion algorithms (such as various codings of FFT) communicate using a bit-reversal pattern in which

PE x communicates with PEy wherey’s binary value is equal to the bits of the binary value of

x listed in reverse order. Another example application domain is Computational Fluid Dynamics

(CFD). CFD communication patterns commonly include the nearest neighbors on a rectilinear grid

usually of two or three dimensions. Yet another example is quantum chromodynamics (QCD)[8]

code which favors four dimensional nearest neighbor communications. Using such a literature

search, one can construct the connectivity matrix for a desired Sparse FNN based on the genre of

applications and algorithms that are expected to run on the machine. Of course, issues such as the

particular mesh factorization used in a code often are not specified in the papers discussing its algo-

rithms, so a significant degree of uncertainty remains aftereven the most careful reading of research

publications.

The second approach constructs the connectivity matrix by directly examining the source code

for the applications that will be run on the machine or consulting the code’s author or documen-

tation. Care must be taken to distinguish between how the author or application code views a

42

communication and how it really is implemented. Libraries like MPICH or LAM-MPI do not al-

ways implement high-level communications, such as MPI broadcast[49], in the way that one might

expect. For example, broadcast could be done using a real hardware broadcast (which few systems

support), a sequence ofN messages, aK-ary tree of messages, etc. Perhaps the most seriously

misleading operation is the personalized all-to-all, which seems to imply all PE pairs communicate,

but is almost never implemented using a technique like that.Like the literature search, this approach

also results in high level descriptions of the communication patterns that need to be converted into

a connectivity matrix.

The third approach involves automated determination of communication patterns using instru-

mented runs of target applications. To do this task requiresan already existing computer sufficiently

powerful to run the target application on a representative data set, and for that computer system

to have the ability to collect and count the communication events. This raw communication event

trace would then need to be converted into a desired connectivity matrix. Some thresholding of

the data would be required to prevent code startup or other rare communication events from overly

influencing the contents of the connectivity matrix.

To assist in the third approach of using an instrumented testrun of the target applications, the

runtime support for FNNs discussed in Section 5.1.3 includes a data collection and reporting module

that directly counts the packets sent from each PE to every other PE. This data can be processed by

a script to generate a connectivity matrix suitable for the Sparse FNN design tools.

To assist in creating the connectivity matrices for the firsttwo approaches, acompattern tool

was written by the author. Thecompattern software allows the communication matrix to be

specified as the union of any of the patterns we found to be common in a literature search. Each

communicating pair yields a one entry in the matrix, every other pair yields a zero. The patterns

available include:

• Hypercube, single bit difference in PE ID number (N must be a power of 2)

• Bit-Reversal of the PE ID number (N must be a power of 2)

• Perfect-Shuffle (N must be even)

• 2D Matrix Transpose of a single element per PE (N must be a square)

• 1D, 2D, 3D, 4D Grids or Tori with various sub-patterns independently selectable:

– Distance 1 offsets in W, X, Y, or Z

– Distance 1 diagonals in 2D and 3D

– Power of 2 offsets in W, X, Y, or Z

– All PEs that differ in only one dimension (e.g. every PE in same row, column, etc.)

Graphical representations of a variety of these patterns are shown in Figures 2.1-2.28 in Section

2.3. Each of those figures shows the upper right triangle of the connectivity matrix for 16, 32,

64, 128, and 256 PEs. For 2D, 3D, and 4D grids/tori, one can select to use just one balanced

43

factorization ofN , or a set of normalized unordered factorizations. For example a 512 PE cluster

can be specified as having any of the following 3D grids: 128x2x2, 64x4x2, 32x8x2, 32x4x4,

16x16x2, 16x8x4, or 8x8x8; the default would be 8x8x8. Once the PE count, communication

patterns, and grid factorization are selected, thecompattern tool creates a connectivity matrix

that can be used by the Sparse FNN design tools discussed in the next two sections.

3.3 A Greedy Heuristic for Finding Sparse FNN Designs

The problem of finding a wiring pattern that satisfies a specific set of communication patterns is

different from finding a wiring pattern that satisfies all possible communication patterns. Initially,

we encoded the communication patterns into the evaluation function used in the Universal FNN GA,

but the geometric scaling trick is completely ineffective for Sparse FNNs, and the GA trajectory

toward a solution was unusably slow and unsteady. We needed away to force the GA to make

changes that had more direct relevance to the problem areas within the potential network designs

being considered. In effect, the system uses a greedy heuristic to incorporate memetic information

to help direct the search.

One can represent the communication patterns by assigning each PE a list of desired neighboring

PEs, which we call a buddy list. For a Universal FNN, each PE’sbuddy list would consist of every

PE except itself. For a Sparse FNN, an individual PE’s buddy list is specific to the PE’s position in

the various communication patterns selected for the SparseFNN. The important difference is that

the buddy list of an individual PE in a Sparse FNN is highly dependent on its PE number. This

difference dramatically reduces the effectiveness of the FNN GA described in Section 3.1 when

applied to Sparse FNN designs.

First, the two mutation operations in the Universal FNN GA are much less likely to improve

an individual PE’s connectivity, relative to its buddy list, because two randomly selected PEs are

not likely to have much similarity in their lists. Second, because Universal FNNs require that

all pairwise communications are covered, it is relatively straightforward to scale a solution up by

multiplying both the number of ports per switch,ρ, and the number of PEs,N , by the same factor;

thus, the FNN GA starts by searching the much smaller spaces of scaled-down designs for a design

which it could scale up to solve the specified problem. This scaling heuristic can be quite effective

for Universal FNNs, however, it rarely helps for Sparse FNNs. Sparse FNN design needs a heuristic

that respects the sparse nature of the buddy lists. To that end, I developed a greedy allocation

heuristic to design Sparse FNNs, as described below.

3.3.1 The Basic Heuristic Sparse FNN Design Algorithm

The basic premise used by the heuristic Sparse FNN design algorithm is that, at each step in con-

structing a wiring pattern, the number of remaining unconnected buddies is maximally reduced.

These steps are demarcated by deciding to connect a particular PE to a particular switch. We call

each possible decision point a crosspoint, because when selected, a crosspoint connects one PE to

44

one switch. Here are the four basic phases that the heuristicalgorithm follows:

1. Find the list of crosspoints that would maximally reduce the global number of unconnected

buddies

2. Check for and eliminate crosspoints from the list that would directly lead to a failed design

3. Select one crosspoint from the remaining candidates list

4. Connect that crosspoint and update all affected data structures, then if not finished go back to

phase 1

Each of those phases has various possible implementations,with some of the tested variations dis-

cussed in Section 3.3.3. First, however, it is appropriate to discuss the primary data structures used

by the heuristic.

3.3.2 The Heuristic’s Primary Data Structures

The current state of the Sparse FNN design problem is represented by a crosspoint matrix, with a

column for each ofS switches and a row for each ofN PEs as shown in Figure 3.2. Each entry

of this crosspoint matrix represents a potential connection between a PE and a switch. Initially, all

of the crosspoints are marked as unconnected. Each crosspoint entry holds two integer reference

counts and two single bit flags, all stored together as bit-fields in a signed 32-bit integer. The

least significant 16 bits represents the amount that the global unconnected buddy count would be

reduced if this crosspoint is connected next. In other words, this field holds the number of currently

unconnected buddies that the given PE would now be connectedto if this crosspoint was connected.

The next 14 bits, the full reference count, indicates how many of those unconnected buddies have

already used all their NIs. If the full count is nonzero, no new switches can be used to satisfy that

buddy pair. Finally, the connected flag is the sign bit, and the available flag is in the next most

significant bit. By using a signed integer, all connected crosspoints have a negative value regardless

of the values in other fields, which simplifies the search in phase one of the heuristic. This particular

bit-level encoding is not a fundamental requirement of the heuristic, but it dramatically reduces the

execution time on the systems we have used to execute the design searches relative to other encoding

schemes that we tested.

When the heuristic compares the importance of two crosspoints, a signed 32-bit integer compare

is all that is required. In this scheme, connected or otherwise unavailable crosspoints rank below

any crosspoint that is still available to be connected. Also, an available crosspoint with any full

references will outrank a crosspoint with none. This latterfeature allows the heuristic to quickly

select crosspoints that must be connected to satisfy buddy pairs that have run out of NIs, although

the particular crosspoint may not maximally reduce the global unconnected buddy count.

There also is an array that holds the number of remaining available ports on each switch, initial-

ized to their port counts. Each PE has a list of which switchesit is connected to, as well as a running

45

S w i t c h
X p t

S w i t c h S w i t c hX p tX p tX p t X p tX p t
X p tX p t X p tu b S e t

{ A , J , … }{ B , C , … } N o r m a l R e f e r e n c e C o u n tF u l l R e f e r e n c e C o u n t1 = A v a i l a b l e , 0 = U n a v a i l a b l e1 = C o n n e c t e d , 0 = U n c o n n e c t e d
A s i g n e d 3 2 : b i t c r o s s p o i n t (X p t) :

Figure 3.2: Heuristic’s Data Structure

Algorithm 1 Initialize Heuristic’s Data Structures
procedure INITHEURISTIC

{active switches} ← ∅
{active PEs} ← ∅
for all p ∈ {PEs in the design specification} do

5: {active PEs} ← {active PEs} ∪ {p}
peAvail[p] ← 0
niAvail[p]← η ⊲ maximum allowed NIs per PE
{switches thatp is connected to} ← ∅
{unconnected buddies ofp} ← list from design specification ⊲ a.k.a. the ubSet

10: unconnectedBuddyCt[p] ← value from design specification
end for

end procedure

total of available ports across that set of switches. Each PEhas a list of currently unconnected bud-

dies, calledubSet in Figure 3.2, initialized to its entire buddy list. For space reasons, the columns

of the crosspoint matrix are only instantiated on an as-needed basis. Thus, the crosspoint columns

for switches that are full, or not yet in use, are not actuallystored. The initialization of these various

data structures is shown in Algorithm 1.

3.3.3 Variations and Details of the Heuristic Algorithm’s Four Phases

Shown in Algorithm 2 is the first phase of the heuristic – whichis conceptually simple, although

time consuming. It scans through each crosspoint on all the active switches collecting a list with

the maximum rank. Various priority queue data structures were considered to reduce the time com-

plexity of this phase, such as a Fibonacci heap. However, during phase four, such a priority queue

needs to support both increasing and decreasing the key fields for many crosspoints. Thus, the time

complexity of phase four would be greatly increased by the use of a priority queue for the cross-

46

Algorithm 2 Find Max Crosspoints
function FINDMAX XPTS

{candidate Xpts} ← ∅
max← AVAILABLE - 1
for all s ∈ {active switches} do

5: for all p ∈ {active PEs} do
v ← Xpt[s, p]
if v ≥ max then

need← unconnectedBuddyCt[p] - referenceCt(v) ⊲ needed ports
avail ← swAvail[s] - 1 + peAvail[p] ⊲ available ports

10: if (niAvail[p] = 1) ∧ (need > avail) then
Xpt[s, p]← v - AVAILABLE ⊲ mark it as unavailable

else ifv > max then
max← v

{candidate Xpts} ← {(s, p)}
15: else

{candidate Xpts} ← {candidate Xpts} ∪ {(s, p)}
end if

end if
end for

20: end for
return {candidate Xpts}

end function

points relative to using a linear array where crosspoints can be updated independently in constant

time. The slowness of using a search through an array in the first phase instead of a priority queue

is mitigated by the search using a linear access pattern through memory2.

At the end of phase one, if the list is empty, a new switch is activated and a candidate list of

crosspoints is selected to be the first connected to the new switch, as shown in Algorithm 3. These

first crosspoints are selected based on the PEs requiring themost additional ports. In other words,

each selected crosspoint corresponds to a PE with the most unconnected buddies that cannot fit onto

any of the switches to which the PE is already connected. If there are any PEs that have only one

NI left, the candidate crosspoints are only selected from PEs with only one NI remaining. This last

rule helps the heuristic abort early if there is already a PE that can not be satisfied.

The second phase of the heuristic goes through the candidatelist checking for crosspoints that

would directly lead to a failed design. It is possible to quickly determine when connecting a partic-

ular PE’s last NI to a switch, if its remaining unconnected buddies cannot be satisfied. For example,

if a PE would have five unconnected buddies after connecting its last NI to a particular switch, that

switch must have at least five additional ports available forthose buddies to join the PE there. This

test is quick enough that it is actually performed inside of phase one before a crosspoint is added

to the candidate list. This quick check is not sufficient to detect all obviously bad crosspoint con-

2Linear access patterns on modern commodity processors and memory systems are much faster then random access
patterns.

47

Algorithm 3 Find First Crosspoints
function FINDFIRSTXPTS

s←a new unused switch
{members of switchs} ← ∅
swAvail[s]← ρ ⊲ maximum allowed ports per switch

5: {active switches} ← {active switches} ∪ {s}
last← false
for all p ∈ {active PEs} do

if niAvail[p] = 1 then
last← true

10: end if
Xpt[s, p]← AVAILABLE

end for
{candidate Xpts} ← ∅
max← −∞

15: for all p ∈ {active PEs} do
if last = (niAvail[p] = 1) then

need← unconnectedBuddyCt[p] - peAvail[p]
if need ≥ max then

if need > max then
20: max← need

{candidate Xpts} ← {(s, p)}
else
{candidate Xpts} ← {candidate Xpts} ∪ {(s, p)}

end if
25: end if

end if
end for
return {candidate Xpts}

end function

48

ditions. The second phase really looks for crosspoints thatwould overflow a switch with required

connections from friend of a friend constraints, which is shown in Algorithm 4. Specifically, when

connecting the last NI of a PE to a switch, not only do its remaining unconnected buddies need to

join it there, but for each of those buddies that would be using their last NI to do so, their uncon-

nected buddies would also have to connect to this switch. This test recurses until either the switch

would overflow, or no more full buddies are created. Any crosspoint that fails this test is removed

from the candidate list, and the crosspoint’s available flagis cleared so that it would not be picked

again in the future. By skipping these crosspoints, the lastNI of a PE could instead be connected

sometime later to a switch with enough open ports to satisfy its unconnected buddies.

The third phase must select one crosspoint from the candidate list to be sent on to the fourth

phase. If the list has only one member, selecting one is easy.Otherwise, some mechanism must

differentiate the equally ranked crosspoints. One approach would be to try them all in sequence,

and backtrack from failed designs. Unfortunately, that approach does not yield answers in a timely

fashion, spending an exorbitant amount of time trying different connections on the last few switches,

when the design needs to have connections changed on one of the early switches. Another alter-

native would be to select the candidates based on the maximumrank that would be subsequently

found during the next first phase. This lookahead approach was found to be extremely costly, and

made the heuristic take a very long time to find solutions. Thebest approach for the third phase of

the heuristic seemed to be to just select one candidate crosspoint randomly from the list and move

on. If the resulting design failed, try again from the beginning with a different random seed. With

this approach for the third phase, the heuristic was able to find solutions for some Sparse FNN de-

sign problems very quickly (a fraction of a second runtime ona laptop for designs with hundreds

of PEs). This random selection approach turned out to also bethe key for combining the heuristic

with a GA, which is discussed in the next section.

