
CHIP MULTIPROCESSORS WITH ON-CHIP AGGREGATE FUNCTION

NETWORK

A Dissertation

Submitted to the Faculty

of

Purdue University

by

Soohong P. Kim

In Partial Fulfillment of the

Requirements for the Degree

of

Doctor of Philosophy

August 2009

Purdue University

West Lafayette, Indiana

ii

dedication...

iii

ACKNOWLEDGMENTS

To be added...

iv

TABLE OF CONTENTS

Page

LIST OF TABLES . vii

LIST OF FIGURES . viii

ABBREVIATIONS . x

GLOSSARY . xi

ABSTRACT . xii

1 Introduction . 1

1.1 Motivation . 1

1.2 Our Approach . 2

1.3 Related Work . 4

1.3.1 Dedicated Hardware for Barriers and Collectives 4

1.3.2 Other Hardware Support for Barriers 4

1.3.3 Off-chip Aggregate Function Network for COW 5

1.3.4 Operand Networks . 5

1.3.5 MIMD ISA Extensions . 5

1.4 Contributions . 6

1.5 Organization of this Dissertation 6

2 Parallel Communication Models . 7

2.1 Shared Memory Communication Model 7

2.2 Message Passing Communication Model 11

2.3 Synchronous Aggregate Communication Model 14

3 On-Chip Synchronous Aggregate Communication Model and ISA Extensions 18

3.1 On-Chip Synchronous Aggregate Communication Model 18

3.1.1 Overview . 18

3.1.2 Thread Migration Support 20

v

Page

3.1.3 Blocking vs. Busy-waiting AFNOPRD Instructions 20

3.1.4 Security . 22

3.1.5 Comparison . 23

3.2 ISA Extensions for the On-Chip AFN 24

3.2.1 AFN Programming Environment 24

3.2.2 AFN Instructions . 24

4 On-Chip AFN Architecture . 27

4.1 Baseline CMP-AFN Architecture 27

4.2 AFU-core Interconnect . 27

4.3 Aggregate Function Unit . 29

4.3.1 AFU Tables . 30

4.3.2 AFU State Machines . 30

4.3.3 Aggregate Function ALUs 31

4.3.4 AFU Allocation Table . 33

4.4 A Case for CMP-AFN . 33

4.4.1 Barrier Synchronization Latency for CMP-AFN 33

4.4.2 Barrier Synchronization Latency in a conventional CMP . . 35

5 Evaluation Methodology and Results . 38

5.1 Simulation Target Configurations 38

5.2 Re-targeting OpenMP Benchmarks for CMP-AFN 40

5.2.1 barrier Construct . 42

5.2.2 critical Construct . 43

5.2.3 OpenMP Locks . 43

5.3 Compiling OpenMP Benchmarks for CMP Simics Targets: Check-
pointing . 44

5.4 Overview of OpenMP Benchmarks 46

5.5 EPCC Microbenchmark . 48

5.5.1 syncbench.c: testbar() for barrier synchronization 49

vi

Page

5.5.2 syncbench.c: testlock() for OpenMP locks 49

5.5.3 syncbench.c: testred() for reduction 51

5.6 SPEC OMP2001 Benchmark Suite 51

5.6.1 316.applu m . 57

5.6.2 320.equake m . 57

5.6.3 324.apsi m . 57

5.6.4 330.art m . 57

5.6.5 332.ammp m . 58

5.7 Performance Evaluation . 58

5.7.1 Performance Evaluation of 316.applu m 61

6 Summary . 68

6.1 Conclusions . 68

6.2 Future Work . 69

LIST OF REFERENCES . 70

A AFN Extensions to IA-32 . 74

A.1 Overview of ISA Extensions for on-chip AFN 74

A.2 AFN Programming Environment 76

A.2.1 AFU . 77

A.2.2 AFNreg Registers . 78

A.2.3 AFNSAR Register . 78

A.2.4 AFNCSR Control and Status Register 80

A.3 AFN Instructions . 82

A.3.1 Opcodes . 83

A.3.2 Instruction Format . 83

A.3.3 Opcode Column in the Instruction Summary Table 83

A.3.4 Instruction Column in the Instruction Summary Table . . . 85

VITA . 104

vii

LIST OF TABLES

Table Page

3.1 AFN Instructions by Group . 25

4.1 Packets to communicate between CPU cores and on-chip AFN 29

4.2 A Case for CMP-AFN . 34

4.3 GOMP latencies . 35

4.4 barr sync latency comparison . 36

5.1 Configurations for Simulated Targets 41

5.2 Replacing OpenMP constructs with AFN Library routines 42

5.3 Static Counts of OpenMP Constructs and Run-Time Routines in SPEC
OMP Benchmarks for Evaluation . 48

5.4 OpenMP constructs used in SPEC OMPM2001 benchmark suite: BARR

indicates for BARRIER construct, CRIT for CRITICAL construct, LOCK for
OpenMP locks, RED for REDUCTION clause, and i.barr for implicit barrier
synchronization. The numbers are static counts. 54

5.5 SPEC OMPM2001 Benchmark Suite Description 55

viii

LIST OF FIGURES

Figure Page

1.1 A generic CMP-AFN architecture: The on-chip AFN consists of AFU
(aggregate function unit) and AFU-core Interconnect. 3

2.1 pi: a sample algorithm that computes the value of Pi [30] 8

2.2 An OpenMP version of pi . 10

2.3 An MPI version of pi [30] . 12

2.4 Another MPI version of pi using collective communication [30] 13

2.5 Differences between the message-passing communication model (shown on
the left) and the synchronous aggregate communication model 15

2.6 An AFAPI version of pi using aggregate reduction function [30] 16

2.7 A UPC version of pi.c . 17

3.1 AFN Checkout Instruction with Blocking 21

3.2 AFN Checkout Instruction with Busy-Waiting 22

3.3 Differences Between Cache-Coherent Shared Memory CMP without and
with the on-chip AFN . 23

4.1 A Baseline CMP architecture with on-chip AFN, similar to Larrabee,
where the ring network is the interprocessor network that connects multi-
ple cores and L2 cache banks. The number of cores and L2 cache banks
are implementation-dependent. (Adapted from Seiler et. al 2008) . . . 27

4.2 On-Chip AFN Architecture: On-chip AFN consists of AFU and AFU-core
Interconnect. 28

4.3 State Machine for Barrier Synchronization (AFNBARR/AFNBARRRD) 31

4.4 State Machine for Reduction Operation (AFNOP/AFNOPRD) 32

4.5 gomp barrier wait() when all four threads arrived a barrier at the same
time . 37

5.1 A four-core CMP-AFN Simics Target 39

5.2 Steps to create executables for CMP-AFN and CMP-REF targets . . . 45

ix

Figure Page

5.3 Structure of a Program with magic instructions 47

5.4 delay(): EPCC microbenchmark . 49

5.5 testbar(): EPCC microbenchmark for barrier synchronization 50

5.6 testlock(): EPCC microbenchmark for OpenMP Lock. OUTERREPS=10,
innerreps=128, and delaylength=500. 52

5.7 testred(): EPCC microbenchmark for reduction 53

5.8 ssor.f from SPEC OMP 316.applu m 56

5.9 Summary of EPCC OpenMP Microbenchmark Results 59

5.10 Summary of SPEC OMP Benchmark Results 60

5.11 SPEC OMP 316.applu m . 61

5.12 SPEC OMP 316.applu m (continued) 62

5.13 SPEC OMP 316.applu m (continued) 63

5.14 applu: Breakdown of Execution Time by Cache Misses 65

5.15 applu: Instruction Count Distribution Across Cores 66

5.16 applu: Instruction Count Distribution Across Cores (Normalized to Max
Instruction Count) . 67

A.1 AFN Programming Environment: a single thread’s perspective 75

A.2 AFNregs and AFUs . 77

A.3 AFNCSR Control/Status Register . 79

A.4 AFNCSR register bit positions . 81

A.5 An Example Opcode Summary Table: consists of three columns – ”Op-
code”, ”Instruction”, and ”Description” 84

x

ABBREVIATIONS

AFAPI Aggregate Function API Application Programming Interface

AFN Aggregate Function Network

AFU Aggregate Function Unit

CMP Chip Multiprocessor

xi

GLOSSARY

GOMP An OpenMP implementation for GCC (GNU Compiler Collec-

tion). GCC version 4.2 and later.

Simics host Refers to the computer on which one is running Simics.

Simics target Refers to the computer simulated by Simics.

xii

ABSTRACT

Kim, Soohong P. Ph.D., Purdue University, August, 2009. Chip Multiprocessors with
On-Chip Aggregate Function Network. Major Professors: Samuel P. Midkiff and
Henry G. Dietz.

State-of-the-art on-chip networks and block-based cache coherence protocols used

in cache-coherent shared-memory Chip MultiProcessors (CMPs) are inefficient for

collective operations across cores. Performance of CMPs can be seriously degraded

by the multitude of memory requests and coherence messages required to implement

each collective operation. This thesis presents a CMP-AFN architecture and Instruc-

tion Set Architecture (ISA) extensions that augment a conventional shared-memory

CMP with a tightly-integrated Aggregate Function Network (AFN) that implements

low-latency collective operations without using or interfering with the memory hier-

archy. For a modest increase in circuit complexity, traffic within a CMP’s internal

network is dramatically reduced, improving the performance of caches and reducing

power consumption. Full system simulations of 16-core CMPs show a CMP-AFN

outperforms the reference design significantly, eliminating up to 52% of memory ac-

cesses and up to 73% of private L1 data cache misses in both the EPCC OpenMP

microbenchmarks and SPEC OMP benchmarks.

1

1. INTRODUCTION

1.1 Motivation

Chip Multiprocessors (CMPs) dominate the important desktop, server and HPF

market segments because they allow faster application performance using shared

memory programming models. Application studies show, however, that synchroniza-

tion overhead is the performance bottleneck in parallel applications for cache-coherent

shared memory multiprocessors [6–8]. Synchronization operations often account for

significant fractions of execution time and can both limit the scalability of parallel

programs on very large machines and negatively affect the ability of large-scale sys-

tems to exploit fine-grain parallelism. Sampson, et al. [9] shows the importance of

fast barrier synchronization in shared-memory many-core CMPs as a prerequisite for

the exploitation of fine-grained parallelism.

Despite enabling lower latency for interprocessor communication, current state-of-

the-art on-chip networks and block-based cache coherence protocols for shared mem-

ory multi-core architectures are inefficient for collective communication [10]. Multiple

memory requests and coherence messages must be transmitted among CPU cores and

cache controllers to implement a single collective operation. Software synchronization

primitives include atomic read-modify-write (RMW) instructions, which are on the

critical path of the synchronization algorithm. When these instructions are imple-

mented with shared variables, they interfere with the cache coherence protocol and

generate a significant amount of network traffic because of contention for synchro-

nization flags. Coherency-related overheads are not the only ones suffered. Aslot, et

al. [6] shows that there are two aspects of lock overhead: the overhead of executing

extra instructions while spin waiting and the overhead of acquiring the lock. For

2

scalable CMP performance, the negative impact of both aspects must be reduced or

eliminated.

1.2 Our Approach

The solution we propose is the adoption and adaptation of the synchronous ag-

gregate communication model [11], which was initially developed for the cluster of

workstations (COW). The synchronous aggregate communication model can be imple-

mented within a CMP with the on-chip Aggregate Function Network (AFN) and ISA

extensions. In this dissertation, we detail the new CMP-AFN architecture and the

corresponding instruction set architecture (ISA) extensions that augment a shared

memory chip multiprocessor with an aggregate function network and an interface

between CPU cores and the on-chip AFN.

In the CMP-AFN architecture (shown in Figure 1.1), collective communication is

performed without using or interfering with the on-chip cache coherent shared memory

hierarchy. Collective communication can be performed via on-chip AFN, a dedicated

network or an embedded virtual network in an existing on-chip interconnect. Because

spin-wait on the shared variables for the synchronization primitives can be avoided

in the CMP-AFN, the excessive coherence messages are eliminated in the on-chip

interconnect and CPU time waste can be avoided. As a result, CMP-AFN provides

low latency collective operations and reduces coherence traffic, resulting in effective

use of on-chip cache and low power consumption.

The goal of our research is to explore the synchronous aggregate communica-

tion model in cache-coherent shared-memory chip multiprocessors to exploit multi-

threaded applications. We focus primarily on the parallel execution model associated

with OpenMP, but our approach is applicable to any shared-memory programming

model that supports barriers and collective operations such as reduction.

3

Fig. 1.1. A generic CMP-AFN architecture: The on-chip AFN con-
sists of AFU (aggregate function unit) and AFU-core Interconnect.

4

1.3 Related Work

We now discuss prior work related to this dissertation, organized by topic.

1.3.1 Dedicated Hardware for Barriers and Collectives

The NYU Ultracomputer [12] and the IBM RP3 [13] are shared memory architec-

tures in which the multistage interconnection networks that combine multiple mes-

sages that reference identical memory location. The Cray T3D [14] directly supports

barrier synchronization, swap, and Fetch-and-Increment. The CM-5 Connection Ma-

chine [15] has a control network that supports reduction operations, prefix operations,

maximum, logical OR, and XOR. Cedar [16] and Alliant FX/8 supported synchro-

nization hardware. Tera and Denelcor HEP also supported synchronization hardware.

The IBM BlueGene/L [17] has three types of networks that make up the interpro-

cessor “fabric”. In addition to a Torus interconnect for the point-to-point messages,

it has a collective network for one-to-all broadcast and collective operations, and a

barrier network for barrier synchronization. The proposed CMP-AFN architecture

features the dedicated on-chip hardware for barrier synchronization and collective

communication within a single chip multiprocessor.

1.3.2 Other Hardware Support for Barriers

A barrier filter [9] is a hardware mechanism for the CMP architecture for barrier

synchronization that does not rely on locks nor busy waiting. Instead, it starves

processing elements’ requests to cache lines until all processing elements arrive at the

barrier, then fills a cache line at the synchronization point. A barrier filter does not

provide an effective mechanism for collective communication. Although it does not

require ISA extensions or CPU core modification, address tag filtering might be in

the critical path for all memory accesses, not just barrier synchronization, and hence

can potentially increase the latency for all memory accesses.

5

1.3.3 Off-chip Aggregate Function Network for COW

PAPERS [18] is a custom network hub that is attached to a cluster of workstations

(COW). This off-chip aggregate function network design uses a combination of barrier

synchronization with a four-bit wide global NAND to construct a robust library of

aggregate functions. While PAPERS is off-chip aggregate function networks for the

cluster architecture, the on-chip AFN presented in this thesis is for the shared memory

multi-core architectures and features the architectural support for thread migration

by operating systems.

