
 

 

ABSTRACT OF THESIS 
 

 

HDL IMPLEMENTATION AND ANALYSIS OF A RESIDUAL REGISTER FOR A 
FLOATING-POINT ARITHMETIC UNIT 

  

Processors used in lower-end scientific applications like graphic cards and video game 

consoles have IEEE single precision floating-point hardware [23]. Double precision 

offers higher precision at higher implementation cost and lower performance. The need 

for high precision computations in these applications is not enough to justify the use 

double precision hardware and the extra hardware complexity needed [23]. Native-pair 

arithmetic offers an interesting and feasible solution to this problem. This technique 

invented by T. J. Dekker uses single-length floating-point numbers to represent higher 

precision floating-point numbers [3]. Native-pair arithmetic has been proposed by Dr. 

William R. Dieter and Dr. Henry G. Dietz to achieve better accuracy using standard IEEE 

single precision floating point hardware [1]. Native-pair arithmetic results in better 

accuracy however it decreases the performance by 11x and 17x for addition and 

multiplication respectively [2]. The proposed implementation uses a residual register to 

store the error residual term [2]. This addition is not only cost efficient but also results in 

acceptable accuracy with 10 times the performance of 64-bit hardware. This thesis 

demonstrates the implementation of a 32-bit floating-point unit with residual register and 

estimates the hardware cost and performance.  
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Chapter 1. Introduction 
 

This chapter briefly introduces all the topics that will be encountered and described in the 

later parts of the thesis. It starts by giving the reason for using floating-point numbers in 

computation. It discusses the floating-point arithmetic, cost involved in implementing 

higher precision than the existing floating-point hardware, native-pair arithmetic and its 

usage for better precision and accuracy, performance-cost factor in native-pair arithmetic 

and extra hardware support to improve the performance-cost factor. This chapter ends 

with the author’s motivation to work on native-pair Floating-point Arithmetic unit and 

the organization of the thesis. 

1.1. Computer Representation of Real Numbers 
 

Real numbers may be described as numbers that can represent a number with infinite 

precision and are used to measure continuous quantities. Almost all computations in 

Physics, Chemistry, Mathematics or scientific computations, all involve operations using 

real numbers. Computers can only approximate real numbers, most commonly 

represented as fixed-point and floating-point numbers. In a Fixed-point representation, a 

real number is represented by a fixed number of digits before and after the radix point. 

Since the radix point is fixed, the range of fixed-point also is limited. Due to this fixed 

window of representation, it can represent very small numbers or very large numbers 

accurately within the available range. A better way of representing real numbers is 

floating-point representation. Floating-point numbers represent real numbers in scientific 

notation. They employ a sort of a sliding window of precision or number of digits 

suitable to the scale of a particular number and hence can represent of a much wider 

range of values accurately. Floating-point representation has a complex encoding scheme 

with three basic components: mantissa, exponent and sign. Usage of binary numeration 

and powers of 2 resulted in floating point numbers being represented as single precision 

(32-bit) and double precision (64-bit) floating point numbers. Both single and double 

precision numbers are defined by the IEEE 754 standard. According to the standard, a 
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single precision number has one sign bit, 8 exponent bits and 23 mantissa bits where as a 

double precision number comprises of one sign bit, 11 exponent bits and 52 mantissa bits. 

 

Most processors designed for consumer applications, such as Graphical Processing Units 

(GPUs) and CELL processors promise and deliver outstanding floating point 

performance for scientific applications while using the single precision floating point 

arithmetic hardware [23][6]. Video games rarely require higher accuracy in floating-point 

operations, the high cost of extra hardware needed in their implementation is not 

justified. The hardware cost of a higher precision arithmetic is lot greater than single-

precision arithmetic. For example, one double precision or 64-bit floating point pipeline 

has approximately same cost as two to four 32-bit floating-point pipelines [1]. Most 

applications use 64-bit floating point to avoid losing precision in a long sequence of 

operations used in the computation, even though the final result may not be accurate to 

more than 32-bit precision. The extra precision is used so the application developer does 

not have to worry about having enough precision. Native-pair arithmetic presents an 

opportunity to increase the accuracy of a single-precision or 32-bit floating-point 

arithmetic without incurring the high expense of a double-precision or 64-bit floating-

point arithmetic implementation. Native-pair arithmetic uses two native floating-point 

numbers to represent the base result and the resulting error residual term that would have 

been discarded in a native floating point unit [23]. One native floating-point number is 

represented using two native floating-point numbers. This approach has been adapted 

from an earlier technique known as double-double arithmetic. Double-double arithmetic 

is the special case of native-pair arithmetic using two 64-bit double precision floating 

point numbers to represent one variable; the first floating-point number representing the 

leading digits and the second the trailing digits [17]. Similarly in Native-pair arithmetic, 

two 32-bit floating-point numbers are used to represent high and low terms where low 

component encodes the residual error from high component representation. Though this 

implementation results in higher accuracy without external hardware, it also degrades in 

performance [2]. 
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1.2. Hardware Assistance of Native-Pair 
 

In order to obtain acceptable accuracy with less performance loss, addition of simple 

micro-architectural hardware is needed. Dieter and Dietz proposed a residual register to 

hold discarded information after each floating-point computation [2]. This feature not 

only reduces the performance cost of native-pair arithmetic but also provides lower 

latency and better instruction-level parallelism. A residual register has one sign bit, 8 

exponent bits and 25 mantissa bits [23]. The usage of the residual register depends on 

what operation is being performed and at what stage or stages are the bits being 

discarded. 

 

The most widely used floating-point standard is the IEEE 754 standard. The IEEE 754 

standard prescribes a particular format for representing floating-point numbers in binary 

system, special floating-point numbers, rounding modes, exceptions and how to handle 

them. Floating-point operations such as addition, multiplication, division and square root 

have three stages viz., prenormalization, arithmetic unit and postnormalization. In the 

case of addition and subtraction, prenormalization increases or decreases the exponent 

part to align the mantissa parts, calculates the sign bit of the final result. The arithmetic 

unit does the basic arithmetic involving the mantissa bits. The result may not be in the 

appropriate format, so it is sent into the postnormalization unit. It is in the 

postnormalization that the result from previous stage is aligned to the IEEE 754 format, 

rounded depending on the rounding mode and the number with its sign, exponent and 

mantissa bits is given as the final result.  

 

This thesis aims to prove that residual register hardware with minimal increase in 

hardware cost results in accuracy close to double-precision and hence is the more 

economically feasible solution for higher precision arithmetic than the double-precision 

hardware. Native-pair arithmetic presents an opportunity for more accurate and precise 

floating-point processing, but it also results in a decrease in performance and increase in 

implementation cost when compared with the single precision or 32-bit floating-point 

hardware [23]. The usage of residual register as the extra hardware for storing the error 
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residual term in native-pair arithmetic gives an implementation which has a slight 

increase in hardware cost coupled with performance close to that of single precision 

hardware [23]. Floating point arithmetic unit with residual register is implemented and its 

hardware utilization, maximum operable frequency is compared with the 32-bit and 64-

bit floating-point arithmetic unit implementations. The main idea is to find the extra 

hardware cost and the performance drop resulting due to the residual register usage, 

moving the discarded bits into it, updating the residual register if bits are discarded more 

than once and also setting the sign and exponent of the residual register. The 

implemented floating-point unit uses the residual register with addition, subtraction and 

multiplication. The extra hardware needed accounted to an increase of 18% in adder and 

12% in multiplier. A minimum period increase of 19% for adder and 12% for multiplier 

also resulted due to addition of extra hardware in the critical path. The divide and the 

square root portions of the floating-point unit are left unchanged. 

 

A floating-point unit coded in VHDL was adopted for the purpose of developing a 

Native-pair Floating point unit from it [19]. The initial part of this thesis was to debug the 

code and make it fully pipelined to generate outputs on continuous clock cycles. Signals 

were added to carry the input operands and the intermediate outputs through the pipeline 

to wherever needed. Those signals which were present in the final stages and required 

input operands to be set have been moved to starting stage in order to eliminate the need 

to carry input operands. The Native-pair floating point unit is implemented by adding the 

residual register hardware to the debugged native floating point unit. The debugged code 

is a single precision or 32-bit floating point unit and was scaled to serve as a 64-bit 

floating point unit. The synthesis reports for the three implementations viz., 32-bit 

version, native-pair version or 32-bit with residual register and 64-bit version were 

obtained using Xilinx 9.1 ISE tool and a comparison of their resource utilizations and 

minimum periods is obtained. 

1.3. Thesis Organization 
In Chapter 2 forms the background of this thesis. It discusses in detail the IEEE 754 

floating-point arithmetic standard, IEEE 754 floating-point addition/subtraction, 

multiplication, Native-pair arithmetic, Native-pair arithmetic algorithms. Chapter 3 
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describes the working of 32-bit floating-point unit and native-pair floating-point unit with 

residual register. The different components of a floating-point unit are discussed in this 

chapter. Also covered in this chapter is where the residual register is added, how it is set 

or updated, when it is complemented and how its sign is set, usage of the MOVRR 

instruction. Chapter 4 describes how the Native-pair floating-point unit is tested. This 

chapter covers the test- benches used to test the implementation. Chapter 5 consists of the 

post map and route simulation reports, synthesis reports of native-pair floating point unit, 

32-bit floating point unit and 64-bit floating point unit. 

 

Chapter 6 compares the synthesis reports, provides a more detailed analysis of the 

implementation. Chapter 7 concludes the thesis and discusses the avenue for future 

research. 
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Chapter 2. Background 
 

Hardware supporting different floating-point precisions and various formats have been 

adopted over the years. Amongst the earliest programmable and fully automatic 

computing machines, the Z3 built of relays and performed calculations using 22-bit word 

lengths in binary floating-point arithmetic [21]. The first commercial computer 

supporting floating-point, the Z4, had floating point hardware that supported 32-bit word 

length comprising of 7 bit exponent, 1 sign bit and 24 mantissa bits [22]. The second one 

was the IBM 704 in 1954 whose floating point hardware supported a format consisting of 

1 sign bit, 8-bit exponent and 29-bit magnitude. IBM considered the 704 format as single 

precision and later in the IBM 7094 double precision was introduced which had a sign 

bit, 17-bit exponent and 54-bit magnitude [20]. The DEC – Digital Equipment 

Corporation’s PDP 11/45 had an optional floating point processor. This processor is 

considered a predecessor to the IEEE 754 standard as it had a similar single precision 

format. The NorthStar FPB-A was a S100 bus floating point microprogram controlled 

processor, built on medium and small scale TTL parts and PROM memories to perform 

high speed decimal floating point arithmetic operations. It supported 2, 4, 6, 8, 10, 12, 14 

digit precision and 7-bit base-10 exponent [25] [23]. The MASPAR MP1 supercomputer 

performed floating point operations using 4-bit slice operations on the mantissa with 

special normalization hardware and supported 32-bit and 64-bit IEEE 754 formats. 

The CELL processor, most DSPs and GPUs support the IEEE 32-bit format. The Intel 

X87 floating point mechanism allows 32-bit, 64-bit and 80-bit operands but processes 

these operands using an 80-bit pipeline [23] [6] [7]. The standardization of IEEE 754 

floating point standard in 1985 has greatly improved the portability of floating-point 

programs. This standard has been widely accepted and is used by most processors built 

since 1985.  

2.1. IEEE 754 Floating-point standard 
The IEEE 754 floating-point standard is the most widely used standard for floating-point 

computations and is followed in most of the CPU and FPU (Floating point unit) 

implementations. The standard defines a format for floating-point numbers, special 
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numbers such as the infinite’s and NAN’s, a set of floating-point operations, the rounding 

modes and five exceptions. IEEE 754 specifies four formats of representation: single-

precision (32-bit), double-precision (64-bit), single extended (≥ 43 bits) and double 

extended precisions (≥ 79 bits).  

Under this standard, the floating point numbers have three components: a sign, an 

exponent and a mantissa. The mantissa has an implicit hidden leading hidden bit and the 

rest are fraction bits. The most used formats described by this standard are the single-

precision and the double-precision floating-point number formats which are shown in 

Table 1. In each cell the first number indicates the number of bits used to represent each 

component, and the numbers in square brackets specify bit positions reserved for each 

component in the single-precision and double–precision numbers. 

Table 1. Layouts for single and double precision numbers in IEEE 754 format. 

Format Sign Exponent Fraction / Mantissa Bias 

Single-precision 1 [31] 8 [30 – 23] 23 [22 – 0] 127 

Double-precision 1[ 63] 11 [62 - 52] 52 [51 - 0] 1023 
 

The Sign bit: A sign bit value of 0 is used to represent positive numbers and 1 is used to 

represent negative numbers 

The Exponent: The exponent field has 8 bits in single-precision and 11 bits in double–

precision. The value is stored in unsigned format and a bias is added to the actual 

exponent to get the stored exponent. For single-precision, the bias value is 127 and for 

double-precision it is 1023. Actual exponent = stored exponent – 127 for single-precision 

and it is equal to stored exponent – 1023 for double-precision. Denormalized numbers 

and zero have all zeroes in the exponent field. The infinite and Not a number values have 

all one’s in the exponent field. The range of the exponent for single precision is from -

126 to +127 and for double-precision it is -1022 to +1023. 

The Mantissa: Apart from the sign and the exponent a floating-point number also has a 

magnitude part which is represented by the mantissa field. For single-precision the 
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number of mantissa bits is 23 and for double-precision it is 52. Each mantissa has a 

hidden bit which is not shown when the floating-point is represented in the IEEE format. 

This is because all the floating-point numbers are adjusted to have this hidden bit equal to 

1 and so the fact that hidden bit is 1 is understood and so is not specified explicitly. 

Denormalized numbers have the hidden bit set to zero.  

In general, floating-point numbers are stored in normalized form. This puts the radix 

point after the first non-zero digit. In normalized form, six is represented as + 6.0 × 100.  

In binary floating-point number representation, the radix point is placed after a leading 1. 

In this form six is represented as + 1.10 × 22. In general, a normalized floating-point 

number is represented as ± 1. f × 2e. There is an implicit leading hidden 1 before the radix 

point and 23 visible bits after the radix point. The value of the IEEE 754 32-bit floating 

point number can be computed from the sign bit (s), 8-bit biased exponent field (e), and 

23-bit fraction field (f) and arranging them as follows: Value = (-1)s 2 e-127  × 1.f 

When a nonzero number is being normalized, the mantissa is shifted left or right. Each 

time a left shift is performed, the exponent is decremented. In case the minimum 

exponent is reached but further reduction is still required, then the exponent value is 

taken 0 after biasing, such a number is a denormalized number. Hence a number having 

zeroes in its exponent field and at least a single 1 in its mantissa part is said to be a 

denormalized number. The IEEE 754 standard represents the denormalized number as 

follows:Value = (-1)s 2-126 × 0.f 

 

 

 

 

 

Figure 1. Number line showing the ranges of single-precision denormalized and 
normalized floating-point numbers in binary system. 

 

−( 2- 2-23)x2127    -2-126      −(1- 2-23)x2-126     -2-149        0         2-149     (1- 2-23)x2-126     2-126   (2-2-23)x2127    

                                          

        

     Negative                    Negative                Zero           Positive                      Positive 

     Normalized               Denormalized                          Denormalized             Normalized 
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Table 2. Representation of single-precision binary floating-point numbers 
 

Sign Exponent Mantissa Value 
0 00000000 00000000000000000000000 + 0 
1 00000000 00000000000000000000000 -0 
0 11111111 00000000000000000000000 +∞ 
1 11111111 00000000000000000000000 −∞ 
0 00000000 00000000000000000000001 

to 

11111111111111111111111 

Positive Denormalized 
floating-point numbers 

 

1 00000000 00000000000000000000001 

to 

11111111111111111111111 

Negative Denormalized 
floating-point numbers 

0 00000001 

to 

11111110 

xxxxxxxxxxxxxxxxxxxxxxx Positive Normalized floating-
point numbers 

 

1 00000001 

to 

11111110 

xxxxxxxxxxxxxxxxxxxxxxx Negative Normalized floating-
point numbers 

0/1 11111111 10000000000000000000000 

to 

11111111111111111111111 

QNaN -  Quiet Not a Number 

0/1 11111111 00000000000000000000001 

To 

01111111111111111111111 

SNaN – Signaling Not a 
Number 

 
Exceptions 

IEEE 754 floating-point standard defines five exceptions that are generally signaled using 

a separate flag. They are as follows: 
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1. Invalid Operation: Some operations like divide by zero, square root of a negative 

number or addition and subtraction from infinite values are invalid. The result of 

such invalid operation is NaN – Not a Number. NaNs are of two types: QNaNs, or 

Quiet NaNs, and SNaNs or signaling NaNs. Their formats are shown in table 2. 

The result of an invalid operation will result be a QNaN with a QNaN or SNaN 

exception. The SNaN can never be the result of any operation, only its exception 

can be signaled and this happens whenever one of the operands to a floating-point 

operation is SNaN. The SNaN exception can be used to signal operations with 

uninitialized operands, if we set the uninitialized operands to SNaN. The usage of 

SNaN is not subject to the IEEE 754 standard. 

2. Inexact: This exception is signaled when the result of an arithmetic operation 

cannot be represented due to restricted exponent range or mantissa precision  

3. Underflow: Two events cause that underflow exception to be signaled are tininess 

and loss of accuracy. Tininess is detected after or before rounding when a result 

lies between ±2-126. Loss of accuracy is detected when the result is simply inexact 

or only when a denormalization loss occurs. 

4. Overflow: The overflow exception is signaled whenever the result exceeds the  

maximum value that can be represented due to the restricted exponent range. It is 

not signaled when one of the operands is infinity, because infinity arithmetic is 

always exact. 

 

 

 

Figure 2. Ranges of overflow and underflow for single-precision floating-point 

numbers 

 

   − (2- 2-23) x 2127           -2-126                             0                            2-126                       ( 2- 2-23)x2127   

         

Negative                   Negative                             Zero                             Positive                           Positive 
Overflow                  underflow                                                                underflow                       overflow       
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Rounding modes 

Precision is not infinite and sometimes rounding a result is necessary. To increase the 

precision of the result and to enable round-to-nearest-even rounding mode, three bits are 

added internally and temporally to the actual fraction: guard, round, and sticky bit. While 

guard and round bits are normal storage holders, the sticky bit is turned ‘1’ whenever a 

‘1’ is shifted out of range.  

As an example we take a 5-bit binary number: 1.1001. If we left-shift the number four 

positions, the number will be 0.0001, no rounding is possible and the result will not be 

accurate. Now, let’s say we add the three extra bits. After left-shifting the number four 

positions, the number will be 0.0001 101 (remember, the last bit is ‘1’ because a ‘1’ was 

shifted out). If we round it back to 5-bits it will yield: 0.0010, giving a more accurate 

result. 

The four specified rounding modes are: 

1. Round to nearest even: This is the default rounding mode. The value is rounded to 

the nearest representable number. If the value is exactly halfway between two 

infinitely precise results or between two representable numbers, then it is rounded 

to the nearest infinitely precise even number. For example, in one digit base-10 

floating-point arithmetic, 3.4 will be rounded to 3, 5.6 to 6, 3.5 to 4 and 2.5 to 2. 

2. Round to zero: In this mode, the excess bits will simply get truncated.  For 

example, in two digit base-10 floating-point arithmetic, 3.47 will be truncated to 

3.4, and -3.47 will be rounded to -3.4. 

3. Round up: In round up mode, a number will be rounded towards +∞. For 

example, 3.2 will be rounded to 4, while -3.2 to -3. 

4. Round down: The opposite of round-up, a number will be rounded towards −∞. 

For example, 3.2 will be rounded to 3 while -3.2 to -4. 
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2.2. IEEE 754 Floating-point Arithmetic 
The IEEE 754 standard apart from specifying the representation format, the rounding 

modes and the exceptions also defines the basic operations that can be performed on 

floating-point numbers. 

The Floating-point addition requires the following steps: 

1. Aligning the mantissa’s to make the exponent of the two operands equal and 

calculating the sign based on two operands. This exponent becomes the output 

exponent unless it is changed in the Step 3. 

2. The mantissa bits are added or subtracted depending on the signs of the operands. 

3. The result from the addition has to be rounded and normalized in order to 

represent it correctly within the IEEE 754 floating-point format. These three steps 

are implemented in the floating-point unit three pipeline stages labeled 

prenormalization, addition unit and postnormalization. The three stages are 

explained in detail in Chapter 3. Subtraction is the same as addition except that 

the sign of the subtrahend is inverted before adding the two operands.  

Floating-point multiplication also involves three steps: 

1. Prenormalization: Multiplication does not require alignment of mantissa in order 

to make the exponents of the operands equal. In multiplication, the exponents are 

added and the mantissa bits are transferred to the multiplication stage. The sign of 

the product is also calculated in this stage.  

2. Multiplication: In this stage, the mantissa bits are multiplied using a 

multiplication algorithm. The product has twice as many mantissa bits as the 

multiplicands. 

3. Postnormalization: The result from the multiplication is rounded and normalized 

to represent in the given precision format while updating the output exponent 

when required. 
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Figure 3 shows the basic algorithm for addition or subtraction of two floating-point 

numbers. 

 

Figure 3. Basic floating-point addition algorithm 

Operand a= signa, ea, fraca 

Operand b= signb, eb, fracb  

ea > eb

eL = ea 

eS = eb 

fracL = fraca 

eL = eb 

eS = ea 

fracL = fracb 

Diff = eL - eS 

Right shift fracS by Diff bits 

eO = eL 

fracO = fracS +/- fracL

Normalize 

Calculate signO, Round fracO 

Exception 

Occurred? 
Signal Exception 

Output = NaN

Output = signO, eO, fracO 

YES NO

YES 

NO 
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Consider a simple example for addition of two floating-point numbers: 

Let’s say we want to add two binary FP numbers with 5-bit mantissas:  

A = 0|00000100|1001 

signa= 0; ea= 00000100; fraca= 1001 

B = 0|00000010|0010  

signb= 0; eb= 00000010; fracb= 0100 

 

1. Get the number with the larger exponent and subtract it from the smaller 

exponent.  

eL = 4, eS = 2 , so diff = 4 -2 = 2.  

2. Shift the fraction with the smaller exponent diff positions to the right. We can 

now leave out the exponent since they are both equal. 

This gives us the following:     1.1001 000 + 0.0100 100 

3. Add both fractions 

   1.1001 000  

+ 0.0100 100  

   ----------------- 

 1.1101 100  

----------------- 

4. Round to nearest even gives us 1.1110. 

5. Result = 0|00000100|1110. 

 

 



15 

The basic algorithm for floating-point multiplication is shown in Figure 4. 

 

 

Figure 4. Basic Floating-point multiplication algorithm 

 

Operand a= signa, ea, fraca 

Operand b= signb, eb, fracb  

fracO = fraca  × fracb 

signO = signa XOR signb 

 

 

eO = ea + eb-bias(127) 

Normalize 

Round fracO 

Exception 

Occurred?

Signal Exception 

Output = NaN

Output = signO, eO, fracO 

YES

NO
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Multiplication Example:  

1. A = 001001001 

signa= 0; ea= 01100100; fraca= 1001 

B = 000100010  

signb= 0; eb= 01101110; fracb= 0100 

2. 100 and 110 are the stored exponents; logical exponents are obtained by 

subtracting the bias of 127 from them.  

That is, the logical exponents in this case are 100-127and 110-127. 

3. Multiply the fractions and calculate the  

      1.1001  

   × 1.0010  

 ---------------- 

 1.11000010  

---------------- 

So fracO= 1.11000010 and  

Output exponent: stored exponent = 100+110 and logical exponent = 100+110-

127= 83  

eO = 83 

4. Round the fraction to nearest-even: fracO= 1.1100  

5. Result: 0|11010010|1100 

2.3. History of Double-Double Arithmetic 
 

Using single-length floating point arithmetic to describe or represent multi-length floating 

point arithmetic has been discussed and algorithms based on this approach were 
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described by T.J.Dekker in his research report [3]. The report represents a double length 

floating point number as sum of two single length floating point numbers, one of them 

being negligible in single length precision. It also discusses the algorithms for basic 

operations like addition, subtraction and multiplication in the ALGOL 60 language. The 

Fortran-90 double-double precision system developed by D.H.Bailey uses two 64-bit 

IEEE arithmetic values to represent quad-precision values in the Fortran 90 programming 

language [4]. “Implementation of float-float operators on graphics hardware” discusses 

the methods for improving of precision in floating-point arithmetic on GPUs.  The paper 

discusses different algorithms by Dekker, Knuth and Sterbenz, and the results, 

performance, and accuracy of these methods [7]. It describes the framework for software 

emulation of float-float operators with 44 bits of accuracy and proves that these high-

precision operators are fast enough to be used in real-time multi pass algorithms [7].  The 

residual register algorithms discussed by Dieter and Dietz [23] and this thesis can be used 

with these or other precision extending algorithms. 