During the fourth phase of the heuristic, the selected crosspoint is marked as connected, and

the various data structures are incrementally updated as appropriate, as shown in Algorithm 5. The

newly connected buddies are removed from the appropriate unconnected buddy lists and some ref-

erence counts affected by this new connection are increasedwhile some others are decreased. For

formerly unconnected buddies that were already on this switch, their crosspoints on other switches

are decremented, since they are now connected to this PE on this switch, as shown in Algorithm

6. For unconnected buddies that are not on this switch, theircrosspoints on this switch are incre-

mented. Also, the port availability counts are updated for each PE connected to this switch and for

the switch itself. If this connection uses the last NI for a PE, the available flags for crosspoints in

its row are cleared, to prevent the PE from being connected tomore switches than it has NIs, thus

satisfying theη constraint. Also, for each switch this PE is on that has portsavailable, the full ref-

erence counts for each of its unconnected buddies are incremented. As mentioned in Section 3.3.2,

this step has the effect of promoting those crosspoints so that these critical connections will be pref-

erentially selected during subsequent phase one passes. When the last port on a switch is used, the

crosspoint column for that switch is marked as unavailable,and it’s storage is freed, which satisfies

49

Algorithm 4 Crosspoint Closure Test
function CLOSURESKIP(s, p)

room← swAvail[s] − 1
P ← {members of switchs} ∪ {p}
Q← {p}

5: for all p ∈ Q do
Q← Q− {p}
other ← peAvail[p]
for all b ∈ ({unconnected buddies ofp} − P) do

must← true
10: if other > 0 then

for all c ∈ {switches thatp is connected to} do
if Xpt[c, b] ≥ AVAILABLE then

other ← other − 1
must← false

15: break
end if

end for
end if
if must then ⊲ buddy must join this switch

20: P ← P ∪ {b}
room← room− 1
if room < 0 then

return true ⊲ switch would run out of room
else ifniAvail[b] = 1 then

25: Q← Q ∪ {b} ⊲ must check his friends too
end if

end if
end for

end for
30: return false

end function

function XPTCLOSURETEST({candidate Xpts})
for all (s, p) ∈ {candidate Xpts} do

if CLOSURESKIP(s, p) then
35: {candidate Xpts} ← {candidate Xpts} − {(s, p)}

Xpt[s, p]← Xpt[s, p] - AVAILABLE ⊲ mark it as unavailable
end if

end for
return {candidate Xpts}

40: end function

50

Algorithm 5 Connect Crosspoint
procedure CONNECTXPT(s, p)

Xpt[s, p]← Xpt[s, p] - AVAILABLE
full← (niAvail[p] = 1)
for all b ∈ {unconnected buddies ofp} do

5: v ← Xpt[s, b]
if connected(v) then

RECORDBUDDYCONNECTION(s, p, b)
else iffull then

Xpt[s, b]← v + 1 + FULLREF
10: for all c ∈ {switches thatp is connected to} do

Xpt[c, b]← Xpt[c, b] + FULLREF
end for

else
Xpt[s, b]← v + 1

15: end if
end for
for all m ∈ {members of switchs} do

peAvail[m] ← peAvail[m] − 1
end for

20: Xpt[s, p]← CONNECTED
{switches thatp is connected to} ← {switches thatp is connected to} ∪ {s}
niAvail[p]← niAvail[p] − 1
{members of switchs} ← {members of switchs} ∪ {p}
swAvail[s]← swAvail[s]− 1

25: if swAvail[s] = 0 then
{active switches}← {active switches} - {s}

end if
if full then
{active PEs} ← {active PEs} − {p}

30: end if
end procedure

51

Algorithm 6 Record Buddy Connection
procedure RECORDBUDDYCONNECTION(s, p, b)
{unconnected buddies ofb} ← {unconnected buddies ofb} − {p}
unconnectedBuddyCt[b] ← unconnectedBuddyCt[b] − 1
{unconnected buddies ofp} ← {unconnected buddies ofp} − {b}

5: unconnectedBuddyCt[p] ← unconnectedBuddyCt[p] − 1
δ ← 1
for all c ∈ {switches thatp is connected to} do

Xpt[c, b]← Xpt[c, b] − δ

end for
10: if niAvail[b] ≤ 0 then

δ ← 1 + FULLREF
end if
for all c ∈ ({switches thatb is connected to} − {s}) do

Xpt[c, p]← Xpt[c, p]− δ

15: end for
end procedure

theρ constraint. When updating the various data structures during this phase, a variety of simple

tests are performed to check for a failed design due to this new connection. Unless backtracking is

used in phase three, this failed design state forces the heuristic to halt early. Otherwise, the heuristic

halts when there are no more NIs or switch ports left unused, or when the unconnected buddy lists

are all empty.

3.4 Sparse FNN GA

As discussed in Section 3.3, the Universal FNN GA is not particularly suited to finding Sparse FNN

designs. I developed a new steady state GA specifically for the Sparse FNN design problem which

leveraged the approach taken by the Sparse FNN heuristic. Incontrast to the Universal FNN GA,

the Sparse FNN GA uses genetic material (DNA) that is not a direct representation of the network

wiring pattern. Instead, the Sparse FNN DNA is used to influence the running of the Sparse FNN

heuristic. In brief, the Sparse FNN GA uses DNA to select one of the candidate crosspoints during

phase three of the heuristic described in Section 3.3.3. Thesteady state Sparse FNN GA has these

five basic algorithmic steps, with further discussion in thesubsections following:

1. Randomly select DNA from one or two parents in the current population

2. Generate new DNA using crossover or point mutations upon the parental DNA

3. Evaluate the network design that results from the newly generated DNA

4. Attempt to add the new individual to the current population, possibly removing a less fit

individual to make room

5. If the selected end condition has not been reached, repeatfrom step one

52

A
B C h i l d ' sD N AP a r e n tA ' sD N AP a r e n tB ' sD N A C r o s s o v e rM u t a t i o n

Figure 3.3: Crossover Mutation

3.4.1 What is the DNA used in the Sparse FNN GA?

To design a Sparse FNN, a target set of communication patterns that are to be efficiently supported

by the network must be specified. This specification can be represented as a list of PE pairs that

require single switch-hop communication path(s). This list can be directly generated in a canonical

order from a connectivity matrix described in Section 3.2. The DNA for an individual in the Sparse

FNN GA is a particular permutation of that list, assigning each desired PE pair a unique rank within

the list. The third phase of the heuristic uses this ranking to break ties when selecting a crosspoint,

which is described in Section 3.4.3. The permutation is stored as an array of integers, each an index

into the master PE pair list. There is also an RNA representation that is a copy of the master list in

the order specified by the DNA.

3.4.2 Sparse FNN GA Mutation Operations

A new individual in the Sparse FNN GA can be created either by cloning or by sexual reproduction.

For clones, a random number of point mutations are applied that exchange the ranking of two

randomly selected PE pairs in the DNA. At most one half of the DNA will be mutated in this way.

If the parent’s DNA evaluated to a failed design, the first point mutation exchange is biased to have

a 25% chance of modifying the rank of the last PE pair used in the failed design. This targeted

mutation greatly increased the speed at which the GA found solutions in a few simple test cases.

With a bias of under 5% this improvement effect was not noticeable, and when the bias was over

33% there was no apparent further improvement in convergence speed.

For sexual reproduction, a crossover mutation operation isused, which is shown in Figure 3.3.

The DNA from parent A is copied into the child’s DNA. A random contiguous range of PE pairs is

selected from parent B that is at most half the DNA. For each PEpair listed in parent B’s selected

DNA, those PE pairs are removed from the child’s DNA. The holes in the child’s DNA are then

coalesced together to form one empty block in the same position as the parent B’s selected DNA

range. Finally, the parent B’s selected DNA is copied into the empty block in the child’s DNA.

53

Algorithm 7 A revised Heuristic Initialization sequence
procedure NEWINITHEURISTIC

{active switches} ← ∅
{active PEs} ← ∅
for all p ∈ {PEs in the design specification} do

5: {active PEs} ← {active PEs} ∪ {p}
peAvail[p] ← 0
niAvail[p]← maximum allowed NIs per PE
{switches thatp is connected to} ← ∅
unconnectedBuddyCt[p] ← 0

10: end for
n← number of DNA elements
for i← 0, n − 1 do

RNA[i]← (a, b)← pairList[DNA[i]]
RNAndx[a,unconnectedBuddyCt[a]] ← i

15: RNAndx[b,unconnectedBuddyCt[b]] ← i

unconnectedBuddyCt[a] ← unconnectedBuddyCt[a] + 1
unconnectedBuddyCt[b] ← unconnectedBuddyCt[b] + 1

end for
end procedure

This crossover mutation operation preserves the relative rankings within the set of DNA taken from

parent A, and it preserves the absolute rankings of the DNA taken from parent B.

3.4.3 Evaluation Steps in the Sparse FNN GA

The cost of evaluating an individual in the Sparse FNN GA is considerably higher than for the

Universal FNN GA due to the more abstract DNA representation. However, this more abstract

DNA representation allows the GA to search the Sparse FNN design space much more efficiently

than the Universal FNN GA. To evaluate an individual in the Sparse FNN GA, the DNA is converted

into two primary data structures that will influence the running of the Sparse FNN heuristic. The

initialization of the heuristic as discussed in Section 3.3.2 is modified to set up these two data

structures, as shown in Algorithm 7. Specifically, a custom desired PE pairs list, the RNA, is

generated in the order selected by the DNA. Each PE pair entryin the RNA is initially marked as

unsatisfied. A second data structure is created that is the unconnected buddy list for each individual

PE. These individual buddy lists are also in the order specified by the DNA, and each entry is simply

an index into the RNA. Then the Sparse FNN heuristic is run, with a few changes to phases three

and four.

In phase three, if the set of candidate crosspoints is for a new switch, select the crosspoint

involving the earliest unsatisfied PE pair in the RNA. This selection step is simply a matter of

finding the minimum RNA index value that any of the PEs from thecandidate list has, as shown

in Algorithm 8. In other words, of the given PEs, the PE is selected that has an unsatisfied buddy

pair that is earliest in the RNA. If the candidate list is not for an empty switch, the crosspoint is

54

Algorithm 8 The Select First Crosspoint by RNA routine
function SELECTFIRSTXPT({candidate Xpts})

min← number of DNA elements
selected← NULL
for all (s, p) ∈ {candidate Xpts} do

5: i← RNAndx[p, 0]
if i < min then

min← i

selected← (s, p)
end if

10: end for
return selected

end function

selected that would satisfy the buddy pair that is earliest in the RNA, as shown in Algorithm 9. In

either situation, the RNA selects which PE pairs get satisfied earlier than others, if the basic heuristic

would have just picked a winner randomly. Also, as a hint to the mutation operation, the last RNA

index that was used is recorded, so that if and when a design fails, the DNA that was most likely

responsible can be preferentially mutated.

In phase four, as PE pairs are satisfied, their entry in the RNAis marked as such, and the

corresponding entries in each PE’s unconnected buddy listsare removed, as shown in Algorithm

10. This incremental update to the RNA and buddy lists makes the time complexity of the third

phase be onlyO(k) for a candidate list of lengthk.

3.4.4 The Parallel Sparse FNN GA

The parallel Sparse FNN GA uses a manager/worker computational scheme. Both the manager and

the workers run the same basic serial Sparse FNN GA code with afew modifications. On the man-

ager, the evaluation function does not directly call the Sparse FNN heuristic. Instead, the manager

sends the DNA of the new individual to an idle worker, who willseed its population with that new

DNA. If there are no idle workers, the manager will first wait for a worker to finish and collect its

results, prior to sending a new individual to the worker. Until the manager gets results back from the

workers, it defers adding individuals to its own population. Thus, the manager’s GA runs in three

phases: during one phase it generates new individuals without waiting for their evaluation results.

In another phase it is both generating new individuals and incorporating evaluation results from the

workers. The last phase is when the manager ceases to send outnew individuals to the workers and

simply collects the results from previously given work.

After receiving a seed individual from the manager, the worker runs the evaluation function on

the new individual, then adds it to its local population. Then the worker runs the full serial Sparse

FNN GA, and after a specified time limit, returns the best individual found so far to the manager. The

worker then waits for a new seed individual from the manager.Before adding each seed individual,

the worker removes the lower half of its population to make room for the new individual and its

55

Algorithm 9 The Select A Crosspoint by RNA routine
function SELECTXPT({candidate Xpts})

min← number of DNA elements
selected← NULL
for all (s, p) ∈ {candidate Xpts} do

5: j ← 0
while (j < unconnectedBuddyCt[p]) ∧ (RNAndx[p, j] < min) do

(a, b)← RNA[RNAndx[p, j]]
if b = p then ⊲ a is the buddy forp

b← a

10: end if
if Xpt[s, b] = CONNECTEDthen

min←RNAndx[p, j]
selected← (s, p)

end if
15: end while

end for
return selected

end function

Algorithm 10 Revised Record Buddy Connection
procedure NEWRECORDBUDDYCONNECTION(s, p, b)

⊲ remove the entry corresponding top from the list RNAndx[b, ?]
{unconnected buddies ofb} ← {unconnected buddies ofb} − {p}
unconnectedBuddyCt[b] ← unconnectedBuddyCt[b] − 1

⊲ remove the entry corresponding tob from the list RNAndx[p, ?]
{unconnected buddies ofp} ← {unconnected buddies ofp} − {b}

5: unconnectedBuddyCt[p] ← unconnectedBuddyCt[p] − 1
δ ← 1
for all c ∈ {switches thatp is connected to} do

Xpt[c, b]← Xpt[c, b] − δ

end for
10: if niAvail[b] ≤ 0 then

δ ← 1 + FULLREF
end if
for all c ∈ ({switches thatb is connected to} − {s}) do

Xpt[c, p]← Xpt[c, p]− δ

15: end for
end procedure

56

early offspring. If the design parameters of a new seed individual are different from the previous

one, the worker invalidates the evaluation results of its already existing population, but keeps their

DNA around in case it is already close to finding a solution. The design parameters that are allowed

to change are the number of ports per switch(ρ), the number of NIs per PE(η), and the maximum

allowed number of switches(S). None of those parameter changes would require a new canonical

PE pair list, and thus all the worker’s existing DNA would still be usable as input to the heuristic.

3.4.5 Sparse FNN Meta Search Problem

The manager is able to change some of the basic network designparameters on the fly, allowing

one invocation of the program to search for solutions for thegiven communication pattern set with

varying values forη, ρ, andS. Specifically, the manager is given a range of viable NIs per PE

(usually from 2 to 8), and a set of switch widths, such as 48, 24, 16, and 8-ports. The search

proceeds from widest switch to narrowest switch, attempting to find a solution for a given switch

size (ρ) that uses the smallest number of NIs per PE(η). Once the minimum value ofη for a

particularρ is reasonably known, narrower switches should needη to be the same or larger3. Thus,

searches of narrower switch sizes with fewer NIs/PE are skipped.

Figure 3.4: Meta Search example

Also, it is clear that for a particular switch widthρ, once a solution withη = j is found, it is

trivial to find a solution withη = j + 1. Thus, once a solution for a givenρ is found, it is not

necessary to try with a largerη on that switch width. For each switch width,η is first tried at the

same point as the next wider switch, increasingη until a solution is found in a reasonable amount

of time. A hypothetical example is shown in Figure 3.4, wherethe dark green boxes in the upper

left are known to have solutions, and the pink boxes in the lower right are suspected to not have

solutions. The black box in the lower right corner is known tonot be viable because the number of

buddies of at least one PE is greater than 14. In this case the maximum possible neighbors for a PE

connected to two 8-port switches isη × (ρ − 1) = 2 × (8 − 1) = 14. The search proceeds from

the lower left to the upper right following the path indicated by the arrows. This search approach

3This relationship is not strictly true, because there is a packing problem involved. In some cases, a specific switch
width may more easily cover a given communication pattern set than any other arbitrary width, even wider switches.
However, if there is a solution with switches of widthρ, it is trivial to construct a solution using switches of width k × ρ,
for any positive integerk, by concatenating groups ofk switches together to form the larger switches.

57

attempts to follow the dividing line between viable designsand non-viable designs. For any given

switch width (ρ), it is possible that the GA gave up too soon for theη = j − 1 case, so after a

first pass over all viable switch widths, a second pass is madeattempting to find a solution using

η = j − 1 for the widest switch that succeeded withη = j, as shown by the boxes with a yellow X

in the figure.

It is also be feasible to follow the dividing line in the opposite direction, starting from the

narrowest switches using the most NIs/PE. In the limit, the narrowest switch has two ports and is

equivalent to a wire connecting two PEs. Ifη is not constrained, the solution to this degenerate case

can be directly derived from the desired PE pair list. We did not choose this direction along the

dividing line between viable and non-viable designs because the time and space complexity of the

Sparse FNN heuristic, as it is currently written, is tuned for the number of switches to be no more

than the number of PEs.

58

Chapter 4

How Well do Sparse FNNs Scale?

Now that we have a way to design Sparse FNNs, one wonders what size parallel machines can ef-

fectively use Sparse FNNs. There is no closed form scaling equation for Sparse FNNs, primarily

because the design of an individual Sparse FNN is based on an arbitrary combination of communi-

cation patterns selected specifically for that individual design. The amount of networking equipment

required for a given number of PEs can be dramatically different depending on the overlap and den-

sity of the selected communication patterns. The scaling ofSparse FNNs also is dependent on the

number of NIs per PE(η) that can be used, and on the width(ρ) of the switches used. However, it

is possible to explore a variety of Sparse FNN designs to observe trends in scalability. The follow-

ing sections of this chapter present scaling data for over a thousand different Sparse FNN designs,

spanning many combinations of input parameters. The chapter concludes with a presentation of a

Sparse FNN design for a machine with 65,536 PEs.

4.1 Sparse FNN Scaling for Individual Patterns

In this and subsequent sections, a series of figure pairs is presented that represent the scaling of

Sparse FNN designs for various sets of communication patterns for machines from only 8 PEs in

size to machines with 16,384 PEs. The first figure in each pair presents the connectivity matrices

for a few sample solutions for a given communication patternset, typically for 16, 32, 64, 128,

and 256 PEs. Also for this specific pattern set, many design parameter combinations for a wider

range of machine sizes are condensed and presented in the second figure of the pair. The second

figure contains information about the underlying communication pattern, as well as a summary of

the results of many Sparse FNN designs that cover that communication pattern. The first pair of

these figures will be discussed in greater detail to elucidate the meaning of the various elements in

each figure.

59

4.1.1 The Hypercube Communication Pattern

As discussed in Section 2.3.2, the neighbors for a PE in the hypercube communication pattern

include all PEs that differ by a single binary digit in their PE numbers. In other words, a hypercube

has direct connectivity between all PE pairs that have a binary Hamming distance of one. In the

case of a Sparse FNN that covers the hypercube communicationpattern, each PE pair with a binary

Hamming distance of one can communicate with the latency of asingle switch hop. As the number

of PEs in a hypercube increases, the number of requested neighbors for any given PE grows as

O(log2 N), while the number of possible PE pairs grows much faster asO(N2).