1.3.4 Operand Networks

A variety of architectures have been proposed to support and utilize operand net-

works, including RAW [19], TRIPS [20], and WaveScalar [21]. Operand networks

communicate register values between consumer and producer instructions. The on-

chip AFN can be considered as an operand network to communicate register values

among multiple producer instructions and multiple consumer instructions for syn-

chronous collective communication, that are performed on the network.

1.3.5 MIMD ISA Extensions

There has been much research on ISA extensions to support various forms of

hardware multithreading. Multiple Instruction Stream Computers (MISC) [22] is a

message-passing based hardware mechanism where the parallel execution of multiple

instruction streams can be orchestrated. MISC supports point-to-point communica-

tion between processing elements and between PEs and the memory subsystem. Mul-

tiple Instruction Stream Processing (MISP) architecture [23] provides inter-sequencer

signaling and an asynchronous control transfer mechanism.

6

1.4 Contributions

We make the following major contributions:

• We introduce the synchronous aggregate communication model to chip multi-

processor architectures to provide low-latency collective operations and reduced

on-chip network traffic, resulting in the effective use of on-chip cache and low

power consumption.

• We describe on-chip aggregate function network architecture and associated ISA

extensions that implement the synchronous aggregate communication model

and allow the operating system to schedule threads to one CPU core to another

during the execution of a collective operation.

• We provide experimental results using full-system simulation of CMPs showing

the performance benefits of the proposed techniques are large. In an 8-core

CMP, we see speedups of up to 35% on the SPEC OMP benchmarks, with

benefits increasing with higher core count.

1.5 Organization of this Dissertation

Chapter 2 discusses various parallel communication models. Chapter 3 presents

the on-chip synchronous aggregate communication model and ISA (Instruction Set

Architecture) extensions for the aggregate communication model. Chapter 4 describes

the on-chip AFN architecture and CMP-AFN architecture. Chapter 5 presents the

evaluation methodology and experiment results. Finally, Chapter 6 provides conclu-

sions and future work.

7

2. PARALLEL COMMUNICATION MODELS

In this chapter, we discuss various parallel communication models for multi-core ar-

chitecture, i.e. shared memory communication model, point-to-point message passing

communication model, and synchronous aggregate communication model.

Although we do not discuss in details, but there are more intra-socket parallel

communication models for the architectures such as 80-core Intel Terascale processors

[24] (point-to-point communication), IBM Cell BE-based systems [25] [26] (point-

to-point combined with DMA), and PGAS (Partitioned Global Address Space) on

Multi-Cores [27] [28] (“one-sided” communication, i.e. load/store on shared memory

communication model).

In addition to comparison of these parallel communication model, we present a

representative programming language (OpenMP, MPI, AFAPI, and UPC) and a sam-

ple program for each parallel communication discussed here. We selected a sample

algorithm to compare various approaches. Shown in Figure 2.1, the algorithm com-

putes the value of Pi and has been used in various publications [29] [30] to demonstrate

a variety of different parallel programming environments.

2.1 Shared Memory Communication Model

Shared Memory is a model for interactions between processing elements (PEs)

within a parallel system. Shared memory systems include CMP (Chip Multi-Processors),

SMP (Symmetric Multi-Processors), or DSM (Distributed Shared Memory). PEs in

shared memory systems share a (either logically or physically) single memory and a

value written to shared memory by one PE can be directly accessed by other PEs.

Shared memory is generally considered easier to program than message passing, but

8

#include <stdlib.h>

#include <stdio.h>

main(int argc, char **argv) {

register double width, sum;

register int intervals, i;

/* get the number of intervals */

intervals = atoi(argv[1]);

width = 1.0 / intervals;

/* do the computation */

sum = 0;

for (i=0; i<intervals; ++i) {

register double x = (i + 0.5) * width;

sum += 4.0 / (1.0 + x * x);

}

sum *= width;

printf("Estimation of pi is %f\n", sum);

return(0);

}

Fig. 2.1. pi: a sample algorithm that computes the value of Pi [30]

9

it requires on-chip cache-coherence protocol, which requires very high development

cost and time-to-market.

OpenMP

OpenMP [31] [32] [33] is an industry standard set of pragmas, environment vari-

ables, and a run-time library that tell the compilers (C++ and Fortran) when, where,

and how to create multithreaded code for shared memory multiprocessors. With

OpenMP, programmers tell the compiler what to do with threads at an abstract level

and leave the low-level details (such as thread management) to the compiler. This

approach makes OpenMP much easier to use than Pthreads, but at the expense of

some control and some performance. Unlike MPI, no explicit communication is used,

instead inter-thread communication is done implicitly via shared memory with load-

/store instructions. As it is limited to the shared memory architectures, OpenMP for

non-shared memory multiprocessors have been proposed [34] [35]. Figure 2.2 shows

an OpenMP version of the pi.c algorithm.

10

#include <stdlib.h>

#include <stdio.h>

#include <omp.h>

int main(int argc, char **argv) {

register double width, sum, x;

register int i, intervals;

/* get the number of intervals */

intervals = atoi(argv[1]);

width = 1.0 / (double) intervals;

/* do the local computations, followed by reduction */

sum = 0;

#pragma omp parallel for reduction(+:sum) private(x)

for (i=0;i< intervals; i++){

x = (i + 0.5) * width;

sum += 4.0 / (1.0 + x * x);

}

/* have only the master thread print the result */

#pragma omp master

{

/* scale by width */

sum = sum * width;

printf("Estimation of pi is %14.12lf\n", sum);

}

exit(0);

}

Fig. 2.2. An OpenMP version of pi

11

2.2 Message Passing Communication Model

Message Passing is a model for interactions between processing elements (PEs)

within a parallel system, typically cluster architectures. In general, a message is con-

structed by software on one PE and is sent through an interconnection network to

another PE, which then must accept and act upon the message contents. Although

the overhead in handling each message (latency) may be high, there are typically

few restrictions on how much information each message may contain. Thus, mes-

sage passing can yield high bandwidth making it a very effective way to transmit a

large block of data from one PE to another. In the same token, this point-to-point

communication model is not efficient for collective communication because it requires

global communications from all PEs with relatively smaller data. On the other hand,

point-to-point communication does not require the expensive hardware support for

cache coherent protocol. Therefore, it is easier and faster to build the multi-core

architectures that only requires point-to-point communication model.

MPI

The Message Passing Interface (MPI) [36] [37] is a language-independent commu-

nications API (Application Programming Interface) for message passing on cluster

architectures. It expresses parallelism explicitly rather than implicitly. MPI is suc-

cessful in achieving high scalability and high portability thanks to the underlying

hardware architecture. However, MPI requires more programming efforts compared

to OpenMP as programmers need to explicitly schedule inter-PE communication.

Figure2.3 shows an MPI program for the pi algorithm that uses basic MPI message-

passing calls for each PE to send its partial sum to PE 0, which sums and prints the

result. Figure 2.4 shows another MPI version for the pi algorithm that uses collective

communication (which, for this particular application, is clearly the most appropri-

ate).

12

#include <stdlib.h>

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv) {

register double width;

double sum, lsum;

register int intervals, i;

int nproc, iproc;

MPI_Status status;

if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

intervals = atoi(argv[1]);

width = 1.0 / intervals;

lsum = 0;

for (i=iproc; i<intervals; i+=nproc) {

register double x = (i + 0.5) * width;

lsum += 4.0 / (1.0 + x * x);

}

lsum *= width;

if (iproc != 0) {

MPI_Send(&lbuf, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD);

} else {

sum = lsum;

for (i=1; i<nproc; ++i) {

MPI_Recv(&lbuf, 1, MPI_DOUBLE, MPI_ANY_SOURCE,

MPI_ANY_TAG, MPI_COMM_WORLD, &status);

sum += lsum;

}

printf("Estimation of pi is %f\n", sum);

}

MPI_Finalize();

return(0);

}

Fig. 2.3. An MPI version of pi [30]

13

#include <stdlib.h>

#include <stdio.h>

#include <mpi.h>

main(int argc, char **argv) {

register double width;

double sum, lsum;

register int intervals, i;

int nproc, iproc;

if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1);

MPI_Comm_size(MPI_COMM_WORLD, &nproc);

MPI_Comm_rank(MPI_COMM_WORLD, &iproc);

intervals = atoi(argv[1]);

width = 1.0 / intervals;

lsum = 0;

for (i=iproc; i<intervals; i+=nproc) {

register double x = (i + 0.5) * width;

lsum += 4.0 / (1.0 + x * x);

}

lsum *= width;

MPI_Reduce(&lsum, &sum, 1, MPI_DOUBLE,

MPI_SUM, 0, MPI_COMM_WORLD);

if (iproc == 0) {

printf("Estimation of pi is %f\n", sum);

}

MPI_Finalize();

return(0);

}

Fig. 2.4. Another MPI version of pi using collective communication [30]

14

2.3 Synchronous Aggregate Communication Model

Dietz, et al. [11, 38] proposed the synchronized aggregate communication model

for clusters of workstations, implemented using off-chip custom network hardware

and the associated API. The communication model is neither message-passing nor

shared memory, but is based on the concept of synchronously aggregating data from

a group of processing elements. As shown in the right side of Figure 2.5, the off-chip

aggregate function network collects an aggregate of the data items from all processing

elements in the current barrier, performs a synchronous collective operation on the

aggregated data, and then each processing element obtains the result of the operation

from the aggregate function network. The network hardware, an aggregate function

network, is connected to the workstations via parallel ports and provides a cluster

of workstations with a fast barrier synchronization mechanism. Immediately after

the barrier synchronization, processing elements may additionally perform a commu-

nication operation, called a synchronous aggregate communication or a synchronous

collective operation. This communication model is efficient for collective operations

because the communication is not point-to-point and the computation is done on the

network. In the message passing version of the operation, shown in the left side of Fig-

ure 2.5, data must be communicated to processors in several steps, with accumulated

totals being formed in each step.

Collective communication is another name for aggregate functions, most often used

when referring to aggregate functions that are constructed using multiple message-

passing operations.

AFAPI

The Aggregate Function API (AFAPI) library [38] was initially designed for the

aggregate function clusters, such as various types of PAPERS clusters. Later it was

ported to shared memory multiprocessors and clusters of Linux systems. AFAPI

provides parallel systems with a model that offers a good target for compilers by

15

Fig. 2.5. Differences between the message-passing communication
model (shown on the left) and the synchronous aggregate commu-
nication model

combining low latency with predictable performance. Figure 2.6 shows an AFAPI

version of the pi.

16

#include <stdlib.h>

#include <stdio.h>

#include <AFAPI/afapi.h>

int main(int argc, char **argv) {

register double width, sum;

register int intervals, i;

/* check-in with AFAPI */

if (p_init()) exit(1);

/* get the number of intervals */

intervals = atoi(argv[1]);

width = 1.0 / intervals;

/* do the local computations */

sum = 0;

for (i=IPROC; i<intervals; i+=NPROC) {

register double x = (i + 0.5) * width;

sum += 4.0 / (1.0 + x * x);

}

/* sum across the local results & scale by width */

sum = p_reduceAdd64f(sum) * width;

/* have only the console PE print the result */

if (IPROC == CPROC) {

printf("Estimation of pi is %14.12lf\n", sum);

}

/* check-out */

p_exit();

exit(0);

}

Fig. 2.6. An AFAPI version of pi using aggregate reduction function [30]

17

#include <stdlib.h>

#include <stdio.h>

#include <upc_relaxed.h>

upc_lock_t *lock0;

shared double pi;

int main(int argc, char **argv) {

register double width, sum;

register int intervals, i;

lock0 = upc_all_lock_alloc();

/* get the number of intervals */

intervals = atoi(argv[1]);

width = 1.0 / intervals;

upc_barrier;

/* do the local computations */

sum = 0;

upc_forall (i=0; i<intervals; i++; i) {

register double x = (i + 0.5) * width;

sum += 4.0 / (1.0 + x * x);

}

/* sum across the local results & scale by width */

pi = 0;

upc_lock(lock0);

pi += sum * width;

upc_unlock(lock0);

/* ensure all is done */

/* have only the console PE print the result */

upc_barrier();

if(MYTHREAD==0)

printf("Estimation of pi is %14.12lf\n", pi);

upc_lock_free(lock0);

exit(0);

}

Fig. 2.7. A UPC version of pi.c

18

3. ON-CHIP SYNCHRONOUS AGGREGATE

COMMUNICATION MODEL AND ISA EXTENSIONS

In this chapter, we describe the proposed on-chip synchronous aggregate communi-

cation model and instruction set architecture (ISA) extensions for on-chip aggregate

communication model.

3.1 On-Chip Synchronous Aggregate Communication Model

The on-chip synchronous aggregate communication model is intended for a single

socket processor with multiple cores, where a team of multiple threads are controlled

by an operating system.

The major difference between aggregate communication models for off-chip and

on-chip is the thread migration support. The on-chip synchronous aggregate com-

munication model allows a team of threads to access the on-chip aggregate function

network from any cores in the system.

We now provide an overview of the on-chip aggregate communication model in

the context of the SPMD (Single Program Multiple Data) parallel execution model,

where a team of threads executes a single program.

3.1.1 Overview

A thread using an aggregate function network performs a synchronous collective

operation in three phases: (1) an initiation phase, to request a synchronous collective

operation and send data to that operation, (2) a waiting phase, during which a thread

waits for the result of the operation to be available and then receives that operation,

19

and (3) a completion phase, to acknowledge the receipt of the result and to inform

the AFN that the thread is about to proceed past the operation.

A team of threads requests, and is assigned, a unique team number (afuID) by

the AFN. Prior to any collective operation, each thread is also assigned a unique

thread number (rank) within a team. For synchronous collective communication

operations, each thread executes a pair of instructions: checkin and checkout. The

checkin instruction is of the form AFNOP, where OP specifies a collective operation

such as a barrier synchronization or a reduction. The checkout instruction is of the

form AFNOPRD, where OP is as before. Use of checkin and checkout instructions

for a single collective operation allows other instructions to be scheduled between the

checkin and checkout instructions (i.e., the initiation and completion phases), and,

as explained shortly, allows a participating thread to execute checkin and checkout

instructions in different cores, enabling thread migration.

When a thread executes an AFNOP checkin instruction, the CPU core sends

the opcode and any needed data to the AFN to initiate the synchronous collective

operation. When a thread executes the AFNOPRD checkout instruction, the CPU

core sends its core id (cores ids are from 0 . . .number of cores − 1) to the AFN, and

then waits for the result to be sent by the AFN. Upon the receiving the result from the

AFN (as the result of a checkout instruction), the CPU core sends an acknowledgment

to the AFN, and the synchronous operation is finished.

Each team of threads is assigned a secureID by the operating system that is

used to ensure that a thread initiating or participating in an AFN operation on some

AFU is part of the team that is associated with the AFU. secureID, afuID, and the

rank constitutes a so-called SAR address, which serves as an implicit operand for the

AFNOP and AFNOPRD instructions. The SAR address is sent to the on-chip AFN

along with opcode and other explicit operands of AFN instructions. Both the SAR

and use of split functions allow the AFN to be safely used in a multi-programmed,

preemptively scheduled, system.