Native-pair arithmetic is a more general term for double-double encompassing precisions 

other than double. As with double-double, it uses an extra floating-point number to 

represent error residual term resulting from a floating-point operation. A native-pair value 

does not have exactly double the precision of the single native value due the occurrence 

of zeroes in between the two mantissas. These zeroes make the precision equal to the 

number of bits in the two mantissas plus the number of zeroes between the mantissas 

[23]. In this approach, a higher-accuracy value is spread across the mantissas of two 

native floating-point numbers and the exponent of the lower component is used to align 

the mantissas [23]. The high component, called hi, takes the top most significant bits and 

those that are left, also referred to as residual are represented using the low component, 

called lo. The exponent of lo will be less than that of exponent of hi by a minimum of 

Nm, where Nm is the number of mantissa bits in the native floating-point number. This 

means that if a higher precision value is spread over multiple native floating-point values, 

the exponents of consecutive lo components keep decreasing by Nm [1].  

When considering a pair of native floating-point numbers and a 32-bit native mantissa 

being spread across them, the pair will have twice the precision of the mantissa being 
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spread only if the exponent of the hi is at least Nm greater than that of the native bottom 

of the exponent range [1]. That is the dynamic range of the exponent is reduced by Nm 

steps or 10 percent. In a single-precision or 32-bit floating point system, the precision is 

limited by the exponent range to less than 11 float values [1]. Also, when there are zeros 

in the top of the lower-half of the higher precision mantissa, then the exponent of lo part 

is further reduced by the number of zeros and the zeros are absorbed [2]. And if there are 

K zeros at the top of the lower-half then, the exponent of lo part is reduced by K. This 

has certain implications which are as follows: 

• Some values requiring up to K bits more precision than twice the native mantissa 

can be represented precisely, as the K zeros that come between the top half and the 

lower-half are absorbed [1]. 

• If the adopted native floating-point does not represent denormalized numbers, the 

Low component may fall out of range sometimes. For example, if the High 

exponent was 24 above the minimum value and number of zeros K = 1, then the 

result has 25 bits only and not 48 bits as the stored exponent of Low would have to 

be  -1, which is not representable in IEEE format [1]. 

2.4. The Residual Register 
 

Native-pair arithmetic involves computing the error residual term from the floating point 

operation and using it to perform further computations. This error residual computation is 

the major overhead in the native-pair arithmetic. Dieter and Dietz proposed adding a 

residual register to save this left over information [23]. The residual register is only used 

to store the mantissa bits, exponent bits, the sign bit, and a complement flag. The value 

stored in the register need not be normalized immediately and has Nm + 2 mantissa bits 

with an implicit leading 1 bit. The same normalization hardware used for floating-point 

operations normalizes the residual value only when it is being moved into an architectural 

register. The complement flag indicates whether the residual value must be 

complemented before moving into the architectural register. Normalizing the residual 

register is done by giving a “MOVRR” instruction that copies the residual register value 
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into an architectural register after normalizing it into IEEE 754 format. Also each 

operation results in updating the residual register with a new error residual value. 

Sign 

1 bit 

Complement Flag 

1 bit 

      Exponent       Mantissa 

 

  

Figure 5. Residual register  

Consider two floating-point numbers x, y and ο be an operation such as +, -, or ×. Let 

sign(x), exp(x) and mant(x), respectively denote the sign, exponent and 

mantissa of x. Fl(x ο y) denotes the primary result of a floating-point operation and 

Res(x ο y) be the residual of the floating-point operation. For operations discussed 

here namely addition, subtraction and multiplication the primary result and the residual 

are related as x ο y = Fl(x ο y) + Res(x ο y). This property holds true only 

for the round to nearest mode when IEEE 754 format is used. Depending on which 

rounding mode is used, the sign of the residual register value is set accordingly [23]. The 

residual logic only needs the information if the primary result is rounded up or down. 

Depending on this information the sign and the complement flag of the residual register is 

set as follows: 

• When Fl(x ο y) =x ο y, the primary result is correct and the residual value 

is zero.  

• When Fl(x ο y) < x ο y, the primary result p has been rounded down to 

the floating-point value with next lower magnitude. The residual r then takes the 

same sign as p to make x ο y = Fl(x ο y) + Res(x ο y). 

• When Fl(x ο y) > x ο y, the primary result Fl(x ο y) is rounded up to 

the next larger magnitude value. The residual r then takes the opposite sign as 

Fl(x ο y) to make x ο y = Fl(x ο y) - Res(x ο y). 

 

 

8 bits 25 bits 
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2.5. Native-pair Addition and Subtraction 
 

Addition or subtraction of two floating-point numbers ‘a’ and ‘b’ with ‘b’ being the 

smaller of the two, involves the shifting of the smaller number to align its radix point 

with that of the larger number. When the signs of the two numbers are the same, the 

numbers are added whereas in the case of opposite signs, the numbers are subtracted. The 

mantissa bits in the smaller number with significance less than 2exp(a)-(Nm+ 1) are stored 

in the residual register with least significant bit in the rightmost position, and the 

exponent is set to exp (b) when exp(a)–exp(b) ≥ Nm+1 and the complement 

flag is not set. When exp(a)–exp(b) < Nm+1 or the complement flag is set, the 

residual register gets the bits in b with significance ranging from exp(a)-Nm+1 down 

to exp(a)–2(Nm+1). That is, the residual register value is just below the primary 

output value.  In this case, the exponent is set to exp(a)–2(Nm+1) with the radix point 

assumed to be to the right of the least significant residual register bit. The sign and 

complement flag are set depending on the signs of ‘a’ and ‘b’, and whether result p is 

rounded up or down. Four cases that arise depend on the signs of ‘a’, ‘b’ and whether the 

primary result is rounded up or down, are shown in Table 3 below: 

Table 3. Different cases for sign and complement flag of residual register 

Case Sign of a Sign of b Rounded  

up / down 

Complement

 flag 

Sign of Residual 

register:  Sign(rr) 
Case 1 Sign(a) Sign(a) Down Cleared Sign(a) 

Case 2 Sign(a) Sign(a) Up Set Opposite of sign(a) 

Case 3 Sign(a) -Sign(a) Down Set Sign(a) 

Case 4 Sign(a) -Sign(a) Up Cleared Opposite of Sign(a) 

 

Native-pair Arithmetic Addition Algorithms 
The algorithms that are discussed here are native-pair arithmetic algorithms for 

normalizing and adding two native-pair numbers. Each algorithm can be implemented 

with and without using the residual register. 
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Algorithm 1 shows the nativepair_normalize function adds two native floating-

point numbers to produce a native-pair result. Given an unnormalized high and low pair 

of native numbers, the normalized native-pair is computed using this function. In general, 

the normalized native-pair is created without using the residual register.  

Algorithm 1. Native-pair normalization algorithm without using the residual 

register: 

nativepair nativepair_normalize(native hi, native lo) 

{ 

nativepair r; 

native hierr; 

r.hi = hi + lo; 

hierr = hi – r.hi; 

r.lo = hierr + lo; 

return (r); 

} 

 

Algorithm 2 shows the use of the residual register in the nativepair_normalize function. 

The hierr variable denotes the error residual computed from hi component. The 

getrr ( ) function is assumed to be an inline function that returns the residual 

register value using a single MOVRR instruction. Compared to the Algorithm 1, Algorithm 

2 does not need to compute hierr and as a result, the number of instructions is reduced 

by one relative to Algorithm 1. Every basic operation ends by normalizing the result so 

this reduction decreases the instruction count for every native-pair operation. 

Algorithm 2. Native-pair normalization algorithm using the residual register: 

nativepair nativepair_normalize (native hi, native lo) 

{ 

nativepair r; 
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r.hi = hi + lo; 

r.lo = getrr ( ); 

return (r); 

} 

Algorithm 3 describes the addition of b (native floating point number) to a (native-pair 

number). The algorithm adds b to hi component of a, computing the residual result and 

adding the residual result to lo component. It then normalizes the final result. 

Algorithm 3. Addition of Native-pair number and a native number without residual 

register hardware. 

nativepair nativepair_native_add (nativepair a, native b) 

{ 

native hi = a.hi + b ; 

native bhi = hi - a.hi; 

native ahi = hi – bhi;  

native bhierr = b – bhi; 

native ahierr = a.hi – ahi;  

native hierr = bhierr + ahierr; 

native lo = a.lo + hierr; 

return (nativepair_normalize(hi,lo)); 

} 

Algorithm 4 describes the same native-pair and native number addition with the use of 

residual register. This usage computes the hierr component using the getrr ( ) 

inline function and so eliminates the use of ahierr, bhierr i.e., instructions to 

compute ahi, bhi, ahierr, bhierr. As a result, number of instructions is 

reduced by four when with respect to Algorithm 3 which does not use residual register. 
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Algorithm 4. Addition of Native-pair number and a native number with residual 

register hardware. 

nativepair nativepair_native_add (nativepair a, native b) 

{ 

native hi = a.hi + b;  

native hierr = getrr( ); 

native lo = a.lo + hierr; 

return (nativepair_normalize(hi,lo)); 

} 

 

Algorithm 5 shows addition of two native-pair numbers without using the residual 

register and Algorithm 6 adds two native-pair numbers using the residual register. In 

Algorithm 5, which shows addition without residual register, the residual from adding the 

two high components is stored in ahierr or bhierr depending on the values of a 

and b. When a > b, bhierr contains the residual and ahierr is zero and when b 

> a, ahierr contains the residual and bhierr is zero. Such a system of computing 

is faster than using a condition to decide which one to compute. The addition algorithm 

with residual register reduces the instruction count to 6 compared to Algorithm 5 which 

takes 11 instructions. 

Algorithm 5. Addition of two Native-pair numbers without residual register 

hardware. 

nativepair nativepair_add (nativepair a, nativepair b) 

{ 

native hi = a.hi + b.hi;  

native lo = a.lo + b.lo;  

native bhi = hi - a.hi; 

native ahi = hi – bhi;  

native bhierr = b.hi – bhi;  



24 

native ahierr = a.hi – ahi; 

native hierr = bhierr + ahierr;  

lo = lo + hierr; 

return (nativepair_normalize(hi,lo));  

} 

Algorithm 6. Addition of two Native-pair numbers with residual register hardware. 

nativepair nativepair_add (nativepair a, nativepair b) 

{ 

native hi = a.hi + b.hi;  

native hierr = getrr( ); 

native lo = a.lo + b.lo; 

 lo = lo + hierr; 

return (nativepair_normalize(hi,lo));  

} 

 

Figure 6 shows the dataflow of the native-pair addition algorithm with and without 

residual register. Each ADD or SUB instruction typically would have a latency of 4 clock 

cycles. The MOVRR instruction is assumed to have a latency of 2 clock cycles as a worst 

case. Native-pair addition without residual register requires 9 instructions in its critical 

path and with a latency of 36 = 9 × 4 clock cycles. Addition with residual register 

requires 3 ADD/SUB instructions and 2 MOVRR instructions yielding to a total latency 

of 16 = 3 × 4 + 2 × 2 clock cycles. But this latency can be decreased without changing the 

critical path by delaying lo portions of an input to the algorithm in the dataflow. This 

reduces the latency to 28 = 36−8 cycles in native-pair addition without residual register 

and 14 =16−2 cycles in the native-pair addition with residual register. This results in 

exactly 2 × speedup over the algorithm not using residual register [23]. 
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Figure 6. Native-pair addition data flow, conventional and residual algorithms. 

2.6. Native-pair Multiplication 
In multiplication of two floating-point numbers as opposed to addition, there is no 

shifting of the mantissa bits in order to make the exponents of the two numbers equal. 

Multiplication of two n-bit mantissa numbers produces a 2n-bit result and the exponents 

of the two numbers are simply added. The lower n-bits of the 2n-bit result are put into the 

residual register and its exponent is set to exp (a) - (Nm+1). When the result is rounded 

down, the sign of the residual register is same as that of the result and the complement 

flag is cleared. On the other hand when the result is rounded up, the sign is set opposite to 

the sign of the result and the complement flag is set. 

Table 4. Cases for complement flags and signs of residual register 

Case Sign of 

product 

Rounded up / down Complement 

flag 

Sign of Residual 

register : Sign(rr) 

Case 1 Sign(p) Down Cleared Sign(p) 

Case 2 Sign(p) Up Set Opposite of Sign(a) 
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Multiplication algorithms for native-pair multiplication 
 

Algorithm 7 shows the multiplication of two native-pair numbers a and b without 

residual register hardware. The algorithm uses a native_mul function to multiply two 

high components of the two native-pair numbers. The multiplication of the high and low 

components also takes place producing three low components namely native_mul result 

low component, a.hi × b.lo and b.hi × a.lo. The fourth term, a.hi × 

b.lo, is too small to have an influence on the result. All the three low components are 

added to produce the final low component of the result. The native_mul function 

implementation is simplified if the processor has a fused multiply- subtract instruction 

that preserves the full precision of the product before addition. In such a case the residual 

value can be obtained by subtracting the rounded product from the full precision product. 

When such a provision is unavailable the native_mul function requires the entire 

component-wise multiplication of the high and low components. 

Algorithm 7. Native-pair multiplication without residual register hardware 

nativepair nativepair_mul (nativepair a, nativepair b) 

{ 

nativepair tops = native_mul (a.hi, b.hi); 

native hiloa = a.hi * b.lo; 

native hilob = b.hi * a.lo; 

native hilo = hiloa + hilob; 

tops.lo = tops.lo + hilo; 

 return (nativepair_normalize (tops.hi, tops.lo));  

} 

Algorithm 7.1. native_mul function 

#define NATIVEBITS 24 

#define NATIVESPLIT ((1<<(NATIVEBITS – (NATIVEBITS/2))) + 
1.0) 
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nativepair native_mul (native a, native b)  

{ 

nativepair c; 

#ifdef HAS_FUSED_MULSUB 

c.hi = a * b;  

c.lo = a * b – c.hi; 

#else 

native asplit = a * NATIVESPLIT; 

native bsplit = b * NATIVESPLIT; 

native as = a – asplit; 

native bs = b – bsplit; 

native atop = as + asplit;  

native btop = b + bsplit; 

native abot = a – atop;  

native bbot = b – btop; 

native top = atop * btop;  

native mida = atop * bbot; 

native midb = btop * abot;  

native mid = mida+ midb; 

native bot = abot * bbot; 

c = nativepair_normalize (top, mid); 

c.lo = c.lo + bot; 

#end if 

return(c) ;  

} 

When fused multiply-add is not available the residual register hardware simplifies the 

native_mul function from 17 instructions to two instructions. The Algorithm 8 shown 

below takes 8 instructions to perform the multiplication. Though the instruction count is 
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the same as the fused multiply-add implementation, the need for a wider adder is 

removed in the residual register implementation. 

Algorithm 8. Native-pair multiplication using residual register hardware 

nativepair nativepair_mul (nativepair a, nativepair b)  

{ 

 nativepair tophi = a.hi * b.hi; 

 native toplo = getrr ( ); 

 native hiloa = a.hi * b.lo; 

 native hilob = b.hi * a.lo; 

 native hilo = hiloa + hilob; 

 tops.lo = toplo + hilo; 

 return (nativepair_normalize (tophi, toplo));  

} 

Nativepair multiplication has three data flow graphs: conventional, fused multiply-add 

and residual register implementation which are shown in Figure 7 in the next page. 

Depending on the latency of add and subtract operations in the critical path, the speed up 

resulting from the fused multiply-add implementation is 2.3 and that resulting from 

residual register implementation is 3 [23]. The residual register implementation also has 

an added advantage that the critical path can be implemented with only a 2-stage pipeline 

with careful instruction scheduling. Such improvisation is not possible in conventional 

and fused multiply-add implementations as they suffer from greater need for a larger 

pipeline [23]. 
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Figure 7. Native-pair multiplication data flow, conventional and residual algorithms 
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Chapter  3.  Native-pair Floating-point Unit 
 

This chapter describes the working of the native floating-point unit addition/subtraction 

and multiplication units, followed by the construction of the native-pair floating-point 

unit and usage of the residual register hardware. 

3.1. Native Floating-Point Addition/Subtraction  
The native floating-point addition/subtraction is subdivided into three steps: 

prenormalization, addition or subtraction and postnormalization.  

3.1.1. Prenormalization 
The input operands to the floating-point unit first go to the prenormalization unit. This 

unit finds the difference between the exponents of the two operands, shift the mantissa 

with lower exponent to make the two exponents equal and send the mantissa bits and the 

exponent o the addition stage.   

Initially the two operands A and B are divided into sign, exponent and mantissa fields. 

After the last step the following fields or signals are obtained: 

• Exp (A)  

• Exp (B) 

• Mant(A) 

• Mant(B) 

The exp (A) and exp (B) of all the input operands are checked for zero values to see if 

they are denormalized. If an operand is denormalized, its exponent is incremented by 1 to 

make the exponent equal to -126 after unbiasing. If exp(A) and exp(B) are non-zero 

values ,the corresponding operands are considered normalized. The fraction values are 

concatenated with 5 more bits – carry, hidden, guard, round and sticky bits. Carry and 

hidden bits are added as most significant bits. Initially the carry bit is 0 and the hidden bit 

is 0 if the operand is denormalized otherwise the hidden bit is 1. The guard, round and 

sticky bits are appended at the end of the fraction bits and are initially all zeroes. After 

this step fractions take the form of  
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• New Mant(B) = carry, hidden, mant(B), guard, round, sticky. 

• New Mant(B) = carry, hidden, mant(B), guard, round, sticky. 

A comparator COMP1 is used to check which exponent is greater and a multiplexer 

MUX1 is used to assign the greater exponent to the output exponent based on the 

comparator output signal. Multiplexer MUX2 is used to give the difference of the two 

exponents. If exp(A) > exp(B), then MUX2 gives the difference exp(A) – exp(B) if not it 

gives the difference exp(B) – exp(A). The fraction bits of the lower exponent operand’s 

mantissa are shifted right as many bits as the difference obtained from the exponent 

difference.  The sticky bit for the shifted mantissa is computed and updated. The two 

updated mantissas with the output exponent and other signals are sent to the next stage. 

Figure 8 shows the prenormalization process. 

 

Figure 8.  Prenormalization unit for Floating-point addition 
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 3.1.2. Addition/Subtraction Stage 
This stage has a simple functionality of computing the sign of the output and performing 

the addition or subtraction of mantissas based on the sign of the operands. The two 

mantissas are compared and the operation i.e., addition or subtraction to be performed is 

computed based on which mantissa is greater, signs of the two operands A and B and the 

opcode. Table 5 shows the different cases that arise. A and B having same signs with an 

opcode of 0, indicating addition is performed. If the opcode is a 1 then subtraction is 

performed. On the other hand A and B having opposite signs, for opcode of 0, subtraction 

is performed and for opcode of 1 addition is done. 

 

Figure 9. Addition unit for Floating-point addition  

The sign of the output is computed based on the signs of the operands A and B, which 

mantissa is greater and the operation being performed. If the operation is an addition then 

the two mantissas are added and if it is a subtraction then the lower mantissa is subtracted 

from the higher mantissa. The output sign and mantissa are sent to the postnormalization 
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stage along with input operands passed by the prenormalization stage. Input operands are 

required in postnormalization for generation of exceptions.  

Table 5. Addition or subtraction cases based on opcode and signs of the operands 

Opcode Sign of A Sign of B Operation 

0 sign sign Addition 

0 sign ~ sign Subtraction 

1 sign sign Subtraction 

1 sign ~sign Addition 

 

3.1.3. Postnormalization 
Postnormalization is the final stage of any floating-point operation. The inputs to this 

stage are the addition/subtraction unit output, the output exponent, the output sign and the 

rounding mode. 

The postnormalization unit checks the result of the addition/subtraction stage for a carry. 

If the carry bit in the result is set then, shift the result right once and increase the output 

exponent by one. If the result has the hidden bit equal to zero then, the result must be left 

shifted until the hidden bit is one. To determine how far to shift the mantissa, the number 

of zeros starting from the most significant bit is counted. After the shift is performed, the 

exponent is decreased by the same number. Once again the sticky bit is checked to find if 

any bits were lost. Depending on the rounding mode and the sticky bits at different stages 

in the postnormalization, the result is rounded up or rounded down. The carry bit is 

checked again to see if carry occurred and if carry has occurred then the result is shift 

right once and the exponent is incremented by one. Finally, the result is checked for 

exceptions such as NaN, infinite, overflow, inexact result and depending on these values, 

the final result along with the exception flags are send to the output. The 

postnormalization unit is shown in Figure 10. 
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Figure 10. Postnormalization unit for Floating-point addition. 

3.2. Native Floating-Point Multiplication  
The native floating-point multiplication unit is also subdivided into three steps: 

prenormalization, multiplication and postnormalization. 

3.2.1. Prenormalization 
The input operands to the multiplication unit first go through the prenormalization unit. 

As compared to prenormalization in addition, the prenormalization in multiplication has 

less functionality. This unit checks if the operands A and B are denormalized, adds the 

exponents of A and B and transfers the mantissas to the multiplication stage.  
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Figure 11. Prenormalization unit in floating-point multiplication. 

Initially the two operands A and B are divided into sign, exponent and mantissa fields. 

After the last step the following fields or signals are obtained: 

• Exp(A)  

• Exp(B) 

• Mant(A) 

• Mant(B) 

The exp (A) and exp (B) of the all the incoming operands are checked for zero values to 

see if they are denormalized. If an operand is denormalized, its exponent is incremented 

by 1 to make the exponent equal to -126 after unbiasing. The fraction values are 

appended with just 1 more bit, the hidden bit as the most significant bit. The hidden bit is 

0 if the operand is denormalized otherwise the hidden bit is 1. After this step fractions 

take the form of   

• New Mant(B) = hidden, mant(B) 

• New Mant(B) = hidden, mant(B) 
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The exponents are added, but since the exponents are already biased i.e., we are baising 

the exponent twice and so 127 is subtracted from the sum. The two updated mantissas 

with the output exponent and other signals are sent to the next stage. 

3.2.2. Multiplication Stage 
This stage is used to multiply the two mantissas obtained from the previous stage. The 

multiplier used is a Booth’s parallel multiplier model. An exclusive-or gate is used to 

obtain the sign of the product. The output sign s_sign_o as well as the product s_fract_o 

are transferred along with the other signals to the postnormalization stage. 

 

 

Figure 12. Multiplication unit for Floating-point multiplication 

3.2.3. Postnormalization 
The inputs to this stage are the multiplication unit output, the prenormalization exponent 

output, the multiplication sign output and the rounding mode. The postnormalization 

stage checks the multiplication output for a carry. If a carry has occurred, the 

multiplication output is shifted right once to normalize it. If the result has the hidden bit 

equal to zero then, the result must be left shifted until the hidden bit is one. For this, the 

number of zeros starting from the most significant bit is counted. After the shift is 

performed, the exponent is decreased by the same number. Once again the sticky bit is 

checked to find if any bits were lost. Depending on the rounding mode and the sticky bits 

at different stages in the postnormalization, the result is rounded up or rounded down. 

The carry bit is checked again to see if a carry occurred. If a carry has occurred then the 
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result is shift right once and the exponent is incremented by one. Finally, the result is 

checked for exceptions such as NaN, infinite, overflow, inexact result and depending on 

these values, the final result along with the exception flags are send to the output.  

 

Figure 13. Postnormalization unit for Floating-point multiplication 

3.3. Native-pair Floating-point Addition/subtraction 
Native floating-point addition/subtraction has been discussed in Section 3.1.1. This 

section discusses the 32-bit native-pair floating-point addition/subtraction and the extra 

hardware added to the native floating-point addition/subtraction unit to make it work as a 

native-pair floating-point addition/subtraction unit.  Native-pair addition/subtraction also 
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is subdivided into three steps: prenormalization, addition or subtraction and 

postnormalization. Each step and its hardware addition are discussed in detail below. 