Sample Sparse FNN solutions using 3 NIs/PE(η = 3) are shown in Figure 4.1 for the hypercube

pattern. Like the figures in Section 2.3 that showed the upperright triangle of the connectivity matrix

for specific communication patterns, this figure shows the upper right triangle of the single-switch

connectivity matrix for Sparse FNN solutions on a variety ofmachine sizes. The black pixels are

the requested coverage, and the green pixels are extra PE pairs that also are covered with single-

switch connectivity. If one looks closely at the figure, one can notice that not all the pixels have the

same intensity. Darker pixels indicate that multiple single-switch paths are available between the

corresponding PE pair. Because all these images represent Sparse FNN solutions, it is guaranteed

thateveryrequested PE pair has at least one single-switch path connecting the pair. While this figure

gives some detailed information about a few Sparse FNN solutions to the hypercube pattern, it does

not convey much information about how well the solutions scale. Shown in Figure 4.2 is the Sparse

FNN scaling results for the hypercube communication pattern on a much larger set of solutions.

The colored lines generally going from the lower left cornerto the upper right of Figure 4.2

represent Sparse FNN solutions using the narrowest switches (smallestρ) of all the solutions found

using a fixed number(η) of NIs per PE. For example, the solid red line represents solutions using

only two NIs per PE, where the vertical coordinate of the lineis the minimum width of the switches

used by those solutions. Eight NIs per PE was the maximum number used in any attempted solution

during the Sparse FNN design searches for all the figures. Although the data in these figures come

from extensive runs of the Sparse FNN GA on the KASY0 supercomputer[35, 47], there is no

guarantee that these solutions are the best possible SparseFNN designs. Thus, the colored lines in

the figure represent upper bounds on the minimumρ needed for a givenη; there may exist not-yet-

found solutions using narrower switches.

The shaded gray region in Figure 4.2 shows the percentage of all possible PE pairings that are

actually covered by the Sparse FNN solutions represented bythe colored lines. The black line just

below the gray region represents the percentage of all possible PE pairings that need to be covered

to satisfy the hypercube communication pattern. Clearly, for any successful Sparse FNN design, its

coverage must not be below the black line. For comparison, ina Universal FNN design, the black

line would be across the top of the figure at a constant 100% coverage. Yet, for this Sparse FNN

problem of covering the hypercube communication pattern, as the number of PEs increases, the

requested fraction of possible PE pairings decreases dramatically. It is this downward sloped black

line that allows Sparse FNNs to scale to much larger parallelmachines than Universal FNNs.

60

Figure 4.1: Solutions for the Hypercube,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube Pattern (0000000100)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.2: Hypercube scaling results

61

In most cases, arbitrarily wider switches can be used in a Sparse FNN design for a givenη, if

desired. Because there is a packing problem involved, a specific switch width may more easily cover

a given communication pattern set than any other arbitrary width, even wider switches. However,

if there is a solution with switches of widthρ, it is trivial to construct a solution using switches of

width k × ρ, for any positive integerk, by concatenating groups ofk switches together to form the

wider switches. These alternative Sparse FNN designs with wider switches are not shown in the

figures to reduce the visual clutter. Also not shown in the figures are the number of switches(S)

used for any particular solution. In general, the number of switches used is as many as are needed

to supply enough total ports to connect all the NIs of all the PEs: S =
⌈

N×η
ρ

⌉

. Thus Sparse FNN

designs with wider switches tend to have fewer of them, whiledesigns with more NIs per PE tend to

have a larger number of switches. A continuous range of switch widths was not practical to explore

due to the already large search space. Thus, the primary switches that were used when finding these

solutions had the following number of ports per switch: 8, 16, 24, 32, 48, 64, 80, 96, 128, 256, and

512 ports. For comparison purposes, the figures include verynarrow switches from seven ports all

the way down to two ports – sizes that are not commercially viable, often costing more per port than

wider switches.

A switch that has just two ports is equivalent to a directly-connected cable between two PEs.

So, for the hypercube pattern, the data points along the bottom of Figure 4.2 represent traditional

switchless implementations of the hypercube. In these directly connected cases, the requested com-

munication pattern is covered precisely by the Sparse FNN with no extraneous PE pairs. These

cases can be seen where the shaded gray region of the figure touches the black line for 256 or fewer

PEs in a hypercube. Thus, for these few special cases withρ = 2, there is a guarantee that no tighter

cover exists, because the wiring pattern is a one-for-one match to the requested communication pat-

tern. In most other cases with wider switches, extra PE pairsare covered by the Sparse FNN design

that were not requested by the set of communication patterns. As we shall see, these extra pairs tend

to dominate the coverage by Sparse FNN designs with wider switches.

This trend easily can be explained by casting the Sparse FNN design problem as a graph match-

ing problem. The set of communication patterns specified fora Sparse FNN design withN PEs can

be represented as a request graph withN vertices with edges between PEs for each desired commu-

nication path. Eachρ-port switch in a Sparse FNN can be modeled as a fully connected subgraph,

Kρ, with ρ vertices. The problem of designing a Sparse FNN is the same asrepeatedly replacing

ρ-vertex subgraphs of the request graph withKρ subgraphs, until there are no more original edges

in the graph, with the constraint that each PE can be a member of at mostη subgraphs. Clearly,

each time aKρ subgraph is substituted for an original subgraph that was not fully connected, the

new graph will have extra connectivity compared to the original request graph. For wider switches,

it becomes more and more likely that the original subgraphs that are being replaced had fewer edges

than theKρ subgraph that replaces them. In other words, attempting to cover a requested commu-

nications graph with largeKρ subgraphs is not likely to be as precise a cover as one done using

smallerKρ subgraphs, withK2 yielding the tightest covers.

62

4.1.2 2D Communication Patterns

The first solutions for 2D patterns that we examine are for a 2Dtorus where the neighbors of a PE

are the 8 nearest PEs, which includes the four diagonals. Sample Sparse FNN solutions withη = 3

are shown in Figure 4.3 for this pattern. Figure 4.4 shows thescaling results for the pattern. The

number of neighbors per PE is a constant, and as can be seen in the figure, the directly connected

solution withη = 8 is valid for all sizes of machines. Also, as a historical note, the case with

η = 4 andρ = 4 corresponds to the wiring pattern of the X-net on the BLITZEN[6] and MasPar

MP-1[46] SIMD machines. A Sparse FNN that supports a single 2D torus for any particular number

of PEs is not very interesting in itself, but leads us to the next set of 2D communications. Shown

in Figure 4.5 are several solutions for the same 2D torus pattern as just described, but repeated for

multiple factorizations of each machine size. For example,for the 256 PE case, not only is the

16×16 factorization included, but also the128×2, 64×4, and32×8 factorizations. These sample

solutions have only 2 NIs/PE, because for this combination of patterns and machine sizes, there

appear to be few cases that required just 3 NIs/PE, but rathereither used 2 or 4 NIs/PE. Shown in

Figure 4.6 are the scaling results for this pattern. The black line in this figure is higher and does

not fall as rapidly as before with increasing machine size. Thus, as can be seen by the slopes of the

colored lines, Sparse FNN designs for this combination pattern require more networking resources

to be covered compared to the single 2D torus pattern. For a 1024 PE machine using 4 NIs/PE, the

minimum switch width for a found solution was 48 ports. In contrast the previous single 2D torus

example needed switches with only 4 ports each for the same problem.

Shown in Figure 4.7 are several solutions for the same multiple 2D tori pattern as just described,

but without the diagonal neighbors. By removing the diagonal neighbors from the underlying 2D

torus patterns, one can greatly improve the scaling costs for supporting multiple 2D factorizations,

as shown in Figure 4.8. In this case, for the same 1024 PE machine withη = 4 NIs/PE, a solution

was found that used switches with only 8 ports. Clearly, if the target program’s performance is

not critically affected by direct diagonal communicationson a 2D grid, this design would be a

much cheaper than the previous one using 48 port switches. Programs for 2D problems commonly

piggyback diagonal neighbor communications with communications to either of the two common

rectilinear neighbors. For example, when sending data to the Northern neighbor, also include the

data that is relevant to the North-East neighbor in the same communication. Thus, in a subsequent

communication step, the North neighbor can send the data to its Eastern neighbor.

63

Figure 4.3: Solutions for Single 2D Torus with±1 offsets including diagonals,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Single 2D Torus with ±1 offsets including diagonals (0000120070)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=8 NIs/PE

Figure 4.4: Scaling of Single 2D Torus with±1 offsets including diagonals

64

Figure 4.5: Solutions for Multiple 2D Tori with±1 offsets including diagonals,η = 2

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Multiple 2D Tori with ±1 offsets including diagonals (0000120076)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.6: Scaling of Multiple 2D Tori with±1 offsets including diagonals

65

Figure 4.7: Solutions for Multiple 2D Tori with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Multiple 2D Tori with ±1 offsets (0000020076)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.8: Scaling of Multiple 2D Tori with±1 offsets

66

Figure 4.9: Solutions for Single 2D Torus with±2k offsets,η = 2

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Single 2D Torus with power of 2 offsets (0000002070)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.10: Scaling of Single 2D Torus with±2k offsets

67

If the target applications need to perform reductions within a row or column, it would be bene-

ficial for each PE to have connectivity with more than its two closest neighbors within the row (or

column). Figure 4.9 shows several sample solutions using 2 NIs/PE for a single 2D torus factoriza-

tion, but instead of the 4 (or 8) nearest neighbors per PE, it includes all PEs in the row (or column)

that have a power of 2 distance along the row (or column). The scaling results for this pattern are

shown in Figure 4.10. The minimum solution found for this pattern on 1024 PEs withη = 4 NIs/PE

needed 24-port switches. Also of note are the solutions withN = ρ2 PEs that usedη = 2 NIs/PE.

These particular solutions also cover the pattern shown in Figure 2.23 in Section 2.3.3. Theseη = 2

solutions are a rare symmetric Sparse FNN where one NI connects to a switch to cover the PE’s

row, and the other NI connects to a column switch, where each switch hasρ =
√

N ports.

4.1.3 3D Communication Patterns

The first solutions for 3D patterns that we examine are for a 3Dtorus where the neighbors of a PE

are the the six rectilinear nearest PEs that correspond to the six faces of a cube. Sample Sparse FNN

solutions withη = 3 NIs/PE are shown in Figure 4.11 for this pattern, while Figure 4.12 shows

the scaling results. As in the first 2D torus example in this chapter, the number of neighbors per

PE is a constant, and thus not particularly interesting as a stand alone Sparse FNN design problem.

However, in that first 2D torus example, we included the diagonal neighbors. If we do the equivalent

for the 3D case, we need to include many more neighbors. Viewing the PEs as a tightly packed stack

of cubes, there are twelve neighbors that touch a central PE on it’s edges, and eight PEs that touch it

at the corners, yielding twenty additional neighbors for that central PE. Sample solutions to this 26-

neighbors-per-PE pattern are shown in Figure 4.13, while Figure 4.14 shows the scaling results. The

discussion in the previous section about a programming optimization for eliminating direct diagonal

communications can also be applied to the 3D case. Thus, it seems the added cost of supporting

direct 3D diagonal communications is generally excessive.

The next pattern of interest is the 3D torus with six neighbors per PE, but repeated for multiple

factorizations of each machine size. For example, for the 64PE case, not only is the4 × 4 × 4

factorization included, but also the16 × 2 × 2, and8 × 4 × 2 factorizations. Sample solutions are

shown in Figure 4.15 withη = 3, while Figure 4.16 presents the scaling results for this pattern. For

comparison purposes, a 1024 PE solution found for this pattern with η = 4 used a minimum of 16

ports per switch, which is not too different from the similar2D case which used 8-port switches.

As before in the 2D case, if instead of needing different gridfactorizations, the target applica-

tions need to perform reductions along one or more dimensions, it would be beneficial for each PE

to have connectivity with more than its two closest neighbors within a dimension. A few sample

solutions withη = 3 are shown in Figure 4.17 for a single 3D torus factorization,but instead of the

six nearest neighbors per PE, it includes all PEs in the row (or column, etc.) that have a power of 2

offset along one dimension. The scaling results for this pattern are shown in Figure 4.18. For this

pattern, the 1024 PE withη = 4 case needed 16-port switches for the minimum solution found.

68

Figure 4.11: Solutions for Single 3D Torus with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Single 3D Torus with ±1 offsets (0000040070)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE

Figure 4.12: Scaling of Single 3D Torus with±1 offsets

69

Figure 4.13: Solutions for Single 3D Torus with±1 offsets including diagonals,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Single 3D Torus with ±1 offsets including edge corner diagonals (0000640070)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.14: Scaling of Single 3D Torus with±1 offsets including diagonals

70

Figure 4.15: Solutions for Multiple 3D Tori with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Multiple 3D Tori with ±1 offsets (0000040076)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.16: Scaling of Multiple 3D Tori with±1 offsets

71

Figure 4.17: Solutions for Single 3D Torus with±2k offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Single 3D Torus with power of 2 offsets (0000004070)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.18: Scaling of Single 3D Torus with±2k offsets

72

4.2 Sparse FNN Scaling for Combinations of Patterns

Although the scaling results for individual communicationpatterns presented in the previous section

are informative, they do not encompass designs that are particularly advantageous for Sparse FNNs.

This section presents scaling results for combinations of distinct communication patterns that to-

gether would not be covered efficiently by a traditional network topology. In contrast, as we shall

see, a Sparse FNN is able to simultaneously support a varietyof communication patterns efficiently.

4.2.1 Hypercube plus Tori with Single Factorizations

Figure 4.19 shows sample solutions withη = 3, while Figure 4.20 shows the scaling results for the

following combination of communication patterns that include a single factorization for each torus

sub-pattern:

• Hypercube

• Ring with distance 1 offsets in X

• Single 2D torus with distance 1 offsets in X, or Y

• Single 3D torus with distance 1 offsets in X, Y, or Z

• Single 4D torus with distance 1 offsets in W, X, Y, or Z

For this combination of patterns, the 1024 PE withη = 4 case needed 24-port switches for the

minimum solution found. If the hypercube pattern is not sufficient for the expected global com-

munications (such as for reductions on subsets of the PEs), one can include the power of 2 offset

neighbors for the 2D, 3D, and 4D torus sub-patterns. Sample solutions for this expanded pattern are

shown in Figure 4.21, while scaling results are shown in Figure 4.22. With this change in patterns,

the 1024 PE withη = 4 case needed 32-port switches for the minimum solution found.

73

Figure 4.19: Solutions for Hypercube plus Single Torus with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube, Ring, and Single 2D, 3D, 4D Tori with ±1 offsets (0100070170)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.20: Scaling of Hypercube plus Single Torus with±1 offsets

74

Figure 4.21: Solutions for Hypercube plus Single Torus with±2k offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube, Ring, and Single 2D, 3D, 4D Tori with power of 2 offsets (0200016170)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.22: Scaling of Hypercube plus Single Torus with±2k offsets

75

4.2.2 Hypercube plus Tori with Multiple Factorizations

Sample solutions and the scaling results for the following combination of communication pat-

terns that include multiple factorizations for each torus sub-pattern are shown in Figure 4.23 and

Figure4.24:

• Hypercube

• Ring with distance 1 offsets in X

• Multiple 2D torus with distance 1 offsets in X, or Y

• Multiple 3D torus with distance 1 offsets in X, Y, or Z

• Multiple 4D torus with distance 1 offsets in W, X, Y, or Z

For this combination of patterns, the 1024 PE withη = 4 case needed 32-port switches for the

minimum solution found. The same pattern with the addition of the power of 2 offset neighbors for

the 2D, 3D, and 4D torus sub-patterns has sample solutions shown in Figure 4.25 and scaling results

shown in Figure 4.26. With this change in patterns, the 1024 PE with η = 4 case needed 48-port

switches for the minimum solution found.

76

Figure 4.23: Solutions for Hypercube and Multiple Tori with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with ±1 offsets (0140070176)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.24: Scaling of Hypercube and Multiple Tori with±1 offsets

77

Figure 4.25: Solutions for Hypercube and Multiple Tori with±2k offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with power of 2 offsets (0240016176)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.26: Scaling of Hypercube and Multiple Tori with±2k offsets

78

4.2.3 Special Patterns plus Hypercube and Tori with Multiple Factorizations

If the preceding examples didn’t cover the communication patterns of a target application, it is likely

that application needs a pattern tailored specifically for it. As an example of two such patterns that

are found in the literature are the bit-reversal pattern andthe perfect shuffle and inverse-shuffle

patterns, which were discussed in Section 2.3.1. Sample solutions and scaling results for the fol-

lowing combination of communication patterns that includemultiple factorizations for each torus

sub-pattern are shown in Figure 4.27 and Figure 4.28:

• Bit-reversal

• Perfect Shuffle and Inverse-Shuffle

• Hypercube

• Ring with distance 1 offsets in X

• Multiple 2D tori with distance 1 offsets in X, or Y

• Multiple 3D tori with distance 1 offsets in X, Y, or Z

• Multiple 4D tori with distance 1 offsets in W, X, Y, or Z

For this combination of patterns, the 1024 PE withη = 4 case needed 64-port switches for the

minimum solution found. The same pattern with the addition of the power of 2 offset neighbors for

the 2D, 3D, and 4D torus sub-patterns has sample solutions shown in Figure 4.29 and scaling results

shown in Figure 4.30. With this change in patterns, the 1024 PE with η = 4 case needed 80-port

switches for the minimum solution found.