20

3.1.2 Thread Migration Support

In a multicore system, a thread may be initially assigned to one CPU core and

later be migrated to another CPU core by the OS. This migration may occur during

the execution of a collective communication. To support thread migration, a pair

of AFN instructions (checkin and checkout instructions) is used for each collective

communication. First, a thread initiates a collective communication with an AFNOP

checkin instruction, and then obtains the result of the collective communication from

the AFN with an AFNOPRD checkout instruction. The checkin and checkout in-

structions do not have to be executed in the same core. The checkout instruction

allows the AFN to send the result of the collective communication to the core hosting

the thread that executes the checkout instruction.

The on-chip AFN does not need to track the migration of threads across cores,

nor does it need to “wake-up” sleeping threads. When the operating system context-

switches out a stalled thread that is waiting for the result of an AFN operation

while executing the AFNOPRD instruction, the AFNOPRD instruction will not have

committed. After the thread is scheduled (perhaps on another core), it will need

to re-issue the AFNOPRD instruction. When a thread receives the result from the

AFN, the AFNOPRD instruction will be retired.

Whether the checkout instruction is implemented as blocking or busy-waiting, it

may be possible that the result from the on-chip AFN may arrive at the core after

a thread has been moved from the core by the OS. In order to provide the migrated

thread with the result when it is rescheduled, the on-chip AFN is not allowed to com-

plete the current operation and the CPU core is required to send the acknowledgment

to the on-chip AFN upon the receipt of the result.

3.1.3 Blocking vs. Busy-waiting AFNOPRD Instructions

Types of synchronization can be either blocking or busy-waiting. Busy-waiting is

preferable when the scheduling overhead is larger than expected wait time, or proces-

21

afn_barrierSync_blocking() {

asm volatile("afnbarr_cin");

asm volatile("afnbarr_cout_block");

}

Fig. 3.1. AFN Checkout Instruction with Blocking

22

afn_barrierSync_busywaiting() {

asm volatile("afnbarr_cin");

while (cond)

asm volatile("afnbarr_cout_busywait");

}

Fig. 3.2. AFN Checkout Instruction with Busy-Waiting

sor resources are not needed for other tasks. For the on-chip aggregate communication

model, the checkout instructions can be implemented using either blocking or busy-

waiting, as shown in Figure 3.1 and Figure 3.2, respectively. Busy-waiting might

be more flexible and may allow for intelligent backoff. Unlike cache coherent shared

memory, busy-waiting actually increases the network traffic between the on-chip AFN

and the core. On the other hand, blocking will significantly reduce the network traffic

and dynamic instruction count. For our experimental results we have assumed the

busy-waiting implementation. For the performance evaluation, we use busy-waiting

due to easier implementation in the simulation environment.

3.1.4 Security

A team of threads is assigned a secureID by the OS using privileged instructions.

The secureID is stored in the AFNSAR register. The contents of AFNSAR register can

only be manipulated and read by privileged instructions. When a thread initiates

an AFN operation, requests the result, or sends an acknowledgment to the on-chip

AFN, secureID is sent to the on-chip AFN for authentication and must match the

value at the on-chip AFN. Should the secureID not match, the AFU will throw an

exception. The secureID prevents a buggy or malicious thread from another process

participating in a communication operation that it should not be a part of.

23

Fig. 3.3. Differences Between Cache-Coherent Shared Memory CMP
without and with the on-chip AFN

3.1.5 Comparison

Figure 3.3 shows differences in the execution of collective operation (reduction) be-

tween the on-chip shared memory communication model and the on-chip synchronous

aggregate communication model. With the on-chip aggregate communication model,

the collective operation does not generate coherence protocol messages and does not

require PE’s involvement for the computation.

24

3.2 ISA Extensions for the On-Chip AFN

In this section, we describe ISA extensions for the on-chip AFN (AFN extensions

for short) to the Intel IA32 architecture [39]. The AFN extensions do not require

a specific base ISA, but should be applicable to an arbitrary ISA. AFN extensions

use the synchronous aggregate communication model [11]. The extensions support

inter-processor data communication, barrier synchronization, and synchronous col-

lective operations via an on-chip aggregate function network. The details of the ISA

extensions are described in the Appendix A.

3.2.1 AFN Programming Environment

All AFN instructions use general-purpose registers or floating-point registers for

both source and destination registers. The AFN extensions provide the following

resources: eight 32-bit General Purpose Registers, eight 80-bit Floating Point Data

Registers, the 32-bit AFNSAR Address Register (added for the AFN extensions) and

a 32-bit AFNCSR Control/Status Register (added for the AFN extensions), which

contains status and control bits used in such as AFN floating-point operations.

3.2.2 AFN Instructions

As shown in Table 3.1, AFN instructions are divided into five functional groups –

configuration, synchronization, reduction, data movement, and state management.

AFN Configuration Instructions include AFUALLOC, which allocates an AFU for a

team of threads, and AFUFREE, which frees up the AFU. These instructions can only

be executed in privileged mode and associate and disassociate thread teams from an

AFU.. The first operand of AFUALLOC represents the number of threads for the team.

When a new team of threads is created, an AFU is assigned using the AFUALLOC

instruction. The on-chip AFN returns the afuID to the CPU core that executes the

AFUALLOC instruction. When no AFU is available for the new team, the on-chip AFN

25

Table 3.1
AFN Instructions by Group

AFN Configuration Instructions

AFUALLOC Allocate an AFU

AFUFREE Free up an AFU

Synchronization Instructions

AFNBARR Barrier Synchronization

AFNBARRRD Barrier Synchronization Read

AFNLOCK Mutex Lock

AFNUNLOCK Mutex Unlock

Reduction Instructions

AFNADD/AFNFADD/AFNFADDP Reduce ADD

AFNMUL/AFNFMUL/AFNFMULP Reduce MULTIPLY

AFNAND Reduce Bitwise AND

AFNOR Reduce Bitwise OR

AFNOPRD Read Result

Data Movement Instructions

AFNPUT/AFNGET Multi-broadcast Data Communication

State Management Instructions

LDAFNCSR Load AFNCSR Register

STAFNCSR Store AFNCSR Register State

LDAFNSAR Load AFNSAR Register

STAFNSAR Store AFNSAR Register State

26

clears the most significant bit of the afuID. The user AFN operations will trap if the

most significant bit of the afuID is zero, then AFN operations will be performed via

software emulation, not via on-chip AFN hardware. This allows virtualization of the

on-chip AFU and correct execution of programs when the number of thread teams

exceeds the number of AFUs in the system.

AFUFREE takes no operands. The CPU that executes AFUFREE instruction extracts

the afuID from AFNSAR and then sends the afuID to the on-chip AFN.

The synchronization instructions are AFNBARR and AFNBARRRD, which perform a

barrier synchronization and AFNLOCK and AFNUNLOCK, which perform a mutex lock

and a mutex unlock using the on-chip AFN.

The reduction instructions are AFNOP and AFNOPRD, which perform a reduc-

tion operation. OP can be ADD, MUL, AND, and OR for reduce add, reduce mul-

tiply, bitwise AND, and bitwise OR, respectively. AFNOP copies the operand (source

operand) to the on-chip AFN. For AFNADD, the on-chip AFN adds up the aggregated

data from all threads.

Data movement instructions are AFNPUT and AFNGET, which perform a multi-

broadcast PutGet operation. AFNPUT takes two operands. The first operand is the

datum for the multi-broadcast and the second operand represents the rank of the

thread where the data comes from.

Finally, the state management instructions are LDAFNCSR and STAFNCSR. LDAFNCSR

loads the source operand into the AFNCSR control and status register. The source

operand is a 32-bit memory location. The STAFNCSR instruction stores the contents

of the AFNCSR register into memory.

27

4. ON-CHIP AFN ARCHITECTURE

4.1 Baseline CMP-AFN Architecture

Our baseline CMP architecture uses multiple CPU cores, shared L2 cache, and the

ring interconnect, similar to the Larrabee many-core architecture [40], as shown in

Figure 4.1. The number of cores and L2 cache banks are implementation-dependent,

as is the position of the on-chip AFN.

4.2 AFU-core Interconnect

The on-chip AFN consists of the AFU-core interconnect and the aggregate function

units (AFU) as shown in Figure 4.2. The AFU-core interconnect could be a dedicated

interconnect or could be embedded in the existing interconnect network.

Fig. 4.1. A Baseline CMP architecture with on-chip AFN, similar to
Larrabee, where the ring network is the interprocessor network that
connects multiple cores and L2 cache banks. The number of cores and
L2 cache banks are implementation-dependent. (Adapted from Seiler
et. al 2008)

28

Fig. 4.2. On-Chip AFN Architecture: On-chip AFN consists of AFU
and AFU-core Interconnect.

In our baseline architecture, the on-chip AFN is attached to the ring interproces-

sor network. The communication between the on-chip AFN and cores is done through

the AFU-core interconnect. A dedicated interconnect for the AFU-core interconnect

requires additional wires and logics. Alternatively, the AFU-core interconnect could

be a virtual channel with the highest priority over the existing interconnect network,

similar to the Cray T3E’s logical barrier/eureka network [41]. The dedicated inter-

connect and virtual channel implementations have design trade-offs of latency versus

on-chip real-estate.

The on-chip AFN and CPU cores communicate with each other via AFN request

and response packets along the AFU-core interconnect. CPU cores send AFN request

packets to the on-chip AFN. In response to the request packets, the on-chip AFN

sends AFN response packets to the requesting CPU. As shown in Table 4.1, an AFN

29

Table 4.1
Packets to communicate between CPU cores and on-chip AFN

instructions
core-to-AFU packets AFU-to-core packets

opcode operand SAR status result

AFUALLOC opcALLOC numThrds secureID error, complete afuID

AFUFREE opcFREE - secureID, afuID error, complete -

AFNBARR opcBARR - secureID, afuID, rank error, complete -

AFNBARRRD opcBARRRD - secureID, afuID, rank error, complete, retry -

AFNLOCK opcLOCK - secureID, afuID, rank error, complete, retry -

AFNUNLOCK opcUNLOCK - secureID, afuID, rank error, complete, retry -

AFNADD opcADD data secureID, afuID, rank error, complete -

AFNMUL opcMUL data secureID, afuID, rank error, complete -

AFNAND opcAND data secureID, afuID, rank error, complete -

AFNRD opcRD - secureID, afuID, rank error, complete, retry data

AFNFADD opcFADD data secureID, afuID, rank error, complete -

AFNFMUL opcFMUL data secureID, afuID, rank error, complete -

AFNFRD opcFRD - secureID, afuID, rank error, complete, retry data

AFNPUT opcPUT data, srcThrd secureID, afuID, rank error, complete, -

AFNGET opcGET - secureID, afuID, rank error, complete, retry data

- opcRDACK - secureID, afuID, rank - -

request packet contains the SAR address, opcode, and data. An AFN response packet

contains the SAR address, status, and result. The on-chip AFN extracts appropriate

information from incoming request packets, processes the packets, and creates the

response packets based on the table shown in Table 4.1.

As the on-chip AFN may broadcast the result of collective communications to all

cores, it may leverage the hardware support for multicast such as VCTM (Virtual

Circuit Tree Multicasting) [42]. VCTM supports multicast of network messages, such

as invalidation messages from the coherence protocol, in the network on chip (NoC).

4.3 Aggregate Function Unit

In this section, we describe AFU, which consists of AFU tables, state machines,

aggregate ALUs and an AFU allocation table, as shown in Figure 4.2.

30

4.3.1 AFU Tables

Each AFU table keeps various information for a team of threads and is indexed

by afuID, i.e. afuTbl[afuID]. Per-thread information in each table is indexed by

thread’s rank, i.e. afuTbl[afuID][rank], and stores opcode (opc), 5-bit state (V/R/I/O/E),

data, and core number. V stands for valid, R for RESET, I for INPUT ARRIVED, O for

OUTPUT READY, E for ERROR. afuTbl[afuID].INPUT ARRIVED[N:0] is an arrived vec-

tor, where each bit position indicates whether the corresponding thread has arrived

or not.

4.3.2 AFU State Machines

AFUs use state machines to process AFN operations. An AFU maintains a

state machine for each AFN operation. And for each AFN operation, one state

machine exists per thread, and are updated when qualified events occur, including

the arrival of an AFN opcode from the core. Figure 4.3 shows the state machine

for AFNBARR/AFNBARRRD (barrier synchronization). The state machine con-

sists of four states, RESET, INPUT ARRIVED, OUTPUT READY, and ERROR. RESET is the

initial state and indicates that the corresponding thread is waiting for the request

packet with opcode opcBARR to arrive at the AFU. Upon the arrival of opcBARR

packet for the thread, the AFU changes the state from RESET to INPUT ARRIVED.

The INPUT ARRIVED state indicates that the thread is waiting for opcBARR packets

of other threads in a team to arrive at the AFU. When all threads arrives at the

AFU (i.e., VALID[N:0] == INPUT ARRIVED[N:0]), the states for all threads become

OUTPUT READY. The OUTPUT READY state indicates that the thread is waiting for the

packet with opcode opcBARRRD to complete the barrier synchronization. Upon the ar-

rival of opcBARRRD packet, the AFU changes the state to RESET for the corresponding

thread. RESET state indicates that the thread is ready to take next barrier synchro-

nization or any AFN operations.

31

Fig. 4.3. State Machine for Barrier Synchronization (AFNBARR/AFNBARRRD)

We note that threads in a team may not all change their states back to RESET

at the same time. However, the AFU does not prevent threads in the RESET state

from entering the next barrier synchronization even if there are threads whose states

are OUTPUT READY for the previous barrier synchronization. The state machine for

AFNOP/AFNOPRD is shown in Figure 4.4, which is similar to that of barrier syn-

chronization.

4.3.3 Aggregate Function ALUs

A collective operation is an N-operand operation and can be implemented using

a binary ALU with multiple iterations or using N-ary ALU with a single iteration.

There is a design trade-offs. In principle, the AFU waits for all operands to arrive

32

Fig. 4.4. State Machine for Reduction Operation (AFNOP/AFNOPRD)

33

(i.e. all threads reach synchronization point) to perform N-operand computation of

the aggregate function that is specified by the opcode.

But, in practice, the computation of the N-operand aggregate function may be-

gin as operands arrive at the AFU (before all operands arrive) and the AFU may

perform the computation as a binary operation of a newly arrived operand and the

accumulated result. With this reason, an expensive N-ary ALU may not be required.

4.3.4 AFU Allocation Table

The AFU allocation table keeps track of outstanding teams of threads that use

the on-chip AFN for the collective operations. When a team of threads is assigned

an afuID, the corresponding entry (indexed by the afuID) is allocated for the team

of threads and stores appropriate information.