3.3.1. Prenormalization 
The native-pair prenormalization unit, apart from doing the normal operation of making 

the exponents equal and aligning the mantissa’ s, also includes the first of the residual 

register operations. 

 

Figure 14. Prenormalization unit for Native-pair Addition using Residual register 

For a better understanding the steps of the native normalization are again repeated.  

Initially the two operands A and B are divided into sign, exponent and mantissa fields. 

After the last step the following fields or signals are obtained: 

• Exp(A)  
• Exp(B) 
• Mant(A) 
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• Mant(B) 

The exponents exp(A) and exp(B) of all the input operands are checked for zero values to 

see if they are denormalized. The exponent is incremented by 1 to make the exponent 

equal to -126 after unbiasing. The fraction values are concatenated with 5 more bits – 

carry, hidden, guard, round and sticky bits. Carry and hidden bits are added as most 

significant bits. Initially the carry bit is 0 and the hidden bit is 0 if the operand is 

denormalized else hidden bit is 1. The guard, round and sticky bits are appended at the 

end of the fraction bits and are initially all zeroes. After this step fractions take the form 

of  

• New Mant(B) = carry, hidden, mant(B), guard, round, sticky. 

• New Mant(B) = carry, hidden, mant(B), guard, round, sticky. 

A comparator COMP1 is used to check which exponent is greater and a multiplexer 

MUX1 is used to assign the greater exponent to the output exponent based on the 

comparator output signal.  Multiplexer MUX2 is used to give the difference of the two 

exponents. If exp(A) > exp(B), then MUX2 gives the difference exp(A) – exp(B) if not it 

gives the difference exp(B) – exp(A). An ‘andsignal’ is generated which is a 25 bit 

signal consisting of zeroes and ones in till the position of the exponent difference 

(s_exp_diff-1) i.e. if the exponent difference is 4 then the andsignal is 

“0000000000000000000001111”. The fraction bits of the lower exponent operand’s 

mantissa s_fract_small are shifted right as many bits as the difference obtained from the 

exponent difference. A bit-wise AND operation is performed between the smaller 

mantissa s_fract_small and the andsignal, the result is the initial mantissa part for the 

residual register. The bits that are being shifted out are stored in the mantissa of the 

residual register.  The exponent of the residual register is set to the exponent of the lower 

mantissa. The sticky bit for the shifted mantissa is computed and updated. One other 

signal that is generated here is exp_greater_24 which indicates if the exponent difference 

is greater than 24. The two updated mantissas with the output exponent, residual register 

exponent, mantissa and other signals are sent to the next stage. 
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3.3.2. Addition/subtraction Stage 
There is no change in the functionality of the addition/subtraction unit. It takes in the 

mantissas and the operand signs as inputs. After logically generating which operation has 

to be performed, it performs that operation i.e., addition or subtraction. Output sign is 

generated based on the operation, the signs of the operands and which operand is greater. 

The operation output, the output sign and other inputs such as the residual register values 

from the prenormalization stage etc., are all passed to the postnormalization stage. 

3.3.3. Postnormalization 
Postnormalization in the Section 3.3.3 involves all the main operation surrounding the 

residual register hardware operation. The inputs to this stage are the addition/subtraction 

unit output, prenormalization output exponent, addition unit output sign, rounding mode, 

residual register values from the prenormalization stage. The following are the steps 

involved in the postnormalization stage: 

Check the result of the addition/subtraction stage for a carry. If carry bit in the result is 

set then, shift the result right by once and increase the output exponent by one. If the 

result has the hidden bit equal to zero then, the result must be left shifted until the hidden 

bit is one. For this, the number of zeros starting from the most significant bit is counted. 

After the shift is performed, the exponent is decreased by the same number.  

As the result is shifted, one bit before the guard bit is lost and this bit has to be   

prepended to the residual register. This bit has to be prepended before the bits that were 

inserted in the prenormalization stage. For this purpose a decoder is used which whose 

output d1 has a value in the position which corresponds to the exponent difference. D1 is 

logically ANDed with the output of the addition/subtraction and then ORed with the 

mantissa from the prenormalization stage to get the new updated mantissa.  

 s_mant_rr2_br <= ('0' & mant_i_rr2) or (d1 and s_fract_28_i (27 downto 3)); 
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Figure 15. Postnormalization unit for Native-pair addition with Residual register 

Once again the sticky bit is checked to find if any bits were lost. Depending on the 

rounding mode and the sticky bits at different stages in the postnormalization, the result 

is rounded up or rounded down. The carry bit is checked again to see if carry occurred 

and if carry has occurred then the result is shift right once and the exponent is 

incremented by one. 

 As the result is shifted right again, one bit before the guard bit is lost and this bit has to 

be added to the residual register. This bit has to be added before the bit that was added 

after the right shift performed before rounding. For this purpose another decoder is used 

whose output D2 has a value ‘1’ in the position which next to ‘1’ in D1. D2 is logically 
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ANDed with the output of the after the rounded result is shifted right and then ORed with 

the mantissa s_mant_rr2_br to get the new updated mantissa.  

s_mant_rr2_ar <= ('0' & s_mant_rr2_ar) or (d2 and s_fract_rnd (27 downto 3)); 

 Suppose that the exponent difference in the prenormalization was greater than 24, and  

all the bits of the smaller mantissa are shifted into the residual register. Now in the 

postnormalization stage if the result was shifted right twice once before rounding and 

once after rounding, then 2 bits must be stuck on the So. In total the residual register 

mantissa temporarily can have 27 bits and then the 25 most significant bits are stored as 

final residual value.  

The sign of the residual register and the complement flag are also generated in this stage. 

If the complement flag is set, then residual value is complemented before it is stored in an 

architectural register. The signal exp_greater_24 that was generated in the 

prenormalization stage to check if the exponential difference was greater than the number 

of mantissa bits + 1 is used here.  

If the signal is set, then the exponent of the residual is set to higher exponent – 2(Nm+1) 

else exponent is set to lower exponent, where Nm is the number of mantissa bits.  

Finally, the result is checked for exceptions such as NaN, infinite, overflow, inexact 

result and depending on these values, the final result along with the exception flags are 

send to the output.   

The next instruction is to normalize the residual register value which happens with the 

MOVRR signal going high. During this stage, residual register value is concatenated with 

the guard, round and the sticky bits in the end to make it 28 bits and this value is directly 

sent into the postnormalization input for normalization. This normalized residual register 

value is later used in computation related to native-pair algorithms. 
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3.4. Native-pair Floating-point Multiplication  

This section discusses the 32-bit native-pair floating-point multiplication and the extra 

hardware added to the native floating-point multiplication unit to make it work as a 

native-pair floating-point multiplication unit.  The residual register hardware in a 

multiplication is less complex when compared to addition. Since there is no shifting of 

mantissas in multiplication, there is no residual register functionality in the 

prenormalization. So the entire residual register operation takes place only in the 

postnormalization stage. Hence only the changes and the steps involved to the 

postnormalization are discussed here. 

3.4.1. Postnormalization  
The inputs to this stage are the multiplication unit output, the prenormalization output 

exponent, the multiplication sign output and the rounding mode. The following are the 

steps involved in the native-pair multiplication postnormalization stage 

 

Figure 16. Postnormalization unit for Native-pair multiplication with Residual 
register 
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Check the result of the multiplication stage for a carry. If carry bit in the result is set then, 

shift the result right by once and increase the output exponent by one. In 

postnormalization, the 25 most significant bits are taken into consideration for the final 

output, hence initially the residual register consists of the 23 least significant bits.  

If a carry had occurred then, the result would be shifted right once, and the bit that comes 

out is stored into the residual register. Compared to the addition, multiplication does not 

involve shifting of mantissa in the prenormalization stage and so no decoder is required 

here to append the discarded bit into the residual register. If the result has the hidden bit 

equal to zero then, the result must be left shifted until the hidden bit is one. For this, the 

number of zeros starting from the most significant bit is counted. After the shift is 

performed, the exponent is decreased by the same number.  

The sticky bit is checked to find if any bits were lost. Depending on the rounding mode 

and the sticky bits at different stages in the postnormalization, the result is rounded up or 

rounded down. The carry bit is checked again to see if carry occurred and if carry has 

occurred then the result is shift right once and the exponent is incremented by one. When 

a carry occurs second time and the result is shifted again, the discarded bit is again 

appended as the most significant bit into the residual register, this becomes the 25th bit.  

The complement flag and the sign flag are generated. When he complement flag is set, 

then the final residual value being stored into the residual register is complemented. The 

exponent of the residual is set to higher exponent – (Nm+1) to align the residual register 

mantissa with the result, again Nm denotes the number of mantissa bits.  

Finally, the result is checked for exceptions such as NaN, infinite, overflow, inexact 

result and depending on these values, the final result along with the exception flags are 

send to the output. The MOVRR signal can be used to re-route the residual register 

values into the postnormalization for getting the normalized value of the residual. 
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3.5. Debugging FPU Unit 
 

The adopted FPU – floating-point unit suffered from some architectural errors related to 

the routing of signals through the pipelines, carrying of input signals to the various stages 

of the pipeline. This section discusses the changes made to the original Floating-point 

unit in order to enable its proper functioning in pipelined fashion. The floating-point unit 

pipeline consists of four stages: prenormalization stage, addition/multiplication stage, 

postnormalization stage and final output stage. All of these are instantiated in the FPU 

module. The clock, the input operands, the movrr signal, the rounding mode and the 

opcode are the inputs to the FPU module. These inputs are sent into the various stages 

depending on their usage. Apart from these primary inputs, at each stage intermediate 

outputs such as the exponents, mantissas, signs, operation results are generated and need 

to be carried to the later stages. The following sections discuss the changes made to the 

original FPU architecture. 

 

In pipelined operation, the inputs change every clock cycle. Also different instruction or 

function or set of parallel instructions are executed in each clock cycle in different stages 

of the pipeline. Hence, an operation performed in the third clock cycle might need an 

input given in an earlier clock cycle. For this purpose, the needed inputs must be 

propagated through each stage or each clock cycle using registers until it is used. 

 

The input operands are required in the prenormalization stage to generate the sign, 

exponent and mantissa bits. The input operands are also required in the postnormalization 

stage to generate the NaN – Not a number signals. Similarly the FPU operation signal 

fpu_op_i and the rounding mode signal s_rmode_i are required in addition/multiplication 

stage and the postnormalization stage. All these signals have to be propagated from 

prenormalization through addition/multiplication stage to postnormalization. 

 



46 

 
Figure 17. Floating point arithmetic unit pipeline  

Figure 17 shows the four stages of the floating-point pipeline: prenormalization, 

arithmetic core, postnormalization and formatting output. In the formatted output pipeline 

stage, changes will be made in the output with respect to exceptions [19]. The right way 

of propagating signals is through the pipelines stages and not those marked X in the 

figure 17. Supposing the inputs to the FPU are opa_i, opb_i, fpu_op_i and rmode_i, 

fpu_op_i is used in addition/multiplication stage and the opa_i is used in the 

postnormalization stage. The operation is performed in the second clock-cycle and the 

postnormalization in the third clock-cycle. When performing the operation, the input 

through the pipeline is fpu_op whereas the other input could be fpu_op_i. In the second 

clock cycle, the value of the opcode fpu_op_i can change and so a wrong operation is 

performed. Fpu_op on the other hand was assigned original fpu_op_i at the end of the 

clock cycle and so its value does not change and is the opcode for correct operation. 

Similarly, opa_i changes value until it reaches postnormalization, hence it is propagated 

through the pipeline stages via opa_out and opa_addout.  All the signals that are added or 

modified to fix this problem are added with a comment “propagated input through 

pipeline register” in Modified FPU VHDL code given in Appendix B. 
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When a value or a signal generated in one pipeline stage is required in another stage, then 

that signal also has to be propagated through the pipeline stages. For example, the output 

exponent or the larger exponent output of the prenormalization stage is required in the 

postnormalization stage and hence this has to be taken through the addition/multiplication 

unit to the postnormalization stage. This is done using prenorm_addsub_exp signal to 

take the exponent from prenormalization to addition stage and then by using 

exp_o_addsubpost signal to take it from addition to postnormalization. These modified 

signals are commented as “intermediate outputs through pipeline register in the modified 

code. 

 

All the pipeline stages should consume same number of clock cycles to produce the 

outputs of a particular stage. If different pipeline stages consume different number of 

clock cycles to produce the outputs of corresponding pipelines, then all the pipelines 

stages should wait until all the pipelines stages are done with producing their outputs to 

ensure the correct functioning of the pipelined system. This decreases the throughput of 

the system as outputs will be produced at a reduced frequency than that of the clock 

frequency. New output will be produced for every n clock cycles where n is the number 

of clock cycles consumed by the pipeline stage that consumes highest number of clock 

cycles to produce its output. 

 

In the original adopted FPU [19], prenormalization takes two clock cycles, arithmetic 

core takes one clock cycle, postnormalization takes three clock cycles and formatting 

output takes one clock cycle to give their outputs. All the pipeline stages have been 

modified such that each pipeline consumes only one clock cycle. For example, two 

sequential process blocks used in Postnormalization caused two extra clock cycles to get 

the output of that stage. The signal that is computed in the first sequential process block 

is needed to compute the signals in second sequential process block and hence needs two 

clock cycles to get the output of that stage. Those two sequential process blocks are 

replaced by combinational logic as explained below to reduce the number of clock cycles 

required by postnormalization pipeline stage to one.  
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When the hidden bit and carry bit of the arithmetic result are zeros, then the mantissa has 

to be left-shifted to normalize it. The following sequential process block is used in 

postnormalization unit of FPU [19] to compute the number of positions by which the 

mantissa has to be shifted left. 

Listing 1. Process to count zeroes from the left. 

process(clk_i) 
begin 
if rising_edge(clk_i) then 
-- count the leading zeros of fraction, needed for left-
shift 
s_zeros <= count_l_zeros(s_fract_28_i(26 downto 0)); 
end if; 
end process; 
 

The above process block is replaced by the following line of combinational logic. 

s_zeros <= count_l_zeros(s_fract_28_i(26 downto 0));  

 

This change reduced the number of clock cycles required by the postnormalization unit to 

two. After the above mentioned sequential process block, combinational logic is used in 

the FPU to compute the left shifted mantissa (s_fract_shl) and corresponding 

decremented exponent (s_exp_shl) using the count of leading zeros of fraction (s_zeros) 

computed in above process. After the combinational logic, the following sequential 

process blocks are used in FPU to compute the normalized fraction and corresponding 

exponent using left shifted mantissa (s_fract_shl) and decremented exponent (s_exp_shl) 

computed using combinational logic. 

Listing 2. Process to compute normalized fraction 

process (clk_i)  
begin 
if rising_edge(clk_i) then 
if s_shr1='1' then -- if carry bit is set, then right shift 
s_fract_1 <= s_fract_shr1; -- assign right shifted fraction 
elsif s_shl='1' then -- if carry bit and hidden bits are 
zeros, then left shift 
s_fract_1 <= s_fract_shl; -- assign right shifted fraction 
else 
s_fract_1 <= s_fract_28_i; -- assign already normalized 
fraction 
end if; 
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end if; 
end process; 
 
 
process (clk_i) -- process to compute normalized exponent 
begin 
if rising_edge(clk_i) then 
if s_shr1='1' or s_shr1e='1' then -- if carry bit is set, 
then right shift 
s_exp_1 <= s_exp_shr1; -- assign incremented exponent 
elsif s_shl='1' then -- if carry bit and hidden bits are 
zeros, then left shift 
s_exp_1 <= s_exp_shl; -- assign decremented fraction 
else 
s_exp_1 <= s_exp_i; -- assign already normalized exponent 
end if; 
end if; 
end process; 
 

The above two process blocks are used replaced with the following combinational logic. 

 

s_fract_1 <= s_fract_shr1 when s_shr1='1' else 
                     s_fract_shl when s_shl='1' else 
                     s_fract_28_i; 
 
s_exp_1 <= s_exp_shr1 when s_shr1='1' or s_shr1e='1' else 
                    s_exp_shl when s_shl='1' else 
                    s_exp_i; 

 

Such similar changes have been made to the entire floating-point unit to enable its proper 

functioning. This conversion of sequential logic to combination logic increases the clock 

frequency. Postnormalization for multiplication is subdivided into more pipelines 

internally and care is taken to see that no branch prediction hazards occur. The size of the 

pipeline is influences the hardware cost; greater the size more is the cost. In the FPU, the 

32-bit operands given to prenormalization are taken as inputs to postnormalization also to 

find whether inputs are infinities (two 1-bit signals) or NaNs (two 1-bit signals). Changes 

have been made to check the operands for infinity and SNaN in prenormalization unit 

itself. If operands are checked for infinity and SNaN in prenormalization, then 6 bits 

(four 1-bit signals indicating whether inputs are infinities are not and two 1-bit signals 
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indicating whether inputs are NaNs are not) can be carried across the pipeline registers 

instead of 64-bits (two 32-bit operands). This checking of the inputs for infinity and NaN 

does not increase the length of the critical path in prenormalization. 

With all the changes made, the modified FPU was thoroughly tested by sending Gaussian 

distributed synthetic test data inputs using a VHDL test bench for full pipelined operation 

and this FPU has been later used for construction of native-pair FPU. 

 

3.6. Examples 
 

Based on the steps and the circuitry described for performing floating-point arithmetic in 

Chapter 2 the following examples are worked out in a step by step fashion. Each sub-

section covers two examples. The same test cases are using for operation without residual 

register and for operation with residual register. For example, the operands used in 

addition are again used in addition with residual register to clearly differentiate the 

functioning of the two approaches. 

3.6.1. IEEE 754 Floating-point addition examples 
 

Example 1:  

A = 0x (4171999A) = 01000001011100011001100110011010 

B = 0x (3FC147AE) = 00111111110000010100011110101110 

Step 1: Prenormalization: 

Sign (A) = 0; Exp (A) = 10000010 = 130 – 127 = 3; Mantissa (A) = 

11100011001100110011010; 

Append≠ mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp 

≠ “00000000” that is number is not a denormalized number. 

Mantissa (A) = 01|11100011001100110011010|000 
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Sign (B) = 0; Exp (B) = 01111111 = 127 – 127 = 0; Mantissa (B) = 

10000010100011110101110; 

Append mantissa (B) with carry, hidden, guard, round and sticky bit. 

Mantissa (B) = 01|10000010100011110101110|000 

Exp difference = Exp (A) – Exp (B) = 3 – 0 = 3 

Exp (A) > Exp (B) = 1 

Smaller mantissa = Mantissa (B) = 01|10000010100011110101110|000 

Larger mantissa = Mantissa (A) = 01|11100011001100110011010|000 

Shift smaller mantissa right by Exp difference. 

RS (Right shifted) Smaller Mantissa = 00|00110000010100011110101|110    000 

Exponent to Postnormalization = 3 

Step 2: Addition 

Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B)  =  ‘0’ 

      Larger mantissa =   01|11100011001100110011010|000 

RS Smaller Mantissa = 00|00110000010100011110101|110 

     Sum                        = 10|00010011100001010001111|110 

Step 3: Postnormalization 

Sum = 10|00010011100001010001111|110 

Exponent to Postnormalization = 3 

Carry =1 => right shift sum once 

Right shifted Sum = 01|00001001110000101000111|111      0 
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Exponent = 3+1 = 4 

Sum is rounded up assuming round-to-nearest mode. 

Rounded Sum = Right shifted Sum + 1 = 01|00001001110000101001000|111 

Carry bit =0 =>No right shift.  

Concatenating: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) 

with Sign and Exponent 

0 | 10000011 |00001001110000101001000 = 0x (4184E148) 

Example 2: 

A = 0x (501502F9) = 01010000000101010000001011111001 

B = 0x (219392EF) = 00100001100100111001001011101111  

Step 1: Prenormalization 

Sign (A) = 0; Exp (A) = 10100000 = 160 – 127 = 33; Mantissa (A) = 

00101010000001011111001; 

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp ≠ 

“00000000” that is number is not a denormalized number. 

Mantissa (A) = 01|00101010000001011111001|000 

Sign (B) = 0; Exp (B) = 01000011 = 67 – 127 = -60; Mantissa (B) = 

00100111001001011101111; 

Append mantissa (B) with carry, hidden, guard, round and sticky bit. 

Mantissa (B) = 01|00100111001001011101111|000 

Exp difference = Exp (A) – Exp (B) = 33 – (-60) = 93 

Exp (A) > Exp (B) = 1 
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Smaller mantissa = Mantissa (B) = 01|00100111001001011101111|000 

Larger mantissa = Mantissa (A) = 01|00101010000001011111001|000 

Shift smaller mantissa right by Exp difference. 

RS (Right shifted) Smaller Mantissa = 00|00000000000000000000000|001  

Discarded bits - 0111100011001100110011010 

Exponent to Postnormalization = 33 

Step 2: Addition 

Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B) = ‘0’ 

      Larger mantissa =   01|00101010000001011111001|000 

RS Smaller Mantissa = 00|00000000000000000000000|001 

     Sum                        = 01|00101010000001011111001|001 

Step 3: Postnormalization 

Sum = 01|00101010000001011111001|001 

Exponent to Postnormalization = 33 

Carry =0=> no right shift sum. 

Sum = 01|00101010000001011111001|001 

Exponent = 33 

Sum is rounded down assuming round-to-nearest mode. 

Rounded Sum = Sum = 01|00101010000001011111001|001 

Carry bit =0 =>No right shift.  
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Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with 

Sign and Exponent 

0 | 10100000 |00101010000001011111001 = 0x (501502F9) 

3.6.2. Addition with Residual Register examples: 
Example 1: 

A = 0x (4171999A) = 01000001011100011001100110011010 

B = 0x (3FC147AE) = 00111111110000010100011110101110 

Step 1: Prenormalization 

Sign (A) = 0; Exp (A) = 10000010 = 130 – 127 = 3; Mantissa (A) = 

11100011001100110011010; 

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp ≠ 

“00000000” that is number is not a denormalized number. 

Mantissa (A) = 01|11100011001100110011010|000 

Sign (B) = 0; Exp (B) = 01111111 = 127 – 127 = 0; Mantissa (B) = 

10000010100011110101110; 

Append mantissa (B) with carry, hidden, guard, round and sticky bit. 

Mantissa (B) = 01|10000010100011110101110|000 

Exp difference = Exp (A) – Exp (B) = 3 – 0 = 3 

Exp (A) > Exp (B) = 1 

Smaller mantissa = Mantissa (B) = 01|10000010100011110101110|000 

Larger mantissa = Mantissa (A) = 01|11100011001100110011010|000 

Shift smaller mantissa right by Exp difference. 

RS (Right shifted) Smaller Mantissa = 00|00110000010100011110101|110     
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Discarded bits – 110 go into residual register 

Mantissa (RR) = 000000000000000000000000110 

Exponent to Postnormalization = 3 

Step 2: Addition 

Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B)  =  ‘0’ 

      Larger mantissa =   01|11100011001100110011010|000 

RS Smaller Mantissa = 00|00110000010100011110101|110 

     Sum                        = 10|00010011100001010001111|110 

Step 3: Postnormalization 

Sum = 10|00010011100001010001111|110 

Exponent to Postnormalization = 3 

Carry =1 => right shift sum once 

Right shifted Sum = 01|00001001110000101000111|111       

Discarded bit = 1; Goes into residual register. 

Mantissa (RR) before rounding = 00000000000000000000000|1|110 

Exponent = 3+1 = 4 

Sum is rounded up assuming round-to-nearest mode. 

Rounded Sum = Right shifted Sum + 1 = 01|00001001110000101001000|111 

Carry bit =0 =>No right shift.  

Mantissa (RR) after rounding = 000000000000000000000001110 
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Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with 

Output Sign and Output Exponent. 

0 | 10000011 |00001001110000101001000 = 0x (4184E148) 

Complement flag for residual register = sign (a) XOR sign (b) XOR Roundup = 1 

Residual register sign = Output Sign XOR Roundup = 1 

Hence, complement the added bits in residual: 000000000000000000000001110 

2’s complement (1110) - 0010 

Final residual mantissa = 000000000000000000000000010 

Exponent (RR) = Exp (A) – 2(Nm +1) when (exponent difference > Nm +1) else Exp (B).  