As can be seen in the two scaling figures, it may be appropriateto consider an additional NI

per PE rather than using larger switches. For example, the 1024 PE withη = 5 case in Figure 4.28

needed 32-port switches for the minimum solution found, which is comparable to theη = 4 case

without the special purpose patterns. Similarly, the 1024 PE with η = 5 case in Figure 4.30 needed

48-port switches, which is also the same width switches as needed for the case without the special

purpose patterns withη = 4.

79

Figure 4.27: Solutions for Bit-reversal, Shuffle, Hypercube, and Tori with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Bit-reversal, Shuffle, Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with ±1 offsets (0143070176)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.28: Scaling of Bit-reversal, Shuffle, Hypercube, and Tori with±1 offsets

80

Figure 4.29: Solutions for Bit-reversal, Shuffle, Hypercube, and Tori with±2k offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Bit-reversal, Shuffle, Hypercube, Ring, and Multiple 2D, 3D, 4D Tori with power of 2 offsets (0243016176)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.30: Scaling of Bit-reversal, Shuffle, Hypercube, and Tori with±2k offsets

81

4.3 A Large Sparse FNN Example

Sparse FNN networks for very large systems, covering a wide range of communication patterns,

can be built using commodity network hardware. The primary limitation in making larger designs

appears to be simply the time and memory requirements of the Sparse FNN design tools. As the

machines available to run the design tools become faster andcontain more memory, even larger

Sparse FNN designs can be found in a reasonable amount of time. The efficiency of the design tool

programs have been dramatically improved since the initialSparse FNN Heuristic was developed,

enabling the design of dramatically larger Sparse FNNs.

The largest Sparse FNN designs we have thus far created contain 65,536 PEs. Not coinciden-

tally, 65,536 is the same number of nodes that are in the BlueGene/L Supercomputer at the Lawrence

Livermore National Laboratory. BlueGene/L is the fastest machine in the world today (March 2006)

as measured by the HPL benchmark[64], achieving over 280 TFLOPS of performance; no other ma-

chine on the Top500 list[64] has close to as many nodes, soN = 65, 536 seems a good upper bound

on what people might be designing in the near future. Although the BlueGene/L’s nodes contain

two PEs each, the primary data network for BlueGene/L is a 65,536 element 3D torus factored as

64 × 32 × 32 with the traditional six neighbors per node. As discussed inSection 4.1.3 and shown

in Figure 4.12, designing a Sparse FNN that supports just a single 3D torus with six neighbors per

PE is not interesting. Thus, the 65,536 PE example Sparse FNNdesign was selected to cover both

a 3D torus with six neighbors per PE and the hypercube pattern. For comparison purposes, Figure

4.31 shows sample solutions of this pattern combination forseveral smaller machines. The scaling

results for this combined pattern are shown in Figure 4.32 for 8 to 16,384 PEs1.

To find solutions to thisN = 65, 536 problem, the parallel Sparse FNN GA described in

Section 3.4 was run on KASY0 for 56 hours, with the search space limited to5 ≤ η ≤ 6 and

ρ ∈ {24, 32, 48, 64, 96, 128}. These limits were selected based on the scaling results already found

for this pattern as shown in Figure 4.32. During this run, theGA found a solution for each of the six

switch sizes: solutions withη = 5 were found forρ ∈ {48, 64, 96, 128} and solutions withη = 6

were found forρ ∈ {24, 32}. Solutions withη = 5 andρ ∈ {64, 96, 128} were found in the first six

hours of the run. Over the next four hours, 15,343 individuals in the GA were evaluated as potential

solutions withη = 5 andρ = 48 before the program gave up and tried solving the problem with

η = 6. Over the next seven hours of the run, the program found solutions withη = 6 for each of

the remaining switch sizes,ρ ∈ {24, 32, 48}. The GA returned to theη = 5 andρ = 48 prob-

lem, and after an additional 14 hours and 36,885 evaluated individuals2, the GA found a solution

with S = 6, 827 switches. The remaining time of almost 25 hours was spent attempting to solve

the problem forη = 5 andρ = 32, in which 71,669 individuals were evaluated without findinga

solution.
1The figure does not include the 65,536 PE designs so that comparisons to the other figures in this chapter would be

easier because the axes are scaled identically.
2The time to evaluate an individual varies considerably depending on how early in the heuristic a failed design is

detected. As the gene pool evolves towards designs that are closer to working, each individual takes longer to evaluate.

82

Figure 4.31: Solutions for Hypercube and Single 3D Torus with±1 offsets,η = 3

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Hypercube and Single 3D Torus with ±1 offsets (0000040140)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 4.32: Scaling of Hypercube and Single 3D Torus with±1 offsets

83

Figure 4.33 shows a Design/Solution Map for the 65,536 PE solution with η = 5 andρ = 48,

much like the figures showing smaller sample Sparse FNN solutions throughout this chapter. In

the upper right is a representation of the requested communication patterns, the Design, shown in

black. Also in the upper right is a representation of the extra coverage achieved by the Sparse FNN

solution, shown in green. The vertical axis goes from PE 0 at the top to PE 65535 at the bottom.

Similarly, the horizontal axis goes from PE 0 on the left to PE65535 on the right. Each coordinate

in the figure represents the single-switch-hop connectivity of a pair of PEs. Because the links in the

network are assumed to be bidirectional, the coverage if shown in the lower left would be a mirror

image along the diagonal.

Due to the large scale of this example, it is impossible for the figure to show individual PE pair

connections at any reasonable pixel resolution. So, each resolvable pixel in Figure 4.33 is actually

a summation of the connectivity of a64 × 64 PE region, representing the connectivity of 4,096 PE

pairs. Near the upper left corner, a64 × 64 pixel region is outlined by a blue box. That region is

shown at almost full scale in Figure 4.34, which covers some of the connectivity for 4,096 PEs. This

representative region is slightly off the diagonal axis to show more of the actual area representing

coverage by the Sparse FNN design. In that figure, a blue box outlines yet another64 × 64 pixel

region, which is shown at full scale in Figure 4.35. This lastfigure shows a 256 PE section, where

each connection can be distinctly seen.

For this large example the total number of possible PE pairs is 2,147,450,880. The requested

communication pattern has 622,592 pairs – just 0.029% of allpossible pairs! The actual design

covers 7,529,833 pairs, or 0.351% of the possible pairs, including all the requested pairs. From

one perspective, this coverage is 12 times more than requested, which may seem excessive. Yet,

the solution has 285 times less coverage than a Universal FNN, and would thus be considerably

less expensive to construct than a Universal FNN. More importantly, the exampleη = 5 solution

would be less expensive than any of theη = 6 solutions. As of May 2006, the component cost

for constructing the 5 NIs/PE solution using 48-port Gigabit Ethernet switches would be around

$9.7 million. Although the 6 NIs/PE solution found using 24 port Gigabit Ethernet switches has

a tighter coverage of only 0.21% of possible PE pairs, its component cost today would be around

$10.2 million. Because the commodity prices of individual components change significantly over

time, there is no general way of selecting the “best” Sparse FNN solution for a given problem.

Clearly, the Sparse FNN design technology presented in thisdissertation is able to find inter-

esting alternative network designs for machines at the largest scales currently being built. For this

N = 65, 536 problem, a weekend of runtime on a machine worth $40,000 to design a network that

would cost on the order of $10 million is sufficient for an academic example. However, a much

greater amount of computation time and power would be appropriate to apply towards finding a

Sparse FNN design that would actually be implemented at these scales. It is not clear how much

the example Sparse FNN design could be improved upon, but certainly the greater amounts of com-

putational power that routinely will be able to be invested in designing larger machines is likely to

result in even better designs.

84

Figure 4.33: A scaled Design/Solution Map forN = 65, 536, η = 5, andρ = 48

85

Figure 4.34: A representative 4,096-PE region of theN = 65, 536 Design/Solution Map

86

Figure 4.35: A representative 256-PE region of theN = 65, 536 Design/Solution Map

87

Chapter 5

Message Routing and Practical Details

for Implementing FNNs

In the preceding chapters we covered FNNs primarily from a perspective that was independent of

the details of the underlying network hardware and protocols that one would use in a real FNN

implementation. In this chapter, we cover issues that can not be so easily separated from these

implementation details. For this work, we choose commodityEthernet networking hardware and IP

protocols for the target implementations, as well as the Linux OS as the base software platform. The

primary detail that this chapter covers is: how do the parallel program’s messages get routed in an

FNN? Following that discussion are subsections on Linux runtime support, network booting of PEs,

IP Multicast, and the potential for fault tolerance on FNNs.The final section discusses alternatives

to using Ethernet to implement FNNs.

5.1 Point to Point Message Routing on FNNs

The two primary issues in routing point to point packets on anFNN are simply how to get from one

PE to another within an arbitrary topology, and how to utilize the bandwidth available in a FNN

when there are multiple paths between PE pairs. For Sparse FNNs the first issue must also deal with

PE pairs that are not connected to a common switch.

In traditional IP networking, the task of routing a packet from one host to another is broken

down into several steps. The first step is the selection or assignment of IP addresses to the hosts

(PEs). Once the source and destination IP addresses are known, a routing table is consulted as

the second step to determine if the destination is on a local network, or if the packet must be sent

through a gateway host. Either way, the third step is to find the link-layer MAC address of the next

host in the route, be it a gateway or the final destination of the packet. On Ethernet-like link layers,

the Address Resolution Protocol (ARP) is used to obtain the next host’s MAC address from its IP

address. In the process of this third step, the outgoing network interface is also selected so that the

packet can reach the next host directly. The fourth step is toactually transmit the packet, and then

88

if the packet is not yet at its final destination, the process is repeated from step two. By a sequence

of these four steps, a message can be delivered from one host to another on any properly configured

IP network.

It is constructive to view the first three steps using the terminology of tuples, where a 2-tuple

is an ordered collection of two values, i.e. an ordered pair.For a FNN, each PE is assigned a

sequential number, called a PE number, and each message has an associated 2-tuple of source and

destination PE numbers. The first three steps of IP message routing described above can be viewed

as translating tuples from one address space into another. Step one translates from a PE number into

an IP address. Step two translates from a destination IP address, into a local-network IP address,

e.g. the next “hop”. Step three translates from the local-network IP address to the link layer MAC

address. Thus, prior to step one, we have a 2-tuple of source and destination PE numbers, and after

step three we have a 2-tuple of source and destination MAC addresses.

Thus ultimately, the problem to be solved for routing a pointto point packet on a FNN is

to translate from the initial PE number 2-tuple into an appropriate MAC address 2-tuple. The

following subsections discuss several alternative ways ofperforming these tuple translations, with

various trade-offs for performance, portability and ease of implementation.

5.1.1 IP Layer Technique for Routing Messages on FNNs

The first alternative is to fully leverage the traditional IPnetworking layer. Each NI in the FNN is

assigned a unique IP address, such that NIs connected to the same switch have IP addresses that are

members of an IP subnet dedicated to that switch. A small representative example of this method is

shown in Figure 5.1. Given a destination IP address, the normal IP routing mechanisms can perform

all the work to select the proper NI to egress from, and to obtain the destination NI’s MAC address

using the ARP system. Thus, effectively, the FNN routing software only needs to translate from a

PE number tuple, to an IP address tuple.

This tuple translation is done using a hostname to IP addresstable. Each PE number is associ-

ated with a hostname, for example PE 42 would be assigned the hostname k42. Each PE would be

given a custom “hosts” file that would store its PE number to IPaddress tuple translations. When a

PE A first communicates with a neighboring PE B, it will perform a hostname lookup to get an IP

address of PE B. This hostname lookup is not done per packet, and is usually done at most once per

invocation of an application.

This technique has the advantage that a sequence of packets between a pair of PEs in a FNN

should not be delivered out of order under normal operating conditions, because only a single path

between a PE pair will be used. A disadvantage is that a maximum of a single unit of bandwidth

will be used between any pair of PEs, even if there are multiple single-hop paths available between

the PE pairs. Another disadvantage is that the ARP system won’t necessarily get the proper1 answer

1One may wonder how could the ARP system not get the proper MAC address for a given IP address, if each IP
address is uniquely assigned to a single NI. However, for theapplicable RFCs, it is not defined as to which object owns
an IP address, be it a NI and/or the host that the NI belongs to.Thus, at least for Linux, the default choice was made that
the host owns all the IP addresses of all its NIs so that in the typical ad-hoc networking setup, things would “just work”.

89

P EP E
S w i t c h1 0 . 1 . 0 . 0 / 1 6 S w i t c h1 0 . 2 . 0 . 0 / 1 6 S w i t c h1 0 . S . 0 . 0 / 1 6

P E eth 1 :10 .2 .Aeth 0 :10 .1 .A eth 1 :10 .S .Beth 0 :10 .2 .B eth 1 :10 .S .Xeth 0 :10 .1 .X
Figure 5.1: Multiple IP addresses per PE (one per NI)

if there are switch to switch connections in the FNN, such as when there are up-links to a top-level

switch. This problem can be alleviated by pre-loading the ARP cache with permanent entries. This

solution adds the burden of collecting and maintaining a database of all the MAC addresses used

in the FNN, which would have to be updated each time a NI is replaced. Also, the Linux in-kernel

ARP cache is limited to 256 entries, which limits the size of the cluster that can effectively use this

technique to fewer than 256 PEs. This 256 entry limit could bechanged by modifying the Linux

kernel source.

The primary disadvantage of this IP-layer technique is due to a general assumption found in

many High Performance Computing (HPC) software packages. There is an assumed one-to-one

and onto mapping of IP addresses and PE numbers. In other words, the assumption is that PE

A and PE B would use the same IP address to refer to PE X, and thusit is safe to exchange IP

addresses between PEs to be used as their identifiers. With this IP layer FNN routing technique,

that assumption is not true. In the example shown in Figure 5.1, one can see that PE A would use

IP address 10.1.X to talk to PE X, while PE B would use 10.S.X instead. For this scheme to work,

each PE must perform its own hostname/PE number to IP addresstranslation. A custom “hosts” file

per PE can be used to store these tuple translations. The LAM/MPI software layer was modified

by the author to support this context-sensitive addressing. The patches were fully incorporated into

the main LAM/MPI software distribution by July 2001 in the 6.5 version series. An investigation

of what would be needed to similarly make Parallel Virtual Machine (PVM) support this technique

was performed by a colleague, but the level of effort required was deemed excessive.

Unfortunately for FNNs with switch to switch connections, this choice means that when an ARP broadcast packet is sent
asking for the MAC address that can reach a particular IP address, a Linux based PE with default configurations would
respond with several different answers, one for each NI thatthe ARP packet arrived on. The requesting PE might not
choose the ARP response that results in the shortest path between the two PEs.

90

5.1.2 ARP Cache Technique for Routing Messages on FNNs

Another alternative is to actively rely on preloaded ARP cache entries on each node to perform the

IP to MAC address translations. Each PE would be assigned a single IP address, and although each

NI in a particular PE would have the same IP address, they would still have unique MAC addresses.

In Linux, a neighbor cache entry includes the egress NI name in addition to the destination MAC

address. This technique solves the problem of multi-homed PEs with respect to the HPC software.

However, this method still has the problem of collecting andmaintaining a database of all the MAC

addresses used in the FNN, which would have to be updated eachtime a NI is replaced. Also, again,

this technique is limited to 256 PEs due to the ARP cache size limits in the Linux kernel. And, this

approach does not take advantage of the bandwidth availablebetween PE pairs that have multiple

single switch paths in the FNN.

5.1.3 Link Layer Technique for Routing Messages on FNNs

A third alternative method for tuple translation from PE numbers to MAC addresses is to push the

entire task down into the link layer of the network stack. Effectively, the PE numbers are directly

used as IP addresses, and the entire FNN appears as a single IPsubnet to the network stack as

shown in Figure 5.2. In addition, the NIs in the FNN are assigned custom MAC addresses that are

derived from the PE number and the device name/number, e.g. eth0, eth1, etc. In this method, the

IP software layer communicates through a virtual network device shown asbond0 in the figure.

The ARP system is replaced by a FNN link-layer routing algorithm that translates directly from

PE number tuples to these custom MAC address tuples. If thereare multiple single switch paths

between a PE pair, on a per packet basis, alternating MAC addresses can be selected by the FNN

link-layer routing algorithm. In a sense, this technique isvery similar to the ARP cache technique

described above, but instead of fixed one-to-one and onto translations, this technique is able to

utilize the bandwidth of multiple single switch paths between PE pairs. This method also avoids

the other disadvantages of the previous methods. Our link-layer routing algorithm can be written

without a 256 PE limit, and can avoid having to maintain a database of MAC addresses for all the

NIs in the machine, because the MAC addresses are predominantly computed values.