4.4 A Case for CMP-AFN

In this section, the analytical model for the barrier synchronization will be dis-

cussed.

4.4.1 Barrier Synchronization Latency for CMP-AFN

From each thread’s perspective, the latency (TAFN instr) of AFN instructions can

be defined as follows:

TAFN instr = TCore to AFN + Tload imbalance + TBPL + TAFPL + TAFN to Core

For barrier synchronization, TAFPL = 0. Therefore, when all threads start to

execute the barrier instruction at the same time (i.e. Tload imbalance = 0), the latency

for barrier synchronization will be as follows:

Tbarr cmpafn = TCore to AFN + TBPL + TAFN to Core

34

Table 4.2
A Case for CMP-AFN

Latencies and Configuration

CMP 4 cores

L1 64k+64k, 64B line

L1 latency 3 cycles

Shared L2 4 banks: 1 local and 3 remote

Shared L2 local/remote latency: 15/20 cycles

Write-back to read latency: 35-40 cycles

Transit time between core and AFN (one-way): 7 cycles

Barrier sync latency within AFN: 3 cycles

Reduction latency within AFN: 10 cycles

PutGet latency within AFN: 6 cycles

35

Table 4.3
GOMP latencies

Tmutex lock 20 read mutex var from L2

Tmutex unlock 20 write-back mutex var to L2

T++arr 21 read arrived from L2 and increment

T
−−arr 21 read arrived from L2 and decrement

Tsem post 21 read sem post from L2 and decrement

Tcore2afn transit 7 transit time from core to AFN

Tafn2core transit 7 transit time from AFN to core

4.4.2 Barrier Synchronization Latency in a conventional CMP

gomp barrier wait() is the GNU implementation of barrier synchronization. As

illustrated in Figure 4.5, it uses a shared variable arrived. Its execution consists of

three stages– arrival stage, wake-up stage, and re-initialization stage. In the arrival

stage, when a thread arrives at a barrier, it increments the arrived shared variable,

then spin-wait using gomp sem wait(). When the last thread arrives at the barrier, it

wakes-up the prior N-1 threads by calling gomp sem post() N-1 times (the wake-up

stage). Then, all other threads atomically decrement arrived to re-initialize to zero

for next barrier use (the re-initialization stage).

Bold faced functions in Figure 4.5 represent codes in the critical path of the

latency. Therefore, the latency of gomp barrier wait() for N threads can be repre-

sented as follows:

Tgomp barr =
N∑

p=1

(Tmutex lock + T++arr + Tmutex unlock) +
N∑

p=1

Tsem post

+

N∑

p=1

(Tmutex lock + T
−−arr + Tmutex unlock)

Table 4.3 lists minimum time to take each function that are listed in the above

latency equation. For example, the time for gomp mutex lock() will vary at run-

36

Table 4.4
barr sync latency comparison

latencies

Tbarr cmp afn 17 cycles

Tgomp barr 572 cycles

Tgomp barr log 286 cycles

time due to lock contention and the Table shows the minimum time to execute the

function.

gomp barrier wait() does not parallelize the arrival stage, as illustrated in Figure

4.5. In other words, even if all threads arrive at a barrier at the same time, arrived

is incremented sequentially. If more than one shared variables are used, the arrival

stage can be executed in parallel. In this case, the latency is as follows:

Tgomp barr log =

log N∑

p=1

(Tmutex lock + T++arr + Tmutex unlock) +

log N∑

p=1

Tsem post

+

log N∑

p=1

(Tmutex lock + T
−−arr + Tmutex unlock)

37

Fig. 4.5. gomp barrier wait() when all four threads arrived a barrier
at the same time

38

5. EVALUATION METHODOLOGY AND RESULTS

The evaluation has been done using a cycle-accurate full-system simulation of a

single chip shared-memory multi-core processor using Simics [43] and GEMS [44].

We evaluate CMP-AFN against CMP without on-chip AFN (CMP-REF), with var-

ious core counts. We use the EPCC OpenMP Microbenchmarks [7] and the SPEC

OMP (OpenMP Benchmark Suite) [45–47] for the evaluation. We compiled and ran

OpenMP benchmarks using GOMP (GNU OpenMP), an OpenMP implementation

for GCC [5,48].

5.1 Simulation Target Configurations

Simics is a full-system functional simulator that models various instruction set

architectures and can execute commercial applications and operating systems. We

created six Simics simulation targets – three CMP-REF (4, 8, and 16 cores) and

three CMP-AFN targets (4, 8, and 16 cores). A 4-core CMP-AFN target is shown in

Figure 5.1. All CMP-REF and CMP-AFN targets have Fedora Core 5 installed and

contain IA32-based cores, 512 MB memory, and one 19GB IDE disk. Fedora Core 5

features Linux kernel 2.6.15 with SMP support and Native POSIX Thread Library

(NPTL) version 2.4, which supports Futex (Fast Userspace Mutex) [4].

GEMS’s Ruby enables the models of the cache memory hierarchy, the protocol

controllers, and the on-chip interconnect in all simulation targets. It provides per-

formance statistics for all cache and memory activities. Each target has a 32K-Byte

private L1 cache for each core and 1 MByte-per-core shared L2 cache. These values

are not intended to model a specific commercial chip, but to approximate the cache

structure one might reasonably expect for a many-core design. The latest (64-bit

extended) IA32-based 4-core Intel Core i7 and AMD Phenom II chips use 32K to

39

Fig. 5.1. A four-core CMP-AFN Simics Target

40

64K L1 caches. Our L2 cache design approximates the 6M to 8M shared L3 caches

of those chips. We used Ruby’s ⁀MOESI CMP directory for the on-chip cache co-

herence protocol. It is an on-chip two-level directory protocol using non-inclusive

L1/L2 caching with blocking caches. This directory-based cache coherence protocol

was selected because it scales better with higher core counts than a snoopy protocols.

For CMP-AFN targets, we developed a Simics module to implement on-chip AFN

hardware logic and the instruction decoder for the AFN ISA extensions. We load the

AFN instruction decoder module into the CMP-REF targets, as shown in Figure 5.1,

to create CMP-AFN targets. The transit time between a core and an L2 cache bank

is the one-way latency of a memory request traveling from the core to one of the

L2 cache controllers through the on-chip interconnect. The same amount of time

is used for the transit time between a core and the on-chip AFN. Table 5.1 shows

system configurations for the target architectures. We used Simics version 3.0.29 and

GEMS version 1.4. To use Ruby with the IA-32 architecture-based Simics targets,

we created a Ruby patch for the IA-32 architecture for GEMS version 1.4, which has

been integrated and released as part of GEMS version 2.0.

5.2 Re-targeting OpenMP Benchmarks for CMP-AFN

For the CMP-AFN architecture, synchronization primitives and thread manage-

ment methods can be ported using AFN instructions to utilize the on-chip AFN

for collective operations in the OpenMP applications. Because an OpenMP run-

time library for the CMP-AFN does not exist, we replaced OpenMP constructs/rou-

tines in the OpenMP benchmark with the corresponding AFN Library routines for

OpenMP. The AFN Library routines for OpenMP include AFN instructions and per-

form OpenMP barrier synchronization, lock, and reductions through the on-chip AFN

in the target. Table 5.2 shows conversions from OpenMP constructs/routines to AFN

library routines for OpenMP. Although we manually performed the conversion, this

can also be done with an automatic source-to-source translator. We compiled the

41

Table 5.1
Configurations for Simulated Targets

CPU Cores
Intel Pentium 4, in-order

4-core, 8-core, and 16-core

Private L1 Cache
32KB 4-way, 64Byte-line

L1 hit latency: 1-cycle

Shared L2 Cache

4-core CMPs: 4MB, 4 banks, 16-way

8-core CMPs: 8MB, 8 banks, 32-way

16-core CMPs: 16MB, 16 banks, 64-way

Cache Coherence Directory Based Protocol

Protocol i.e. Ruby’s MOESI CMP directory

Main Memory
512MB total memory

200-cycle memory access

Platform

Tango (Fedora Core 5)

Linux kernel 2.6.16

NPTL 2.4 (Native Pthreads Lib) with Futex

GCC 4.2.1 with OpenMP support

42

Table 5.2
Replacing OpenMP constructs with AFN Library routines

OpenMP Constructs/Routines AFN Lib Routines for OpenMP

#pragma omp barrier =⇒ afn barrier omp();

#pragma omp critical afn lock omp();

{ /* structured-block */ } =⇒ { /* structured-block */ }

afn unlock omp();

omp init lock(lock) =⇒ afn alloc omp()

omp destroy lock(lock) =⇒ afn free omp()

omp set lock(lock) =⇒ afn lock omp()

omp unset lock(lock) =⇒ afn unlock omp()

OpenMP benchmarks with GCC 4.2 which features GOMP [48] (GNU OpenMP), an

OpenMP implementation for GCC.

5.2.1 barrier Construct

The barrier construct specifies an explicit barrier at the point at which the

construct appears. The syntax of the barrier construct for C/C++ is as follows:

#pragma omp barrier

When GCC 4.2 encounters barrier construct, it replaces #pragma omp barrier

with GOMP barrier();.

#pragma omp barrier =⇒ GOMP barrier();

For the CMP-AFN target, we replaced the barrier construct in the benchmarks

with the afn barrier omp() routine before compile the benchmarks.

#pragma omp barrier =⇒ afn barrier omp();

43

5.2.2 critical Construct

The critical construct restricts execution of the associated structured block to a

single thread at a time. The syntax of the critical construct for C/C++ is as follows:

#pragma omp critical

{

/* structured-block */

}

For a critical construct, GCC 4.2 places a pair of GOMP routines, GOMP critical start()

and GOMP critical end(), immediately before and after the structured block, respec-

tively.

#pragma omp critical GOMP critical start();

{ /* structured-block */ } =⇒ { /* structured-block */ }

GOMP critical end();

For CMP-AFN target, we placed afn lock omp() and afn unlock omp() in the

benchmarks immediately before and after the structured block, then compiled with

GCC 4.2.

#pragma omp critical afn lock omp();

{ /* structured-block */ } =⇒ { /* structured-block */ }

afn unlock omp();

5.2.3 OpenMP Locks

The OpenMP runtime library includes a set of general-purpose lock routines that

can be used for synchronization. These general-purpose lock routines operate on

OpenMP locks represented by OpenMP lock variables. An OpenMP lock variable

must only be accessed through the routines described in this section.

An OpenMP lock may be in one of the following states: uninitialized, unlocked,

or locked. If a lock is in the unlocked state, a thread may set the lock, which changes

44

its state to locked. The thread which sets the lock is then said to own the lock. A

thread which owns a lock may unset that lock, returning it to the unlocked state. A

thread may not set or unset a lock which is owned by another thread.

The simple lock routines are as follows:

• omp init lock() routine initializes a simple lock.

• omp destroy lock() routine uninitializes a simple lock.

• omp set lock() routine waits until a simple lock is available, and then sets it.

• omp unset lock() routine unsets a simple lock.

GCC 4.2 replaces OpenMP lock routines with corresponding Pthreads routines as

follows:

omp init lock(lock) =⇒ pthread mutex init (lock, NULL)

omp destroy lock(lock) =⇒ pthread mutex destroy (lock)

omp set lock(lock) =⇒ pthread mutex lock (lock)

omp unset lock(lock) =⇒ pthread mutex unlock (lock)

For CMP-AFN targets, we manually replaced OpenMP lock routines with the

AFN routines as follows:

omp init lock(lock) =⇒ afn alloc omp()

omp destroy lock(lock) =⇒ afn free omp()

omp set lock(lock) =⇒ afn lock omp()

omp unset lock(lock) =⇒ afn unlock omp()

5.3 Compiling OpenMP Benchmarks for CMP Simics Targets: Check-

pointing

Figure 5.2 shows how we create executables for the simulated targets. The first

step is to identify the region of code in each benchmark that we want to run and

measure the performance. In Simics, for each simulated processor architecture, a

45

Fig. 5.2. Steps to create executables for CMP-AFN and CMP-REF targets

46

special no-operation instruction has been chosen to be a magic instruction for the

simulator. For x86, it is xchg %bx, %bx. When a magic breakpoint is triggered by

the execution of the magic instruction, the simulator stops and returns to prompt.

To create two breakpoints, we insert two magic instructions immediately before and

after the identified chunk of source code.

The benchmark is run without the cache memory model up to the first breakpoint.

At the first magic breakpoint, we checkpoint the simulation by saving the entire state

of the simulation to disk. We resume simulation with Ruby enabled to model cache

memory and the coherence protocol, and we start to collect performance data. When

the simulation stops again at the second breakpoint, the performance statistics are

dumped for analysis.

After inserting magic instructions and replacing OpenMP constructs with the

AFN Lib routines, we cross-compile the benchmark source code on the host machine

where GCC 4.2 is installed. Using SimicsFS, we mount the host file system from the

simulated target so that the simulated target can copy the cross-compiled executables

from the host and can access the GCC 4.2 run-time library to run the executables.

The following GCC compiler option was used:

-fopenmp -march=i386 -O3

5.4 Overview of OpenMP Benchmarks

We ran the EPCC OpenMP Microbenchmarks [7], which provide microbenchmark

information for the OpenMP barrier construct, OpenMP lock runtime library rou-

tines, and reduction constructs among other constructs. We also ran the SPEC

OMP (OpenMP Benchmark Suite) [46,47]. Table 5.4 shows static counts of OpenMP

constructs and run-time routines in the SPEC OMP benchmarks that are executed

on the simulation targets for the evaluation. Because of the simulation speed and

the small memory capacity of the simulated targets, we ran these benchmarks with

a small data set and with reduced iteration counts.

47

main() {

read_input();

#pragma omp single

{

__asm__ __volatile__ ("xchg %bx, %bx"); // breakpoint #1

}

"code to be measured..."

#pragma omp barrier

__asm__ __volatile__ ("xchg %bx, %bx"); // breakpoint #2

"other program code..."

}

Fig. 5.3. Structure of a Program with magic instructions

48

Table 5.3
Static Counts of OpenMP Constructs and Run-Time Routines in
SPEC OMP Benchmarks for Evaluation

barrier critical OpenMP locks reduction implicit barrier

316.applu m 2

320.equake m 2

324.apsi m 1

330.art m 1

332.ammp m 3

In the SPEC OMP benchmarks, 316.applu m contains an explicit OpenMP

barrier construct for the barrier synchronization. 320.equake m does not con-

tain any OpenMP constructs (except parallel loop constructs) that are relevant to

CMP-AFN. Implicit barriers in 320.equake m have been replaced with an AFN bar-

rier synchronization since there is an implicit barrier at the end of the parallel

construct in OpenMP [49]. 330.art m contains the critical OpenMP construct

that restricts execution of the associated structured block to a single thread at a

time. For a critical construct, GCC/GOMP places pthread mutex lock() and

pthread mutex unlock() at the beginning and the end of the associated block, re-

spectively. In CMP-AFN, AFNLOCK and AFNUNLOCK are used for the critical

construct. 332.ammp m contains OpenMP locks that restricts execution of the as-

sociated structured block to a single thread at a time. In CMP-AFN, AFNLOCK and

AFNUNLOCK are used for the omp set lock() and omp unset lock(), respectively.