Where Nm is number of mantissa bits in the native-precision floating-point number. For 

Single-precision Nm =23. 

Accordingly, Exponent (RR) = Exp (B) = 0 

Final un-normalized residual value = Sign (RR) | Exponent (RR) | Final residual mantissa 

Final outputs: 

Output = 0 | 10000011 |00001001110000101001000 = 0x (4184E148) 

Sign (RR) = 1 

Exponent (RR) = “01111111” 

Mantissa (RR) = “000000000000000000000000010” 

MOVRR = 1 

Step 4: Normalization of residual value 

Sum = Mantissa (RR) & 000 = 00|0000000000000000000000010|000 

Exponent = Exponent (RR) = 01111111 
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Sign = Sign (RR) =0 => left shift till hidden bit =1 

22 left shifts. Exponent = Exponent (RR) – 22 = 127 – 22 = 105 = 01101001 

Output mantissa = 01|0000000000000000000000000|000 

Normalized Residual register value = 1|01101001|0000000000000000000000000 

= 0x (B4800000)                           

Example 2: 

A = 0x (501502F9) = 01010000000101010000001011111001 

B = 0x (219392EF) = 00100001100100111001001011101111 

Step 1: Prenormalization 

Sign (A) = 0; Exp (A) = 10100000 = 160 – 127 = 33;  

Mantissa (A) = 00101010000001011111001 

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp ≠ 

“00000000” that is number is not a denormalized number. 

Mantissa (A) = 01|00101010000001011111001|000 

Sign (B) = 0; Exp (B) = 01000011 = 67 – 127 = -60; 

Mantissa (B) = 00100111001001011101111 

Append mantissa (B) with carry, hidden, guard, round and sticky bit. 

Mantissa (B) = 01|00100111001001011101111|000 

Exp difference = Exp (A) – Exp (B) = 33 – (-60) = 93 

Exp (A) > Exp (B) = 1 

Smaller mantissa = Mantissa (B) = 01|00100111001001011101111|000 
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Larger mantissa = Mantissa (A) = 01|00101010000001011111001|000 

Shift smaller mantissa right by Exp difference. 

RS (Right shifted) Smaller Mantissa = 00|00000000000000000000000|001  

Discarded bits - 0100100111001001011101111 go into residual register 

Mantissa (RR) = 0100100111001001011101111 

Exponent to Postnormalization = 33 

Step 2: Addition 

Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B) = ‘0’ 

      Larger mantissa =   01|00101010000001011111001|000 

RS Smaller Mantissa = 00|00000000000000000000000|001 

     Sum                        = 01|00101010000001011111001|001 

Step 3: Postnormalization 

Sum = 01|00101010000001011111001|001 

Exponent to Postnormalization = 33 

Carry =0=> no right shift sum. 

Sum = 01|00101010000001011111001|001 

Exponent = 33 

Mantissa (RR) before rounding = Mantissa (RR) = 0100100111001001011101111 

Sum is rounded down assuming round-to-nearest mode. 

Rounded Sum = Sum = 01|00101010000001011111001|001 

Carry bit =0 =>No right shift.  
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Mantissa (RR) after rounding = Mantissa (RR) before rounding = 

0100100111001001011101111 

Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with 

Sign and Exponent 

0 | 10100000 |00101010000001011111001 = 0x (501502F9) 

Complement flag for residual register = sign (a) XOR sign (b) XOR Roundup = 0 

Residual register sign = Output Sign XOR Roundup = 0 

Final residual mantissa = 0100100111001001011101111 

Exponent (RR) = Exp (A) – 2(Nm +1) when (exponent difference > Nm +1) else Exp (B).  

Where Nm is number of mantissa bits in the native-precision floating-point number. For 

Single-precision Nm =23. 

Accordingly, Exponent (RR) = Exp (A) – 2(Nm +1) = 65 = 01000011 

Final un-normalized residual value = Sign (RR) | Exponent (RR) | Final residual mantissa 

Final outputs: 

Output = 0 | 10100000 |00101010000001011111001 = 0x (501502F9) 

Sign (RR) = 0 

Exponent (RR) = “01000011” 

Mantissa (RR) = “0100100111001001011101111” 

MOVRR = 1 

Step 4: Normalization of residual value 

Sum = Mantissa (RR) & 000 = 0100100111001001011101111|000 

Hidden bit = 1 so no shifting Exponent = Exponent (RR) = 01000011 
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Output mantissa = 01|0000000000000000000000000|000 

Normalized Residual register value = 0|01000011|00100111001001011101111 

                                                          = 0x (219392EF) 

3.6.3. IEEE 754 Floating-point Multiplication Examples: 
Example 1:  

A = 0x (4171999A) = 01000001011100011001100110011010 

B = 0x (40000011) = 01000000000000000000000000010001 

Step 1: Prenormalization: 

Sign (A) = 0; Exp (A) = 10000010 = 130 – 127 = 3; Mantissa (A) = 

1100011001100110011010; 

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp ≠ “00000000” that is number 

is not a denormalized number. 

Mantissa (A) = 1|11100011001100110011010 -- 0x (F1999A) 

Sign (B) = 0; Exp (B) = 10000000 = 128-127 = 1; Mantissa (B) = 

10000010100011110101110; 

Prepend mantissa (B) with a hidden bit. 

Mantissa (B) = 1|00000000000000000010001 -- 0x (800011) 

Exp (O) – exponent to the postnormalization = 130 + 128 -127 = 131 = 4 

Step 2: Multiplication 

Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ =’0’ 

      Mantissa (A) = 1|11100011001100110011010 – 0x (F1999A) 

      Mantissa (B) = 1|00000000000000000010001 – 0x (800011) 

     Product (48 bits) = 01|1110001100110011011101000010110011001100111010 
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Step 3: Postnormalization 

Product[47:0]= 01|1110001100110011011101000010110011001100111010 

Exponent to Postnormalization = Exp (O) = 4 

Carry =0 => No right shifting product[47:0] 

Product 2[47:0] = 01| 11100011001100110111010 |00| 010110011001100111010 

01 – carry and hidden bits. 

00 – guard and round bits. 

Sticky = OR (Product 2 [20:0]) = 1 

Roundup = guard and ((round or sticky) or Product 2(23) = 0 

Based on Rounding logic, product is rounded down 

Rounded product = product 2 [47:23] + 1 = 01| 11100011001100110111010  

Lower 23 bits discarded - 00| 010110011001100111010 

Carry bit =0 =>No right shift.  

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent 

0 | 10000011 |11100011001100110111010 = 0x (41F199BA) 

Example 2: 

A = 0x (501502F9) = 01010000000101010000001011111001 

B = 0x (41A77700) = 01000001101001110111011100000000  

Step 1: Prenormalization 

Sign (A) = 0; Exp (A) = 10100000 = 160 – 127 = 33;  

Mantissa (A) = 00101010000001011111001; 
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Prepend mantissa(A) with a hidden bit. Hidden = 1 if Exp ≠ “00000000” that is number is 

not a denormalized number. 

Mantissa (A) = 1|00101010000001011111001 

Sign (B) = 0; Exp (B) = 10000011 = 131 – 127 = 4;  

Mantissa (B) = 01001110111011100000000; 

Prepend mantissa(B) with a hidden bit. 

Mantissa (B) = 1|01001110111011100000000 

Exp (A) > Exp (B) = 1 

Mantissa (B) = 1|01001110111011100000000 

Mantissa (A) = 1|00101010000001011111001 

Exponent to Postnormalization = Exp (O) =160 + 131 -127 = 164 = 37 = 10100100 

Step 2: Multiplication 

Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ = ‘0’ 

       Mantissa (A) = 1|00101010000001011111001 

       Mantissa (B) = 1|01001110111011100000000 

------------------------------------------------------------------------------------------------------------ 

      Product (48 bits) = 01|1000010111101000110100110100001011111100000000 

Step 3: Postnormalization 

Product[47:0]= 01|1000010111101000110100110100001011111100000000 

Exponent to Postnormalization = Exp (O) = 37 

Carry =0=> no right shift product[47:0]; Exp (O)  = 37 

Product 2[47:0] = 01 |10000101111010001101001| 10 |100001011111100000000 
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01 – carry and hidden bits. 

10 – guard and round bits. 

Sticky = OR (Product 2 [20:0]) = 1 

Roundup = guard and ((round or sticky) or Product 2(23) = 1 

Product is rounded up assuming round-to-nearest mode. 

Rounded Product = Product 2 [47:23] + 1 = 01|10000101111010001101001 + 1 

                                                                 = 01|10000101111010001101010 

Discarded bits – Product 2 [23:0] - 10 |100001011111100000000 

Carry bit =0 =>No right shift.  

Exp (O) = 37 = 164 (without bias) = 10100100 

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent 

0 | 10100100 |10000101111010001101010 = 0x (5242F46A) 

3.6.3. Multiplication with Residual Register Examples 
Example 1: 

A = 0x (4171999A) = 01000001011100011001100110011010 

B = 0x (40000011) = 01000000000000000000000000010001 

Step 1: Prenormalization: 

Sign (A) = 0; Exp (A) = 10000010 = 130 – 127 = 3; Mantissa (A) = 

1100011001100110011010; 

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp ≠ “00000000” that is number 

is not a denormalized number. 

Mantissa (A) = 1|11100011001100110011010 -- 0x (F1999A) 
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Sign (B) = 0; Exp (B) = 10000000 = 128-127 = 1; Mantissa (B) = 

10000010100011110101110; 

Prepend mantissa (B) with a hidden bit. 

Mantissa (B) = 1|00000000000000000010001 -- 0x (800011) 

Exp (O) – exponent to the postnormalization = 130 + 128 -127 = 131 = 4 

Step 2: Multiplication 

Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ =’0’ 

      Mantissa (A) = 1|11100011001100110011010 – 0x (F1999A) 

      Mantissa (B) = 1|00000000000000000010001 – 0x (800011) 

     Product (48 bits) = 01|1110001100110011011101000010110011001100111010 

Step 3: Postnormalization 

Product[47:0]= 01|1110001100110011011101000010110011001100111010 

Exponent to Postnormalization = 4 

Carry =0 => No right shift product[47:0] 

Product 2 [47:0] = 01| 11100011001100110111010 |00| 010110011001100111010 

01 – carry and hidden bits. 

00 – guard and round bits. 

Sticky = OR (Product 2 [20:0]) = 1 

Roundup = guard and ((round or sticky) or Product 2(23) = 0 

Based on rounding logic, product is rounded down. 

Rounded product = product 2 [47:23] + 1 = 01| 11100011001100110111010  
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Lower 23 bits discarded go into the residual register - 00| 010110011001100111010 

Residual register mantissa = Mantissa (RR) = 00| 010110011001100111010 

Carry bit =0 =>No right shift. Nothing goes into residual register. 

Mantissa (RR) = 000| 010110011001100111010 

Exponent (RR) = Output Exponent – 24 = 131-24 = 107 = 01101011 

Complement (RR) = roundup =’0’ 

Sign (RR) = sign (O) XOR roundup = ‘0’ 

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent 

0 | 10000011 |11100011001100110111010 = 0x (41F199BA) 

Outputs: 

Output = 0 | 10000011 |11100011001100110111010 = 0x (41F199BA) 

Mantissa (RR) = 0000010110011001100111010; Exponent (RR) = 01101011; Sign (RR) 

= ‘0’; 

----------------------------------------------------------------------------------------------------------- 

MOVRR =1 

Step 4: Normalization of Residual Register Value 

Input = Product[47:0] = Mantissa (RR) & “00000000000000000000000” 

                          = 00| 0001011001100110011101000000000000000000000000 

Exponent to postnormalization = 107 = 01101011 

Sign (RR) = ‘0’ 

Hidden bit = 0 => count zeros from left starting from hidden bit or Product[46] = 2 
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Shift left product 2 times. 

Shifted product = Product 2 [46] = 

00001|0110011001100111010000|00|00000000000000000 

Exponent (RR) = 107 – 5 = 102 

01 – carry and hidden bits. 

00 – guard and round bits. 

Sticky = OR (Product 2 [20:0]) = 0 

Roundup = guard and ((round or sticky) or Product 2(23) = 0 

Shifted product is rounded down based on the rounding logic. 

Rounded product = 00010110011001100111010 

Carry bit = 0 => no right shift. 

Output = Sign (RR) | Exponent (RR)| Rounded Product (excluding carry and hidden bits) 

Normalized Residual value = 0|01100110|00010110011001100111010 = 0x (330B333A) 

Example 2: 

A = 0x (501502F9) = 01010000000101010000001011111001 

B = 0x (41A77700) = 01000001101001110111011100000000  

Step 1: Prenormalization 

Sign (A) = 0; Exp (A) = 10100000 = 160 – 127 = 33;  

Mantissa (A) = 00101010000001011111001; 

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp ≠ “00000000” that is number 

is not a denormalized number. 

Mantissa (A) = 1|00101010000001011111001 
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Sign (B) = 0; Exp (B) = 10000011 = 131 – 127 = 4;  

Mantissa (B) = 01001110111011100000000; 

Prepend mantissa (B) with a hidden bit. 

Mantissa (B) = 1|01001110111011100000000 

Exp (A) > Exp (B) = 1 

Mantissa (B) = 1|01001110111011100000000 

Mantissa (A) = 1|00101010000001011111001 

Exponent to Postnormalization = Exp (O) = 160 + 131 -127 = 164 = 37(with bias) = 

10100100 

Step 2: Multiplication 

Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ = ‘0’ 

       Mantissa (A) = 1|00101010000001011111001 

       Mantissa (B) = 1|01001110111011100000000 

------------------------------------------------------------------------------------------------------------ 

      Product (48 bits) = 01|1000010111101000110100110100001011111100000000 

Step 3: Postnormalization 

Product [47:0]= 01|1000010111101000110100110100001011111100000000 

Exponent to Postnormalization = Exp (O) = 37 

Carry =0=> no right shift product [47:0]; Exponent = Exp (O) = 37 

Product 2 [47:0] = 01 |10000101111010001101001| 10 |100001011111100000000 

01 – carry and hidden bits. 

10 – guard and round bits. 
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Sticky = OR (Product 2 [20:0]) = 1 

Roundup = guard and ((round or sticky) or Product 2(23) = 1 

Product is rounded up assuming round-to-nearest mode. 

Rounded Product = Product 2 [47:23] + 1 = 01|10000101111010001101001 + 1 

                                                                    = 01|10000101111010001101010 

Discarded bits – Product 2 [23:0] - 10 |100001011111100000000 go into the residual 

register 

Residual Register Mantissa = 10100001011111100000000 

Carry bit =0 =>No right shift. So nothing is added into the residual register. 

Concatenate: Rounded product (excluding hidden bit) with Sign and Exponent 

Product output = 0 | 10100100 |10000101111010001101010 = 0x (5242F46A) 

Mantissa (RR) = 00|10100001011111100000000 

Exponent (RR) = Exp (O) – 24 = 164 – 24 = 140 (without bias) = 10001100 

Sign (RR) = Sign (O) XOR roundup = ‘0’ XOR ‘1’ = ‘1’ 

Complement (RR) = roundup = ‘1’ => bits added in Mantissa (RR) are complemented. 

Mantissa (RR) = 00 & (~ Mantissa (RR))  

                        = 00 | 01011110100000011111111  

Outputs: 

Product output = 01010010010000101111010001101010 = 0x (5242F46A)  

Mantissa (RR) = 00 | 01011110100000011111111  

Exponent (RR) = 10001100; Sign (RR) = ‘1’ 
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----------------------------------------------------------------------------------------------------------- 

MOVRR = 1 

Step 4: Normalization of Residual register value 

Input = Product [47:0] = Mantissa (RR) & “00000000000000000000000” 

                          = 00 | 01011110100000011111111000000000000000000000000 

Exponent to postnormalization = 140 = 10001100 

Sign (RR) = ‘1’ 

Hidden bit = 0 => count zeros from left starting from hidden bit or Product[46] = 2 

Shift left product 3 times. 

Shifted product product2 [47:0] = 

01|011110100000011111111000000000000000000000000|00 

Exponent (RR) = 140 – 3 = 137 

01 – carry and hidden bits. 

00 – guard and round bits. 

Sticky = OR (Product 2 [20:0]) = 0 

Roundup = guard and ((round or sticky) or Product 2(23) = 0 

Shifted product is rounded down based on the rounding logic. 

Rounded product = 01|01111010000001111111100 

Carry bit = 0 => no right shift. 

Output = Sign (RR) | Exponent (RR)| Rounded Product (excluding carry and hidden bits) 

Normalized Residual value = 1|10001001|01011110100000011111111 = 0x (C4AF40FF) 
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Chapter 4. Testing and Results 
 

The Native-pair FPU adder and multiplier have been verified using 6,300 test cases. Both 

behavioral and post-route simulations were run using Modelsim for this purpose. A set of 

Gaussian distributed data was used for the purpose of thorough testing of both the adder 

and the multiplier. This Gaussian sequence was a sequence 6300 million randomized 

numbers with mean value of zero and variance value of 1. The sequence values were 

stored into a text file in IEEE 754 format. A VHDL test bench was written to read this 

data from this text file, generate results. These same test cases have been used to test both 

the adder and multiplier and the results so obtained were compared to the results by the 

software program. The VHDL test benches and the residual.cpp codes are given in the 

Appendix B 

Appendix A describes in detail the place and route simulation output waveforms. 
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Chapter 5. Estimation of Hardware Cost and Performance 
 

The Floating-point unit with residual register needed to perform Native-pair floating-

point arithmetic has been implemented in VHDL. The floating-point adder and multiplier 

with residual register have been synthesized to evaluate the hardware complexity and 

speed of the design. Implementation costs of these designs are compared with those of 

32-bit FPU and 64-bit FPU without the residual register hardware. Xilinx 9.1 ise tool is 

used to generate post-route synthesis reports and Modelsim is used to generate place and 

route simulation waveform. The three designs – 32-bit FPU with residual register, 32-bit 

FPU without residual register, 64-bit FPU without residual register are targeted to Xilinx 

Virtex 4 FPGA xc4vlx25 device. Also the individual stages of the floating-point unit 

adder and multiplier i.e., prenormalization unit, addition unit, multiplication unit and 

postnormalization unit are also synthesized in order to analyze the residual register 

hardware needed to support the Native-pair floating-point arithmetic in a native 32-bit 

FPU.  

5.1. Adder Implementation 
 

Table 6. Comparison of Implementation cost and delay for Adders 

ADDER  

 

Slices 

        

  

% Increase 

 

 

(ns) 

 

 

% Increase 

32-bit FPU adder without 

residual register 

1437 0.0 20.924 0.0 

32-bit FPU adder with 

residual register 

1674 16.5 24.971 19.34 

64-bit FPU adder without 

residual register 

2272 56.4 62.1 197.8 

 
Table 6 above gives the number of slices used and the minimum period of the critical 

path obtained from the post-route synthesis reports of the floating-point adders. The 

Implementation cost column is divided into the absolute utilization and relative 

utilization. The absolute utilization gives the exact number of slices needed for each 

   Implementation cost     Minimum period 
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design and the relative utilization indicates the percentage increase in number of slices 

for each design relative to 32-bit FPU adder without residual register. The second column 

gives the minimum period or the delay in the critical path of the three adders and their 

relative increases taking 32-bit FPU adder without residual register as the mean. The 

observations drawn from Table 6 are: 

• The percentage increase in hardware from using residual register for 32-bit FPU 

adder instead of 32- FPU adder without residual register is 16.5% and the 

percentage increase jumps 56.4% when 64-bit FPU adder without residual register 

is used 

• The minimum period increased by 4.67 ns for 32-bit FPU adder with residual 

register compared to the increase of 41 ns for 64-bit FPU adder hardware. The 

relative increase in the minimum period changes from 19.34% to 197.8%. 

• Comparing only 32-bit FPU adder and 64-bit FPU adder, the relative hardware 

cost increases by a factor of 3.4 and minimum period increases by a factor of 10.  

The hardware cost of 64-bit FPU adder is due to increase in the use of resources and 

increase in the size of pipeline. Table 7 shows the comparison of 32-bit FPU adders with 

and without residual register hardware. This rise in the hardware cost involves addition of 

no new logic but only increasing the size of all the combinational and sequential logic 

within the 32-bit FPU adder hardware. But the increase in the hardware cost of 32-bit 

FPU adder with residual register is due to addition of new logic which is needed in the 

residual value computation. 

Table 7. Comparison of device utilization reports of Prenormalization unit for 32-bit 
FPU adder with and without residual register hardware 

ADDER - Prenormalization 32-bit FPU adder without 
residual register 

32-bit FPU adder with residual 
register 

Number of Slices 498 492 

Number of Slice Flip Flops 16 64 

Number of 4 input LUTs 889 880 

Minimum period 1.10 ns 1.648 ns 
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Table 7 shows the device utilization summary of the prenormalization unit for 32-bit FPU 

adder with and without the residual register. The overall hardware needed for adder with 

residual register increased due the addition of residual register and the storing it with the 

discarded bits after a right-shift is performed in prenormalization. This extra hardware 

shown in bold in Figure 14, adds sequential logic in the critical data path which becomes 

the cause for the delay and the increase in the minimum period. 

Table 8. Comparison of device utilization reports of Postnormalization unit for 32-
bit FPU adder with and without residual register hardware 

ADDER - Postnormalization 32-bit FPU adder with residual 
register 

32-bit FPU adder without 
residual register 

Number of Slices 522 639 

Number of 4 input LUTs 932 1130 

 
Table 9 shows the extra hardware in the Postnormalization unit of the FPU adder with 

residual register. The extra hardware shown in Figure 15 is due to the appending of the 

discarded bits in to the residual register value that comes from the prenormalization unit, 

the computation of the sign, the complement flag and the exponent value, computing the 

2’s complement of the residual value based on the complement flag and storing all this 

into a residual register. As there is no delay in the critical datapath as the extra hardware 

does not involve any sequential logic in the datapath. 

5.2. Multiplier Implementation 
 

Table 10 shows the results of the place-route synthesis reports. The increase in number of 

slices for 32-bit FPU multiplier with residual register is 330 and it is 4497 for 64-bit FPU 

multiplier. The minimum period increases by 11.8% and 61.7% respectively for 32-bit 

FPU multiplier with residual register hardware and 64-bit FPU multiplier. 
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Table 9. Comparison of Implementation cost and delay of Multipliers 

MULTIPLIER  

 

Slices 

        

  

% Increase 

 

 

(ns) 

 

 

% Increase 

32-bit FPU multiplier 

without residual register 

2703 0.0 34.754 0.0 

32-bit FPU multiplier with 

residual register 

3033 12.2 38.875 11.8 

64-bit FPU multiplier 

without residual register 

7200 166.3 55.7 61.74 

 

The inferences that can be drawn from table 10: 

• The extra hardware needed for 32-bit FPU multiplier with residual register 

increases by 12.2% and for 64-bit FPU multiplier the hardware cost increases by 

166%. 

• The minimum period increases by 4 ns for 32-bit FPU multiplier with residual 

register hardware and 21 ns for 64-bit FPU multiplier. 

• Hardware cost (64-bit FPU multiplier) = 13.6 × hardware cost (32-bit FPU 

multiplier with residual register). 

• Minimum period increase (64-bit FPU multiplier) = 5.23 × minimum period 

increase (32-bit FPU multiplier with residual register). 

Similar to the adders, the hardware increase in 64-bit multiplier is primarily due to 

increase in the size of the resources and the pipeline. From Table 9 it can also be 

observed that the increase in the hardware when residual register is used for multiplier is 

less than the increase for adder with residual register. Floating-point multiplication does 

not have any shifting or discarding of bits in prenormalization but floating-point addition 

involves shifting of mantissa in the prenormalization unit. The residual register hardware 

and the related logic are present only in the postnormalization unit for a FPU multiplier. 

   Implementation cost     Minimum period 
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Table 10. Comparison of device utilization reports of Postnormalization unit for 32-
bit FPU multiplier with and without residual register hardware 

 

 

 

 
 

Table 12 shows the device utilization of postnormalization unit in FPU multiplier with 

residual register and FPU multiplier without residual register. All the extra logic resulting 

in extra hardware is due to setting of the residual mantissa before and after rounding, 

computing the residual register exponent, the sign and complement flag and 

complementing the residual register value if the complement flag is set. The delay in the 

critical path increases by 0.7 ns due to this extra hardware. 