The primary disadvantage of this method is the difficulty in implementing the virtual network

device software which would have to also replace the ARP system functionality. The standard

Linux channel bonding module was not capable of accomplishing this technique without extensive

modification. The channel bonding module works as a virtual networking device, e.g.bond0, with

which the upper layers of the networking stack communicate.IP packets are given to thebond0

device, and then based on the bonding mode, thebond0 device selects which “enslaved” NI will

actually send the packet. This egress selection phase wouldneed to be changed for a FNN, because

which NIs are valid choices are dependent on the FNN wiring pattern and on the destination PE. On

the receiving side, the Linux channel bonding code in the networking stack makes all the packets

that arrive via an “enslaved” NI appear to come from the “master” device, e.g.bond0. In most

91

P EP E
F N N s u b n e t : 1 0 . 0 . 0 . 0 / 1 6S w i t c h S w i t c h S w i t c h

P E eth 1 :MAC A1eth 0 :MAC A0 eth 1 :MAC B1eth 0 :MAC B0 eth 1 :MAC X1eth 0 :MAC X0
b o n d 0 : 1 0 . 0 . A b o n d 0 : 1 0 . 0 . B b o n d 0 : 1 0 . 0 . X

Figure 5.2: Single IP address per PE

Algorithm 11 C code to compute a NI’s custom MAC address

MACaddrByte[0] = 2; /* Set the locally administered bit */
MACaddrByte[1] = nodeID >> 24;
MACaddrByte[2] = nodeID >> 16;
byte = MACaddrByte[3] = nodeID >> 8;
byte += MACaddrByte[4] = nodeID;
byte ^= (NI_Number & 0x7) << 5;
MACaddrByte[5] = byte;

bonding modes, the enslaved NIs on a PE are assigned a common MAC address, obtained from

the first NI added to the bond. This cloning of MAC addresses allows the bond module to use

the standard ARP system to translate from IP addresses to MACaddresses2. However, for a FNN

each NI needs to have a unique MAC address, and thus the ARP system functionality would need

to be replaced, as well as replacing the MAC address cloning feature of the bonding module with

code to do our custom MAC address assignments. To initially implement this method, the author

added a new mode calledfnn-routing to the Linux channel bonding module. This new mode

accomplished three primary things. First, when NIs are enslaved to the bonding module, they are

assigned computed MAC addresses rather than a cloned MAC address. Second, the egress device

selection phase was replaced by a FNN routing table lookup. Lastly, a Linux kernel/proc interface

was added so that this routing table could be populated from auser space program.

The C code snippet in Algorithm 11 shows how the MAC addressesare computed, where

2This scheme of cloning of MAC addresses introduced its own set of problems that have plagued naive Beowulf
cluster implementors for years. Basically, unless the network switches are properly configured to handle cloned MAC
addresses, or the network is wired such that no individual switch could ever notice the cloned MAC addresses, things
won’t work well at all.

92

3 2 � b i t R o u t i n g E n t r y F o r m a t s : s r cd s t 3s r cd s ts r cd s ts r cd s ts r cd s t s r cd s t 2s r cd s ts r cd s ts r cd s tu n u s e d s r cd s t 1s r cd s ts r cd s t s r cd s t 0r e s e r v e dN e x t 1 6 � b i t N o d e I Du n u s e d u n u s e d M o d e F i e l d
C u r r e n t P a i r o f N I s

Figure 5.3: Routing Table Entry Formats

nodeID is the 32-bit IPv4 address of a PE, with the nominally 16-bit PE number as its least

significant bits. The format of these computed MAC addresseswas selected to meet two key re-

quirements. First the computed MAC address must not conflictwith any other MAC addresses that

might be reachable on the same broadcast domain. This requirement is satisfied by setting the lo-

cally administered flag bit in each MAC, so that they do not conflict with any vendor supplied MAC

addresses. Because the FNN is presumed to be isolated from any campus or corporate network by at

least a router or head node, these locally administered MAC address would also not conflict with any

other special MAC addresses that might be used by the local IT/Networking staff/department. Sec-

ond, the MAC addresses must work well with commodity Ethernet switches. Commodity Ethernet

network switches tend to use hash tables to maintain their MAC address to switch port mappings.

We discovered that the hash functions in a variety of commodity Ethernet switches do not use the

entire 48 bits of the MAC address. To avoid overflowing hash buckets in the switches, it was found

to be sufficient for packets flowing through an individual switch to differ in the least significant

eight bits of the MAC address. Thus an encoding was chosen that causes the last byte of the MAC

address to be potentially different if either the PE number or NI number is different between two

destinations. With a design target of supporting216 PEs, it is impossible to guarantee that the least

significant byte of a computed MAC address is unique across the entire FNN.

The routing table within each PE consists of a 32-bit entry for each PE in the FNN, as shown

in Figure 5.3. Nominally, this entry contains up to five 6-bitfields, followed by a mode field in the

least significant two bits. Each 6-bit field is a 2-tuple of source and destination NI numbers. The

mode field indicates if there are 5, 4, 3, or only 1 valid 6-bit fields. The case with only one valid

6-bit field allows room for the upper 16 bits of the entry to contain the PE number of an intermediary

PE that must be used to reach the destination when using through-routing as discussed in Section

5.1.4. Thus, the destination MAC is reconstructed from the last 6-bit field, plus the PE number of

the destination, or the PE number of the specified intermediary node. The source NI 3-bit number

is used to select the outgoing NI, as well as the source MAC address. To facilitate load balancing

over multiple NIs, the 6-bit fields are shifted down a position, and the used 6-bit field is placed at

93

the beginning of the list. This encoding scheme can accommodate 1, 2, 3, 4, or 5 NIs in a sequence,

where the two-NI case uses four 6-bit entries, two for each NIused. The single NI case can either

use the through-routing mode, or any of the other modes, withthe single 6-bit entry replicated as

many times as needed.

This encoding scheme also allows the designer to take advantage of imbalanced NI speeds on

the source and destination, such as a server with a Gigabit Ethernet NI, and a regular PE with only

100 Mbit/s NIs. On the server side, the same Gigabit Ethernetcan be selected to send packets to

up to 5 different NIs on the client. And the client can send outpackets through up to 5 NIs while

selecting the server’s single Gigabit Ethernet NI. Many different situations can be handled, all from

how the individual routing entries are constructed. If morethan 8 NIs are used per PE in a FNN

(η > 8), this encoding scheme would need to be expanded to use more than 6 bits per NI pair.

Also, if there are more than 65,536 PEs, the through-routingencoding would need to be modified

to accommodate more than 16 bits for the intermediary PE number. This (temporary) restriction is

consistent with the largest machine size explored to date (in Section 4.3).

5.1.4 Through Routing for Sparse FNNs

For Sparse FNNs, a given PE pair might not have a connection toa common switch. To send

messages between these non-neighboring PEs, a route through one or more intermediary PEs should

be selected. Ideally, the selected route should be the shortest possible, and thus involve the fewest

intermediary PEs. Also, to maximize performance of these non-neighboring communications, it

is desirable for two simultaneously active through-routedpaths to not share any intermediary PEs.

Unfortunately it is rather difficult to guarantee that no intermediary PEs are shared. One obvious

approach to reduce the chance of conflicting paths would be toassign intermediary PEs evenly

across all the through-routed paths.

At boot time, each PE selects its routes to other PEs based on its position in the graph represent-

ing the Sparse FNN. Specifically, the PE executes a a breadth first search on the graph to construct a

breadth first tree (BFT) rooted at the current PE that reachesall the non-neighbor PEs. Then, a pass

for each non-neighbor PE is performed where the BFT is incrementally rebalanced to spread out the

load on the intermediary PEs. This rebalancing is done by finding all the possible first intermediary

PEs, and then, using a pseudo random number generator, select one of the candidate PEs to be the

parent in the BFT for the non-neighbor PE. The pseudo random number generator is a simple equa-

tion set up so that, for a PE pair that needs only one intermediary PE, the same intermediary PE will

be picked for both communication directions. For PE pairs that are further apart, no effort is made

to guarantee the same path is used in both directions.

Once these paths are selected, the current PE’s routing table is filled such that for each non-

neighbor PE, the first intermediary PE on the path to the destination is recorded. In effect, these

intermediary PEs will then act as gateways that are closer tothe destination. This scheme would

work with any of the tuple translation techniques discussedabove.

94

P EP E
F N N s u b n e t : 1 0 . 0 . 0 . 0 / 1 6S w i t c h1 0 . 1 . 0 . 0 / 1 6 S w i t c h1 0 . 2 . 0 . 0 / 1 6 S w i t c h1 0 . S . 0 . 0 / 1 6

P E eth 1 :10 .2 .Aeth 0 :10 .1 .A eth 1 :10 .S .Beth 0 :10 .2 .B eth 1 :10 .S .Xeth 0 :10 .1 .X
f n n 0 : 1 0 . 0 . A f n n 0 : 1 0 . 0 . B f n n 0 : 1 0 . 0 . X

Figure 5.4: Combined scheme with an IP address per PE and an IPaddress per NI

5.2 FNN Runtime Support for Linux

The FNN runtime support for Linux consists of a loadable kernel module, a user space FNN router

program, and a data file that describes the specific FNN wiringpattern, along with appropriate

scripts to configure the FNN at PE boot time. This implementation uses a combination of the

message routing techniques described in Sections 5.1.1, 5.1.3, and 5.1.4. The technique employed

assigns a unique IP address to each PE, and also assigns a unique IP address to each NI in each PE

such that there is a unique IP subnet for each switch3 in the FNN, as well as an IP subnet for the

entire FNN, as shown in Figure 5.4.

This technique is accomplished with an improved implementation of the link layer routing de-

scribed in Section 5.1.3 that does not use the Linux channel bonding module. Instead, the author

developed a standalone kernel module that implements a “send only” virtual network device,fnn0.

Although based on the original code for thefnn-routing bonding mode, this module does not

enslave any Ethernet devices, though it does still assign computed MAC addresses to the NIs used

in the FNN. It also forwards packets to the appropriate Ethernet devices based on the information in

the FNN routing table, as described previously. One of the primary effects of not enslaving the Eth-

ernet devices is that when a packet arrives at a PE, the networking stack does not make it appear to

have arrived via that PE’sfnn0 device. Other than firewall rules and the ARP system, the Linux IP

network stack ignores the information about which network device the packets arrived on. Because

the PEs in a parallel machine are not likely to be running a software firewall, and because the ARP

3For large FNNs with more than 255 switches, the IP addresses assigned to the individual NIs and the subnets assigned
to each switch would need to be constructed in a different manner than shown in the figure. Because the IP address of
each individual NI is only used in special situations, the specifics of the encoding scheme is not important, as long as
each switch is assigned a unique subnet, and each NI attachedto that switch is assigned a unique IP address within that
subnet.

95

system was intentionally bypassed for this link-layer routing approach, the fact that packets never

arrive via thefnn0 device is not noticed by any IP layer software.

This runtime support that combines the link layer and IP layer routing techniques helps solve

two complications of using FNNs in real systems. The first complication is how to support network

booting of PEs within a FNN. The second complication is how todeal with broadcast and multicast

protocols within a FNN. These complications and their solutions are discussed in the following two

subsections.

5.2.1 Techniques for Initial PE Identification when a PE Network-Boots on a FNN

It is common practice to build cluster computers with diskless PEs, where the PE obtains its OS

from a server via a network-booting scheme. During the initial phases of the network-boot of a PE,

the software/firmware running on the booting PE will not be aware of the FNN. In other words,

the FNN runtime support software just described is not encoded in the network boot firmware of a

PE. Thus, the other PEs and/or servers in the FNN must be able to respond appropriately to some

kinds of non-FNN traffic. There are many schemes for booting acomputer over a network, with the

Pre-boot eXecution Environment (PXE) boot ROM as the most common method. The network boot

ROM in the client contacts a boot server using either the Dynamic Host Configuration Protocol

(DHCP) or the Bootstrap Protocol (BOOTP), and in so doing also uses the Address Resolution

Protocol (ARP). Thus, the FNN runtime software must supportARP, DHCP, and BOOTP in some

way.

There are three scenarios that need to be dealt with to support these protocols on a FNN. The first

scenario is the easy case where each PE’s boot NI is connectedto a broadcast domain that reaches

the boot server directly through a single NI. The server simply needs to respond to the requests via

that same NI. The second scenario is the case where the boot server has multiple NIs connected to

the broadcast domain on which PE’s send their boot requests.In this case, the server must select

a single NI to use when responding. The third scenario is the case where the boot server does not

share a broadcast domain with the PE that attempts to networkboot. In this case, another PE must

intercept the request and forward it to the boot server.

We solve this network boot problem by assigning each NI in theFNN a unique IP address,

separate from the PE’sfnn0 IP address. These NI-specific IP addresses allow normal non-FNN

protocols to work through individual NIs, totally oblivious to thefnn0 virtual network device. This

technique directly solves the problem for the first two scenarios, when a server’s DHCP (Dynamic

Host Configuration Protocol) daemon is configured to listen on each of its individual NIs that are

reachable by each network boot capable NI of the PEs. To solvethe third scenario, it should be

sufficient to set up designated PEs in the FNN as DHCP/BOOTP proxy servers, and then guarantee

that these proxy PEs are booted prior to any of their client PEs. Selection of these proxy PEs could

be done similarly to the selection of intermediary PEs via the through routing scheme described in

Section 5.1.4, with the primary boot server acting as the head of the breadth first tree.

96

5.2.2 Options for IP Multicast and Ethernet Broadcast Support

Because the combined technique for FNN routing described above has unique IP addresses per

NI, and each PE could act as an IP Multicast router, any of a multitude of dynamic IP Multicast

routing techniques found in the networking literature could be utilized. Specifically, the Protocol

Independent Multicast (PIM) Dense mode routing scheme should be sufficient to enable the use of

IP Multicast within the FNN. If IP Multicast on a FNN is performance critical, static IP Multicast

routes could be configured to reduce the overhead of dynamically configuring routes.

The author briefly investigated how to support Ethernet broadcast across an entire Sparse FNN

without a common physical broadcast domain. Because the FNNruntime support uses the IP ad-

dress of outgoing packets to index into the FNN routing table, it was not going to be a simple matter

to directly support routing Ethernet packets that did not contain an IP header. Although it was ex-

pected that this problem would need to be solved to allow the BOOTP protocol to work for network

booting the PEs, as discussed above, Ethernet broadcast support was ultimately not required. Thus

the primary use and motivation for supporting Ethernet broadcasts across the entire Sparse FNN

was eliminated. The one known network protocol that remainswhich would benefit from support

for Ethernet broadcast would be UDP broadcast packets. Because UDP broadcast packets are IP

packets, it should be easier to augment the current FNN runtime support to handle UDP broadcast

packets directly, as described below.

The most promising approach for UDP broadcast support wouldbe to use a minimum spanning

tree (MST) of broadcast domains that covers the entire FNN. Each node in this MST would be an

Ethernet broadcast domain including all the PEs reachable by a single physical broadcast. These

MST nodes would be connected by edges labeled with the set of PEs that are common between a

pair of broadcast domains. For each edge in this MST, a singlegateway PE would be determinis-

tically selected for forwarding packets between the two broadcast domains. With a deterministic

method for constructing this MST and for selecting the gateway PEs, each PE in the Sparse FNN

would on its own be able to arrive at the same MST based on the FNN wiring table. Because the

UDP broadcast packet would contain a source IP address that included the source PE number, each

gateway PE receiving the UDP packet could determine where inthe MST the packet came from,

and thus whether that gateway PE needed to rebroadcast a copyof the packet out one or more of

its links. This way the UDP broadcast packets would be routedwithout encountering any loops,

by simply following all outgoing edges of the MST until it reached the leaves of the tree. The one

remaining question is what should the initiating PE do with the UDP broadcast packet in the first

place. The PE should not broadcast the packet out all of its NIs because doing so could cause the

packet to simultaneously arrive at multiple nodes in the MST, which would cause the packet to be

sent throughout the MST multiple times. Instead, if the initiating PE is not a gateway PE of the

MST, it should deterministically select one NI to use to broadcast the packet, thus selecting a single

node in the MST for the broadcast to start from. If the initiating PE is a gateway PE, then it should

send the packet to both of the broadcast domains that the gateway connects in the MST.

97

5.2.3 Overhead of the FNN Runtime software

When a PE in a FNN is ready to send a packet to another PE, the packet is handed over to the virtual

network devicefnn0 before it leaves the machine. On our KASY0 cluster, which is discussed

in Section 6.2, we ran experiments to determine what level ofoverhead was added by thefnn0

device. For each outgoing packet, we measured how much latency can be attributed to the FNN

runtime software. The CPU performance register counters were used to get timing results within

a few tens of CPU clock cycles. When a PE sent one packet each toeach PE of KASY0, the

overhead per packet was 2,324 CPU clock cycles or about 1,120ns when averaged over a thousand

rounds. For repeated packet sends to the same destination from one PE, the overhead measured on

KASY0 was about 210 CPU clock cycles or about 100 ns when averaged over a thousand packets.