5.5 EPCC Microbenchmark

We ran the EPCC OpenMP Microbenchmark suite [7] [50] to evaluate the perfor-

mance of collective operations in the proposed architecture, compared to the CMP

reference architecture. Due to the simulation speed and the small memory capacity

of the simulated targets, we ran the benchmark with the reduced iteration counts.

49

void delay(int delaylength) {

int i;

float a=0.;

for (i=0; i<delaylength; i++) a+=i;

if (a < 0) printf("%f \n",a);

}

Fig. 5.4. delay(): EPCC microbenchmark

The Microbenchmarks includes syncbench.c, which consists of testbar(), testlock(),

and testred() functions to provide microbenchmark information for barrier synchro-

nization construct, OMP locks runtime library routines, and reduction constructs,

respectively. We ran a modified version of these functions with the slightly smaller

loop iteration counts as shown below, in order to reduce the Simics simulation time.

delay(delaylength), shown in Figure 5.4, is called in each inner loop body for all

microbenchmarks.

5.5.1 syncbench.c: testbar() for barrier synchronization

As shown in Figure 5.5, testbar() includes nested loops where the innerloop body

contains barrier synchronization. We used the CMP AFN macro to keep the same source

for both CMP-REF and CMP-AFN with conditional compilation. For CMP-AFN,

each thread calls the afn barrier omp() routine. For CMP-REF targets, threads

perform barrier synchronization via GOMP’s barrier routine which uses the shared

memory. We measured the performance of the testbarr().

5.5.2 syncbench.c: testlock() for OpenMP locks

As shown in Figure 5.6, testlock() includes nested loops, where the inner-

loop body contains a pair of OpenMP lock and unlock routines. We used CMP AFN

50

void testbar() {

int j,k;

unsigned int rank;

for (k=0; k<=OUTERREPS; k++){

#pragma omp parallel private(j, rank)

{

rank = omp_get_thread_num();

for (j=0; j<innerreps; j++) {

delay(delaylength);

#ifdef CMP_AFN

afn_barrier_omp(rank);

#else

#pragma omp barrier

#endif

}

}

}

}

Fig. 5.5. testbar(): EPCC microbenchmark for barrier synchronization

51

macro definition to keep the same source for both CMP-REF and CMP-AFN with

conditional compilation. For CMP-AFN, each thread calls afn lock omp() and

afn unlock omp() routines. For CMP-REF, threads perform OpenMP locks via

Pthreads’ mutex/unmutex routines which use shared memory. We measured the

performance of the testlock().

5.5.3 syncbench.c: testred() for reduction

As shown in Figure 5.7, testred() includes nested loops where the innerloop per-

forms reduction add at the end of the loop. We used CMP AFN macro to keep the same

source for both CMP-REF and CMP-AFN with conditional compilation. For CMP-

AFN, each thread calls the afn add omp() routine. For CMP-REF targets, threads

perform the reduction add via the shared memory. We measured the performance of

the testred().

5.6 SPEC OMP2001 Benchmark Suite

We ran the SPEC OMP 2000 Benchmark suite [47] [46] to evaluate the per-

formance of the proposed architecture, ISA extensions, and the AFN Library for

OpenMP against the CMP reference architecture. Due to the simulation speed and

the small memory capacity of the simulated targets, we run the SPEC OMP Bench-

mark with small data set and with the reduced iteration counts.

Out of 11 SPEC OMP Benchmarks, we selected four benchmarks–316.applu m,

320.equake m, 330.art m, and 332.ammp m–for both barrier construct (explicit),

and implicit barrier synchronization (due to omp parallel for constructs) , critical

construct, and OpenMP lib routines for Locks/Unlocks, respectively.

We had gfortran compilation errors for 314.mgrid m and 318.galgel m due to not

being compliant to OpenMP spec 2.5 and unspecified errors, respectively. With the

small data set, 328.fma3d m did not reach the critical OpenMP constructs. With

the medium data set, 328.fma3d d is too long to simulate in Simics environment.

52

void testlock() {

int j,k;

unsigned int rank;

omp_lock_t lock;

#ifndef CMP_AFN

omp_init_lock(&lock);

#endif

for (k=0; k<=OUTERREPS; k++) {

#pragma omp parallel private(j,rank)

{

rank = omp_get_thread_num();

for (j=0; j<innerreps/nthreads; j++) {

#ifdef CMP_AFN

afn_lock_omp(rank);

#else

omp_set_lock(&lock);

#endif

delay(delaylength);

#ifdef CMP_AFN

afn_unlock_omp(rank);

#else

omp_unset_lock(&lock);

#endif

}

}

}

}

Fig. 5.6. testlock(): EPCC microbenchmark for OpenMP Lock.
OUTERREPS=10, innerreps=128, and delaylength=500.

53

void testred() {

int j,k, mySum, *gSum;

unsigned int rank;

gSum = &mySum;

for (k=0; k<=OUTERREPS; k++) {

mySum = k;

#pragma omp parallel for private(rank) reduction(+:mySum)

for (j=0; j<innerreps; j++) {

rank = omp_get_thread_num();

mySum += j;

delay(delaylength);

#ifdef CMP_AFN

afn_add_omp(rank, mySum, gSum);

#endif

}

}

}

Fig. 5.7. testred(): EPCC microbenchmark for reduction

54

Table 5.4
OpenMP constructs used in SPEC OMPM2001 benchmark suite:
BARR indicates for BARRIER construct, CRIT for CRITICAL construct,
LOCK for OpenMP locks, RED for REDUCTION clause, and i.barr for
implicit barrier synchronization. The numbers are static counts.

BARR CRIT LOCK RED i.barr

310.wupwise m 1 2

312.swim m 1

314.mgrid m 1

316.applu m 2 5

318.galgel m

320.equake m 2

324.apsi m 1

326.gafort m 400000 3

328.fma3d m 1 8

330.art m 1

332.ammp m 3

55

Table 5.5
SPEC OMPM2001 Benchmark Suite Description

Application area Lang #files Status

310.wupwise m QCD F77 25 test FAILED (“killed”)

312.swim m Shallow water F77 1 Simics decoder issue

314.mgrid m Multigrid solver F77 1 Not compliant to OMP2.5

316.applu m Fluid dynamics F77 20 pass

318.galgel m Fluid dynamics f90 39 gfortran compilation errors

320.equake m Earthquake model C 1 pass

324.apsi m Air pollution F77 1 Simics decoder issue

326.gafort m Genetic algorithm f90 1 test FAILED (“killed”)

328.fma3d m Crash simulation f90 101 too long to simulate

330.art m Image Recognition C 1 pass

332.ammp m Computational Chem C 31 pass

56

1 ! $omp p a r a l l e l
2 ! $omp& de f a u l t (shared)
3 ! $omp& pr i v a t e (i0 , i1 , ipx , ipy , j0 , j1 , k , l , mt , nt , npx , npy)
4 ! $omp& shared (nx , ny , nz , omega)
5 c−−−
6 c Pa r t i t i o n X−Y plane amongst p r o c e s s o r s in two dimensions .
7 c−−−
8 nt = 1
9 mt = 0

10 npx = in t (s q r t (dble (nt)))
11

12 DO WHILE ((npx . gt . 1) . and . (mod (nt , npx) . ne . 0))
13 npx = npx − 1
14 END DO

15

16 npy = nt / npx
17 ipx = mod (mt , npx)
18 ipy = mt / npx
19 i 0 = (ipx + 0) ∗ (nx − 2) / npx + 2
20 i 1 = (ipx + 1) ∗ (nx − 2) / npx + 1
21 j 0 = (ipy + 0) ∗ (ny − 2) / npy + 2
22 j 1 = (ipy + 1) ∗ (ny − 2) / npy + 1
23 DO l = 2 , npx + npy + nz − 3
24 k = l − ipx − ipy
25 IF ((1 . l t . k) . and . (k . l t . nz)) THEN

26 c−−−
27 c form the lower t r i a n g u l a r part o f the ja cob ian matrix
28 c−−−
29 CALL j a c l d (i0 , i1 , j0 , j1 , k)
30 c−−−
31 c perform the lower t r i a n g u l a r s o l u t i o n
32 c−−−
33 CALL b l t s (i s i z 1 , i s i z 2 , i s i z 3 ,
34 > nx , ny , nz , i0 , i1 , j0 , j1 , k ,
35 > omega , rsd , tv , a , b , c , d)
36 END IF

37 ! $omp bar r i e r
38 END DO

39

40 DO l = npx + npy + nz − 3 , 2 , −1
41 k = l − ipx − ipy
42 IF ((1 . l t . k) . and . (k . l t . nz)) THEN

43 c−−−
44 c form the s t r i c t l y upper t r i a n g u l a r part o f the ja cob ian matrix
45 c−−−
46 CALL jacu (i0 , i1 , j0 , j1 , k)
47 c−−−
48 c perform the upper t r i a n g u l a r s o l u t i o n
49 c−−−
50 CALL buts (i s i z 1 , i s i z 2 , i s i z 3 ,
51 > nx , ny , nz , i0 , i1 , j0 , j1 , k ,
52 > omega , rsd , tvu , du , au , bu , cu)
53 END IF

54 ! $omp bar r i e r
55 END DO

56 ! $omp end p a r a l l e l

Fig. 5.8. ssor.f from SPEC OMP 316.applu m

57

5.6.1 316.applu m

316.applu m contains OpenMP barrier construct for the barrier synchronization.

Figure 5.8 shows an OpenMP parallel region (ssor.f 138-209) that contains two

DO statements with barrier at the end of each loop body. This parallel region

contributes more than 80% of total execution time [8].

5.6.2 320.equake m

320.equake m is a benchmark in SPEC OMP where there is no OpenMP construct

(except parallel loop constructs) that are relevant to CMP-AFN. For omp parallel

for construct, GCC places GOMP barrier() (barrier synchronization) at the end of

the loop. We call them implicit barrier synchronization because they are not explicitly

specified by the programmer, but implicitly placed by the compiler because OpenMP

specification requires. In 320.equake m, implicit barriers have been replaced with

AFN barrier sync.

5.6.3 324.apsi m

324.apsi m contains a reduction clause in one of parallel loops. Currently, this

benchmark fails due to one of outstanding Simics bugs (decode issue).

5.6.4 330.art m

330.art m contains the CRITICAL OpenMP construct that restricts execution of the

associated structured block to a single thread at a time. For a critical construct,

GOMP puts pthread mutex lock and pthread mutex unlock() at the beginning

and the end of the associated block, respectively. In CMP-AFN, AFNLOCK and

AFNUNLOCK are used for the critical construct.

58

5.6.5 332.ammp m

332.ammp m contains OpenMP locks that restricts execution of the associated

structured block to a single thread at a time. In CMP-AFN, AFNLOCK and AF-

NUNLOCK are used for the omp set lock() and omp unset lock(), respectively.

5.7 Performance Evaluation

The potential performance improvement in CMP-AFNs comes from reductions

in memory accesses, coherence protocol messages, and a dynamic instruction count.

Because the on-chip AFN performs the collective operations, fewer memory accesses

and coherence messages are required. The performance discussed in this section is

based on busy-waiting based AFN synchronization. A blocking AFN synchronization

mechanism such as this reduces the number of instructions that are executed for the

synchronization primitives as well as network traffic between cores and the on-chip

AFN.

Figures 5.9 and 5.10 summarize the performance results from EPCC OpenMP

Microbenchmarks and SPEC OMP Benchmark, respectively. Results are presented

in execution times (Figures 5.9(a) and 5.10(a)), number of memory accesses (Fig-

ures 5.9(b) and 5.10(b)), number of L1 DCache misses (Figures 5.9(c) and 5.10(c)),

and number of L2 Cache misses (Figures 5.9(d) and 5.10(d)). The CMP-AFN per-

formance numbers are normalized to those of CMP-REF with the same number of

cores.

Overall, as shown in Figures 5.9 and 5.10, CMP-AFN outperforms CMP-REF

in terms of execution time and shows even more performance benefits as the core

count increases from 4 to 8 to 16 cores. The on-chip AFN significantly improves

the performance of barrier synchronization and reduces the number of L1 DCache

misses by more than 50% in 316.applu m with 16 cores. The reduced number of

L1 DCache misses results mostly from the absence of invalidation messages on the

on-chip network. CMP-AFN reduces the number of memory accesses as shown in

59

(a) Execution Time (b) Number of memory accesses

(c) Total number of L1 DCache misses in the system (d) Total number of L2 cache misses in the system

(e) L1 DCache Misses (UserMode) (f) L1 DCache Misses (SupervisorMode)

Fig. 5.9. Summary of EPCC OpenMP Microbenchmark Results

Figures 5.9(b) and 5.10(b), which indicates a reduced number of memory instructions

are executed.

60

(a) Execution Time (b) Number of memory accesses

(c) Total number of L1 DCache misses in the system (d) Total number of L2 Cache misses in the system

(e) L1 DCache Misses (UserMode) (f) L1 DCache Misses (SupervisorMode)

Fig. 5.10. Summary of SPEC OMP Benchmark Results

61

5.7.1 Performance Evaluation of 316.applu m

In this section, we discuss the performance results of applu, which gets substantial

benefits from the on-chip AFN, as shown in Figure 5.11(a).

Memory references due to barrier synchronization cause significant a number of

cache line invalidations in CMP-REF, compared to CMP-AFN, as shown in Figure

5.11(b). Cache line invalidations cause L1 data cache misses while threads are per-

forming mutex on shared variables. Figure 5.11(c) shows the number of L1D cache

misses due to cache line invalidations. And Figure 5.11(d) shows the per-thread

penalty (accumulated latency) for L1D cache misses due to cache line invalidations.

(a) Execution Time (b) Total number of invalidations

(c) L1 DCache misses due to cache line invalidation (d) Per-thread penalty for L1D misses due to cache

line invalidations

Fig. 5.11. SPEC OMP 316.applu m

62

In CMP-REF, the per-thread penalty for L1D cache misses due to invalidations in-

creases as the thread count increases. On the other hand, in CMP-AFN, the per-

thread penalty for L1D misses due to invalidations does not increase significantly.

The penalty for L1D misses due to invalidations accounts for 10%, 16%, and 19% of

the total execution time for 4-, 8-, and 16-core CMP-REF; and 7%, 8%, and 11% for

CMP-AFN.