 

 

 

 
 

 

 

 

 

 

Multiplier - Postnormalization 32-bit FPU adder with 
residual register 

32-bit FPU adder without 
residual register 

Number of Slices 1817 1807 

Number of Slice flip flops 112 146 

Number of 4 input LUTs 3322 3311 

Minimum period 8.332 ns 7.637 ns 
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Conclusion 
 

Most  processors in video game consoles and graphics hardware widely use 32-bit or 

single precision floating-point hardware which is available at low cost. To harness this 

hardware for scientific computing, the intermediate results in these processors require 

precision higher than 32-bits. Usage of double precision or 64-bit floating-point 

arithmetic is not justifiable for this purpose because the scientific computing market is 

too small to justify the added expense. Using 32-bit Native-pair arithmetic increases the 

accuracy of these applications close to that offered when double precision arithmetic is 

used but at a fraction of the cost of 64-bit floating point.  

The FPU unit [19] used for this thesis has been debugged extensively before being used 

to implement the residual register hardware needed for adder and multiplier. The signals 

between modules have been routed correctly to enable pipelined operation. The input 

signals were carried through various stages in the pipeline or till where ever they were 

needed. The pipelines were balanced to attain maximum operable frequency. Signals 

present in the last stage and that required wider operands to be enabled have been 

computed in the earlier stage of the pipeline. There by the requirement for wider 

operands to be routed through the pipeline was negated and the width of the pipeline was 

reduced. The debugged FPU gave addition outputs every 3 clock cycles and 

multiplication output every 5 clock cycles. The residual register hardware was added to 

the FPU adder and FPU multiplier and its proper functioning has been implemented. Both 

the FPU adder and the FPU multiplier have been thoroughly tested by performing post-

route simulations and also performing test-bench analysis using the synthetic data 

generated by the test code. The synthesis reports after the placement and routing have 

been obtained and a detailed analysis has been show in Chapter 5. 

As can be seen from the synthesis results in Table 6, the increase in the hardware cost of 

due to residual register hardware is 15.4% for adders and 12.2% for multipliers. The 

increase in the hardware for 64-bit floating-point hardware is 55% for adders and 166% 

for multipliers. When comparing just 64-bit floating-point hardware and the 32-bit 

residual register hardware, there is a cost increases by a factor of 3.6 for adders and 13.6 
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for multipliers. The minimum period comparison as obtained from the Table 6 shows that 

the period increases for adder with residual register by 37% where as in multiplier with 

residual register the increase is just 11.8%. In comparison, the 64-bit adder has a decrease 

in performance by 226% and 64-bit multiplier has a decrease by 61%.  

These results prove that with a minimal increase in hardware cost and a moderate slow 

down in performance, the native-pair arithmetic can be used to increase the accuracy of 

floating-point computations rather than going for the high cost double precision 

hardware. The residual register arithmetic unit performance can be enhanced greatly 

through the use of speculation. Using the native-pair hardware only when the speculation 

software detects loss of information above a certain limit will certainly result in floating-

point arithmetic with higher precision, better accuracy and improved performance [31]. 
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Appendix A 
 

Post-route simulations 
 

The simulation reports for the addition with residual register are presented in the next two 

pages. The next page shows the post-route simulation for 8 pairs of operands inputs were 

given in continuous clock cycles. The 1st signal is the clock input; the 2nd signal is the 

MOVRR input; 3rd and 4th signals are the operands A and B represented as opa_i and 

opb_i; 5th signal is the opcode 000-addition, 001-subtraction; the 6th signal is the rounding 

mode; the 7th signal is the output of the FPU, it could be the result or the normalized 

residual value depending on the MOVRR signal; 8th and 16th signals are the output of the 

postnormalization and the input to the postnormalization. These signals have been used to 

check if the right residual value was going into the postnormalization unit when MOVRR 

goes high; the 17th signal is the final sign of the residual register value from the 

postnormalization unit; the 20th  signal is the complement flag output of the residual 

register in the postnormalization unit and it is used to keep track of when the residual 

value is being complemented; signals 24,25 and 26 are the exponent values of residual 

registers in the prenormalization unit, addition/subtraction unit and postnormalization 

unit. But as the final exponent is set only in the postnormalization unit only the 26th 

signal can be considered important; the 27th signal, 28th signal and 29th signal are residual 

register mantissa outputs from prenormalization unit, addition/subtraction unit and 

postnormalization unit. Since the mantissa is set in both prenormalization and 

postnormalization, signals 27 and 29 are important. Apart from these, signals 9 to 15 give 

the inexact, overflow and the exception outputs. 17th signal is the post_in signal and it is 

used to see if the residual register mantissa mant_rr2, exponent exp_rr2 and sign_rr2 

obtained in the previous clock cycle is sent as input into the postnormalization when the 

MOVRR signal is one. 23rd signal is the ready signal, valid postnormalization unit 

outputs are sent to the FPU output only after this signal goes high. The FPU addition 

takes place in 3 clock cycles, one clock cycle each for prenormalization, addition and 

postnormalization.  
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In the wave form shown in the next page, signal 3 indicates the operand A - opa_i; it is 

4171999A in the 1st clock cycle, C17199A in the 2nd, 4171999A in the 3rd clock cycle, 

C17199A in the 4th, 501502F9 in the 5th and 7th, D01502F9 in the 6th and 8th and 

3F893773 in the 9th clock cycle. 4th signal is operand B – opb_i which takes value 

3FC147AE in 1st and 2nd clock cycles, BFC147AE in 3rd and 4th clock cycles, 219392EF 

in the 5th and 6th clock cycles, A19392EF in the 7th and 8th clock cycles and 00000000 in 

the 9th clock cycle. The output for the inputs in the 1st clock cycle that is opa_i = 

4171999A and opb_i = 3FC147AE comes in the 4th clock cycle with the falling edge of 

the clock and its value is shown by the 7th signal output_o = 4184E148. The outputs for 

the other inputs come along the consequent clock cycles. MOVRR signal goes high at the 

end of the 3rd clock cycle, at this time the post_out = 4184E148 and post_in becomes the 

residual register mantissa value obtained in the previous clock cycle. The normalized 

residual value to be stored in the architectural register B48000000 is obtained in the 5th 

clock cycle with the falling edge of the clock. Similarly MOVRR again goes high in the 

8th clock cycle to give the normalized residual register value 219392EF as output in the 

9th clock cycle. 

The second wave form has been run to check if the all the 8 input vectors are giving the 

correct values of output and residual register values. As can be seen in the wave form 

MOVRR signal is made to go high after every 3 clock cycles for this purpose. 

 

 

 

 

 

 

 

 



00000000 4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9 3F893773

00000000 3FC147AE BFC147AE 219392EF A19392EF 00000000

0

0

00000000 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

57C00000 80000000 7FC00000 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

0000000 84E147E 6CB8522 0000010 6CB8522 84E147E 4A817C9 4A817C7 49C9778 B636888 4A817C7 4A817C9 449BB98

00 7F 43 00

00 7F 43 00

00 7F 43 13 43 00

0000000 0000006 09392EF 0000000

0000000 0000006 09392EF 0000000

00000X0 0000000 0000002 09392EF 16C6D11 09392EF 0000000

0 1000000 2000000 3000000 4000000

/fpuaddition/clk_i

/fpuaddition/movrr

/fpuaddition/opa_i 00000000 4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9 3F893773

/fpuaddition/opb_i 00000000 3FC147AE BFC147AE 219392EF A19392EF 00000000

/fpuaddition/fpu_op_i 0

/fpuaddition/rmode_i 0

/fpuaddition/output_o 00000000 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

/fpuaddition/post_out 57C00000 80000000 7FC00000 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

/fpuaddition/ine_o

/fpuaddition/overflow_o

/fpuaddition/underflow_o

/fpuaddition/inf_o

/fpuaddition/zero_o

/fpuaddition/qnan_o

/fpuaddition/snan_o

/fpuaddition/post_in 0000000 84E147E 6CB8522 0000010 6CB8522 84E147E 4A817C9 4A817C7 49C9778 B636888 4A817C7 4A817C9 449BB98

/fpuaddition/sign_rr0

/fpuaddition/sign_rr1

/fpuaddition/sign_rr2

/fpuaddition/cmpl_rr0

/fpuaddition/cmpl_rr1

/fpuaddition/cmpl_rr2

/fpuaddition/ready_o

/fpuaddition/exp_rr0 00 7F 43 00

/fpuaddition/exp_rr1 00 7F 43 00

/fpuaddition/exp_rr2 00 7F 43 13 43 00

/fpuaddition/mant_rr0 0000000 0000006 09392EF 0000000

/fpuaddition/mant_rr1 0000000 0000006 09392EF 0000000

/fpuaddition/mant_rr2 00000X0 0000000 0000002 09392EF 16C6D11 09392EF 0000000
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3F893773 4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9 3F893773

00000000 3FC147AE BFC147AE 219392EF A19392EF 00000000

0

0

3F893773 XXXXXXXX 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

3F893773 XXXXXXXX 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

449BB98 XXXXXX0 84E147E 6CB8522 0000010 6CB8522 84E147E 4A817C9 4A817C7 49C9778 B636888 4A817C7 4A817C9 449BB98

00 XX 7F 43 00

00 5E 7F 43 00

00 5E 7F 43 13 43 00

0000000 0X147XE 0000006 09392EF 0000000

0000000 0X147XE 0000006 09392EF 0000000

0000000 XXXXXXX 0000002 09392EF 16C6D11 09392EF 0000000

5000000 6000000 7000000 8000000 9000000

/fpuaddition/clk_i

/fpuaddition/movrr

/fpuaddition/opa_i 3F893773 4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9 3F893773

/fpuaddition/opb_i 00000000 3FC147AE BFC147AE 219392EF A19392EF 00000000

/fpuaddition/fpu_op_i 0

/fpuaddition/rmode_i 0

/fpuaddition/output_o 3F893773 XXXXXXXX 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

/fpuaddition/post_out 3F893773 XXXXXXXX 4184E148 B4800000 415970A4 C184E148 501502F9 219392EF 501502F9 D01502F9 3F893773

/fpuaddition/ine_o

/fpuaddition/overflow_o

/fpuaddition/underflow_o

/fpuaddition/inf_o

/fpuaddition/zero_o

/fpuaddition/qnan_o

/fpuaddition/snan_o

/fpuaddition/post_in 449BB98 XXXXXX0 84E147E 6CB8522 0000010 6CB8522 84E147E 4A817C9 4A817C7 49C9778 B636888 4A817C7 4A817C9 449BB98

/fpuaddition/sign_rr0

/fpuaddition/sign_rr1

/fpuaddition/sign_rr2

/fpuaddition/cmpl_rr0

/fpuaddition/cmpl_rr1

/fpuaddition/cmpl_rr2

/fpuaddition/ready_o

/fpuaddition/exp_rr0 00 XX 7F 43 00

/fpuaddition/exp_rr1 00 5E 7F 43 00

/fpuaddition/exp_rr2 00 5E 7F 43 13 43 00

/fpuaddition/mant_rr0 0000000 0X147XE 0000006 09392EF 0000000

/fpuaddition/mant_rr1 0000000 0X147XE 0000006 09392EF 0000000

/fpuaddition/mant_rr2 0000000 XXXXXXX 0000002 09392EF 16C6D11 09392EF 0000000
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3F893773

00000000

0

0

3F893773

3F893773

449BB98

00

00

00

0000000

0000000

0000000

10000000 11000000 12000000 13000000 14000000

/fpuaddition/clk_i

/fpuaddition/movrr

/fpuaddition/opa_i 3F893773

/fpuaddition/opb_i 00000000

/fpuaddition/fpu_op_i 0

/fpuaddition/rmode_i 0

/fpuaddition/output_o 3F893773

/fpuaddition/post_out 3F893773

/fpuaddition/ine_o

/fpuaddition/overflow_o

/fpuaddition/underflow_o

/fpuaddition/inf_o

/fpuaddition/zero_o

/fpuaddition/qnan_o

/fpuaddition/snan_o

/fpuaddition/post_in 449BB98

/fpuaddition/sign_rr0

/fpuaddition/sign_rr1

/fpuaddition/sign_rr2

/fpuaddition/cmpl_rr0

/fpuaddition/cmpl_rr1

/fpuaddition/cmpl_rr2

/fpuaddition/ready_o

/fpuaddition/exp_rr0 00

/fpuaddition/exp_rr1 00

/fpuaddition/exp_rr2 00

/fpuaddition/mant_rr0 0000000

/fpuaddition/mant_rr1 0000000

/fpuaddition/mant_rr2 0000000
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00000000 4171999A 501502F9 3F893773 BF591417 BFB363ED

00000000 3FC147AE 219392EF 00000000 BF02C7D7 BE3F7FFE

0

0

00000000 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773 BFADEDF7 B3800000 BFADEDF7

57C00000 80000000 7FC00000 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773 BFADEDF7 B3800000 BFADEDF7 BFCB53ED

0000000 84E147E 0000010 0000030 84E147E 4A817C9 49C9778 4A817C9 449BB98 0000000 449BB98 ADEDF70 0000008 0000000 ADEDF70 65A9F66

00 7F 43 00 7E 7C

00 7F 43 00 7E 7C

00 7F 43 00 7E 7C

0000000 0000006 09392EF 0000000 0000006

0000000 0000006 09392EF 0000000 0000006

00000X0 0000000 0000002 0000006 0000002 09392EF 0000000 0000001 0000000 0000001 0000002

0 1000000 2000000 3000000 4000000

/fpu_add_mar14tone/clk_i

/fpu_add_mar14tone/movrr

/fpu_add_mar14tone/opa_i 00000000 4171999A 501502F9 3F893773 BF591417 BFB363ED

/fpu_add_mar14tone/opb_i 00000000 3FC147AE 219392EF 00000000 BF02C7D7 BE3F7FFE

/fpu_add_mar14tone/fpu_op_i 0

/fpu_add_mar14tone/rmode_i 0

/fpu_add_mar14tone/output_o 00000000 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773 BFADEDF7 B3800000 BFADEDF7

/fpu_add_mar14tone/post_out 57C00000 80000000 7FC00000 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773 BFADEDF7 B3800000 BFADEDF7 BFCB53ED

/fpu_add_mar14tone/ine_o

/fpu_add_mar14tone/overflow_o

/fpu_add_mar14tone/underflow_o

/fpu_add_mar14tone/inf_o

/fpu_add_mar14tone/zero_o

/fpu_add_mar14tone/qnan_o

/fpu_add_mar14tone/snan_o

/fpu_add_mar14tone/post_in 0000000 84E147E 0000010 0000030 84E147E 4A817C9 49C9778 4A817C9 449BB98 0000000 449BB98 ADEDF70 0000008 0000000 ADEDF70 65A9F66

/fpu_add_mar14tone/sign_rr0

/fpu_add_mar14tone/sign_rr1

/fpu_add_mar14tone/sign_rr2

/fpu_add_mar14tone/cmpl_rr0

/fpu_add_mar14tone/cmpl_rr1

/fpu_add_mar14tone/cmpl_rr2

/fpu_add_mar14tone/ready_o

/fpu_add_mar14tone/exp_rr0 00 7F 43 00 7E 7C

/fpu_add_mar14tone/exp_rr1 00 7F 43 00 7E 7C

/fpu_add_mar14tone/exp_rr2 00 7F 43 00 7E 7C

/fpu_add_mar14tone/mant_rr0 0000000 0000006 09392EF 0000000 0000006

/fpu_add_mar14tone/mant_rr1 0000000 0000006 09392EF 0000000 0000006

/fpu_add_mar14tone/mant_rr2 00000X0 0000000 0000002 0000006 0000002 09392EF 0000000 0000001 0000000 0000001 0000002
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BFB363ED 4171999A 501502F9 3F893773 BF591417

BE3F7FFE 3FC147AE 219392EF 00000000 BF02C7D7

0

0

BFCB53ED 33000000 BFCB53ED XXXXXXXX 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000

BFCB53ED 33000000 BFCB53ED XXXXXXXX 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773

65A9F66 0000010 0000030 65A9F66 XXXXXFC 84E147E 0000010 0000030 84E147E 4A817C9 49C9778 4A817C9 449BB98 0000000 449BB98

7C 0X 7F 43 00 7E

7C 1A 7F 43 00

7C XX 7F 43 00

0000006 0000002 0000006 09392EF 0000000

0000006 0000002 0000006 09392EF 0000000

0000002 0000006 0000002 000XXXX 0000002 0000006 0000002 09392EF 0000000

5000000 6000000 7000000 8000000 9000000

/fpu_add_mar14tone/clk_i

/fpu_add_mar14tone/movrr

/fpu_add_mar14tone/opa_i BFB363ED 4171999A 501502F9 3F893773 BF591417

/fpu_add_mar14tone/opb_i BE3F7FFE 3FC147AE 219392EF 00000000 BF02C7D7

/fpu_add_mar14tone/fpu_op_i 0

/fpu_add_mar14tone/rmode_i 0

/fpu_add_mar14tone/output_o BFCB53ED 33000000 BFCB53ED XXXXXXXX 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000

/fpu_add_mar14tone/post_out BFCB53ED 33000000 BFCB53ED XXXXXXXX 4184E148 B4800000 4184E148 501502F9 219392EF 501502F9 3F893773 00000000 3F893773

/fpu_add_mar14tone/ine_o

/fpu_add_mar14tone/overflow_o

/fpu_add_mar14tone/underflow_o

/fpu_add_mar14tone/inf_o

/fpu_add_mar14tone/zero_o

/fpu_add_mar14tone/qnan_o

/fpu_add_mar14tone/snan_o

/fpu_add_mar14tone/post_in 65A9F66 0000010 0000030 65A9F66 XXXXXFC 84E147E 0000010 0000030 84E147E 4A817C9 49C9778 4A817C9 449BB98 0000000 449BB98

/fpu_add_mar14tone/sign_rr0

/fpu_add_mar14tone/sign_rr1

/fpu_add_mar14tone/sign_rr2

/fpu_add_mar14tone/cmpl_rr0

/fpu_add_mar14tone/cmpl_rr1

/fpu_add_mar14tone/cmpl_rr2

/fpu_add_mar14tone/ready_o

/fpu_add_mar14tone/exp_rr0 7C 0X 7F 43 00 7E

/fpu_add_mar14tone/exp_rr1 7C 1A 7F 43 00

/fpu_add_mar14tone/exp_rr2 7C XX 7F 43 00

/fpu_add_mar14tone/mant_rr0 0000006 0000002 0000006 09392EF 0000000

/fpu_add_mar14tone/mant_rr1 0000006 0000002 0000006 09392EF 0000000

/fpu_add_mar14tone/mant_rr2 0000002 0000006 0000002 000XXXX 0000002 0000006 0000002 09392EF 0000000
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BF591417

BF02C7D7

0

0

00000000 3F893773 BFADEDF7

3F893773 BFADEDF7

449BB98 ADEDF70

7E

00 7E

00 7E

0000000

0000000

0000000 0000001

10000000 11000000 12000000 13000000 14000000

/fpu_add_mar14tone/clk_i

/fpu_add_mar14tone/movrr

/fpu_add_mar14tone/opa_i BF591417

/fpu_add_mar14tone/opb_i BF02C7D7

/fpu_add_mar14tone/fpu_op_i 0

/fpu_add_mar14tone/rmode_i 0

/fpu_add_mar14tone/output_o 00000000 3F893773 BFADEDF7

/fpu_add_mar14tone/post_out 3F893773 BFADEDF7

/fpu_add_mar14tone/ine_o

/fpu_add_mar14tone/overflow_o

/fpu_add_mar14tone/underflow_o

/fpu_add_mar14tone/inf_o

/fpu_add_mar14tone/zero_o

/fpu_add_mar14tone/qnan_o

/fpu_add_mar14tone/snan_o

/fpu_add_mar14tone/post_in 449BB98 ADEDF70

/fpu_add_mar14tone/sign_rr0

/fpu_add_mar14tone/sign_rr1

/fpu_add_mar14tone/sign_rr2

/fpu_add_mar14tone/cmpl_rr0

/fpu_add_mar14tone/cmpl_rr1

/fpu_add_mar14tone/cmpl_rr2

/fpu_add_mar14tone/ready_o

/fpu_add_mar14tone/exp_rr0 7E

/fpu_add_mar14tone/exp_rr1 00 7E

/fpu_add_mar14tone/exp_rr2 00 7E

/fpu_add_mar14tone/mant_rr0 0000000

/fpu_add_mar14tone/mant_rr1 0000000

/fpu_add_mar14tone/mant_rr2 0000000 0000001
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The wave form shown in the next page is the wave form of the test bench file that is used 

to test the FPU adder with the synthetic data. The MOVRR signal is made to periodically 

go high, one clock cycle before the addition output appears. The inputs from the text file 

are given periodically to the operands, and the outputs from the text file are read with the 

rising and falling edge of temp_mrr signal. This signal has been generated so that the 

outputs from the MUT - module under test and outputs from the text file match i.e., they 

correspond to the same operands. 

The 1st signal is the clock input;; 2nd and 3rd signals are the operands A and B represented 

as opa_i and opb_i; the 6th signal is the MOVRR input; 4th signal is the opcode 000-

addition, 001-subtraction; 5th signal is the rounding mode; 9th signal is the output of the 

FPU, it could be the result or the normalized residual value depending on the MOVRR 

signal; 10th and 11th signals are the output and the residual register values read from the 

test data file. 7th signal is the input to the postnormalization. 26th, 27th and 28th signals are 

the error signals generated after comparing the outputs of MUT – module under test and 

the output values read from the test data file.  