The much smaller overhead for the repeated sends is clearly from the routing table entry staying

in the processor’s L1 cache (64 KB), while the larger overhead value comes from having to pull a

not-recently-used routing table entry into the CPU’s cache.

5.3 Options for Fault Tolerance and New Communication Patterns on

Sparse FNNs

Due to the typically large number of available paths betweenPEs in a Sparse FNN, especially when

including paths through intermediary PEs, it is clear that with some work, Sparse FNNs should be

able to be fairly fault tolerant. Also, with the diversity ofconnectivity in a typical Sparse FNN,

it would seem that there should be a way to remap PE numbers on an existing Sparse FNN to

support a new communication pattern that was unanticipatedat the time the original Sparse FNN

was designed.

As initially proposed for this Ph.D. work, it was assumed that the GA developed for designing

Sparse FNNs could be easily modified into a re-targeting toolfor the above purposes. This as-

sumption was based on the structure of the Universal FNN GA which used DNA that was a direct

representation of the network wiring pattern. As discussedin Section 3.4, the DNA used by the

Sparse FNN GA as developed isnot a direct representation of a network wiring pattern. Thus, the

Sparse FNN GA can not take as input an already existing wiringpattern. It is possible that a new

GA could be developed to find PE renumberings for an existing Sparse FNN that would either avoid

specific faults or support a new communication pattern. However, it appears that such a GA would

not be very practical, because the time to completion of a GA could very well exceed the time to

simply fix a fault in a machine. As for the case where an unanticipated communication pattern

needs to be supported, there exist a variety of techniques inthe literature for mapping one network

topology onto another with bounds on the amount of dilation.Studying and implementing these

remapping techniques were beyond the scope of the current work.

As implemented, the runtime support software for Sparse FNNs leaves open the possibility for

a user space fault-tolerance daemon to reconfigure the FNN routing table for a PE on demand. To

98

implement this daemon, there would need to be a method for detecting and identifying a fault in

the network. Once the fault has been identified, a revised FNNdescription file that reflects the new

state of the working network hardware could be created. Oncecreated, this file would need to be

propagated to the PEs, and then used to rebuild the FNN routing tables for each PE. Further study

of this approach or other dynamic fault tolerance approaches is warranted, though such studies are

beyond the scope of the current work.

5.4 InfiniBand (IB), Myrinet, QsNet, SCI, and Other Link-tec hnology

Alternatives

The previous sections of this chapter discussed various details that were specific to Ethernet im-

plementations of FNNs. Here we discuss how these same concepts could be developed and imple-

mented for other types of networking hardware. There are four key requirements of any candidate

link technology that must be true for their use in FNNs:

1. Allows multiple independently routable NIs per PE

2. Availability of switches or routers with a reasonably large number of ports

3. A flexible packet routing scheme that allows for route selection using a lookup table

4. An addressing scheme that supports the total number of PEsin the machine

Because a FNN is built with as many NIs as it has total switch ports, there also needs to be a

reasonable balance between the cost of the NIs and the cost per port of the switches. In contrast,

typical (non-FNN) switched network topologies have many fewer NIs than the total number of

switch ports in the network, which makes the cost of the NIs less important to the total cost. Network

technologies such as Myrinet[7, 44] have NIs which tend to bemuch more expensive than the

average port cost on a switch. Thus, Myrinet is not likely to be an economically effective candidate

for FNN implementations, although, there appear to be no technical limitations preventing the use

of Myrinet.

The lack of wide switches for commodity link technologies such as FireWire/IEEE1394[25]

and USB[65] generally precludes their use in FNNs. The 63 node address limitation of IEEE1394

might also hinder its use for FNNs. For the various custom link technologies used in many su-

percomputer architectures with directly connected topologies, such as the Cray T3D[17] and the

IBM BlueGene/L[24] architectures, the custom routing chips at each node have very little routing

flexibility and could not be used without modification in a FNN.

The Quadrics QsNet[9, 44, 56] link technology should be applicable to FNNs because it has

wide switches and support for multiple NIs per PE. It is unknown if the software layer that interfaces

with the NIs is flexible enough for use in FNNs.

The Scalable Coherent Interface (SCI)[31] link technologyemployed in the Dolphin WulfKit[21]

products is at first glance not applicable to FNNs due to its typical use in directly connected torus

99

topologies. However, 8-port switches are available for SCIthat would allow the implementation of

FNNs using SCI link technology.

The InfiniBand (IB)[9, 34, 44] link technology appears to have the full flexibility for use in

FNNs. There are a variety of multi-port IB Host Channel Adapter (HCA) cards can be configured

as independent NIs, and there are a variety of switch widths available from many vendors.

For all of the link technology alternatives, it appears the primary limitation for use in a FNN

would be the level of difficulty in configuring the software layer(s) that interface with the NIs and

that control the route selection for the network. Because these various alternative link-technologies

have not yet been used in a FNN, the author can not guarantee that some firmware or proprietary

software limitation would not preclude their use in a FNN. However, having talked with various

vendors and examined the documentation for these technologies, the author believes there are no

such limitations for Myrinet, InfiniBand, Dolphin/SCI, andQuadrics QsNet. Especially significant,

is that for all four of those high speed link technologies, there are open-source software drivers

available for use with the Linux OS. Such open-source software drivers should allow the implemen-

tation of the needed FNN runtime routing software, if the native software’s configuration tables, etc.

do not have the flexibility to directly support FNNs.

100

Chapter 6

Some Real FNN Implementations

In the preceding chapter, various possible Sparse FNN designs were presented. This chapter dis-

cusses two real parallel machines, one built with a Universal FNN and the other with a Sparse FNN.

In addition to their network designs, both machines are remarkable for their achieved price/performance

ratio on real applications.

6.1 The KLAT2 Supercomputer with the First Universal FNN

Figure 6.1 shows KLAT2 (Kentucky Linux Athlon Testbed 2)[19], a 64 PE supercomputer with the

world’s first Universal FNN. Its FNN consisted of nine 31-port switches(ρ = 31) and had four

NIs per PE(η = 4). KLAT2 was built in the Spring of 2000, and was the first general purpose

supercomputer to achieve over a GFLOPS of performance for each $1000 spent on the machine.

The significance of the KLAT2 machine in regards to this dissertation is not in its awards[16, 30]

or performance characteristics. Rather, KLAT2 was a machine which facilitated the study of FNNs,

which inspired the thesis for Sparse FNNs. The network on KLAT2 had much more connectivity

than was nominally usable. To write an application that would keep all the wires busy at once

would have been a rather difficult challenge. This challengeis clear when we look at a graphical

representation of KLAT2’s Universal FNN.

It is natural to think of both design constraints and solutions in terms of a square connectivity

matrix, with node sources listed down the left side and sinkslisted across the top, that shows how

many links worth of bandwidth are requested/dedicated to that directed pairwise communication.

Although such a graph for a design specification can be completely asymmetric, because all com-

monly used network hardware employs bidirectional cabling, no directly useful information is lost

if the matrix is folded along the diagonal; the bandwidth requested for A→B is made equal to that

requested for B→A by giving both the maximum value of either. Taking advantage of this property,

we can represent the design requirements and solution in a single square matrix: the lower left tri-

angle defines the requirements while the upper right triangle shows the bandwidth delivered by the

solution. This matrix is trivially shown in graphical form as a square image in which the color (gray

shade) of each point corresponds to the number of links required or dedicated.

101

Figure 6.1: Kentucky Linux Athlon Testbed 2 (KLAT2)

Figure 6.2: KLAT2’s FNN Design/Solution Map

Figure 6.2 is a representation similar to the connectivity matrices elsewhere in this dissertation.

However, instead of showing the desired connectivity as black pixels in the upper right triangle,

the desired connectivity is shown in the lower left triangle. Because a Universal FNN implicitly

requires that all PE pairs have single-switch latency, thisfigure instead emphasizes the number of

links, e.g. bandwidth, between each PE pair, represented asshades of gray.

The white center line represents nodes talking to themselves, which neither requires nor uses

network bandwidth. The lower left triangle specifies complete connectivity with a single unit band-

width per pair and, additionally, two or more units bandwidth for the communication patterns shown

in a somewhat darker gray. KLAT2’s network actually delivers as much as four units of bandwidth

per pair (a black pixel corresponds to four units of bandwidth), entirely covering the single-unit re-

quirement region. Although KLAT2’s design does not quite cover the two-unit requirement region

with two or more units of bandwidth, it comes very close to covering it with an average of more

102

Figure 6.3: Kentucky ASYmmetric Zero (KASY0)

than two units bandwidth per pair. This shortfall is because, at the time KLAT2 was designed, our

FNN design tool favored a higher average over complete coverage of the two-or-more region.

Several higher-level properties of KLAT2’s network are easily visible in this graphic. One is the

asymmetric nature of KLAT2’s network design; the upper right triangle is a random-looking pattern

of one to four units bandwidth per pair. Additionally, when one views KLAT2’s network in this way

it seems clear that the network is seriously over designed – there are many low-importance pairs that

are given high-bandwidth coverage. Suppose that we remove the constraint that all pairs must have

at least one unit of reserved, single-hop latency, bandwidth. Our concern is thus shifted to finding

a design which covers all node pairs that we expect will have significant communications between

them. This shift in design constraints is how the basic concept of Sparse FNNs was formed.

6.2 The KASY0 Supercomputer with the First Sparse FNN

In the Summer of 2003 we built a cluster supercomputer that would demonstrate the Sparse FNN

concept in a real system, in addition to giving us a powerful machine for use in our lab. The KASY0

(Kentucky ASYmmetric Zero) supercomputer[35, 47] shown inFigure 6.3 has 128 PEs and a Sparse

FNN using three NIs/PE(η = 3) and a total of seventeen 23-port switches(ρ = 23).

6.2.1 KASY0’s Hardware

The 128 PEs in KASY0 were constructed from interchangeable parts from the commodity PC in-

dustry, each of which contained these items:

103

• One Retail AMD Athlon XP 2600+ (2.075GHz clock, 256 KB L2 cache, 333 MHz FSB)

• One 512MB PC2700 DDR SDRAM DIMM (Crucial part #CT6464Z335)

• One BioStar M7VIT Pro motherboard with onboard Fast Ethernet Network Interface

• Two Linksys LNE100TX v4.1 Fast Ethernet NICs

• One Codegen 6042L case with 400W power supply, plus two 80mm fans

To meet the design goals of KASY0, we considered a variety of designs for the PEs to achieve the

best price/performance ratio using a fixed budget for the total machine cost. Although processors

were available with faster peak GFLOPS numbers, higher memory bandwidth, and/or lower mem-

ory latency, the price premium for those alternatives wouldhave reduced the size of the machine

by more than the gains in individual PE performance. A parallel supercomputer is a design that

converts great PE price/performance into great raw performance.

KASY0 is able to achieve a very good price/performance ratio, in part, because of its low cost.

Including all parts, shipping, and assembly labor1 the total cost was $39,604.31. The remarkable

thing about KASY0’s price is that, while network hardware isoften the dominant cost for a system

of its size (128 plus 4 spare nodes), less than 11% of the system cost went for the network hardware.

The AMD Athlon XP 2600+ processors were more than 35% of the total system cost; memory was

21%. In fact, the annual electric bill for operating KASY0 isabout the same as the cost of KASY0’s

network.

6.2.2 KASY0’s Sparse FNN

KASY0’s Sparse FNN was designed to cover the following communication patterns:

• Hypercube

• Bit reversal

• Ring with distance-1 offsets

• Single 2D torus (16× 8) with full row and column adjacency

• Single 3D torus (8× 4× 4) with adjacency to all PEs that differ in only one dimension

The lines in Figure 6.4, starting with a number followed by ":" specify the actual wiring pattern

for KASY0’s Sparse FNN: the first number is the switch number and the remaining numbers on each

line are the node numbers connected to that switch. While this table of numbers may be an exact

description of KASY0’s wiring pattern, it is not particularly helpful in revealing patterns or other

1The students who helped assemble KLAT2 were volunteers who donated their time. The students were compensated
for their efforts with $188 worth of food total, and an immeasurable amount of education about the internals of PCs and
their construction.

104

Figure 6.4: KASY0’s Switch Connection List

interesting features of the design. To that end, Figure 6.5 shows a graphical Design/Solution Map

for KASY0’s Sparse FNN. In the upper right is a representation of the actual coverage achieved

by the Sparse FNN solution, with black indicating coverage of the requested pattern, and green

indicating coverage of extra non-requested PE pairs. The vertical axis goes from PE 0 at the top to

PE 127 at the bottom. Similarly, the horizontal axis goes from PE 0 on the left to PE 127 on the

right. Each coordinate in the figure represents the single-switch-hop connectivity of a pair of PEs.

Because the links in the network are bidirectional, the coverage if shown in the lower left would be

a mirror image along the diagonal. The intensity of the colors in the upper right indicate the number

of single-switch paths that connect each PE pair, with darker colors indicating more available paths.

6.2.3 KASY0’s Performance

KASY0’s theoretical peak performance numbers are 531 GFLOPS and 1.06 TFLOPS, respectively,

for 64/80-bit2 and 32-bit floating point. Real applications will achieve lower numbers. This section

summarizes performance results for the HPL benchmark and the POV-Ray benchmark.

A well-known reference for supercomputer performance is the Top500[64], which lists the 500

supercomputers that obtain the highest GFLOPS speed executing the HPL (High Performance Lin-

pack) benchmark program. Performance on HPL depends partlyon the theoretical peak GFLOPS of

the processors, but also on the parallel implementation andefficiency of the network that allows the

processors to work together. In the June 2003 Top500 list, most systems use expensive, specialized,

network hardware. The machines explicitly listed as using standard 100Mb/s Fast Ethernet achieved

an average of less than 8.5% of peak. The average for the systems listed as using Gigabit Ethernet is

better, at about 30% of peak. In contrast, KASY achieved 187.3 GFLOPS, over 35% of peak using

a double-precision version of HPL. For the HPL benchmark, KASY0 achieved a price/performance

ratio of $0.21/MFLOPS (64/80-bit).

2The floating-point registers and internal results have 80 bits of precision, though each value in RAM only has 64-bits
of storage.

105

Figure 6.5: KASY0’s Design/Solution Map

Building on our work from KLAT2’s Gordon Bell submission[30], we wrote a newly tuned

SGEMM core3 that uses the 3DNow! multi-media instruction set of the Athlon. Using this newly

tuned SGEMM core, KASY0 gets 482.6 GFLOPS on a single-precision version of the Linpack

benchmark. That is over 45% of theoretical peak performanceand less than $82 per 32-bit GFLOPS,

or an astounding price/performance ratio of $0.082/MFLOPS(32-bit).

As of August 22, 2003, KASY0 set a new world record for rendering the complex bench-

mark image shown in Fig.6.6 using the Persistence of Vision Raytracer (POV-Ray)[54]. Executing

pvmpovray 3.5c on KASY0 to render the standardbenchmark.pov scene took 72 seconds,

which beat the previous record of 107 seconds set on August 1,2003. This POV-Ray benchmark

has a communication pattern commonly found in manager-worker parallel codes, with many small

messages between a central manager node and individual worker nodes. This asymmetric com-

munication pattern was best supported by placing the manager process on KASY0’s boot server,

yielding two switch-hop latency to any worker node in the cluster. Despite recent submissions from

other systems, KASY0still holds the world record on this benchmark as of April 6, 2006 – more

than two and a half years after setting the record!4

3Our tuned 3DNow! SGEMM core is available in the 3.6 and later versions of ATLAS[68].
4We are certain that there are machines that easily could beatKASY0’s record. However, the records list the system

cost, and the benchmark code’s structure is such that systems using conventional network designs that can beat KASY0
would outrun it by a very small margin at much higher cost. There is a newer machine costing significantly more than
KASY0 proudly positioned below it on the list.

106

Figure 6.6: Standard POV-Ray 3.5 Benchmark image

6.2.4 Scalability of KASY0’s Supported Communication Patterns

The two torus sub-patterns in KASY0’s Sparse FNN fall into the O(D
√

N) category discussed in

Section 2.3.3, so they do not scale as well as the various setsdiscussed previously in Chapter 4.

Figure 6.7 shows example solutions to this combination of patterns for 16, 32, 64, 128, and 256

PEs. This more difficult scaling property can be seen in Figure 6.8, which shows summary results

for this combination of patterns on other size machines.

At the time KASY0 was designed, our knowledge of how Sparse FNNs scale was limited. The

design tool was a cruder and much slower version of the non-GAbased heuristic described in Sec-

tion 3.3. The selection of communication patterns for the KASY0 design was aimed at determining

how many “awkward” patterns we could cover using 24-port Fast Ethernet switches, which were

the cheapest per port at the time. In retrospect, includingO(D
√

N) scaling patterns in KASY0’s

Sparse FNN probably was not justified; certainly, the codes KASY0 usually runs do not need them.