Because in CMP-AFN threads perform barrier synchronization via on-chip AFN,

not via mutex on shared variables, the performance data show that the number of

cache line invalidations and the number of L1 data cache misses due to invalidations

are reduced significantly, compared to CMP-REF. As higher thread counts causes

more cache line invalidation and L1D cache misses in CMP-REF due to higher degree

of contention on shared synchronization variables, the benefit of the on-chip AFN gets

more substantial as we get more threads in the systems as shown in Figure 5.11(a).

Figure 5.12(a) shows the network link utilization percentage. The link utilization

indicates the network traffic throughout the simulation. Due to the higher number

of invalidations and cache misses, all CMP-REF targets have a higher link utilization

percentage than CMP-AFN counterpart. CMP-REF targets executed slightly more

(a) Link utilization percent (b) Instruction Counts

Fig. 5.12. SPEC OMP 316.applu m (continued)

63

instructions than CMP-AFN for 4- and 8-cores. For 16-core CMP-REF, significantly

more instructions are executed as shown in Figure 5.12(b).

The breakdown of L1 data cache misses into user and supervisor mode (Figure

5.13(a)) shows that in CMP-REF the number of cache misses in supervisor mode

accounts for significant fraction of the total number of L1 data cache misses due to

FUTEX (Fast Userlevel muTEX) where the kernel handles the mutex variables [5].

This indicates that on-chip AFN allows CMP-AFNs to spend less time on performing

mutex and execute less instructions in synchronization primitives than CMP-REFs.

(a) Total number of L1 DCache misses by Mod

(User vs. Supervisor)

(b) Total number of L2 cache misses by Mode (User

vs. Supervisor)

(c) L1D misses plus hits

Fig. 5.13. SPEC OMP 316.applu m (continued)

64

Breakdown of Execution Time

Figure 5.14 shows the breakdown of the execution time (cycles). For each sim-

ulation, the total number of cycles to complete the benchmark is broken down into

times that are needed for (1) non-memory instructions, (2) L1 hits, (3) L1 data cache

misses with cache coherence activity [L1 wCC misses], (4) L1 misses without cache

coherent activity [L1 misses], (5) L2 misses, and (6) Directory misses.

CMP-AFNs spend less time on L1 wCC misses than CMP-REFs as the barrier

synchronization took place without spin-waiting on shared flags, which cause excessive

coherence traffic (invalidations), causing L1 wCC misses (as we discussed earlier as

the penalty for L1D misses due to cache line invalidations). For the same reason,

CMP-REFs spend more time on L1 hits than CMP-AFNs as it spin-waits on the

shared flags. For CMP-AFN, the number of non-memory instructions includes AFN

instructions and nop instructions that are used to implement the latency of on-chip

AFN instructions. The number of cycles that is required for L1 misses and L2 misses

does not account much in the total execution time and can be ignored in the discussion

here. CMP-AFN and CMP-REF spend similar time on Directory misses.

In summary, for 4- and 8-core CMPs, L1 wCC misses accounts for performance

difference between two CMP architectures as the time for all others are similar.

Distribution of Instruction Counts

Instruction count per core may indicate whether load-balance within a team of

threads although no other information in the simulation stats can provide the per-core

data. As shown in Figure 5.15, the number of instructions among threads is evenly

distributed with low core count.

65

Fig. 5.14. applu: Breakdown of Execution Time by Cache Misses

66

(a) 4-core CMP-REF (b) 4-core CMP-AFN

(c) 8-core CMP-REF (d) 8-core CMP-AFN

(e) 16-core CMP-REF (f) 16-core CMP-AFN

Fig. 5.15. applu: Instruction Count Distribution Across Cores

67

(a) 4-core CMP-REF (b) 4-core CMP-AFN

(c) 8-core CMP-REF (d) 8-core CMP-AFN

(e) 16-core CMP-REF (f) 16-core CMP-AFN

Fig. 5.16. applu: Instruction Count Distribution Across Cores (Nor-
malized to Max Instruction Count)

68

6. SUMMARY

6.1 Conclusions

We have described the CMP-AFN architecture and the corresponding instruction

set architecture (ISA) extensions that augment a shared memory chip multiproces-

sor with an aggregate function network and an interface between CPU cores and

the on-chip AFN. In the CMP-AFN architecture, collective communications are per-

formed without using or interfering with the on-chip cache coherent shared memory

hierarchy. We have shown the on-chip synchronous aggregate communication model,

implemented using the on-chip aggregate network hardware and ISA extensions, pro-

vide the CMP with low latency collective operations and reduced network traffic,

resulting in effective use of on-chip cache and low power consumption.

Although this dissertation does not focus on gate-level architectural implementa-

tion issues, the abstract architecture, instruction set, and programmer model for the

CMP-AFN design presented here represents a major advance. Efficiently managing

the complexity of virtualizing processors to processes, and allowing them to dynami-

cally move between cores (or cluster nodes) due to operating system scheduling have

been open problems in AFN design for over a decade. Further, the instruction set

extensions developed in this dissertation are shown to be straightforward and effective

to use, and were tested as a fully integrated component of a GCC/GOMP OpenMP

compilation and Linux runtime environment.

The detailed simulation results for the EPCC OpenMP microbenchmarks and

SPEC OpenMP benchmarks both clearly and directly show a dramatic improvement

in execution time and cache activity. The microbenchmarks revealed an order of mag-

nitude improvement in all costs associated with barrier synchronization, better than

2X improvement in locks, and a relatively minor improvement in reductions. The

69

SPEC benchmark speedups ranged from negligible to better than 2X, with greater

improvement over the reference CMP design as the number of cores increased from

4 to 16. We believe that it would continue to improve as more cores are added, but

our simulation environment could not handle more cores. The simulation environ-

ment cannot quantify nor directly support our claim of reduced power consumption,

however, the measured reductions in cache and memory activity are well known to

imply reductions in power consumption.

In summary, if shared-memory CMPs are to scale to many cores, the concept of a

CMP-AFN has been shown to be both a viable and effective means towards achieving

this goal.

6.2 Future Work

Future work includes the performance evaluation of many-core (17-core or more)

with the on-chip AFN and the exploration of off-chip AFN to connect multiple CMP-

AFN sockets.

LIST OF REFERENCES

70

LIST OF REFERENCES

[1] G. F. Pfister and V. A. Norton, “”Hot Spot” Contention and Combining in
Multistage Interconnection Networks,” in ICPP, pp. 790–797, 1985.

[2] J. M. Mellor-Crummey and M. L. Scott, “Algorithms for scalable synchronization
on shared-memory multiprocessors,” ACM Trans. Comput. Syst., vol. 9, no. 1,
pp. 21–65, 1991.

[3] U. Drepper, “Futexes Are Tricky,” Jan 2008. http://people.redhat.com/ drep-
per/futex.pdf.

[4] H. Franke, R. Russell, and M. Kirkwood, “Fuss, Futexes and Furwocks: Fast
Userlevel Locking in Linux,” in Proceedings of the 2002 Ottawa Linux Summit,
2002.

[5] D. Novillo, “OpenMP and automatic parallelization in GCC,” Jun 2006. GCC
Developers’ Summit, Ottawa, Ontario CANADA.

[6] V. Aslot and R. Eigenmann, “Performance Characteristics of the SPEC
OMP2001 Benchmarks,” SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 31–
40, 2001.

[7] J. M. Bull and D. O’Neill, “A Microbenchmark Suite for OpenMP 2.0,”
SIGARCH Comput. Archit. News, vol. 29, no. 5, pp. 41–48, 2001.

[8] K. Fürlinger, M. Gerndt, and J. Dongarra, “Scalability Analysis of the SPEC
OpenMP Benchmarks on Large-Scale Shared Memory Multiprocessors,” in Pro-
ceedings of the 2007 International Conference on Computational Science (ICCS
2007), (Beijing, China), pp. 815–822, May 2007.

[9] J. Sampson, R. Gonzalez, J.-F. Collard, N. P. Jouppi, M. Schlansker, and
B. Calder, “Exploiting Fine-Grained Data Parallelism with Chip Multipro-
cessors and Fast Barriers,” in MICRO 39: Proceedings of the 39th Annual
IEEE/ACM International Symposium on Microarchitecture, (Washington, DC,
USA), pp. 235–246, IEEE Computer Society, 2006.

[10] K. Asanovic, R. Bodik, B. C. Catanzaro, J. J. Gebis, P. Husbands, K. Keutzer,
D. A. Patterson, W. L. Plishker, J. Shalf, S. W. Williams, and K. A. Yelick,
“The Landscape of Parallel Computing Research: A View from Berkeley,” Tech.
Rep. UCB/EECS-2006-183, EECS Department, University of California, Berke-
ley, Dec 2006.

[11] H. G. Dietz, T. M. Chung, and T. I. Mattox, “A Parallel Processing Support
Library Based on Synchronized Aggregate Communication,” in LCPC ’95: Pro-
ceedings of the 8th International Workshop on Languages and Compilers for
Parallel Computing, (London, UK), pp. 254–268, Springer-Verlag, 1996.

71

[12] A. Gottlieb, R. Grishman, C. Kruskal, K. McAuliffe, L. Rudolph, and M. Snir,
“The NYU Ultracomputer Designing a MIMD Shared Memory Parallel Com-
puter,” IEEE Trans. on Computers, vol. C-32, pp. 175–189, Feb 1983.

[13] G. F. Pfister, W. C. Brantley, D. A. George, S. L. Harvey, W. J. Kleinfelder,
K. P. McAuliffe, E. S. Melton, V. A. Norton, and J. Weiss, “The IBM Research
Parallel Processor Prototype (RP3): Introduction and Architecture,” in ICPP,
pp. 764–771, 1985.

[14] R. E. Kessler and J. L. Schwarzmeier, “Cray T3D: A New Dimension for Cray
Research,” in the 38th IEEE Computer Society International Conference (COM-
PCON), pp. 176–182, 1993.

[15] C. E. Leiserson, Z. S. Abuhamdeh, D. C. Douglas, C. R. Feynman, M. N. Gan-
mukhi, J. V. Hill, D. Hillis, B. C. Kuszmaul, M. A. S. Pierre, D. S. Wells, M. C.
Wong, S.-W. Yang, and R. Zak, “The Network Architecture of the Connection
Machine CM-5 (extended abstract),” in SPAA ’92: Proceedings of the fourth
annual ACM symposium on Parallel algorithms and architectures, (New York,
NY, USA), pp. 272–285, ACM Press, 1992.

[16] D. Gajski, D. Kuck, D. Lawrie, and A. Sameh, “CEDAR: A Large Scale Multi-
processor,” SIGARCH Comput. Archit. News, vol. 11, no. 1, pp. 7–11, 1983.

[17] A. Gara, M. A. Blumrich, D. Chen, G. L.-T. Chiu, P. Coteus, M. Giampapa,
R. A. Haring, P. Heidelberger, D. Hoenicke, G. V. Kopcsay, T. A. Liebsch,
M. Ohmacht, B. D. Steinmacher-Burow, T. Takken, and P. Vranas, “Overview
of the Blue Gene/L system architecture,” IBM Journal of Research and Devel-
opment, vol. 49, no. 2-3, pp. 195–212, 2005.

[18] R. Hoare, H. G. Dietz, T. I. Mattox, and S. P. Kim, “Bitwise Aggregate Net-
works,” in SPDP ’96: Proceedings of the 8th IEEE Symposium on Parallel and
Distributed Processing (SPDP ’96), (Washington, DC, USA), p. 306, IEEE Com-
puter Society, 1996.

[19] M. B. Taylor, W. Lee, S. Amarasinghe, and A. Agarwal, “Scalar Operand Net-
works: On-Chip Interconnect for ILP in Partitioned Architectures,” in HPCA
’03: Proceedings of the 9th International Symposium on High-Performance Com-
puter Architecture, (Washington, DC, USA), pp. 341–353, IEEE Computer So-
ciety, 2003.

[20] K. Sankaralingam, R. Nagarajan, H. Liu, C. Kim, J. Huh, D. Burger, S. W. Keck-
ler, and C. R. Moore, “Exploiting ILP, TLP, and DLP with the Polymorphous
TRIPS Architecture,” in ISCA ’03: Proceedings of the 30th Annual Interna-
tional Symposium on Computer Architecture, (New York, NY, USA), pp. 422–
433, ACM, 2003.

[21] S. Swanson, K. Michelson, A. Schwerin, and M. Oskin, “Wavescalar,” in MI-
CRO 36: Proceedings of the 36th Annual IEEE/ACM International Symposium
on Microarchitecture, (Washington, DC, USA), pp. 291–302, IEEE Computer
Society, 2003.

[22] G. S. Tyson, M. K. Farrens, and A. R. Pleszkun, “MISC: A Multiple Instruction
Stream Computer,” in MICRO 25: Proceedings of the 25th Annual IEEE/ACM
International Symposium on Microarchitecture, pp. 193–196, 1992.

72

[23] R. A. Hankins, G. N. Chinya, J. D. Collins, P. H. Wang, R. Rakvic, H. Wang, and
J. P. Shen, “Multiple Instruction Stream Processor,” in ISCA ’06: Proceedings
of the 33rd International Symposium on Computer Architecture, pp. 114–127,
2006.

[24] J. Held, J. Bautista, and S. Koehl, “From a Few Cores to Many: A Tera-
Scale Computing Research Overview,” 2006. White Paper, Intel Corporation
(http://www.intel.com/research/platform/terascale).

[25] J. A. Kahle, M. N. Day, H. P. Hofstee, C. R. Johns, T. R. Maeurer, and D.
Shippy, “Introduction to the CELL Multiprocessor,” IBM Journal of Research
Development, vol. 49, no. 4/5, pp. 589–604, 2005.

[26] M. K. Velamati, A. Kumar, N. Jayam, G. Senthilkumar, P. K. Baruah,
R. Sharma, S. Kapoor, and A. Srinivasan, “Optimization of Collective Com-
munication in Intra-Cell MPI,” in HiPC, pp. 488–499, 2007.

[27] R. Nishtala and K. A. Yelick, “Optimizing Collective Communication on Mul-
ticores,” First USENIX Workshop on Hot Topics in Parallelism (HotPar’09),
2009.

[28] T. Johnson and U. Nawathe, “An 8-core, 64-thread, 64-bit power efficient sparc
soc (Niagara2),” in ISPD ’07: Proceedings of the 2007 international symposium
on Physical design, (New York, NY, USA), pp. 2–2, ACM, 2007.

[29] M. J. Quinn, Parallel Computing (2nd ed.): Theory and Practice. New York,
NY, USA: McGraw-Hill, Inc., 1994.

[30] H. Dietz, Linux Parallel Processing HOWTO. Bloomington, IN, USA: iUniverse,
Inc., 2000. (http://aggregate.org/LDP/19980105/pphowto.html).

[31] OpenMP Architecture Review Board. http://www.openmp.org.