 



4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9

3FC147AE BFC147AE 219392EF A19392EF

0

0

0000000 84E147E 84E147E 6CB8522 0000010 6CB8522 0000010 6CB8522 84E147E 84E147E 5281XXX 4A817C9 49C9778 4A817C9 4A817C7 4A817C7 4A817C7 4A817C9

00000000 0084E148 4184E148 B4800000 4184E148 C15970A4 B4800000 C15970A4 415970A4 34800000 415970A4 C184E148 34800000 C184E148 C1250XXX 501502F9 219392EF 501502F9 D01502F9 219392EF D01502F9 501502F9 A19392EF 501502F9 D01502F9

4184E148 C15970A4 415970A4 C184E148 501502F9 D01502F9 501502F9 D01502F9

B4800000 34800000 219392EF A19392EF

00 7F 43

00 7F 43

00 7F XX 43 13 43 13 43

0000000 0C147AE 0000006 0000007 09392EF

0000000 0C147AE 0000006 0000007 09392EF

0000000 0000002 0000006 0000002 0000006 0000002 000000X 09392EF 16C6D11 09392EF 16C6D11 09392EF

0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4

0 1000000 2000000 3000000 4000000

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i 4171999A C171999A 4171999A C171999A 501502F9 D01502F9 501502F9 D01502F9

/fpu_add_test_vhd/opb_i 3FC147AE BFC147AE 219392EF A19392EF

/fpu_add_test_vhd/fpu_op_i 0

/fpu_add_test_vhd/rmode_i 0

/fpu_add_test_vhd/movrr

/fpu_add_test_vhd/post_in 0000000 84E147E 84E147E 6CB8522 0000010 6CB8522 0000010 6CB8522 84E147E 84E147E 5281XXX 4A817C9 49C9778 4A817C9 4A817C7 4A817C7 4A817C7 4A817C9

/fpu_add_test_vhd/ready_o

/fpu_add_test_vhd/output_o 00000000 0084E148 4184E148 B4800000 4184E148 C15970A4 B4800000 C15970A4 415970A4 34800000 415970A4 C184E148 34800000 C184E148 C1250XXX 501502F9 219392EF 501502F9 D01502F9 219392EF D01502F9 501502F9 A19392EF 501502F9 D01502F9

/fpu_add_test_vhd/result_in 4184E148 C15970A4 415970A4 C184E148 501502F9 D01502F9 501502F9 D01502F9

/fpu_add_test_vhd/rr_in B4800000 34800000 219392EF A19392EF

/fpu_add_test_vhd/temp_mrr

/fpu_add_test_vhd/sign_rr0

/fpu_add_test_vhd/sign_rr1

/fpu_add_test_vhd/sign_rr2

/fpu_add_test_vhd/cmpl_rr0

/fpu_add_test_vhd/cmpl_rr1

/fpu_add_test_vhd/cmpl_rr2

/fpu_add_test_vhd/exp_rr0 00 7F 43

/fpu_add_test_vhd/exp_rr1 00 7F 43

/fpu_add_test_vhd/exp_rr2 00 7F XX 43 13 43 13 43

/fpu_add_test_vhd/mant_rr0 0000000 0C147AE 0000006 0000007 09392EF

/fpu_add_test_vhd/mant_rr1 0000000 0C147AE 0000006 0000007 09392EF

/fpu_add_test_vhd/mant_rr2 0000000 0000002 0000006 0000002 0000006 0000002 000000X 09392EF 16C6D11 09392EF 16C6D11 09392EF

/fpu_add_test_vhd/cnt 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4

/fpu_add_test_vhd/err_op

/fpu_add_test_vhd/err_rr

/fpu_add_test_vhd/err

/fpu_add_test_vhd/ine_o

/fpu_add_test_vhd/overflow_o

/fpu_add_test_vhd/underflow_o

/fpu_add_test_vhd/inf_o

/fpu_add_test_vhd/zero_o

/fpu_add_test_vhd/qnan_o

/fpu_add_test_vhd/snan_o
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D01502F9 3F893773 3F800000 BF6AE458 BF591417 BFB363ED BF214188 3F81FE13 3F8BF5EB

A19392EF 00000000 3FC685E5 BF02C7D7 BE3F7FFE 3FD7DBB1 3FA6B33E 3F903174

0

0

4A817C9 449BB99 449BB98 0000000 449BB98 4000000 0000000 4000000 XXXXXXX 2889DC8 0000010 2889DC8 XXXXDXX ADEDF70 ADEDF70 XDXXXX8 65A9F66 65A9F66 XXXXXXE 439D768 0000010 439D768 3308BD0 9458A88 9458A88 891XX38 8E13AF8

D01502F9 A19392EF D01502F9 D0093773 3F893773 00000000 3F893773 3F800000 00000000 3F800000 XXXXXXXX 3F222772 34000000 3F222772 XXXXXXXX BFADEDF7 B3800000 BFADEDF7 BFXDXXXX BFCB53ED 33000000 BFCB53ED BFXXXXXX 3F873AED 34000000 3F873AED 3F4C22F4 401458A8 34000000 401458A8 40091XX4

D01502F9 3F893773 3F800000 3F222772 BFADEDF7 BFCB53ED 3F873AED 401458A8 400E13B0

A19392EF 00000000 B3800000 33000000 00000000

43 00 7F 7E 7X 7C 7F 7E 7F

43 00 7F 7E 7C 7F 7E 7F

43 00 XF 7E XX 7E XX 7C XF 7E 7F

09392EF 0000000 0XX84XX 0000000 0000001 0000000 0000006 0000001 0000000 0000001 0000000

09392EF 0000000 0XX84XX 0000000 0000001 0000000 0000006 0000001 0000000 0000001 0000000

09392EF 0000000 0000002 000000X 0000001 0000000 0000001 1000000 0000002 0000006 0000002 0000007 0000002 0000001 0000000 0000001

5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3

5000000 6000000 7000000 8000000 9000000

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i D01502F9 3F893773 3F800000 BF6AE458 BF591417 BFB363ED BF214188 3F81FE13 3F8BF5EB

/fpu_add_test_vhd/opb_i A19392EF 00000000 3FC685E5 BF02C7D7 BE3F7FFE 3FD7DBB1 3FA6B33E 3F903174

/fpu_add_test_vhd/fpu_op_i 0

/fpu_add_test_vhd/rmode_i 0

/fpu_add_test_vhd/movrr

/fpu_add_test_vhd/post_in 4A817C9 449BB99 449BB98 0000000 449BB98 4000000 0000000 4000000 XXXXXXX 2889DC8 0000010 2889DC8 XXXXDXX ADEDF70 ADEDF70 XDXXXX8 65A9F66 65A9F66 XXXXXXE 439D768 0000010 439D768 3308BD0 9458A88 9458A88 891XX38 8E13AF8

/fpu_add_test_vhd/ready_o

/fpu_add_test_vhd/output_o D01502F9 A19392EF D01502F9 D0093773 3F893773 00000000 3F893773 3F800000 00000000 3F800000 XXXXXXXX 3F222772 34000000 3F222772 XXXXXXXX BFADEDF7 B3800000 BFADEDF7 BFXDXXXX BFCB53ED 33000000 BFCB53ED BFXXXXXX 3F873AED 34000000 3F873AED 3F4C22F4 401458A8 34000000 401458A8 40091XX4

/fpu_add_test_vhd/result_in D01502F9 3F893773 3F800000 3F222772 BFADEDF7 BFCB53ED 3F873AED 401458A8 400E13B0

/fpu_add_test_vhd/rr_in A19392EF 00000000 B3800000 33000000 00000000

/fpu_add_test_vhd/temp_mrr

/fpu_add_test_vhd/sign_rr0

/fpu_add_test_vhd/sign_rr1

/fpu_add_test_vhd/sign_rr2

/fpu_add_test_vhd/cmpl_rr0

/fpu_add_test_vhd/cmpl_rr1

/fpu_add_test_vhd/cmpl_rr2

/fpu_add_test_vhd/exp_rr0 43 00 7F 7E 7X 7C 7F 7E 7F

/fpu_add_test_vhd/exp_rr1 43 00 7F 7E 7C 7F 7E 7F

/fpu_add_test_vhd/exp_rr2 43 00 XF 7E XX 7E XX 7C XF 7E 7F

/fpu_add_test_vhd/mant_rr0 09392EF 0000000 0XX84XX 0000000 0000001 0000000 0000006 0000001 0000000 0000001 0000000

/fpu_add_test_vhd/mant_rr1 09392EF 0000000 0XX84XX 0000000 0000001 0000000 0000006 0000001 0000000 0000001 0000000

/fpu_add_test_vhd/mant_rr2 09392EF 0000000 0000002 000000X 0000001 0000000 0000001 1000000 0000002 0000006 0000002 0000007 0000002 0000001 0000000 0000001

/fpu_add_test_vhd/cnt 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3

/fpu_add_test_vhd/err_op

/fpu_add_test_vhd/err_rr

/fpu_add_test_vhd/err

/fpu_add_test_vhd/ine_o

/fpu_add_test_vhd/overflow_o

/fpu_add_test_vhd/underflow_o

/fpu_add_test_vhd/inf_o

/fpu_add_test_vhd/zero_o

/fpu_add_test_vhd/qnan_o

/fpu_add_test_vhd/snan_o
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3F8BF5EB BF026AC3 3CE05E29 BFAF10F1 BF83B3C1 3F8F599A BF0462A1 BF54ACAE BEB4897B

3F903174 BF49BDF3 3F17E6F6 3F1EEB36 BF2D10DB BEBDB7D7 BFA53659 3F59EBD8 BFC9A410

0

0

8E13AF8 AAXXXXX A6145B0 A6145B0 XX28XX8 4F74F3B 0000048 4F74F3B XXFXXXX 2FCDAB0 0000010 2FCDAB0 121F130 6D1E174 0000008 6D1E174 XXXXXXC 2FF5D22 0000008 2FF5D22 XX8XXE6 73B3D4C 0000008 73B3D4C XXXXXX5 029F950 0000008 029F950 127BX10 7B63376

400E13B0 B4000000 400E13B0 402AXXXX BFA6145B B3800000 BFA6145B BFXX2XXX 3F1EE9E7 32900000 3F1EE9E7 XXXXXXXX BF3F36AC B4000000 BF3F36AC BE90F898 BFDA3C2E B3800000 BFDA3C2E XXXXXXXX 3F3FD748 33000000 3F3FD748 BFXX0XXD BFE767AA 33800000 BFE767AA XXXXXXXX 3CA7E540 33800000 3CA7E540

400E13B0 BFA6145B 3F1EE9E7 BF3F36AC BFDA3C2E 3F3FD748 BFE767AA 3CA7E540 BFF6C66F

00000000 34000000 B4000000 00000000 32900000 00000000 B3800000 33000000

7F 7E 79 7F 7E 7X 7D 7F 7E 7D

7F 7E 79 7F 7E 7F 7D 7F 7E 7D

7F XX 7E 79 7F 7E 7F 7D 7F 7E XX 7E 7D

0000000 0000009 0000011 0000000 0000001 000000X 0000003 0000001 0000000 0000003

0000000 0000009 0000011 0000000 0000001 000000X 0000003 0000001 0000000 0000003

0000001 0000000 0000001 0000000 0000001 0000020 0000009 000XXXX 0000002 0000001 000XXXX 0000001 000000X 0000001

4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2

10000000 11000000 12000000 13000000 14000000

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i 3F8BF5EB BF026AC3 3CE05E29 BFAF10F1 BF83B3C1 3F8F599A BF0462A1 BF54ACAE BEB4897B

/fpu_add_test_vhd/opb_i 3F903174 BF49BDF3 3F17E6F6 3F1EEB36 BF2D10DB BEBDB7D7 BFA53659 3F59EBD8 BFC9A410

/fpu_add_test_vhd/fpu_op_i 0

/fpu_add_test_vhd/rmode_i 0

/fpu_add_test_vhd/movrr

/fpu_add_test_vhd/post_in 8E13AF8 AAXXXXX A6145B0 A6145B0 XX28XX8 4F74F3B 0000048 4F74F3B XXFXXXX 2FCDAB0 0000010 2FCDAB0 121F130 6D1E174 0000008 6D1E174 XXXXXXC 2FF5D22 0000008 2FF5D22 XX8XXE6 73B3D4C 0000008 73B3D4C XXXXXX5 029F950 0000008 029F950 127BX10 7B63376

/fpu_add_test_vhd/ready_o

/fpu_add_test_vhd/output_o 400E13B0 B4000000 400E13B0 402AXXXX BFA6145B B3800000 BFA6145B BFXX2XXX 3F1EE9E7 32900000 3F1EE9E7 XXXXXXXX BF3F36AC B4000000 BF3F36AC BE90F898 BFDA3C2E B3800000 BFDA3C2E XXXXXXXX 3F3FD748 33000000 3F3FD748 BFXX0XXD BFE767AA 33800000 BFE767AA XXXXXXXX 3CA7E540 33800000 3CA7E540

/fpu_add_test_vhd/result_in 400E13B0 BFA6145B 3F1EE9E7 BF3F36AC BFDA3C2E 3F3FD748 BFE767AA 3CA7E540 BFF6C66F

/fpu_add_test_vhd/rr_in 00000000 34000000 B4000000 00000000 32900000 00000000 B3800000 33000000

/fpu_add_test_vhd/temp_mrr

/fpu_add_test_vhd/sign_rr0

/fpu_add_test_vhd/sign_rr1

/fpu_add_test_vhd/sign_rr2

/fpu_add_test_vhd/cmpl_rr0

/fpu_add_test_vhd/cmpl_rr1

/fpu_add_test_vhd/cmpl_rr2

/fpu_add_test_vhd/exp_rr0 7F 7E 79 7F 7E 7X 7D 7F 7E 7D

/fpu_add_test_vhd/exp_rr1 7F 7E 79 7F 7E 7F 7D 7F 7E 7D

/fpu_add_test_vhd/exp_rr2 7F XX 7E 79 7F 7E 7F 7D 7F 7E XX 7E 7D

/fpu_add_test_vhd/mant_rr0 0000000 0000009 0000011 0000000 0000001 000000X 0000003 0000001 0000000 0000003

/fpu_add_test_vhd/mant_rr1 0000000 0000009 0000011 0000000 0000001 000000X 0000003 0000001 0000000 0000003

/fpu_add_test_vhd/mant_rr2 0000001 0000000 0000001 0000000 0000001 0000020 0000009 000XXXX 0000002 0000001 000XXXX 0000001 000000X 0000001

/fpu_add_test_vhd/cnt 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2 3 4 5 0 1 2

/fpu_add_test_vhd/err_op

/fpu_add_test_vhd/err_rr

/fpu_add_test_vhd/err

/fpu_add_test_vhd/ine_o

/fpu_add_test_vhd/overflow_o

/fpu_add_test_vhd/underflow_o

/fpu_add_test_vhd/inf_o

/fpu_add_test_vhd/zero_o

/fpu_add_test_vhd/qnan_o

/fpu_add_test_vhd/snan_o
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BEB4897B

BFC9A410

0

0

7B63376 7B63376

3E13DX88 BFF6C66F 33000000 BFF6C66F

BFF6C66F

33000000 33800000

7D

7D

7D

0000003

0000003

0000001 0000003 0000001 0000003

3 4 5 0 1 2 3 4 5

15000000 16000000 17000000 18000000

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i BEB4897B

/fpu_add_test_vhd/opb_i BFC9A410

/fpu_add_test_vhd/fpu_op_i 0

/fpu_add_test_vhd/rmode_i 0

/fpu_add_test_vhd/movrr

/fpu_add_test_vhd/post_in 7B63376 7B63376

/fpu_add_test_vhd/ready_o

/fpu_add_test_vhd/output_o 3E13DX88 BFF6C66F 33000000 BFF6C66F

/fpu_add_test_vhd/result_in BFF6C66F

/fpu_add_test_vhd/rr_in 33000000 33800000

/fpu_add_test_vhd/temp_mrr

/fpu_add_test_vhd/sign_rr0

/fpu_add_test_vhd/sign_rr1

/fpu_add_test_vhd/sign_rr2

/fpu_add_test_vhd/cmpl_rr0

/fpu_add_test_vhd/cmpl_rr1

/fpu_add_test_vhd/cmpl_rr2

/fpu_add_test_vhd/exp_rr0 7D

/fpu_add_test_vhd/exp_rr1 7D

/fpu_add_test_vhd/exp_rr2 7D

/fpu_add_test_vhd/mant_rr0 0000003

/fpu_add_test_vhd/mant_rr1 0000003

/fpu_add_test_vhd/mant_rr2 0000001 0000003 0000001 0000003

/fpu_add_test_vhd/cnt 3 4 5 0 1 2 3 4 5

/fpu_add_test_vhd/err_op

/fpu_add_test_vhd/err_rr

/fpu_add_test_vhd/err

/fpu_add_test_vhd/ine_o

/fpu_add_test_vhd/overflow_o

/fpu_add_test_vhd/underflow_o

/fpu_add_test_vhd/inf_o

/fpu_add_test_vhd/zero_o

/fpu_add_test_vhd/qnan_o

/fpu_add_test_vhd/snan_o
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The simulation reports for the Native-pair multiplication are presented in the next two 

pages. The next page shows the post-route simulation for 8 pairs of operands inputs were 

given in continuous clock cycles. The 1st signal is the clock input; the 2nd signal is the 

MOVRR input; 3rd and 4th signals are the operands A and B represented as opa_i and 

opb_i; 5th signal is the opcode 010 - multiplication; 6th signal is the rounding mode; 7th 

signal is the output of the FPU, it could be the result or the normalized residual value 

depending on the MOVRR signal; 8th and 9th signals are the sign output and exponent 

output of the residual register. 10th signal is the complement flag output and is used to 

check the proper functioning of the residual register hardware. 11th signal is the residual 

register mantissa output. 12th signal is the ready signal used to indicate the valid output of 

the FPU multiplier. 12th signal is the post_in signal and it used to check if the right 

residual value was going into the postnormalization unit when MOVRR goes high; Apart 

from these, signals from 13th to 19th give the inexact, overflow and the exception outputs. 

The FPU multiplication takes place in 5 clock cycles, one clock cycle each for 

prenormalization and multiplication, two clock cycles for postnormalization and once 

clock cycle for formatting output. 

In the wave form shown in the next page, the signal 3 indicates the operand A - opa_i; it 

is 501502F9 in the 1st clock cycle, 417199A in the 2nd and is periodically repeated. 4th 

signal is operand B – opb_i which takes value 41A77700 in 1st cycle, 400000011 in 2nd 

clock cycle and there after repeats itself alternatively with 41A77700 and 40000011. This 

has been done in order to show the residual register value resulting from multiplication of 

these operands. The outputs are obtained from 6th clock cycle onwards. Consider the 

inputs in the 2nd clock cycle that is opa_i = 4171999A and opb_i = 40000011 and product 

is shown by the 7th signal output_o = 41F199BA obtained in the 7th clock cycle with the 

rising edge of the clock. The outputs for the other inputs come along the consequent 

clock cycles. MOVRR signal goes high at the end of the 7th clock cycle, at this time the 

post_in becomes the residual register mantissa value obtained in the previous clock cycle. 

The normalized residual value to be stored in the architectural register C4AF40FF is 

obtained in the 10th clock cycle with the rising edge of the clock. This is the residual 
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register value for the inputs opa_i = 501502F9 and opb_i = 41A77700. Similarly 

MOVRR again goes high in the 12th clock cycle to give the normalized residual register 

value 330B333A as output in the 15th clock cycle which is the residual value for opa_i 

=4171999A and opb_i = 40000011. The output of opa_i = 501502F9 and opb_i = 

41A77700 can be observed in 8th clock cycle with the input being given in the 3rd clock 

cycle. 

The second wave form has been run to check if the all the proper functioning of the FPU 

multiplier unit. 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 



00000000 3F800000 40000000 40400000 40800000 40A00000 40C00000 40E00000 41000000 41100000 41200000 41300000 41400000 41500000 41600000

00000000 40000000 41000000 40800000 40000000 40400000 40000000 40400000 40000000 40400000 40000000

0 2

0

00000000 3FC00000 41800000 41400000 41000000 41700000 41400000 41A80000 41400000 41900000 41F00000 41B00000

00 6B 6A 6B 6A 6B

0000000

000000000000 400000000000 780000000000 600000000000 A80000000000 400000000000 480000000000 780000000000 580000000000 600000000000

0 1000000 2000000 3000000 4000000

/fpumulttest/clk_i

/fpumulttest/movrr

/fpumulttest/opa_i 00000000 3F800000 40000000 40400000 40800000 40A00000 40C00000 40E00000 41000000 41100000 41200000 41300000 41400000 41500000 41600000

/fpumulttest/opb_i 00000000 40000000 41000000 40800000 40000000 40400000 40000000 40400000 40000000 40400000 40000000

/fpumulttest/fpu_op_i 0 2

/fpumulttest/rmode_i 0

/fpumulttest/output_o 00000000 3FC00000 41800000 41400000 41000000 41700000 41400000 41A80000 41400000 41900000 41F00000 41B00000

/fpumulttest/sign_rr_out

/fpumulttest/exp_rr_out 00 6B 6A 6B 6A 6B

/fpumulttest/cmpl_out

/fpumulttest/mant_rr_out 0000000

/fpumulttest/ready_o

/fpumulttest/post_in 000000000000 400000000000 780000000000 600000000000 A80000000000 400000000000 480000000000 780000000000 580000000000 600000000000

/fpumulttest/ine_o

/fpumulttest/overflow_o

/fpumulttest/underflow_o

/fpumulttest/inf_o

/fpumulttest/zero_o

/fpumulttest/qnan_o

/fpumulttest/snan_o
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00000000 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A

00000000 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011

0 2

0

00000000 51E17A35 41F199BA 5242F46A 41F199BA 5242F46A 41F199BA C4AF40FF 42633374 5242F46A 41F199BA 5242F46A 330B333A 51AF469A 41F199BA 5242F46A

00 6B 8C 6B 8C 6B 71 6C 8C 6B 8C 4E 8B 6B 8C

0000000 00B333A 02F40FF 00B333A 02F40FF 00B333A 0000000 02CCCE8 02F40FF 00B333A 02F40FF 0000000 00BF000 00B333A 02F40FF

000000000000 78CCDD0B333A 617A34D0BF00 78CCDD0B333A 17A07F800000 78CCDD0B333A 617A34D0BF00 78CCDD0B333A 617A34D0BF00 05999D000000 617A34D0BF00 78CCDD0B333A 617A34D0BF00

0 1000000 2000000 3000000 4000000

/fpumult_testexamples/clk_i

/fpumult_testexamples/movrr

/fpumult_testexamples/opa_i 00000000 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A 501502F9 4171999A

/fpumult_testexamples/opb_i 00000000 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011 41A77700 40000011

/fpumult_testexamples/fpu_op_i 0 2

/fpumult_testexamples/rmode_i 0

/fpumult_testexamples/output_o 00000000 51E17A35 41F199BA 5242F46A 41F199BA 5242F46A 41F199BA C4AF40FF 42633374 5242F46A 41F199BA 5242F46A 330B333A 51AF469A 41F199BA 5242F46A

/fpumult_testexamples/sign_rr_out

/fpumult_testexamples/exp_rr_out 00 6B 8C 6B 8C 6B 71 6C 8C 6B 8C 4E 8B 6B 8C

/fpumult_testexamples/cmpl_out

/fpumult_testexamples/mant_rr_out 0000000 00B333A 02F40FF 00B333A 02F40FF 00B333A 0000000 02CCCE8 02F40FF 00B333A 02F40FF 0000000 00BF000 00B333A 02F40FF

/fpumult_testexamples/ready_o

/fpumult_testexamples/post_in 000000000000 78CCDD0B333A 617A34D0BF00 78CCDD0B333A 17A07F800000 78CCDD0B333A 617A34D0BF00 78CCDD0B333A 617A34D0BF00 05999D000000 617A34D0BF00 78CCDD0B333A 617A34D0BF00

/fpumult_testexamples/ine_o

/fpumult_testexamples/overflow_o

/fpumult_testexamples/underflow_o

/fpumult_testexamples/inf_o

/fpumult_testexamples/zero_o

/fpumult_testexamples/qnan_o

/fpumult_testexamples/snan_o
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4171999A 501502F9 4171999A 501502F9

40000011 41A77700 40000011 41A77700

2

0

5242F46A

8C

02F40FF

617A34D0BF00 78CCDD0B333A 617A34D0BF00

5000000 6000000 7000000 8000000 9000000

/fpumult_testexamples/clk_i

/fpumult_testexamples/movrr

/fpumult_testexamples/opa_i 4171999A 501502F9 4171999A 501502F9

/fpumult_testexamples/opb_i 40000011 41A77700 40000011 41A77700

/fpumult_testexamples/fpu_op_i 2

/fpumult_testexamples/rmode_i 0

/fpumult_testexamples/output_o 5242F46A

/fpumult_testexamples/sign_rr_out

/fpumult_testexamples/exp_rr_out 8C

/fpumult_testexamples/cmpl_out

/fpumult_testexamples/mant_rr_out 02F40FF

/fpumult_testexamples/ready_o

/fpumult_testexamples/post_in 617A34D0BF00 78CCDD0B333A 617A34D0BF00

/fpumult_testexamples/ine_o

/fpumult_testexamples/overflow_o

/fpumult_testexamples/underflow_o

/fpumult_testexamples/inf_o

/fpumult_testexamples/zero_o

/fpumult_testexamples/qnan_o

/fpumult_testexamples/snan_o
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Appendix B 

High-level Schematics 
 

 

Figure 18: High-level schematic of FPU Adder 
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Figure 19.  High-level schematic Prenormalization unit used in Floating-point 
addition. 
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Figure 20.  High-level schematic of Addition unit used in Floating-point addition 
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Figure 21. High-level schematic of Postnormalization Unit used in Floating-point 
addition 

 

 

Figure 22. High-level schematic of Residual register used in prenormalization and 
postnormalization 
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Figure 23. High-level schematic of FPU multiplier 
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Figure 24. High-level schematic of Prenormalization unit for Multiplier 

 

 

Figure 25. High-level schematic of Multiplier unit 
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Figure 26. High-level schematic of Postnormalization for Multiplier 
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VHDL Source Code 
 