With the improved design technology discussed in this dissertation, a Sparse FNN supporting

the same patterns specified for KASY0 could be built using 16-port switches. Similarly, the runtime

support software was in very early development when KASY0 was built, so it was safer to connect

each switch in the Sparse FNN to a top level switch to allow direct access to each PE from a single

manager machine. Thus, KASY0’s Sparse FNN was designed as ifthe switches were 23-ports each,

reserving the 24th port to be an uplink to a top level switch.

Even with the above caveats, KASY0’s Sparse FNN was dramatically cheaper than any other

conceivable network of comparable performance for a 128 PE machine at the time KASY0 was

built. It cost only $39,604.31 to build KASY0, with only 11% of the total cost spent on the net-

work. Yet, achieved performance on real applications and benchmarks that clearly demonstrated

the superior effectiveness of its remarkably inexpensive network. We also were able to use KASY0

very effectively to further develop and refine the Sparse FNNtechnologies that are the core of this

dissertation.

107

Figure 6.7:η = 3 NIs/PE Solutions for KASY0’s supported communication patterns

 2

 4

 8

 16

 32

 64

 128

 256

 512

 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

 0.1

 1

 10

 100

P
or

ts
 p

er
 S

w
itc

h
(ρ

)

%
 C

ov
er

ag
e

of
 A

ll
P

os
si

bl
e

P
E

 P
ai

rs

Number of PEs (N)

Bit-reversal, Hypercube, Ring with ±1 offsets, and Single 2D 3D Tori with full row col. (0002010770)

Actual %
Requested %
η=2 NIs/PE
η=3 NIs/PE
η=4 NIs/PE
η=5 NIs/PE
η=6 NIs/PE
η=7 NIs/PE
η=8 NIs/PE

Figure 6.8: Scaling of KASY0’s supported communication patterns

108

Chapter 7

Adoptions and Future Advancement of

the Technology

Beyond our laboratory’s KLAT2 and KASY0 clusters, FNN technology has been adopted and used

in clusters in the Mechanical Engineering Department at theUniversity of Kentucky, Keele Univer-

sity, Cornell University, Utah State University, Xavier University, and the University of Louisville.

There are probably others as well; both Linux Labs (a clustervendor and developer of system soft-

ware) and the Massachusetts Institute of Technology have discussed with us their interest in using

FNN technology. Various versions/generations of the FNN runtime support software have been

deployed on clusters using FNNs at the sites listed. The FNN support software also can improve

performance of more traditional networks, especially those using channel bonding.

As of this writing, KASY0 still is the onlySparseFNN implementation. However, there has

been very recent interest in deploying Sparse FNN based systems at other institutions. It is only

with the completion of this dissertation that we are releasing the support in a sufficiently polished

form that Sparse FNN design and implementation will be possible without substantial consulting

assistance from our research group.

There are several areas for future research that have been made apparent by the work reported

in this dissertation:

• The design and characteristics of Fractional FNNs, defined in Section 2.4, are worth explor-

ing. There is great potential to achieve a significant fraction of the performance of a Sparse or

Universal FNN at a dramatically lower cost. Further, Fractional FNNs are more amenable to

the process of automatically creating designs based on empirical evaluation of an application

code’s execution.

• An area deserving additional research would be the class of networks that are not strictly

FNNs yet utilize knowledge of the expected communication patterns in their design. Specifi-

cally, networks that guarantee at mostk switch hops between selected PE pairs, wherek > 1,

would not be Sparse FNNs, yet they would give further flexibility in the cost/performance

trade-off decisions when designing a particular machine.

109

• Work on implementing fault tolerance in a FNN is an area ripe for further research. Fault

tolerance is a major concern for machines of the size that Sparse FNNs have the most impact.

• The current trend towards multiple processor cores per chipand the use of multiple chips per

machine node in a parallel machine indicates the need to explore the effects on communica-

tion patterns that occur within a node, as well as between nodes.

• Is it practical to increase the pair synergy between different communication patterns by se-

lecting alternate PE numberings for the various patterns, and/or alternate factorizations of the

grid/torus patterns? Increasing pair synergy may be a key technique toward both support of

fault tolerance and improved efficiency using multiple-core/multiprocessor nodes.

• The implementation of runtime support for FNNs on another high speed link layer technol-

ogy, such as InfiniBand, would be a very practical path towards making it possible for FNNs

to be more widely used. Unfortunately, KASY0 was built in thelast days when cost favored

100Mb/s Fast Ethernet, and the fact that KASY0 uses a “slow” implementation technology

has sometimes blinded potential users from seeing the fundamental importance of Sparse

FNNs. This problem is now quickly disappearing, as Gigabit Ethernet has become the ac-

cepted norm for supercomputer network implementation technology and it is fully supported

by our current runtime software. As of the 26th Top500 list (November 2005), more than

half the systems implement their primary interconnection network using Gigabit Ethernet

technology.

We believe that, even if Sparse FNNs are nottheanswer, the era of hand-designed network topolo-

gies is coming to a close. From the complexities of high degree Cayley graphs to the asymmetries

of FNNs, it seems clear that computational tools such as GAs will become standard engineering

practice for design of future supercomputer networks. The computational power that can be applied

towards the design problem will continue to advance. The sheer magnitude of the computations

performed to design the networks presented in Chapter 4 would not have been available for the task

a decade ago. In the decades that follow this work, current trends predict that all the above compu-

tations will be able to be replicated in a few hours (or less) on a commodity laptop computer. With

such a low cost for taking this approach, the benefits of usinga computer to design networks will

make this approach irresistible.

110

Chapter 8

Conclusions

For scalable parallel programs, the set of PE pairs that communicate often is both predictable and

small relative to the number of possible PE pairings. Exploiting this sparseness property can greatly

enhance the design and implementation of networks for massively parallel supercomputers.

The sparseness of communicating pairs is rooted in the fact that each of the human-designed

communication patterns commonly used in parallel programshas the property that the number of

communicating pairs grows relatively slowly as the number of PEs is increased. Additionally, the

number of pairs in the union of all communication patterns used in a suite of parallel programs grows

surprisingly slowly due to pair synergy: the same pair oftenappears in multiple communication

patterns. The detailed analysis of communication patternspresented in Section 2.3 clearly shows

that the number of PE pairs actually communicating is very sparse, although the structure of the

sparseness can be complex.

The exploitation of this sparseness can be accomplished in many ways. Here, our focus is on

producing Sparse FNNs: network designs which use the sparseness of communicating PE pairs to

provide single-switch latency and full wire bandwidth for each of the PE pairs specified. Sparse

FNNs achieve these performance properties despite using relatively few network interfaces per PE

and switches that have far fewer ports than there are PEs. TheSparse FNN design problem is

discussed in Chapter 3, the runtime support needed to make itwork is described in Section 5.2,

and Section 6.2 overviews a working prototype (KASY0) whichnot only demonstrated the claimed

properties, but also set world records for its price/performance and performance on a specific appli-

cation (the POV-Ray 3.5 benchmark rendering problem [54]).

The concept of matching the network topology to the expectedcommunication pattern for an

application is not new; JPL’s Big Viterbi Decoder[15] is an example of this concept. However, cov-

ering a few patterns with single-hop latency and full link bandwidth was done either by constructing

a network that was literally the union of the networks for theindividual patterns or by finding ways

to map other topologies onto the hardware topology (e.g., embedding a mesh in a hypercube). The

contribution of Sparse FNNs is that they view covering many patterns as a single problem, creating

a network that is a cover of the union rather than the union of the covers. For two-port switches,

there would be no difference: a two-port switch is essentially equivalent to a wire, covering just a

111

single pair. However, switches with three or more ports allow the network design to be cheaper – a

three-port switch implements 3 pairings, four-port implements 6, and 48-port implements 1,128.

Perhaps the reason Sparse FNNs were not invented earlier is that they would not have been

feasible just a decade ago. The graph covering problem[28, 38] upon which Sparse FNN design

is based, has no known solution algorithm that has less than exponential time complexity; it was

necessary to develop new Genetic Algorithm (GA) technologyto solve the design problem, and

the computational power needed is beyond what would have been readily available a decade ago.

Design problems small enough to be solved by hand are not large enough to have significant sparse-

ness. The benefits of sparseness only become apparent for machines with at least 128 PEs and

fairly wide switches, and both of these features have becomecommon only in the last few years.

However, it is clear that the future will be filled with machine design problems well-suited to Sparse

FNN solutions.

112

Bibliography

[1] Douglas A. Aberdeen, Jonathan Baxter, and Robert Edwards. 98 cents/Mflops/s, Ultra-Large-
Scale Neural-Network Training on a PIII Cluster. InProceedings of the IEEE/ACM SC2000
conference, Dallas, Texas, November 2000.

[2] Sheldon B. Akers and Balakrishnan Krishnamurthy. A group-theoretic model for symmetric
interconnection networks.IEEE Transactions on Computers, 38(4):555–566, April 1989.

[3] George S. Almasi and Allan Gottlieb.Highly Parallel Computing. The Benjamin/Cummings
Publishing Company, Inc., 1994.

[4] BBN Advanced Computers Inc.Butterfly Products Overview, October 1987.

[5] Rudolf Berrendorf, Heribert C. Burg, Ulrich Detert, Ruediger Esser, Michael Gerndt, and
Renate Knecht. Intel paragon XP/S - architecture, softwareenvironment, and performance.
Technical Report KFA-ZAM-IB-9409, 1994.

[6] D.W. Blevins, E.W. Davis, R.A. Heaton, and J.H. Reif. BLITZEN: A highly integrated mas-
sively parallel machine.Journal of Parallel and Distributed Computing, 8:150–160, February
1990.

[7] Nanette J. Boden, Danny Cohen, Robert E. Felderman, AlanE. Kulawik, Charles L. Seitz,
Jakov N. Seizovic, and Wen-King Su. Myrinet: A gigabit-per-second local area network.
IEEE Micro, 15(1):29–36, 1995.

[8] P. A. Boyle, D. Chen, N. H. Christ, M. A. Clark, S. D. Cohen,C. Cristian, Z. Dong, A. Gara,
B. Joó, C. Jung, C. Kim, L. A. Levkova, X. Liao, G. Liu, R. D. Mawhinney, S. Ohta, K. Petrov,
T. Wettig, and A. Yamaguchi. Overview of the QCDSP and QCDOC computers.IBM Journal
of Research and Development, 49(2/3):351–365, March/May 2005.

[9] Ron Brightwell, Doug Doerfler, and Keith Underwood. A Comparison of 4X InfiniBand and
Quadrics Elan-4 Technologies. InProceedings of the 2004 IEEE International Conference on
Cluster Computing, September 2004.

[10] Jehoshua Bruck, Ching-Tien Ho, Shlomo Kipnis, Eli Upfal, and Derrick Weathersby. Effi-
cient algorithms for all-to-all communications in multiport message-passing systems.IEEE
Transactions on Parallel and Distributed Systems, 8(11):1143–1156, November 1997.

[11] C. J. Burgess and A. G. Chalmers. The optimisation of irregular multiprocessor computer
architectures using genetic algorithms. Technical ReportCSTR-96-006, Department of Com-
puter Science, University of Bristol, March 1996.

113

[12] Charles Clos. A study of non-blocking switching networks. Bell Systems Technical Journal,
32(2):406–424, March 1953.

[13] Charles J. Colbourn and Jeffery H. Dinitz, editors.The CRC Handbook of Combinatorial
Designs, pages 260–265,419–423. CRC Press, 1996.

[14] O. Collins, F. Pollara, S. Dolinar, and J. Statman. Wiring Viterbi Decoders (Splitting de-
Bruijn Graphs). InTDA Progress Report 42-96 (October-December 1988), pages 93–103. Jet
Propulsion Laboratory, February 1989. NASA Code 310-30-72-88-01.

[15] Oliver Collins, Sam Dolinar, Robert McEliece, and Fabrizio Pollara. A VLSI decomposition
of the deBruijn graph.Journal of the ACM, 39(4):931–948, 1992.

[16] Computerworld Honors for the KLAT2 Supercomputer.
http://www.cwhonors.org/Search/his_4a_detail.asp?id=4298. 2001.

[17] Cray Reasearch Inc.Cray T3D System Architecture Overview, 1993.

[18] Hank Dietz and Tim Mattox. Inside the KLAT2 Supercomputer: The Flat Neighborhood
Network and 3DNow!http://arstechnica.com/cpu/2q00/klat2/klat2-1.html, June 2000.

[19] H.G. Dietz and T.I. Mattox. KLAT2’s Flat Neighborhood Network. InProceedings of the 4th
Annual Linux Showcase, Extreme Linux Track, Atlanta, GA, October 2000.

[20] H.G. Dietz and T.I. Mattox. Compiler Techniques For Flat Neighborhood Networks. In S.P.
Midkiff, J.E. Moreira, M. Gupta, S. Chatterjee, J. Ferrante, J. Prins, W. Pugh, and C.-W.
Tseng, editors,Languages and Compilers for Parallel Computing, 13th International Work-
shop (LCPC 2000), volume 2017 ofLecture Notes in Computer Science, pages 244–259, IBM
Watson Research Center, Yorktown, NY, 2001. Springer-Verlag.

[21] Dolphin Interconnect Solutions, Inc.D200 Series – WulfKit High-Performance Parallel Com-
puting Clustering Solution, 2004.

[22] José Duato, Sudhakar Yalamanchili, and Lionel Ni.Interconnection Networks: An Engineer-
ing Approach. IEEE Computer Society Press, 1997.

[23] Reuven Elbaum and Moshe Sidi. Topological design of local-area networks using genetic
algorithms.IEEE/ACM Transactions on Networking, 4(5):766–778, 1996.

[24] Adiga et al. An overview of the BlueGene/L supercomputer. In Proceedings of the IEEE/ACM
SC2002 conference, Baltimore, MD, November 2002.

[25] FireWire/IEEE 1394 Trade Association. http://www.1394ta.org.

[26] FNN (Flat Neighborhood Network). http://aggregate.org/FNN/.

[27] GAMMA. http://www.disi.unige.it/project/gamma/.

[28] Daniel M. Gordon, Greg Kuperberg, and Oren Patashnik. New constructions for covering
designs.Journal of Combinatorial Designs, 3(4):269–284, July 1995.

[29] S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and R. W. Johnson. Implementing fast Fourier
transforms on distributed-memory multiprocessors using data redistributions.Parallel Pro-
cessing Letters, 4(4):477–488, 1994.

114

[30] Th. Hauser, T.I. Mattox, R.P. LeBeau, H.G. Dietz, and P.G. Huang. High-Cost CFD on a Low-
Cost Cluster. InProceedings of the IEEE/ACM SC2000 conference, Dallas, TX, November
2000. Received Gordon Bell Prize Honorable Mention, Price/Performance category.

[31] Hermann Hellwagner and Alexander Reinefeld, editors.SCI: Scalable Coherent Interface,
Architecture and Software for High-Performance Computer Clusters, volume 1734 ofLecture
Notes in Computer Science. Springer-Verlag, 1999.

[32] Debra Hensgen, Raphael Finkel, and Udi Manber. Two algorithms for barrier synchronization.
International Journal of Parallel Programming, 17(1):1–17, February 1988.

[33] R. Hoare, H. Dietz, T. Mattox, and S. Kim. Bitwise aggregate networks. InProceedings of The
Eighth IEEE Symposium on Parallel and Distributed Processing (SPDP ’96), New Orleans,
LA, October 1996.

[34] InfiniBand Trade Association.InfiniBand(TM) Architecture Specification Release 1.2, October
2004.

[35] KASY0 (Kentucky ASYmmetric Zero). http://aggregate.org/KASY0/.

[36] Sunil Kim and Alexander Veidenbaum. On shortest path routing in single stage shuffle-
exchange networks. InProc. 7th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures SPAA’95, pages 298–307, Santa Barbara, California, 1995.

[37] KLAT2 (Kentucky Linux Athlon Testbed 2). http://aggregate.org/KLAT2/.

[38] La Jolla Covering Repository. http://www.ccrwest.org/cover.html.

[39] Vijay Lakamraju, Israel Koren, and C.M. Krishna. Filtering Random Graphs to Synthesize
Interconnection Networks with Multiple Objectives.IEEE Transactions on Parallel and Dis-
tributed Systems, 13(11):1139–1149, November 2002.

[40] T.L. Lau and E.P.K. Tsang. Applying a mutation-based genetic algorithm to processor con-
figuration problems. In8th IEEE Conference on Tools with Artificial Intelligence (ICTAI’96),
Toulouse, France, November 1996.

[41] Tung Leng Lau.Guided Genetic Algorithm. PhD thesis, Department of Computer Science,
University of Essex, United Kingdom, 1999.

[42] Charles E. Leiserson. Fat-trees: Universal networks for hardware efficient supercomputing.
IEEE Transactions on Computers, C-34(10):892–901, October 1985.