[32] L. Dagum and R. Menon, “OpenMP: An Industry-Standard API for Shared-
Memory Programming,” IEEE Comput. Sci. Eng., vol. 5, no. 1, pp. 46–55, 1998.

[33] OpenMP Architecture Review Board, OpenMP Application Program Interface
Version 2.5, May 2005. (http://www.openmp.org/mp-documents/spec25.pdf).

[34] J. P. Hoeflinger, “Extending OpenMP to Clusters,” 2006. White paper, Intel
Corporation.

[35] S.-J. Min, A. Basumallik, and R. Eigenmann, “Optimizing OpenMP programs on
software distributed shared memory systems,” Int. J. Parallel Program., vol. 31,
no. 3, pp. 225–249, 2003.

[36] W. Gropp, E. Lusk, N. Doss, and A. Skjellum, “A high-performance, portable
implementation of the MPI message passing interface standard,” Parallel Com-
put., vol. 22, no. 6, pp. 789–828, 1996.

[37] W. Gropp, S. Huss-Lederman, A. Lumsdaine, E. Lusk, B. Nitzberg, W. Saphir,
and M. Snir, MPI The Complete Reference: Volume 2, The MPI-2 Extensions.
Cambridge, MA: MIT Press, 1998.

[38] H. G. Dietz, T. I. Mattox, and G. Krishnamurthy, “The Aggregate Function
API: It’s Not Just for PAPERS Anymore.,” in LCPC, pp. 277–291, 1997.

73

[39] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 1: Basic Architecture. Santa Clara, CA, order number: 253665-023us ed.,
May 2007.

[40] L. Seiler, D. Carmean, E. Sprangle, T. Forsyth, M. Abrash, P. Dubey, S. Junk-
ins, A. Lake, J. Sugerman, R. Cavin, R. Espasa, E. Grochowski, T. Juan, and
P. Hanrahan, “Larrabee: A Many-Core x86 Architecture for Visual Computing,”
ACM Trans. Graph., vol. 27, no. 3, pp. 1–15, 2008.

[41] S. L. Scott, “Synchronization and Communication in the T3E Multiprocessor,”
in ASPLOS-IX: Proceedings of the International Conference on Architectural
Support for Programming Languages and Operating Systems, pp. 26–36, 1996.

[42] N. E. Jerger, L.-S. Peh, and M. Lipasti, “Virtual Circuit Tree Multicasting: A
Case for On-Chip Hardware Multicast Support,” in ISCA ’08: Proceedings of
the 35th International Symposium on Computer Architecture, (Washington, DC,
USA), pp. 229–240, IEEE Computer Society, 2008.

[43] P. S. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hog-
berg, F. Larsson, A. Moestedt, and B. Werner, “Simics: A Full System Simula-
tion Platform,” Computer, vol. 35, no. 2, pp. 50–58, 2002.

[44] M. M. K. Martin, D. J. Sorin, B. M. Beckmann, M. R. Marty, M. Xu, A. R.
Alameldeen, K. E. Moore, M. D. Hill, and D. A. Wood, “Multifacet’s General
Execution-driven Multiprocessor Simulator (GEMS) Toolset,” SIGARCH Com-
puter Architecture News, vol. 33, no. 4, pp. 92–99, 2005.

[45] V. Aslot, M. J. Domeika, R. Eigenmann, G. Gaertner, W. B. Jones, and
B. Parady, “SPEComp: A New Benchmark Suite for Measuring Parallel Com-
puter Performance,” in WOMPAT ’01: Proceedings of the International Work-
shop on OpenMP Applications and Tools, (London, UK), pp. 1–10, Springer-
Verlag, 2001.

[46] H. Saito, G. Gaertner, W. Jones, R. Eigenmann, H. Iwashita, R. Lieberman,
M. van Waveren, and B. Whitney, “Large system performance of SPEC OMP
benchmark suites,” Int. J. Parallel Program., vol. 31, no. 3, pp. 197–209, 2003.

[47] Standard Performance Evaluation Corporation, “SPEC OMP (OpenMP Bench-
mark Suite),” 2001. (http://www.spec.org/hpg/omp2001).

[48] GOMP (GNU OpenMP) – An OpenMP Implementation for GCC.
http://gcc.gnu.org/projects/gomp.

[49] OpenMP Architecture Review Board, OpenMP Application Program Interface,
Version 3.0, May 2008. Available from www.openmp.org.

[50] EPCC, The University of Edinburgh, “EPCC OpenMP Microbenchmarks,” 1999.
(http://www.epcc.ed.ac.uk/research/openmpbench).

[51] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2A: Instruction Set Reference, A-M. Santa Clara, CA, order number:
253666-023us ed., May 2007.

[52] Intel Corporation, Intel 64 and IA-32 Architectures Software Developer’s Manual
Volume 2B: Instruction Set Reference, N-Z. Santa Clara, CA, order number:
253667-023us ed., May 2007.

APPENDICES

74

A. AFN EXTENSIONS TO IA-32

A.1 Overview of ISA Extensions for on-chip AFN

AFN extensions use the aggregate function (AF) communication model [38]. The

extensions support inter-processor data communication, barrier synchronization, and

synchronous collective operations via the on-chip Aggregate Function Network (AFN).

If CPUID.01H:ECX.AFN[bit TBD] = 1, AFN extensions are present. (bits 16-31

are available as of Fall 2007 [51, 52]).

AFN extensions add the following features to the IA-32 architecture, while main-

taining backward compatibility with all existing IA-32 processors, applications and

operating systems.

• Instructions to support the following synchronous collective operations (i.e. ag-

gregate functions) among a team of threads:

– Barrier synchronization instruction

– Multi-broadcast data transfer instructions among a team of threads (16-bit,

32-bit integer data and floating-point data)

– Reduction instructions (addition and production on integer and floating

point data)

– Instructions that save and restore the state of the AFNCSR and AFNSAR

registers

• Modifications to existing IA-32 instructions to support AFN features:

– Extensions and modifications to the CPUID instruction

– (Optional) Modifications to the RDPMC instruction

These new features extend the IA-32 architectures MP (multiprocessor) program-

ming in the following important ways:

75

Fig. A.1. AFN Programming Environment: a single thread’s perspective

• They provide the ability to perform integer (16- or 32-bit) or floating-point data

transfer among a team of threads, without requiring control and data traffic in

cache memory hierarchy.

• They provide the ability to perform synchronous collective operations without

requiring control and data traffic in cache memory hierarchy.

The AFN extensions are fully compatible with all software written for IA-32 pro-

cessors. All existing software continues to run correctly, without modification, on

processors that incorporate AFN extensions, as well as in the presence of applica-

tions that incorporate these extensions.

76

A.2 AFN Programming Environment

Figure A.1 shows the programming environment of the AFN extensions. All AFN

instructions use general-purpose registers, floating-point registers, or AFNreg for both

source and destination registers. There is only one AFNreg that can be read from, or

written to, by the processor.

The programming environment of the AFN extension consists of the followings:

• Eight 32-bit general purpose registers.

• Eight 80-bit floating point data registers.

• An 80-bit AFNreg (added for the AFN extension) - One of AFNreg’s that is

assigned to the processor. Each processor can read and write from/to only one

AFNreg. The processor moves data to the AFNreg for the AFN operations, then

reads the result from the AFNreg when the result is ready. The AFN performs

aggregate function operations on contents of all AFNreg’s and places the result

in the AFNreg.

• A 32-bit AFNSAR register (added for the AFN extension) - stores an 8-bit afuID,

an 8-bit rank, and a 16-bit secureID. The register can be written in privilege

mode. All AFN instructions read AFNSAR and send it to the AFN.

– the 8-bit afuID (stored in AFNSAR register): indicates the hardware (AFU)

that is assigned to a team of threads for aggregate (collective) functions.

As shown in Figure A.2, an AFN (Aggregate Function Network) consists

of multiple AFUs (Aggregate Function Units) to handle multiple teams of

threads at the same time.

– the 8-bit rank (stored in AFNSAR register): indicates the unique ID that

is assigned to the thread within a team of threads.

– the 16-bit secureID (stored in AFNSAR register): used for the AFN exten-

sions security features.

77

Fig. A.2. AFNregs and AFUs

• A 32-bit AFNCSR register (added for the AFN extension) - the 32-bit register

(see Figure A.3) provides status and control bits used in AFN floating-point

operations.

A.2.1 AFU

An AFN implementation may have one or more AFUs (Aggregate Function Units).

Each AFU can process a team of threads independently and an AFN with multiple

AFUs can handle multiple teams of threads simultaneously. Figure A.2 shows an

AFN implementation that has three AFUs.

78

A.2.2 AFNreg Registers

There are a number of AFNreg registers in each AFU. The number of AFNreg reg-

isters in an AFN determines the maximum size of the team of threads. Each AFNreg

register in an AFU is referenced by rank within the afuID. For example, AFNreg(x::y)

indicates the AFNreg register for AFUID=x and rank=y. afuID indicates one of the

AFUs, where AFN operations are performed for the processor, and rank indicates the

unique integer that is assigned to the processor within a team of threads.

Each processor can read from and write to only one AFNreg register and cannot

access other AFNreg registers. AFNreg refers to the AFNreg register that is accessible

by the processor within the processor context.

The 8-bit afuID and the 8-bit rank are stored in AFNSAR register bits [15:0].

Instructions that read and write from/to the AFNreg do not have AFNreg as an

operand.

A.2.3 AFNSAR Register

The AFNSAR register stores the 16-bit secureID, the 8-bit afuID, and the 8-bit

rank. The contents of AFNSAR register can only be written by the AFNALLOC

instruction, which is executed in privilege mode only. The bits of the AFNSAR are:

• secureID (bits 31-16):

• afuID (bits 15-8):

• rank (bits 7-0):

secureID is not an explicit operand, but the CPU core that executes the AFN in-

structions reads the secureID from the AFNSAR and sends it to the AFN for authen-

tication. This is a security feature to prevent malicious threads from manipulating

the secureID.

The process ID (pid) of the process that owns the team of threads can be used

for the secureID value. secureID is also stored in the AFN.

79

Fig. A.3. AFNCSR Control/Status Register

80

A.2.4 AFNCSR Control and Status Register

The 32-bit AFNCSR register (see Figure A.3) contains control and status informa-

tion for AFN operations. This register contains flag and mask bits for AFN operation

exceptions.

The contents of this register can be loaded from memory with the LDAFNCSR

instruction and stored in memory with STAFNCSR.

Bits 12 through 15 and 21 through 31 of the AFNCSR register are reserved and

are cleared on a power-up or reset of the processor.

Bits 0 through 5 of the AFNCSR register indicate whether an AFN operation

exception has been detected. They are sticky flags. That is, after a flag is set,

it remains set until explicitly cleared. To clear these flags, use the LDAFNCSR

instruction to write zeros to them.

Bits 6 through 11 provide individual mask bits for the AFN operation exceptions.

An exception type is masked if the corresponding mask bit is set, and it is unmasked

if the bit is clear. These mask bits are set upon a power-up or reset. This causes all

AFN operation exceptions to be initially masked.

Bit 16 represents the barrier number that is toggled.

Bits 17 through 20 represent the status of the AFN instruction for the AFNreg –

valid (bit 17), reset or wait for input (bit 18), input arrived (bit 19), and output ready

(bit 20).

81

--------+---

2 1 1 1

0 9 8 7

o i r v

u n e a

t p s l

p u e i

u t t d

t

--------+---

0 0 0 0 Not participate in barrier group

0 0 1 1 Waiting for input (afnOP) to arrive

0 1 0 1 Input (afnOP) arrived, output is not ready

1 0 0 1 Output is ready for afnRD

--------+---

Fig. A.4. AFNCSR register bit positions

82

A.3 AFN Instructions

AFN instructions are divided into five functional groups (Opcode range):

• Data Movement Instructions (0F 38 8x):

– AFNRD – Read AFNreg

– AFNPUTGET – Multi-broadcast data communication

• Synchronization instruction (0F 38 9x):

– AFNBARR – Barrier Synchronization

– AFNBARRRD – Barrier Synchronization Read

– AFNLOCK – Mutex lock

– AFNUNLOCK – Mutex unlock

• Reduction instructions (0F 38 Ax,Bx,Cx,Dx):

– AFNADD/AFNFADD/AFNFADDP – Reduce ADD

– AFNMUL/AFNFMUL/AFNFMULP – Reduce Multiply

– AFNAND - Reduce bitwise AND

– AFNOR - Reduce bitwise OR

– AFNXOR - Reduce bitwise XOR

• State management instructions (0F 38 Ex):

– LDAFNCSR - Load AFNCSR Register

– STAFNCSR - Store AFNCSR Register State

– LDAFNSAR - Load AFNSAR Register

– STAFNSAR - Store AFNSAR Register State

• AFN configuration instructions (0F 38 Fx):

– AFNALLOC - Allocate AFU

– AFNFREE - Free AFU

83

A.3.1 Opcodes

In IA-32 architecture, a primary opcode can be 1, 2, or 3 bytes in length. Three-

byte opcode formats for general-purpose and SIMD instructions consist of:

• An escape opcode byte 0FH as the primary opcode, plus two additional opcode

bytes, or

• A mandatory prefix (66H), an escape opcode byte, plus two additional opcode

bytes (same as previous bullet)

For example, PHADDW for MMX registers consists of the following sequence: 0F 38

01.

As of August 2007 [51, 52], the following three-byte opcodes are not being used

and the opcodes for AFN instructions were assigned to 0F 38 80..FF:

• 0F 38 00..0B

• 0F 38 1C..1E

• 0F 3A 0F

A.3.2 Instruction Format

The following is an example of the format used for each instruction description in

this chapter. The heading below introduces the example. The table below provides

an example summary table.

AFNBARR – Barrier Synchronization [this is an example]

A.3.3 Opcode Column in the Instruction Summary Table

The Opcode column in the instruction summary table (shown in Figure A.5) shows

the object code produced for each form of the instruction. When possible, codes are

given as hexadecimal bytes in the same order that they appear in memory. Definitions

of entries other than hexadecimal bytes are as follows:

84

Opcode Instruction Description

0F 38 90 AFNBARR EAX Barrier synchronization

Fig. A.5. An Example Opcode Summary Table: consists of three
columns – ”Opcode”, ”Instruction”, and ”Description”

85

• /r - Indicates that the ModR/M byte1 of the instruction contains a register

operand and an r/m operand.

• ib, iw, id, io - A 1-byte (ib), 2-byte (iw), 4-byte (id) or 8-byte (io) immediate

operand to the instruction that follows the opcode, ModR/M bytes or scalein-

dexing bytes. The opcode determines if the operand is a signed value. All words,

doublewords and quadwords are given with the low-order byte first.

• +i - A number used in floating-point instructions when one of the operands is

ST(i) from the FPU register stack. The number i (which can range from 0 to

7) is added to the hexadecimal byte given at the left of the plus sign to form a

single opcode byte.