FPU Adder 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_ARITH.all; 
 
library work; 
 
use work.fpupack.all; 
 
 
entity fpu_add is 
    port ( 
        clk_i,movrr: in std_logic; 
        -- Input Operands A & B 
        opa_i         : in std_logic_vector(FP_WIDTH-1 downto 0);  -- Default: 
FP_WIDTH=32  
        opb_i           : in std_logic_vector(FP_WIDTH-1 downto 0);         
        -- fpu operations (fpu_op_i): 
  -- ======================== 
  -- 000 = add,  
  -- 001 = substract,    
        fpu_op_i  : in std_logic_vector(2 downto 0);         
        -- Rounding Mode:  
        
        rmode_i   : in std_logic_vector(1 downto 0);         
        -- Output port    
        output_o , post_out       : out std_logic_vector(FP_WIDTH-1 downto 0);        
        -- Exceptions 
        ine_o    : out std_logic; -- inexact 
        overflow_o   : out std_logic; -- overflow 
        underflow_o  : out std_logic; -- underflow 
        inf_o   : out std_logic; -- infinity 
        zero_o   : out std_logic; -- zero 
        qnan_o   : out std_logic; -- queit Not-a-Number 
        snan_o   : out std_logic; -- signaling Not-a-Number 
     
    post_in:out std_logic_vector(27 downto 0);--; 
   --residuals 
   sign_rr0,sign_rr1,sign_rr2,cmpl_rr0,cmpl_rr1,cmpl_rr2,ready_o:out std_logic; 
   exp_rr0,exp_rr1,exp_rr2:out std_logic_vector(EXP_WIDTH-1 downto 0); 
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   mant_rr0,mant_rr1,mant_rr2:out std_logic_vector(FRAC_WIDTH + 1 downto 
0) 
    
 );    
end fpu_add; 
 
architecture rtl of fpu_add is 
     
 -- Input/output registers 
 signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0); 
 signal s_fpu_op_i  : std_logic_vector(2 downto 0); 
 signal s_rmode_i : std_logic_vector(1 downto 0); 
 signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0); 
   signal s_ine_o, s_overflow_o, s_underflow_o,  s_inf_o, s_zero_o, s_qnan_o, s_snan_o : 
std_logic; 
  
 signal s_output1 : std_logic_vector(FP_WIDTH-1 downto 0);  
   
 -- ***Add/Substract units signals*** 
 signal s_mant_rr2:std_logic_vector(FRAC_WIDTH + 1 downto 0); 
 signal post_norm_fract_in:std_logic_vector(FRAC_WIDTH + 4 downto 0); 
 signal post_norm_exp_in:std_logic_vector(EXP_WIDTH-1 downto 0); 
   signal post_norm_sign_in:std_logic; 
      -------------pipelining signals-------------------------------------------------------- 
 
     signal fpu_op_addsub:std_logic;-- 
     signal rmode_pretoaddsub:std_logic_vector(1 downto 0);-- 
     signal prenorm_addsub_fracta_28_o:std_logic_vector(FRAC_WIDTH+4 downto 0); 
     signal prenorm_addsub_fractb_28_o:std_logic_vector(FRAC_WIDTH+4 downto 0); 
     signal prenorm_addsub_exp:std_logic_vector(EXP_WIDTH-1 downto 0); 
     signal test_exp_gr8r_24_addin:std_logic; 
     signal s_sign_rrpretoadd:std_logic; 
     signal s_cmpl_rrpretoadd:std_logic; 
     signal s_exp_rrpretoadd:std_logic_vector(EXP_WIDTH-1 downto 0); 
     signal s_mant_rrpretoadd:std_logic_vector(FRAC_WIDTH + 1 downto 0); 
   signal addsub_fract_o: std_logic_vector(FRAC_WIDTH+4 downto 0); 
     signal addsub_sign_o : std_logic; 
     signal rmode_addsubpost:std_logic_vector(1 downto 0);-- 
     signal exp_o_addsubpost:std_logic_vector(EXP_WIDTH -1 downto 0);-- 
     signal test_exp_gr8r_24_addsubpost:std_logic;-- 
     
     signal postnorm_addsub_output_o : std_logic_vector(31 downto 0);  
     signal postnorm_addsub_ine_o : std_logic; 
 
     signal fpu_op_addsubpost :std_logic;-- 
     signal s_sign_rraddtopost,s_cmpl_rraddtopost:std_logic; 
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     signal s_exp_rraddtopost:std_logic_vector(EXP_WIDTH-1 downto 0); 
     signal s_mant_rraddtopost:std_logic_vector(FRAC_WIDTH + 1 downto 0); 
     signal s_sign_rr2,s_cmpl_rr2:std_logic; 
     signal s_exp_rr2:std_logic_vector(EXP_WIDTH-1 downto 0); 
        
   component prenorm_new is 
 port( 
   clk_i    : in std_logic; 
   opa_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
   opb_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
   fpu_op_pretoaddsub_in: in std_logic;-- 
   rmode_pretoaddsub_in: in std_logic_vector(1 downto 0);-- 
   fpu_op_pretoaddsub_out: out std_logic;-- 
   rmode_pretoaddsub_out: out std_logic_vector(1 downto 0);-- 
   fracta_28_o  : out std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   fractb_28_o  : out std_logic_vector(FRAC_WIDTH+4 
downto 0); 
    
   exp_o_pretoaddsub_out   : out 
std_logic_vector(EXP_WIDTH-1 downto 0);-- 
   test_exp_gr8r_24_preout:out std_logic;-- 
   sign_o_rr0,cmpl_out0:out std_logic; 
   exp_o_rr0:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr0:out std_logic_vector(FRAC_WIDTH + 1 downto 0); 
   
   expdiff_out:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:out std_logic 
  ); 
   end component; 
 
  
   component  addsub_28 is 
 port( 
   clk_i    : in std_logic; 
   fracta_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   fractb_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); 
   fpu_op_addsub_in :in std_logic;-- 
   rmode_addsub_in :in std_logic_vector(1 downto 0);-- 
   exp_o_addsub_in : in std_logic_vector(EXP_WIDTH-1 
downto 0);-- 
   test_exp_gr8r_24_addin:in std_logic;-- 
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   exp_i_rr1 :in std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_i_rr1 :in std_logic_vector(FRAC_WIDTH + 1 downto 0);  
   sign_i_rr1,cmpl_in1 : in std_logic; 
   expdiff_in:in std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:in std_logic;  
   fract_o   : out std_logic_vector(FRAC_WIDTH+4 
downto 0); 
   sign_o    : out std_logic; 
   rmode_addsub_out:out std_logic_vector(1 downto 0);-- 
   exp_o_addsub_out:out std_logic_vector(EXP_WIDTH -1 downto 
0);-- 
         test_exp_gr8r_24_addout:out std_logic;-- 
   fpu_op_addsub_out :out std_logic;-- 
   sign_o_rr1,cmpl_out1 :out std_logic; 
   exp_o_rr1 :out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr1 :out std_logic_vector(FRAC_WIDTH + 1 downto 
0); 
   expdiff_out:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa_postin,infb_postin,signa_postin,signb_postin:out std_logic; 
   nan_a_postin,nan_b_postin,nan_in_postin,nan_op_postin:out 
std_logic); 
   end component; 
 
   component postnorm_june20 is 
 port( 
   clk_i    : in std_logic; 
   fract_28_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   exp_i   : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
   sign_i   : in std_logic; 
   postnorm_exprr_set_in:in std_logic; 
   exp_i_rr2:in std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_i_rr2:in std_logic_vector(FRAC_WIDTH +1 downto 0);  
   sign_i_rr2,cmpl_in2: in std_logic; 
   fpu_op_i  : in std_logic; 
   rmode_i   : in std_logic_vector(1 downto 0); 
   expdiff_postin:in std_logic_vector(EXP_WIDTH-1 downto 0); 
    
   infa_postin,infb_postin,signa_postin,signb_postin:in std_logic; 
   nan_a_postin,nan_b_postin,nan_in_postin,nan_op_postin:in 
std_logic;    
   output_o  : out std_logic_vector(FP_WIDTH-1 
downto 0); 
   infa_postout,infb_postout: out std_logic; 
   signa_postout,signb_postout: out std_logic; 
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   exp_o_rr2:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr2:out std_logic_vector(FRAC_WIDTH + 1 downto 0); 
         ine_o,sign_o_rr2,cmpl_out2: out std_logic   
  ); 
   end component; 
   
 signal ready: std_logic; 
 signal cnt: integer:=0; 
 signal expdiffpre_add,expdiffadd_post:std_logic_vector(EXP_WIDTH-1 downto 
0):="00000000"; 
 signal s_infa,s_infb,s_signa,s_signb,s_nan_a,s_nan_b,s_nan_in,s_nan_op: std_logic; 
 signal 
s_infa_postin,s_infb_postin,s_signa_postin,s_signb_postin,s_nan_a_postin,s_nan_b_post
in,s_nan_in_postin,s_nan_op_postin: std_logic; 
 signal s_infa_postout,s_infb_postout,s_signa_postout,s_signb_postout: std_logic; 
  
   begin 
 
     i_prenorm_addsub: prenorm_new 
     port map ( 
     clk_i => clk_i, 
     opa_i => s_opa_i, 
     opb_i => s_opb_i, 
     fpu_op_pretoaddsub_in => s_fpu_op_i(0), 
     rmode_pretoaddsub_in => s_rmode_i, 
   fpu_op_pretoaddsub_out => fpu_op_addsub, 
     rmode_pretoaddsub_out =>rmode_pretoaddsub, 
   fracta_28_o => prenorm_addsub_fracta_28_o, 
     fractb_28_o => prenorm_addsub_fractb_28_o, 
     exp_o_pretoaddsub_out=> prenorm_addsub_exp, 
     test_exp_gr8r_24_preout => test_exp_gr8r_24_addin, 
     sign_o_rr0=>s_sign_rrpretoadd, 
     cmpl_out0=>s_cmpl_rrpretoadd, 
     exp_o_rr0=>s_exp_rrpretoadd, 
     mant_o_rr0=>s_mant_rrpretoadd, 
   expdiff_out=>expdiffpre_add, 
   infa=>s_infa,infb=>s_infb,signa=>s_signa, 
   signb=>s_signb,nan_a=>s_nan_a, 
   nan_b=>s_nan_b,nan_in=>s_nan_in,nan_op=>s_nan_op); 
 
   
     i_addsub: addsub_28 
     port map( 
     clk_i => clk_i,     
     fracta_i=> prenorm_addsub_fracta_28_o,  
     fractb_i=> prenorm_addsub_fractb_28_o, 
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     fpu_op_addsub_in => fpu_op_addsub,    
     rmode_addsub_in => rmode_pretoaddsub, 
   exp_o_addsub_in => prenorm_addsub_exp, 
     test_exp_gr8r_24_addin => test_exp_gr8r_24_addin,  
     exp_i_rr1=>s_exp_rrpretoadd, 
   mant_i_rr1=>s_mant_rrpretoadd, 
     sign_i_rr1=>s_sign_rrpretoadd, 
     cmpl_in1=>s_cmpl_rrpretoadd, 
   expdiff_in=>expdiffpre_add, 
   infa=>s_infa,infb=>s_infb, 
   signa=>s_signa,signb=>s_signb, 
   nan_a=>s_nan_a,nan_b=>s_nan_b, 
   nan_in=>s_nan_in,nan_op=>s_nan_op, 
     fract_o => addsub_fract_o,    
     sign_o => addsub_sign_o, 
     rmode_addsub_out => rmode_addsubpost,  
     exp_o_addsub_out => exp_o_addsubpost, 
     test_exp_gr8r_24_addout => test_exp_gr8r_24_addsubpost, 
     fpu_op_addsub_out => fpu_op_addsubpost, 
   sign_o_rr1=>s_sign_rraddtopost, 
     cmpl_out1=>s_cmpl_rraddtopost, 
     exp_o_rr1=>s_exp_rraddtopost, 
     mant_o_rr1=>s_mant_rraddtopost, 
   expdiff_out=>expdiffadd_post, 
   infa_postin=>s_infa_postin,infb_postin=>s_infb_postin, 
   signa_postin=>s_signa_postin,signb_postin=>s_signb_postin, 
   nan_a_postin=>s_nan_a_postin,nan_b_postin=>s_nan_b_postin, 
   nan_in_postin=>s_nan_in_postin,nan_op_postin=>s_nan_op_postin); 
 
       
     i_postnorm_addsub: postnorm_june20 
     port map( 
     clk_i => clk_i,    
     fract_28_i => post_norm_fract_in,    
     exp_i => post_norm_exp_in, 
     sign_i => post_norm_sign_in, 
     postnorm_exprr_set_in=>test_exp_gr8r_24_addsubpost, 
     exp_i_rr2=>s_exp_rraddtopost, 
     mant_i_rr2=>s_mant_rraddtopost,  
     sign_i_rr2=>s_sign_rraddtopost, 
     cmpl_in2=>s_cmpl_rraddtopost, 
     fpu_op_i => fpu_op_addsubpost, 
     rmode_i => rmode_addsubpost, 
   expdiff_postin=>expdiffadd_post, 
   infa_postin=>s_infa_postin,infb_postin=>s_infb_postin, 
   signa_postin=>s_signa_postin,signb_postin=>s_signb_postin, 
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   nan_a_postin=>s_nan_a_postin,nan_b_postin=>s_nan_b_postin, 
   nan_in_postin=>s_nan_in_postin,nan_op_postin=>s_nan_op_postin, 
     output_o => postnorm_addsub_output_o, 
   infa_postout=>s_infa_postout,infb_postout=>s_infb_postout, 
   signa_postout=>s_signa_postout,signb_postout=>s_signb_postout, 
   exp_o_rr2=>s_exp_rr2, 
     mant_o_rr2=>s_mant_rr2, 
     ine_o => postnorm_addsub_ine_o, 
     sign_o_rr2=>s_sign_rr2, 
     cmpl_out2=>s_cmpl_rr2); 
    
 --Multplexer for either supplying add/sub output or residual reg value to the post 
normalization unit 
  
  post_norm_fract_in<=(s_mant_rr2 &"000")when (movrr='1')else addsub_fract_o; 
  post_norm_exp_in<=s_exp_rr2 when (movrr='1')else exp_o_addsubpost;  
  post_norm_sign_in<=s_sign_rr2 when (movrr='1')else addsub_sign_o; 
     
post_in<=post_norm_fract_in; 
post_out<=postnorm_addsub_output_o; 
 
-----------------------------------------------------------------    
 
 -- Input Register 
  
   s_opa_i <= opa_i ; 
   s_opb_i <= opb_i ; 
   s_fpu_op_i <= fpu_op_i; 
   s_rmode_i <= rmode_i; 
    
    
    
 --Output Register 
 process(clk_i) 
 begin 
 if falling_edge(clk_i) then 
    if (ready = '1')then  
   output_o <= s_output_o; 
   ine_o <= s_ine_o; 
   overflow_o <= s_overflow_o; 
   underflow_o <= s_underflow_o; 
   
   inf_o <= s_inf_o; 
   zero_o <= s_zero_o; 
   qnan_o <= s_qnan_o; 
   snan_o <= s_snan_o; 
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   end if; 
    
 end if; 
 end process;  
  
           
   sign_rr0<=s_sign_rrpretoadd; 
   cmpl_rr0<=s_cmpl_rrpretoadd; 
   exp_rr0<=s_exp_rrpretoadd; 
   mant_rr0<=s_mant_rrpretoadd; 
 
   sign_rr1<=s_sign_rraddtopost; 
   cmpl_rr1<=s_cmpl_rraddtopost; 
   exp_rr1<=s_exp_rraddtopost; 
   mant_rr1<=s_mant_rraddtopost; 
 
   mant_rr2<=s_mant_rr2; 
   exp_rr2<=s_exp_rr2; 
   sign_rr2<=s_sign_rr2; 
   cmpl_rr2<=s_cmpl_rr2; 
    
            
 -- Output Multiplexer 
 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then 
   if fpu_op_i="000" or fpu_op_i="001" then  
    s_output1   <= postnorm_addsub_output_o; 
    s_ine_o   <= postnorm_addsub_ine_o; 
     
   else 
    s_output1  <= (others => '0'); 
    s_ine_o   <= '0'; 
   end if; 
  end if; 
 end process;  
 
 
 --In round down: the subtraction of two equal numbers other than zero are always 
-0!!! 
 process(s_output1, s_rmode_i,  s_infa_postout, s_infb_postout, s_qnan_o, 
s_snan_o, s_zero_o, s_fpu_op_i, s_signa_postout, s_signb_postout) 
 begin 
   if s_rmode_i="00" or ((s_infa or s_infb) or s_qnan_o or 
s_snan_o)='1' then --round-to-nearest-even 



98 

    s_output_o <= s_output1; 
   elsif s_rmode_i="01" and s_output1(30 downto 23)="11111111" 
then 
    --In round-to-zero: the sum of two non-infinity operands is 
never infinity,even if an overflow occures 
    s_output_o <= s_output1(31) & 
"1111111011111111111111111111111"; 
   elsif s_rmode_i="10" and s_output1(31 downto 23)="111111111" 
then 
    --In round-up: the sum of two non-infinity operands is 
never negative infinity,even if an overflow occures 
    s_output_o <= "11111111011111111111111111111111"; 
   elsif s_rmode_i="11" then 
    --In round-down: a-a= -0 
   if (s_fpu_op_i="000" or s_fpu_op_i="001") and s_zero_o='1' and 
(s_opa_i(31) or (s_fpu_op_i(0) xor s_opb_i(31)))='1' then 
     s_output_o <= "1" & s_output1(30 downto 0);  
    --In round-down: the sum of two non-infinity operands is 
never postive infinity,even if an overflow occures 
   elsif s_output1(31 downto 23)="011111111" then 
     s_output_o <= 
"01111111011111111111111111111111"; 
   else 
     s_output_o <= s_output1; 
   end if;    
   else 
    s_output_o <= s_output1; 
   end if; 
 end process; 
   
 
 -- Generate Exceptions  
 s_underflow_o <= '1' when s_output1(30 downto 23)="00000000" and 
s_ine_o='1' else '0';  
 s_overflow_o <= '1' when s_output1(30 downto 23)="11111111" and s_ine_o='1' 
else '0'; 
  
 s_inf_o <= '1' when s_output1(30 downto 23)="11111111" and (s_qnan_o or 
s_snan_o)='0' else '0'; 
 s_zero_o <= '1' when or_reduce(s_output1(30 downto 0))='0' else '0'; 
 s_qnan_o <= '1' when s_output1(30 downto 0)=QNAN else '0'; 
   s_snan_o <= '1' when s_opa_i(30 downto 0)=SNAN or s_opb_i(30 downto 0)=SNAN 
else '0'; 
  
 ----Ready signal to indicate start of valid outputs --  
 process(clk_i) 
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 begin 
 if(falling_edge(clk_i))then 
 if(cnt/=2)then 
 cnt <= cnt + 1; 
 else 
 cnt <= cnt; 
 end if; 
  
 if(cnt=2)then 
 ready<='1'; 
 else 
 ready<='0'; 
 end if; 
 end if; 
 end process; 
 
   ready_o<=ready; 
    
  end rtl; 
---prenormalization unit--- 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_ARITH.all; 
 
library work; 
use work.fpupack.all; 
 
entity prenorm_new is 
 port( 
   clk_i    : in std_logic; 
   opa_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
   opb_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
   fpu_op_pretoaddsub_in: in std_logic;-- 
   rmode_pretoaddsub_in: in std_logic_vector(1 downto 0);-- 
   fpu_op_pretoaddsub_out: out std_logic;-- 
   rmode_pretoaddsub_out: out std_logic_vector(1 downto 0);-- 
   fracta_28_o  : out std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   fractb_28_o  : out std_logic_vector(FRAC_WIDTH+4 
downto 0); 
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   exp_o_pretoaddsub_out   : out 
std_logic_vector(EXP_WIDTH-1 downto 0);-- 
   test_exp_gr8r_24_preout:out std_logic;-- 
     sign_o_rr0,cmpl_out0:out std_logic; 
   exp_o_rr0:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr0:out std_logic_vector(FRAC_WIDTH + 1 downto 0); 
   
   expdiff_out:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:out std_logic 
  ); 
end prenorm_new; 
 
 
architecture rtl of prenorm_new is 
 
 
 signal s_exp_o : std_logic_vector(EXP_WIDTH-1 downto 0); 
 signal s_fracta_28_o, s_fractb_28_o : std_logic_vector(FRAC_WIDTH+4 
downto 0); 
 signal s_expa, s_expb : std_logic_vector(EXP_WIDTH-1 downto 0); 
 signal s_fracta, s_fractb : std_logic_vector(FRAC_WIDTH-1 downto 0); 
  
 signal s_fracta_28, s_fractb_28, s_fract_sm_28: 
std_logic_vector(FRAC_WIDTH+4 downto 0); 
  
 signal s_exp_diff,s_exp_sm : std_logic_vector(EXP_WIDTH-1 downto 0); 
 signal s_rzeros : std_logic_vector(5 downto 0); 
 
   signal s_expa_lt_expb : std_logic; 
 signal s_expa_eq_expb : std_logic; 
 signal s_fracta_1 : std_logic; 
 signal s_fractb_1 : std_logic; 
 signal s_op_dn : std_logic; 
 signal s_opa_dn, s_opb_dn : std_logic; 
 signal s_mux_diff : std_logic_vector(1 downto 0); 
 signal s_mux_exp,exp_gr8r_24 : std_logic; 
 signal s_sticky : std_logic; 
 signal s_rr_mant:std_logic_vector(FRAC_WIDTH + 1 downto 0); 
 signal s_expdiff_int:integer:=0; 
  
   signal s_fract_shr_28:std_logic_vector(FRAC_WIDTH+4 downto 0);    
 signal andsig:std_logic_vector(FRAC_WIDTH+1 downto 0); 
   signal rr_rev:std_logic_vector(FRAC_WIDTH+1 downto 0); 
   
   signal s_sign_o_rr0,s_cmpl_out0:std_logic:='Z'; 
 signal s_exp_o_rr0:std_logic_vector(EXP_WIDTH-1 downto 0); 
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 signal s_mant_o_rr0:std_logic_vector(FRAC_WIDTH+1 downto 0) ;   
  
 signal s_infa,s_infb,s_nan_a,s_nan_b,s_nan_in,s_nan_op:std_logic; 
  
component residualreg is port(sign_rr:in std_logic;exp_rr:in 
std_logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std_logic; 
mant_rr:in std_logic_vector(FRAC_WIDTH+1 downto 0);sign_rr_out:out 
std_logic;exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
cmpl_out:out std_logic;mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0)); 
end component residualreg; 
 
 
begin 
 
 -- Input Register 
   
   s_expa <= opa_i(30 downto 23); 
   s_expb <= opb_i(30 downto 23); 
   s_fracta <= opa_i(22 downto 0); 
   s_fractb <= opb_i(22 downto 0); 
   
   
    
 -- Output Register 
 process(clk_i) 
 begin 
 if falling_edge(clk_i) then  
  exp_o_pretoaddsub_out <= s_exp_o; 
  fracta_28_o <= s_fracta_28_o; 
  fractb_28_o <= s_fractb_28_o; 
      fpu_op_pretoaddsub_out<=fpu_op_pretoaddsub_in; 
  rmode_pretoaddsub_out<=rmode_pretoaddsub_in; 
  test_exp_gr8r_24_preout<= exp_gr8r_24; 
  expdiff_out<=s_exp_diff; 
  sign_o_rr0<=s_sign_o_rr0; 
  exp_o_rr0<=s_exp_o_rr0; 
  cmpl_out0<=s_cmpl_out0; 
   
      signa<=opa_i(31); 
      signb<=opb_i(31); 
      
    infa <= s_infa; 
    infb <= s_infb; 
   
  nan_a<=s_nan_a; 
  nan_b<=s_nan_b; 
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  nan_in<=s_nan_in; 
  nan_op<=s_nan_op; 
     
   end if; 
 end process;  
  
 mant_o_rr0<=s_mant_o_rr0; 
  
-- s_expa_eq_expb <= '1' when s_expa = s_expb else '0'; 
 s_expa_lt_expb <= '1' when s_expa > s_expb else '0'; 
  
  
 -- '1' if fraction is not zero 
-- s_fracta_1 <= or_reduce(s_fracta); 
-- s_fractb_1 <= or_reduce(s_fractb);  
--  
 -- opa or Opb is denormalized 
-- s_op_dn <= s_opa_dn or s_opb_dn;  
 s_opa_dn <= not or_reduce(s_expa); 
 s_opb_dn <= not or_reduce(s_expb); 
  
--  output the larger exponent  
     
 s_mux_exp <= s_expa_lt_expb; 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then   
   case s_mux_exp is 
    when '0' => s_exp_o <= s_expb; 
    when '1' => s_exp_o <= s_expa; 
    when others => s_exp_o <= "11111111"; 
   end case;  
  end if; 
 end process;    
  