[43] Charles E. Leiserson, Zahi S. Abuhamdeh, David C. Douglas, Carl R. Feynman, Mahesh N.
Ganmukhi, Jeffrey V. Hill, W. Daniel Hillis, Bradley C. Kuszmaul, Margaret A. St Pierre,
David S. Wells, Monica C. Wong-Chan, Shaw-Wen Yang, and Robert Zak. The network
architecture of the Connection Machine CM-5.Journal of Parallel and Distributed Computing,
33(2):145–158, 1996.

[44] J. Liu, B. Chandrasekaran, J. Wu, W. Jiang, S. Kini, W. Yu, D. Buntinas, P. Wyckoff, and
D. K. Panda. Performance Comparison of MPI Implementationsover InfiniBand, Myrinet and
Quadrics. InProceedings of the ACM/IEEE SC2003 Conference, November 2003.

115

[45] Junichiro Makino, Eiichiro Kokubo, and Toshiyuki Fukushige. Performance evaluation and
tuning of GRAPE-6 - towards 40 "real" Tflops. InProceedings of the ACM/IEEE SC 2003
Conference (SC’03), Phoenix, AZ, November 2003.

[46] MasPar Corp.MasPar System Overview, pn 9300-0100-2790 edition, July 1990.

[47] Timothy I. Mattox, Henry G. Dietz, and William R. Dieter. Sparse Flat Neighborhood Net-
works (SFNNs): Scalable Guaranteed Pairwise Bandwidth andUnit Latency. InProceedings
of the Fifth Workshop on Massively Parallel Processing (WMPP’05) held in conjunction with
the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005),
Denver, CO, USA, April 2005.

[48] E. H. McKinney. Generalized Birthday Problem.The American Mathematical Monthly,
73(4):385–387, April 1966.

[49] Message Passing Interface Forum, http://www.mpi-forum.org/docs/mpi-11-html/mpi-
report.html.MPI: A Message-Passing-Interface Standard, May 1994.

[50] nCUBE Corporation.Technical Overview: nCUBE 2 Supercomputers, 1990.

[51] Lionel M. Ni and Philip K. McKinley. A Survey of WormholeRouting Techniques in Direct
Networks.IEEE Computer, pages 62–76, February 1993.

[52] Kari J. Nurmela. Constructing combinatorial designs by local search. Research Report A27,
Helsinki University of Technology, Digital Systems Laboratory, Espoo, Finland, November
1993.

[53] Kari J. Nurmela and Patric R. J. Östergård. Constructing covering designs by simulated an-
nealing. Technical Report B10, Helsinki University of Technology, Digital Systems Labora
tory, Espoo, Finland, January 1993.

[54] Official POV-Ray Benchmarks. http://www.haveland.com/index.htm?povbench/index.php.

[55] Scott Pakin, Mario Lauria, and Andrew Chien. High Performance Messaging on Workstations:
Illinois Fast Messages (FM) for Myrinet. InProceedings of the IEEE/ACM SC95 Conference,
December 1995.

[56] Fabrizio Petrini, Wu chun Feng, Adolfy Hoisie, Salvador Coll, and Eitan Frachtenberg. The
Quadrics network: High-performance clustering technology. IEEE Micro, 22(1):46–57, Jan-
uary 2002.

[57] M. R. Samatham and D. K. Pradhan. The de Bruijn multiprocessor network: A versatile par-
allel processing and sorting network for VLSI.IEEE Transactions on Computers, 38(4):567–
581, 1989.

[58] Howard Jay Siegel.Interconnection Networks for Large-Scale Parallel Processing. McGraw-
Hill Publishing Company, 1990.

[59] Evan Speight, Hazim Abdel-Shafi, and John K. Bennett. Realizing the performance potential
of the Virtual Interface Architecture. InProceedings of the 13th ACM International Confer-
ence on Supercomputing (ICS), June 1999.

[60] Craig Stanfill. Communications Architecture in the Connection Machine System. Technical
Report HA87-3, March 1987.

116

[61] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U.A. Ranawake, and C. V. Packer.
BEOWULF: A parallel workstation for scientific computation. In Proceedings of the 24th
International Conference on Parallel Processing, pages I:11–14, Oconomowoc, WI, 1995.

[62] Thinking Machines Corporation.Connection Machine Model CM-2 Technical Summary,
November 1990.

[63] Thinking Machines Corporation.Connection Machine CM-5 Technical Summary, November
1992.

[64] Top500 Supercomputers. http://top500.org/.

[65] Universal Serial Bus (USB). http://www.usb.org/.

[66] Thorsten von Eicken, David E. Culler, Seth Copen Goldstein, and Klaus Erik Schauser. Active
Messages: a Mechanism for Integrated Communication and Computation. InProceedings of
the 19th International Symposium on Computer Architecture(ISCA’92), May 1992.

[67] T. J. Warwick.A GA Approach To Constraint Satisfaction Problems. PhD thesis, Department
of Computer Science, University of Essex, United Kingdom, February 1995.

[68] R. Clint Whaley, Antoine Petitet, and Jack J. Dongarra.Automated Empirical Optimizations
of Software and the ATLAS Project.Parallel Computing, 27(1-2):3–25, January 2001.

[69] Junming Xu.Topological Structure and Analysis of Interconnection Networks. Kluwer Aca-
demic Publishers, 2001.

[70] Jung-Lok Yu, Moon-Sang Lee, and Seung-Ryoul Maeng. An Efficient Implementation of
Virtual Interface Architecture using Adaptive Transfer Mechanism on Myrinet. InProceedings
of the Eighth International Conference on Parallel and Distributed Systems (ICPADS’01),
June 2001.

117

Vita of Timothy Ian Mattox

Date of Birth: October 21, 1971

Place of Birth: Lynchburg, Virginia

Education

1997 M.S.E.E., Electrical and Computer Engineering, Purdue University

1993 B.S.C.E.E., Electrical and Computer Engineering, Purdue University

Professional Experience

1999-2006 Graduate Research Assistant, lead student researcher in the KAOS Lab
Department of Electrical and Computer Engineering, University of Kentucky

1994-2005 Research Exhibitor at the annual IEEE/ACM Supercomputing Conference
The Aggregate.org consortium, Purdue University & University of Kentucky

1996-1999 Graduate Teaching Assistant, various graduate & undergraduate computer courses
School of Electrical and Computer Engineering, Purdue University

1994-1996 Graduate Research Assistant, student researcher in the Parallel Processing Lab
School of Electrical and Computer Engineering, Purdue University

1992,1993 Summer Undergraduate Research Internship
Engineering Research Center for Intelligent Manufacturing Systems, Purdue
University

1989,1990 Summer Internships: CAD Operator/Designer & System Analyst/Programmer
Simplimatic Engineering Co., Lynchburg, VA

Awards and Distinctions

2000 Gordon Bell Prize Honorable Mention, Price/Performance Category[5]

2000 SC2000 HPC Games, Most Innovative Hardware Prize

1997 Magoon Award for Excellence in Teaching, Purdue University

1994-1999 Active member of Eta Kappa Nu Electrical Engineering honor society

1989 2nd place in Zoology at the 40th International Science and Engineering Fair
“A Computer Simulation of Biological Evolution”

118

List of Publications

[1] Timothy E. Dowling, Mary E. Bradley, Edward Colón, John Kramer, Raymond P. LeBeau,
Grace C.H. Lee, Timothy I. Mattox, Raul Morales-Juberías, Csaba J. Palotai, Vimal K.
Parimi, and Adam P. Showman. The EPIC Atmospheric Model withan Isentropic/Terrain-
Following Hybrid Vertical Coordinate.Icarus (in press), 2006.

[2] Timothy I. Mattox, Henry G. Dietz, and William R. Dieter. Sparse Flat Neighborhood Net-
works (SFNNs): Scalable Guaranteed Pairwise Bandwidth andUnit Latency. InProceedings
of the Fifth Workshop on Massively Parallel Processing (WMPP’05) held in conjunction with
the 19th IEEE International Parallel and Distributed Processing Symposium (IPDPS 2005),
Denver, CO, USA, April 2005.

[3] Th. Hauser, T.I. Mattox, R.P. LeBeau, H.G. Dietz, and P.G. Huang. Code optimizations for
complex microprocessors applied to CFD software.SIAM Journal on Scientific Computing,
25(4):1461–1477, 2004.

[4] H.G. Dietz and T.I. Mattox. Compiler optimizations using data compression to decrease
address reference entropy. In Bill Pugh and Chau-Wen Tseng,editors,Languages and Com-
pilers for Parallel Computing, 15th International Workshop (LCPC 2002), volume 2481 of
Lecture Notes in Computer Science, College Park, MD, USA, 2005. Springer-Verlag.

[5] Th. Hauser, T.I. Mattox, R.P. LeBeau, H.G. Dietz, and P.G. Huang. High-Cost CFD on
a Low-Cost Cluster. InProceedings of the IEEE/ACM SC2000 conference, Dallas, TX,
November 2000. Received Gordon Bell Prize Honorable Mention, Price/Performance cate-
gory.

[6] H.G. Dietz and T.I. Mattox. KLAT2’s Flat Neighborhood Network. In Proceedings of the
4th Annual Linux Showcase, Extreme Linux Track, Atlanta, GA, October 2000.

[7] H.G. Dietz and T.I. Mattox. Compiler Techniques For Flat Neighborhood Networks. In
S.P. Midkiff, J.E. Moreira, M. Gupta, S. Chatterjee, J. Ferrante, J. Prins, W. Pugh, and C.-
W. Tseng, editors,Languages and Compilers for Parallel Computing, 13th International
Workshop (LCPC 2000), volume 2017 ofLecture Notes in Computer Science, pages 244–
259, IBM Watson Research Center, Yorktown, NY, 2001. Springer-Verlag.

[8] Hank Dietz and Tim Mattox. Inside the KLAT2 Supercomputer: The Flat Neighborhood
Network and 3DNow!http://arstechnica.com/cpu/2q00/klat2/klat2-1.html, June 2000.

[9] H.G. Dietz, T.I. Mattox, and G. Krishnamurthy. The Aggregate Function API: It’s not just
for PAPERS anymore. In Z. Li, P.-C. Yew, S. Chatterjee, C.-H.Huang, P. Sadayappan,
and D. Sehr, editors,Languages and Compilers for Parallel Computing, 10th International
Workshop (LPCP’97), volume 1366 ofLecture Notes in Computer Science, pages 277–291,
Minneapolis, MN, 1998. Springer-Verlag.

[10] Timothy I. Mattox. Synchronous aggregate communication architecture for MIMD parallel
processing. Master’s thesis, School of Electrical and Computer Engineering, Purdue Uni-
versity, West Lafayette, IN, August 1997.

[11] H.G. Dietz and T.I. Mattox. Managing polyatomic coherence and races with replicated
shared memory.IEEE Computer Society Technical Committee on Computer Architecture
(TCCA) Newsletter, pages 53–58, March 1997.

119

[12] R. Hoare, T.I. Mattox, and H. Dietz. TTL-PAPERS 960801: The Modularly Scalable, Field
Upgradable, Implementation of Purdue’s Adapter for Parallel Execution and Rapid Synchro-
nization. Technical Report http://aggregate.org/AFN/960801/Index.html, School of Electri-
cal Engineering, Purdue University, West Lafayette, IN, 1997.

[13] R. Hoare, H. Dietz, T. Mattox, and S. Kim. Bitwise aggregate networks. InProceedings
of The Eighth IEEE Symposium on Parallel and Distributed Processing (SPDP ’96), New
Orleans, LA, October 1996.

[14] H.G. Dietz, R. Hoare, and T. Mattox. A fine-grain parallel architecture based on barrier
synchronization. In A. Reeves, editor,1996 International Conference on Parallel Process-
ing, volume I Architecture, pages 247–250, Bloomington, IL, August 1996. IEEE Computer
Society Press.

[15] Henry G. Dietz, T. M. Chung, and Timothy I. Mattox. A parallelprocessing support li-
brary based on synchronized aggregate communication. In C.-H. Huang, P. Sadayappan,
U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, editors, Languages and Compilers for
Parallel Computing, 8th International Workshop (LCPC’95), volume 1033 ofLecture Notes
in Computer Science, pages 254–268, Columbus, OH, USA, 1996. Springer-Verlag.

[16] H.G. Dietz, T.M. Chung, T. Mattox, and T. Muhammad. A synchronization
and aggregate communication library for PAPERS clusters. Technical Report
http://aggregate.org/TechPub/TR19950131/tr950131.html, School of Electrical Engineer-
ing, Purdue University, West Lafayette, IN, January 1995.

[17] H.G. Dietz, T.M. Chung, T.I. Mattox, and T. Muhammad. Purdue’s Adapter for Paral-
lel Execution and Rapid Synchronization: The TTL-PAPERS Design. Technical Report
http://aggregate.org/TechPub/ICPP95/icpp95.html, School of Electrical Engineering, Pur-
due University, West Lafayette, IN, January 1995.

[18] H.G. Dietz, T. Muhammad, and T. Mattox. TTL Implementation of Purdue’s
Adapter for Parallel Execution and Rapid Synchronization. Technical Report
http://aggregate.org/TechPub/super4.pdf, School of Electrical Engineering, Purdue Univer-
sity, West Lafayette, IN, December 1994.

[19] Henry G. Dietz, William E. Cohen, T. Muhammad, and Timothy I.Mattox. Compiler
techniques for fine-grain execution on workstation clusters using PAPERS. In K. Pingali,
U. Banerjee, D. Gelernter, A. Nicolau, and D.A. Padua, editors, Languages and Compil-
ers for Parallel Computing, 7th International Workshop (LCPC’94), volume 892 ofLecture
Notes in Computer Science, pages 31–45, Ithaca, NY, 1995. Springer-Verlag.

[20] H.G. Dietz, T. Muhammad, J.B. Sponaugle, and T. Mattox. PAPERS: Purdue’s Adapter for
Parallel Execution and Rapid Synchronization. Technical Report TR-EE 94-11, School of
Electrical Engineering, Purdue University, West Lafayette, IN, USA, March 1994.

120

	Title Page
	Acknowledgments
	Contents
	List of Tables
	List of Algorithms
	List of Figures
	Chapter 1 Introduction
	Scope of Work
	Background
	Traditional Network Architectures
	Non-topological Approaches to Improving Latency and Bandwidth
	Overgeneralization: Five Trees Do Not A Forest Make
	Dissertation Walk Through

	Chapter 2 A New Network Design Solution
	The Flat Neighborhood Network (FNN) Architecture
	The Size of the FNN Solution Space
	Communication Patterns
	O(1) Scaling Patterns
	O(logN) Scaling Patterns
	O([D]N) Scaling Patterns
	Pair Synergy

	FNN Taxonomy: Universal, Sparse, and Fractional FNNs

	Chapter 3 Techniques for Designing Universal and Sparse FNNs
	A Genetic Algorithm (GA) for Finding Universal FNN Designs
	Specification of Communication Patterns
	A Greedy Heuristic for Finding Sparse FNN Designs
	The Basic Heuristic Sparse FNN Design Algorithm
	The Heuristic's Primary Data Structures
	Variations and Details of the Heuristic Algorithm's Four Phases

	Sparse FNN GA
	What is the DNA used in the Sparse FNN GA?
	Sparse FNN GA Mutation Operations
	Evaluation Steps in the Sparse FNN GA
	The Parallel Sparse FNN GA
	Sparse FNN Meta Search Problem

	Chapter 4 How Well do Sparse FNNs Scale?
	Sparse FNN Scaling for Individual Patterns
	The Hypercube Communication Pattern
	2D Communication Patterns
	3D Communication Patterns

	Sparse FNN Scaling for Combinations of Patterns
	Hypercube plus Tori with Single Factorizations
	Hypercube plus Tori with Multiple Factorizations
	Special Patterns plus Hypercube and Tori with Multiple Factorizations

	A Large Sparse FNN Example

	Chapter 5 Message Routing and Practical Details for Implementing FNNs
	Point to Point Message Routing on FNNs
	IP Layer Technique for Routing Messages on FNNs
	ARP Cache Technique for Routing Messages on FNNs
	Link Layer Technique for Routing Messages on FNNs
	Through Routing for Sparse FNNs

	FNN Runtime Support for Linux
	Techniques for Initial PE Identification when a PE Network-Boots on a FNN
	Options for IP Multicast and Ethernet Broadcast Support
	Overhead of the FNN Runtime software

	Options for Fault Tolerance and New Communication Patterns on Sparse FNNs
	InfiniBand (IB), Myrinet, QsNet, SCI, and Other Link-technology Alternatives

	Chapter 6 Some Real FNN Implementations
	The KLAT2 Supercomputer with the First Universal FNN
	The KASY0 Supercomputer with the First Sparse FNN
	KASY0's Hardware
	KASY0's Sparse FNN
	KASY0's Performance
	Scalability of KASY0's Supported Communication Patterns

	Chapter 7 Adoptions and Future Advancement of the Technology
	Chapter 8 Conclusions
	Bibliography
	Vita