A.3.4 Instruction Column in the Instruction Summary Table

The Instruction column in the instruction summary table (shown in Figure A.5)

gives the syntax of the instruction statement as it would appear in an ASM386 pro-

gram. The following is a list of the symbols used to represent operands in the in-

struction statements:

• AFNreg - The AFN register that is assigned to the processor. AFNreg ==

AFNreg(AFNSAR[15:8]::AFNSAR[7:0]).

• AFNreg(x::y) - The yth AFN register in AFU x.

• AFNreg(::y) - indicates AFNreg(x::y), where x == AFNSAR[15:8].

• r8 - One of the byte general-purpose registers: AL, CL, DL, BL, AH, CH, DH,

BH, BPL, SPA, DILL and SIL; or one of the byte registers (R8L - R15L) available

when using REX.R and 64-bit mode.

• r16 - One of the word general-purpose registers: AX, CX, DX, BX, SP, BP,

SI, DI; or one of the word registers (R8-R15) available when using REX.R and

64-bit mode.

1the ModR/M byte refers to an addressing-form specifier byte following the primary opcode.

86

• r32 - One of the doubleword general-purpose registers: EAX, ECX, EDX, EBX,

ESP, EBP, ESC, EDT; or one of the doubleword registers (R8D - R15D) available

when using REX.R in 64-bit mode.

• r64 - One of the headword general-purpose registers: RAD, RX, RCS, RD, RID,

REI, RAP, RASP, R8R15. These are available when using REX.R and 64-bit

mode.

• imm8 - An immediate byte value. The imm8 symbol is a signed number between

128 and +127 inclusive. For instructions in which imm8 is combined with a word

or doubleword operand, the immediate value is sign-extended to form a word or

doubleword. The upper byte of the word is filled with the topmost bit of the

immediate value.

• imm16 - An immediate word value used for instructions whose operand-size

attribute is 16 bits. This is a number between 32,768 and +32,767 inclusive.

• imm32 - An immediate doubleword value used for instructions whose operand-

size attribute is 32 bits. It allows the use of a number between +2,147,483,647

and 2,147,483,648 inclusive.

• imm64 - An immediate headword value used for instructions whose operand-size

attribute is 64 bits. The value allows the use of a number between +9,223,372,036,854,775,807

and 9,223,372,036,854,775,808 inclusive.

• r/m8 - A byte operand that is either the contents of a byte general-purpose

register (AL, CL, DL, BL, AH, CH, DH, BH, BPL, SPA, DILL and SIL) or a

byte from memory. Byte registers R8L - R15L are available using REX.R in

64-bit mode.

• r/m16 - A word general-purpose register or memory operand used for instructions

whose operand-size attribute is 16 bits. The word general-purpose registers are:

AX, CX, DX, BX, SP, BP, SI, DI. The contents of memory are found at the

address provided by the effective address computation. Word registers R8W -

R15W are available using REX.R in 64-bit mode.

87

• m16 - A word operand in memory, usually expressed as a variable or array name,

but pointed to by the DES:(E)SI or ES:(E)DI registers. This nomenclature is

used only with the string instructions.

• m32 - A doubleword operand in memory, usually expressed as a variable or array

name, but pointed to by the DES:(E)SI or ES:(E)DI registers. This nomencla-

ture is used only with the string instructions.

• m32fp, m64fp, m80fp - A single-precision, double-precision, and double extended-

precision (respectively) floating-point operand in memory. These symbols des-

ignate floating-point values that are used as operands for x87 FU floating-point

instructions.

• ST or ST(0) - The top element of the FU register stack.

• ST(i) - The ith element from the top of the FU register stack (i← 0 through 7).

• XML - An XML register. The 128-bit XML registers are: XMM0 through

XMM7; XMM8 through XMM15 are available using REX.R in 64-bit mode.

88

AFNRD – Read AFNreg

Opcode Instruction Description

0F 38 8A AFNRD r32 Move AFNreg to r32

0F 38 80+i AFNRD ST(i) Move AFNreg to ST(i)

0F 38 88 AFNRD ST(0) Push AFNreg onto the FU register stack

Description

Copies the AFNreg to the operand (destination operand) if the content of AFNreg

is ready to be read (i.e. AFNCSR[19:17]=0b111). The destination register can be a

general purpose register or the top of the FU register stack. The operand can be a

word, a doubleword or an 80-bit floating point (for double extended-precision floating

point). If the AFNreg is not ready (i.e. AFNCSR[19:17]=0b011), no data is moved

to the destination operand.

Operation

IF AFNreg is ready

THEN

IF DEST is ST(i)

THEN

TOP <-- TOP - 1;

ST(0) <-- AFNreg;

ELSE

DEST <-- AFNreg;

FI;

FI;

89

AFNPUTGET – Multi-broadcast Data Transfer

Opcode Instruction Description

0F 38 88 /r AFNPUTGET r32,r32 Move AFNreg(SRC2) to AFNreg

0F 38 8A /r AFNPUTGET ST(i),r32 Move AFNreg(SRC2) to AFNreg

Description

Performs data transfer among AFNreg(::i). AFNPUTGET moves the first operand

(source operand 1) to AFNreg, then moves AFNreg(SRC2) into AFNreg when all

AFNreg(::i)’s have arrived at the AFN. The second operand (SRC2) represents the

rank of the processor where the data comes from. AFNPUTGET should be followed

by AFNRD instruction to complete a multi-broadcast PutGet operation.

The reg/opcode field of ModR/M byte specifies the second operand. The r/m

field of ModR/M byte specifies a register for the first operand. For example, for

“AFNPUTGET ST(i),r32” instruction, the 3-bit R/M field of ModR/M byte indicates

one of the FP data registers.

Operation

AFNreg <-- SRC1;

Barrier Sync;

temp <-- AFNreg(::SRC2);

AFNreg <-- temp;

90

AFNBARR – Barrier Synchronization

Opcode Instruction Description

0F 38 90 AFNBARR EAX Barrier synchronization

EDX holds afuID and rank

0F 38 91 AFNBARRRD EAX Barrier Synchronization

Description

Performs barrier synchronization via AFN. There is no operand for this instruc-

tion. AFNBARR should be followed by the AFNBARRRD instruction to complete the

barrier synchronization operation.

Operation

Barrier Sync;

AFNreg <-- TRUE;

91

AFNLOCK – Mutex Lock

Opcode Instruction Description

0F 38 98 AFNLOCK AFN mutex lock

EDX holds afuID and rank

Description

Performs a mutex lock via AFN. If the lock is successful, it stores a non-zero value

to EAX. Otherwise, it stores zero to EAX.

Operation

IF (currState==LOCKED)

THEN

// Unsuccessful

EAX <- zero

FI

IF (currState==UNLOCKED)

THEN

// Successful

EAX <- non-zero

currState <- LOCKED

lockOwner <- rank

FI

92

AFNUNLOCK – Mutex Unlock

Opcode Instruction Description

0F 38 99 AFNUNLOCK AFN Mutex Unlock

EDX holds afuID and rank

Description

Performs a mutex unlock via AFN. If the unlock is successful, it stores non-zero

value to EAX. Otherwise, it stores zero to EAX. The unlock is successful if current

status is LOCKED and lockOwner is equal to the rank.

Operation

IF (currState==LOCKED and lockOwner==rank)

THEN

// Successful

EAX <- non-zero

ELSE

// Unsuccessful

EAX <- zero

FI

93

AFNADD/AFNFADD/AFNFADDP – Reduce ADD

Opcode Instruction Description

0F 38 AA AFNADD r32 Move r32 to AFNreg for reduction ADD

0F 38 A0+i AFNFADD ST(i) Move ST(i) to AFNreg for reduction ADD

0F 38 A8 AFNFADDP Move ST(0) to AFNreg for reduction ADD,

and pop the register stack

Description

Performs a reduction add operation. AFNADD/AFNFADD/AFNFADDP copies the operand

(source operand) to the AFNreg. The AFN adds all AFNreg’s from all threads. The

source register can be a general purpose register or floating-point register stack. The

operand can be a word, a doubleword, or an 80-bit floating point number (for double

extended-precision floating point).

The no-operand version of the instruction sends the content of ST(0) to the AFN

for the reduction add and performs the additional operation of popping the FU reg-

ister stack after moving the top of stack content to AFNreg.

Operation

AFNreg <-- SRC;

IF Instruction = AFNFADDP

THEN

PopRegisterStack;

FI;

Barrier Sync;

temp <-- (AFNreg(::0) + AFNreg(::1) + ... + AFNreg(::Nthreads-1));

AFNreg <-- temp;

94

AFNMUL/AFNFMUL/AFNFMULP – Reduce Multiply

Opcode Instruction Description

0F 38 BA AFNMUL r32 Move r32 to AFNreg for reduction MUL

0F 38 B0+i AFNFMUL ST(i) Move ST(i) to AFNreg for reduction MUL

0F 38 B8 AFNFMULP Move ST(0) to AFNreg for reduction MUL,

and pop the register stack

Description

Performs a reduction multiplication operation. AFNMUL/AFNFMUL/AFNFMULP copies

the operand (source operand) to the AFNreg. The AFN multiplies all AFNreg’s from

all threads. The source register can be a general purpose register or floating-point

register. The operand can be a word, a doubleword, or an 80-bit floating point data

(for double extended-precision floating point).

The no-operand version of the instruction sends the content of ST(0) to the AFN

for the reduction multiplication and performs the additional operation of popping the

FU register stack after sending the top of stack content to AFNreg.

Operation

AFNreg <-- SRC;

IF Instruction = AFNFMULP

THEN

PopRegisterStack;

FI;

Barrier Sync;

temp <-- (AFNreg(::0) x AFNreg(::1) x ... x AFNreg(::Nthreads-1));

AFNreg <-- temp;

95

AFNAND – Reduce bitwise AND

Opcode Instruction Description

0F 38 C0 AFNAND r32 Move r32 to AFNreg for reduction

bitwise AND

Description

Performs a reduction bitwise AND. AFNAND copies the operand (source operand)

to the AFNreg. The AFN performs bitwise logical AND on all AFNreg’s from all

threads. The source register can be a general purpose register. The operand can be

a word, or a doubleword.

Operation

AFNreg <-- SRC;

Barrier Sync;

temp <-- (AFNreg(::0) AND AFNreg(::1) AND ... AND AFNreg(::Nthreads-1));

AFNreg <-- temp;

96

AFNOR – Reduce bitwise OR

Opcode Instruction Description

0F 38 C4 AFNOR r32 Move r32 to AFNreg for reduction

bitwise OR

Description

Performs a reduction bitwise OR. AFNOR copies the operand (source operand) to

the AFNreg. The AFN performs bitwise logical OR on all AFNreg’s from all threads.

The source register can be a general purpose register. The operand can be a word,

or a doubleword.

Operation

AFNreg <-- SRC;

Barrier Sync;

temp <-- (AFNreg(::0) OR AFNreg(::1) OR ... OR AFNreg(::Nthreads-1));

AFNreg <-- temp;

97

AFNXOR – Reduce bitwise XOR

Opcode Instruction Description

0F 38 C8 AFNXOR r32 Move r32 to AFNreg for reduction

bitwise XOR

Description

Performs a reduction bitwise XOR. AFNXOR copies the operand (source operand)

to the AFNreg. The AFN performs bitwise logical XOR on all AFNreg’s from all

threads. The source register can be a general purpose register. The operand can be

a word, or a doubleword.

Operation

AFNreg <-- SRC;

Barrier Sync;

temp <-- (AFNreg(::0) XOR AFNreg(::1) XOR ... XOR AFNreg(::Nthreads-1));

AFNreg <-- temp;

98

LDAFNCSR – Load AFNCSR Register

Opcode Instruction Description

0F 38 E0 LDAFNSAR m32 Load AFNSAR register from m32.

Description

AFNCSR loads the source operand into the AFNCSR control and status register.

The source operand is a 32-bit memory location. See refTBD for a description of

the AFNCSR register and its contents. The LDAFNCSR instruction is typically used

in conjunction with the STAFNCSR instruction, which stores the contents of the

AFNCSR register in memory. The default AFNCSR value at reset is TBD.

Operation

AFNCSR <-- m32;

99

STAFNCSR – Store AFNCSR Register State

Opcode Instruction Description

0F 38 E1 STAFNCSR m32 Store the content of AFNCSR

register to m32.

Description

Stores the contents of the AFNCSR control and status register in the destination

operand. The destination operand is a 32-bit memory location. The reserved bits in

the AFNCSR register are stored as 0s.

Operation

m32 <-- AFNCSR;

100

LDAFNSAR – Load AFNSAR Register

Opcode Instruction Description

0F 38 E2 LDAFNSAR m32 Load AFNSAR register from m32.

Description

AFNSAR loads the source operand into the AFNSAR register. The source operand

is a 32-bit memory location. See refTBD for a description of the AFNSAR register

and its contents. The LDAFNSAR instruction is typically used in conjunction with

the STAFNSAR instruction, which stores the contents of the AFNSAR register in

memory. The default AFNCSR value at reset is TBD.

Operation

AFNSAR <-- m32;

101

STAFNSAR – Store AFNSAR Register State

Opcode Instruction Description

0F 38 E3 STAFNSAR m32 Store the content of AFNSAR

register to m32.

Description

Stores the contents of the AFNSAR register to the destination operand. The

destination operand is a 32-bit memory location. The reserved bits in the AFNSAR

register are stored as 0s.

Operation

m32 <-- AFNSAR;

102

AFUALLOC – Allocate an AFU

Opcode Instruction Description

0F 38 F0 AFUALLOC r32 Allocate an AFU.

Description

Allocates an AFU for a team of threads. The first operand (source operand)

represents the number of processors/threads for the team. AFUALLOC can only be

executed in privilege mode. AFUALLOC sends secureID to AFU for the security

feature and AFU stores the secureID in its local storage.

When a new team of threads is created, an AFU is assigned via AFUALLOC

instruction. The AFN returns the afuID to the CPU core that executes the AFUAL-

LOC instruction. When no AFU is available for the new team, the AFN clears the

most significant bit of the afuID.

The user AFN operations will trap if the most significant bit of the afuID is clear

– msb(afuID)=0–, then AFN operations will be performed via software, not via AFN

hardware.

Operation

Send nThreads (SRC) to AFN

Receive afuID from AFN

IF allocation successful // i.e. msb(afuID)==TRUE

THEN

Write afuID to AFNSAR

Send secureID to AFU

Initialize AFU

FI;

103

AFUFREE – Free up an AFU

Opcode Instruction Description

0F 38 F1 AFUFREE Free up an AFU.

Description

Frees up the AFU. AFUFREE does not have operands. The CPU that executes

AFUFREE instruction extracts the afuID from AFNSAR and then sends the afuID

to the AFN.

Operation

...

VITA

104

VITA

To be added...