--  convert to an easy to handle floating-point format 
 s_fracta_28 <= "01" & s_fracta & "000" when s_opa_dn='0' else "00" & s_fracta 
& "000"; 
 s_fractb_28 <= "01" & s_fractb & "000" when s_opb_dn='0' else "00" & s_fractb 
& "000"; 
  
 s_mux_diff <= s_expa_lt_expb & (s_opa_dn xor s_opb_dn);   ---a>b concat 
expa/expb..one only = 0 . 
  
 s_exp_diff <= s_expb - s_expa when(s_mux_diff="00")else 
               s_expb - (s_expa+"00000001")when(s_mux_diff="01")else 
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       s_expa - s_expb when(s_mux_diff="10")else 
       s_expa - 
(s_expb+"00000001")when(s_mux_diff="11")else 
       "ZZZZZZZZ"; 
   
  
 s_expdiff_int<=conv_integer(s_exp_diff); 
 
 process(clk_i) 
 begin 
    if rising_edge(clk_i) then 
  andsig<="0000000000000000000000000"; 
    if(s_expdiff_int<25)then 
  andsig(s_expdiff_int-1 downto 0)<=(others=>'1'); 
  else 
  andsig<=(others=>'1'); 
  end if;      
    end if; 
 end process; 
  
 process(clk_i) 
 begin 
 if(falling_edge(clk_i))then 
 s_rr_mant<=rr_rev;  
 end if; 
 end process; 
 
    
 s_fract_sm_28 <= s_fracta_28 when s_expa_lt_expb='0' else s_fractb_28; 
 s_exp_sm<=s_expb when s_expa_lt_expb='1' else s_expa;  
 
   s_fract_shr_28 <= shr(s_fract_sm_28,s_exp_diff); 
  
    rr_rev<=s_fract_sm_28(FRAC_WIDTH+4 downto 3) and andsig; 
 -- count the zeros from right to check if result is inexact 
 s_rzeros <= count_r_zeros(s_fract_sm_28); 
 s_sticky <= '1' when s_exp_diff > s_rzeros and or_reduce(s_fract_sm_28)='1' else 
'0'; 
 
   s_fracta_28_o<=s_fracta_28 when s_expa_lt_expb='1' else s_fract_shr_28(27 downto 
1)&(s_sticky or s_fract_shr_28(0));  
   s_fractb_28_o<=s_fractb_28 when s_expa_lt_expb='0' else s_fract_shr_28(27 downto 
1)&(s_sticky or s_fract_shr_28(0));  
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   rr0:residualreg port 
map('0',s_exp_sm,'0',s_rr_mant,s_sign_o_rr0,s_exp_o_rr0,s_cmpl_out0,s_mant_o_rr0); 
 
 
   exp_gr8r_24<= '1' when (s_expdiff_int > 23) else '0'; 
 
           
 s_infa <= '1' when opa_i(30 downto 23)="11111111"  else '0'; 
 s_infb <= '1' when opb_i(30 downto 23)="11111111"  else '0'; 
 s_nan_a <= '1' when (s_infa='1' and or_reduce (opa_i(22 downto 0))='1') else '0'; 
 s_nan_b <= '1' when (s_infb='1' and or_reduce (opb_i(22 downto 0))='1') else '0'; 
 s_nan_in <= '1' when s_nan_a='1' or  s_nan_b='1' else '0'; 
 s_nan_op <= '1' when (s_infa and s_infb)='1' and (opa_i(31) xor 
(fpu_op_pretoaddsub_in xor opb_i(31)) )='1' else '0'; -- inf-inf=Nan 
  
  
 
 
end rtl; 
------------------------------------------------------------------------------- 
 
Adder/subtractor 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_misc.all; 
use IEEE.std_logic_arith.all; 
 
library work; 
use work.fpupack.all; 
 
entity addsub_28 is 
 port( 
   clk_i    : in std_logic; 
   fracta_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   fractb_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); 
   fpu_op_addsub_in :in std_logic;-- 
   rmode_addsub_in :in std_logic_vector(1 downto 0);-- 
   exp_o_addsub_in : in std_logic_vector(EXP_WIDTH-1 
downto 0);-- 
   test_exp_gr8r_24_addin:in std_logic; 
   exp_i_rr1 :in std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_i_rr1 :in std_logic_vector(FRAC_WIDTH + 1 downto 0);  
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   sign_i_rr1,cmpl_in1 : in std_logic; 
   expdiff_in:in std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:in std_logic;  
   fract_o   : out std_logic_vector(FRAC_WIDTH+4 
downto 0); 
   sign_o    : out std_logic; 
   rmode_addsub_out:out std_logic_vector(1 downto 0);-- 
   exp_o_addsub_out:out std_logic_vector(EXP_WIDTH -1 downto 
0); 
   test_exp_gr8r_24_addout:out std_logic;-- 
   fpu_op_addsub_out :out std_logic;-- 
   sign_o_rr1,cmpl_out1 :out std_logic; 
   exp_o_rr1 :out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr1 :out std_logic_vector(FRAC_WIDTH + 1 downto 
0); 
   expdiff_out:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   infa_postin,infb_postin,signa_postin,signb_postin:out std_logic; 
   nan_a_postin,nan_b_postin,nan_in_postin,nan_op_postin:out 
std_logic); 
end addsub_28; 
 
 
architecture rtl of addsub_28 is 
 
signal s_fracta_i, s_fractb_i : std_logic_vector(FRAC_WIDTH+4 downto 0); 
signal s_fract_o : std_logic_vector(FRAC_WIDTH+4 downto 0); 
signal s_signa_i, s_signb_i, s_sign_o : std_logic; 
signal s_fpu_op_i : std_logic; 
signal fracta_lt_fractb : std_logic; 
signal s_addop: std_logic; 
 
begin 
 
-- Input Register 
 
  s_fracta_i <= fracta_i; 
  s_fractb_i <= fractb_i; 
  s_signa_i<= signa; 
  s_signb_i<= signb;  
  s_fpu_op_i <= fpu_op_addsub_in; 
--  
-- Output Register 
process(clk_i) 
begin 
if falling_edge(clk_i) then  
  fract_o <= s_fract_o; 
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  sign_o <= s_sign_o; 
  rmode_addsub_out<=rmode_addsub_in; 
  exp_o_addsub_out<=exp_o_addsub_in; 
  test_exp_gr8r_24_addout<=test_exp_gr8r_24_addin; 
      infa_postin<=infa; 
  infb_postin<=infb; 
  signa_postin<=signa; 
  signb_postin<=signb; 
  nan_a_postin<=nan_a; 
  nan_b_postin<=nan_b; 
  nan_in_postin<=nan_in; 
  nan_op_postin<=nan_op; 
      fpu_op_addsub_out<=fpu_op_addsub_in;  
  sign_o_rr1<=sign_i_rr1; 
      exp_o_rr1<=exp_i_rr1; 
      cmpl_out1<=cmpl_in1; 
  mant_o_rr1<=mant_i_rr1; 
  expdiff_out<=expdiff_in; 
    
end if; 
end process;   
 
fracta_lt_fractb <= '1' when s_fracta_i > s_fractb_i else '0'; 
 
-- check if its a subtraction or an addition operation 
s_addop <= ((s_signa_i xor s_signb_i)and not (s_fpu_op_i)) or ((s_signa_i xnor 
s_signb_i)and (s_fpu_op_i)); 
 
-- sign of result 
s_sign_o <= '0' when s_fract_o = conv_std_logic_vector(0,28) and (s_signa_i and 
s_signb_i)='0' else  
          ((not 
s_signa_i) and ((not fracta_lt_fractb) and (s_fpu_op_i xor s_signb_i))) or 
          ((s_signa_i) 
and (fracta_lt_fractb or (s_fpu_op_i xor s_signb_i))); 
 
-- add/substract 
process(s_fracta_i, s_fractb_i, s_addop, fracta_lt_fractb) 
begin 
 if s_addop='0' then 
  s_fract_o <= s_fracta_i + s_fractb_i; 
 else 
  if fracta_lt_fractb = '1' then  
   s_fract_o <= s_fracta_i - s_fractb_i; 
  else 
   s_fract_o <= s_fractb_i - s_fracta_i;     



107 

  end if; 
 end if; 
end process; 
 
 
 
end rtl; 
 
Postnormalization 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_arith.all; 
 
library work; 
use work.fpupack.all; 
 
entity postnorm_june20 is 
 port( 
   clk_i    : in std_logic; 
   fract_28_i  : in std_logic_vector(FRAC_WIDTH+4 
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1) 
   exp_i   : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
   sign_i   : in std_logic; 
   postnorm_exprr_set_in:in std_logic; 
   exp_i_rr2:in std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_i_rr2:in std_logic_vector(FRAC_WIDTH +1 downto 0);  
   sign_i_rr2,cmpl_in2: in std_logic; 
   fpu_op_i  : in std_logic; 
   rmode_i   : in std_logic_vector(1 downto 0); 
   expdiff_postin:in std_logic_vector(EXP_WIDTH-1 downto 0); 
    
   infa_postin,infb_postin,signa_postin,signb_postin:in std_logic; 
   nan_a_postin,nan_b_postin,nan_in_postin,nan_op_postin:in 
std_logic; 
    
   output_o  : out std_logic_vector(FP_WIDTH-1 
downto 0); 
   infa_postout,infb_postout: out std_logic; 
   signa_postout,signb_postout: out std_logic; 
   exp_o_rr2:out std_logic_vector(EXP_WIDTH-1 downto 0); 
   mant_o_rr2:out std_logic_vector(FRAC_WIDTH + 1 downto 0); 
         ine_o,sign_o_rr2,cmpl_out2: out std_logic   
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  ); 
end postnorm_june20; 
 
 
architecture rtl of postnorm_june20 is 
 
signal s_fract_28_i   : std_logic_vector(FRAC_WIDTH+4 downto 0);  
signal s_exp_i    : std_logic_vector(EXP_WIDTH-1 downto 0); 
signal s_sign_i,signa,signb  : std_logic; 
signal s_fpu_op_i   : std_logic; 
signal s_rmode_i   : std_logic_vector(1 downto 0); 
signal s_output_o: std_logic_vector(FP_WIDTH-1 downto 0); 
signal s_ine_o   : std_logic; 
signal s_overflow   : std_logic; 
  
signal s_shr1, s_shr2, s_shl, s_shr1e : std_logic; 
 
signal s_expr1_9, s_expr2_9 : std_logic_vector(EXP_WIDTH downto 0); 
signal s_exp_shr1, s_exp_shr2, s_exp_shl : std_logic_vector(EXP_WIDTH-1 downto 0); 
signal s_fract_shr1, s_fract_shr2: std_logic_vector(FRAC_WIDTH+4 downto 0); 
signal s_fract_shl : std_logic_vector(FRAC_WIDTH + 4 downto 0); 
signal s_zeros : std_logic_vector(5 downto 0); 
signal shl_pos: std_logic_vector(5 downto 0); 
 
signal s_fract_1, s_fract_2 : std_logic_vector(FRAC_WIDTH+4 downto 0); 
signal s_exp_1, s_exp_2 : std_logic_vector(EXP_WIDTH-1 downto 0); 
 
signal s_fract_rnd : std_logic_vector(FRAC_WIDTH+4 downto 0);  
signal s_roundup : std_logic; 
signal s_sticky : std_logic; 
 
signal s_zero_fract : std_logic;  
signal s_lost : std_logic; 
signal s_infa, s_infb : std_logic; 
signal s_nan_in, s_nan_op, s_nan_a, s_nan_b, s_nan_sign : std_logic; 
signal cmpl_2_br,cmpl_2_ar,rr_sign2_br,rr_sign2_ar:std_logic; 
signal s_exp_rr2_br,s_exp_rr2_ar,s_exptemprr_ar:std_logic_vector(EXP_WIDTH-1 
downto 0); 
signal s_mant_rr2_final:std_logic_vector(FRAC_WIDTH+2 downto 0); 
signal mantrr2_cmpl:std_logic_vector(FRAC_WIDTH+1 downto 0):=(others=>'0'); 
signal s_mant_rr2_br:std_logic_vector(FRAC_WIDTH+2 downto 0); 
signal s_mant_rr2_ar:std_logic_vector(FRAC_WIDTH+3 downto 0); 
signal s_mant_rr2_ar_trunc:std_logic_vector(FRAC_WIDTH+1 downto 
0):=(others=>'0'); 
 
signal s_exp_o_rr2:std_logic_vector(EXP_WIDTH-1 downto 0); 
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signal s_mant_o_rr2:std_logic_vector(FRAC_WIDTH + 1 downto 0);  
signal s_sign_o_rr2,s_cmpl_out2:std_logic; 
 
signal d1:std_logic_vector(FRAC_WIDTH + 2 downto 0):=(others=>'0'); 
signal d2:std_logic_vector(FRAC_WIDTH + 3 downto 0):=(others=>'0'); 
 
component residualreg is port(sign_rr:in std_logic;exp_rr:in 
std_logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std_logic; 
mant_rr:in std_logic_vector(FRAC_WIDTH+1 downto 0);sign_rr_out:out 
std_logic;exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
cmpl_out:out std_logic;mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0)); 
end component residualreg; 
 
component dec_br is port(sel:in std_logic_vector(7 downto 0);en:in std_logic;d:out 
std_logic_vector(25 downto 0)); 
end component dec_br; 
 
component dec_ar is port(sel:in std_logic_vector(7 downto 0);en1,en2:in std_logic;d:out 
std_logic_vector(26 downto 0)); 
end component dec_ar; 
 
signal a:std_logic;  -- to see if expdiff>24 
  
signal sum:std_logic_vector(8 downto 0); 
signal a1:std_logic; 
signal mask:std_logic_vector(24 downto 0):=(others=>'0'); 
 
begin 
  
 -- Input Register 
    
   s_fract_28_i <= fract_28_i; 
   s_exp_i <= exp_i; 
   s_sign_i <= sign_i; 
   s_fpu_op_i <= fpu_op_i; 
   s_rmode_i <= rmode_i; 
   cmpl_2_br<=cmpl_in2; 
   rr_sign2_br<=sign_i_rr2; 
   s_infa<=infa_postin; 
   s_infb<=infb_postin; 
    
   s_nan_a<=nan_a_postin; 
   s_nan_b<=nan_b_postin; 
   s_nan_in<=nan_in_postin; 
   s_nan_op<=nan_op_postin; 
   signa<=signa_postin; 
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   signb<=signb_postin; 
 
 a<=expdiff_postin(7)or expdiff_postin(6)or 
expdiff_postin(5)or(expdiff_postin(4)and expdiff_postin(3) and(expdiff_postin(2) or 
expdiff_postin(1) or expdiff_postin(0)));  
    
 --Output Register 
 process(clk_i) 
 begin 
 if falling_edge(clk_i) then  
   output_o <= s_output_o; 
   infa_postout<=infa_postin; 
   infb_postout<=infb_postin; 
   signa_postout<=signa_postin; 
   signb_postout<=signb_postin; 
   ine_o <= s_ine_o; 
   exp_o_rr2<=s_exp_o_rr2; 
   mant_o_rr2<=s_mant_o_rr2;  
   sign_o_rr2<=s_sign_o_rr2; 
   cmpl_out2<=s_cmpl_out2; 
 end if; 
 end process; 
  
 -- check if shifting is needed 
 -- stage 1a: right-shift (when necessary)  
 s_shr1 <= s_fract_28_i(27); 
 s_shr1e <= '1' when s_fract_28_i(26)='1' and or_reduce(s_exp_i)='0' else '0'; --if 
exp is zero, and hidden bit=1, then exp=exp+1 ( no need to check s_fract_28_i(27)! ) 
 s_expr1_9 <= "0"&s_exp_i + "000000001"; 
   s_fract_shr1 <= shr(s_fract_28_i, "1"); 
 s_exp_shr1 <= s_expr1_9(7 downto 0); 
         
 -- stage 1b: left-shift (when necessary) 
 s_shl <= '1' when s_fract_28_i(27 downto 26)="00" and s_exp_i /= "00000000" 
else '0'; 
 -- count the leading zero's of fraction, needed for left-shift  
 s_zeros <= count_l_zeros(s_fract_28_i(26 downto 0)); 
 --s_expl_9 <= ("0"&s_exp_i) - ("000"&s_zeros); 
 shl_pos <= "000000" when s_exp_i="00000001" else s_zeros;   
     
 s_fract_shl <= shl(s_fract_28_i, shl_pos); 
 s_exp_shl <= "00000000" when s_exp_i="00000001" else s_exp_i - 
("00"&shl_pos); 
    
 s_fract_1<=s_fract_shr1 when(s_shr1='1')else 
            s_fract_shl when(s_shl='1')else 
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      s_fract_28_i; 
     
  
 s_exp_1<=s_exp_shr1 when(s_shr1='1')else 
            s_exp_shl when(s_shl='1')else 
            s_exp_i; 
  
  
 dec1:dec_br port map(expdiff_postin,s_shr1,d1);     
 s_mant_rr2_br<=('0' & mant_i_rr2)or d1; 
  
  
       
 s_exp_rr2_br<=exp_i_rr2; 
 
 -- round 
  
 s_sticky <='1' when s_fract_1(0)='1' or (s_fract_28_i(0) and s_fract_28_i(27))='1' 
else '0'; --check last bit, before and after right-shift 
  
 s_roundup <= s_fract_1(2) and ((s_fract_1(1) or s_sticky)or s_fract_1(3)) when 
s_rmode_i="00" else -- round to nearset even 
        (s_fract_1(2) or s_fract_1(1) or 
s_sticky) and (not s_sign_i) when s_rmode_i="10" else -- round up 
        (s_fract_1(2) or s_fract_1(1) or 
s_sticky) and (s_sign_i) when s_rmode_i="11" else -- round down 
        '0'; -- round to zero(truncate = no 
rounding) 
  
 s_fract_rnd <= s_fract_1 + "0000000000000000000000001000" when 
s_roundup='1' else s_fract_1; 
  
 -- stage 2: right-shift after rounding (when necessary) 
 s_shr2 <= s_fract_rnd(27);  
 s_expr2_9 <= ("0"&s_exp_1) + "000000001"; 
 s_fract_shr2 <= shr(s_fract_rnd , "1"); 
 s_exp_shr2 <= s_expr2_9(7 downto 0); 
 
 s_fract_2 <= s_fract_shr2 when s_shr2='1' else s_fract_rnd; 
 s_exp_2 <= s_exp_shr2 when s_shr2='1' else s_exp_1; 
  
 dec2:dec_ar port map(expdiff_postin,s_shr1,s_shr2,d2);  
 s_mant_rr2_ar<=('0' & s_mant_rr2_br)or d2; 
--  
   s_exptemprr_ar<=conv_std_logic_vector(conv_integer(s_exp_i) - 
2*(FRAC_WIDTH+1),8); 
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 s_exp_rr2_ar<=s_exptemprr_ar 
when((postnorm_exprr_set_in='1')and(cmpl_2_ar='1'))else s_exp_rr2_br; 
  
  
 s_mant_rr2_ar_trunc<=s_mant_rr2_ar(FRAC_WIDTH+1 downto 0) 
when((s_shr1 or s_shr2)='0')else 
                      s_mant_rr2_ar(FRAC_WIDTH+1 downto 0) when(((s_shr1 xor 
s_shr2)='1')and(a='0'))else 
       
 s_mant_rr2_ar(FRAC_WIDTH+2 downto 1) when(((s_shr1 xor 
s_shr2)='1')and(a='1'))else 
       
 s_mant_rr2_ar(FRAC_WIDTH+1 downto 0) when(((s_shr1 and 
s_shr2)='1')and(a='0'))else 
       
 s_mant_rr2_ar(FRAC_WIDTH+3 downto 2) when(((s_shr1 and 
s_shr2)='1')and(a='1'))else 
       
 s_mant_rr2_ar(FRAC_WIDTH+1 downto 0); 
 --------------added 
   
 cmpl_2_ar<=signa xor signb xor s_roundup; 
   rr_sign2_ar<=s_sign_i xor s_roundup; 
   mantrr2_cmpl<=(not s_mant_rr2_ar_trunc); 
    
---- process(clk_i) 
---- begin 
----  if rising_edge(clk_i) then   
----      if(cmpl_2_ar='0')then 
----  s_mant_rr2_final<=s_mant_rr2_ar_trunc; 
---- 
 elsif((s_expdiff_int<25)and(s_shr1='0')and(s_shr2='0')and(cmpl_2_ar='1'))then  
----  s_mant_rr2_final<=s_mant_rr2_ar_trunc(FRAC_WIDTH + 1 downto 
s_expdiff_int)& mantrr2_cmpl(s_expdiff_int-1 downto 0); 
----  elsif((s_expdiff_int<25)and((s_shr1 xor 
s_shr2)='1')and(cmpl_2_ar='1'))then 
----  s_mant_rr2_final<=s_mant_rr2_ar_trunc(FRAC_WIDTH + 1 downto 
s_expdiff_int+1)& mantrr2_cmpl(s_expdiff_int downto 0); 
----  elsif((s_expdiff_int<25)and((s_shr1 and 
s_shr2)='1')and(cmpl_2_ar='1'))then 
----  s_mant_rr2_final<=s_mant_rr2_ar_trunc(FRAC_WIDTH + 1 downto 
s_expdiff_int+2)& mantrr2_cmpl(s_expdiff_int+1 downto 0); 
----  elsif((s_expdiff_int>25)and(cmpl_2_ar='1'))then 
----  s_mant_rr2_final<=mantrr2_cmpl; 
----  end if;   
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----  end if;   
----   end process; 
 
sum<=('0' & expdiff_postin)+("00000000"&s_shr1)+("00000000"&s_shr2); 
a1<=(sum(4)and sum(3)and(sum(0) or sum(1)or sum(2)))or sum(8)or sum(7)or sum(6)or 
sum(5); 
 
 mask <= "0000000000000000000000000" when ((sum = "000000000")and(a1='0')) else 
         "0000000000000000000000001" when ((sum = "000000001")and(a1='0')) else  
         "0000000000000000000000011" when ((sum = "000000010")and(a1='0')) else  
         "0000000000000000000000111" when ((sum = "000000011")and(a1='0')) else  
         "0000000000000000000001111" when ((sum = "000000100")and(a1='0')) else  
         "0000000000000000000011111" when ((sum = "000000101")and(a1='0')) else  
         "0000000000000000000111111" when ((sum = "000000110")and(a1='0')) else  
         "0000000000000000001111111" when ((sum = "000000111")and(a1='0')) else  
         "0000000000000000011111111" when ((sum = "000001000")and(a1='0')) else  
         "0000000000000000111111111" when ((sum = "000001001")and(a1='0')) else  
         "0000000000000001111111111" when ((sum = "000001010")and(a1='0')) else  
         "0000000000000011111111111" when ((sum = "000001011")and(a1='0')) else  
         "0000000000000111111111111" when ((sum = "000001100")and(a1='0')) else  
         "0000000000001111111111111" when ((sum = "000001101")and(a1='0')) else  
         "0000000000011111111111111" when ((sum = "000001110")and(a1='0')) else  
         "0000000000111111111111111" when ((sum = "000001111")and(a1='0')) else  
         "0000000001111111111111111" when ((sum = "000010000")and(a1='0')) else  
         "0000000011111111111111111" when ((sum = "000010001")and(a1='0')) else  
         "0000000111111111111111111" when ((sum = "000010010")and(a1='0')) else  
         "0000001111111111111111111" when ((sum = "000010011")and(a1='0')) else  
         "0000011111111111111111111" when ((sum = "000010100")and(a1='0')) else  
         "0000111111111111111111111" when ((sum = "000010101")and(a1='0')) else  
         "0001111111111111111111111" when ((sum = "000010110")and(a1='0')) else  
         "0011111111111111111111111" when ((sum = "000010111")and(a1='0')) else  
         "0111111111111111111111111" when ((sum = "000011000")and(a1='0')) else 
         "1111111111111111111111111" when (a1='1') else 
"1111111111111111111111111"; 
    
s_mant_rr2_final<=('0'&(mantrr2_cmpl and 
mask)+"00000000000000000000000001")when(cmpl_2_ar='1')else ('0' & 
s_mant_rr2_ar_trunc); 
  
  
  
 rr2:residualreg port 
map(rr_sign2_ar,s_exp_rr2_ar,cmpl_2_ar,s_mant_rr2_final(24 downto 
0),s_sign_o_rr2,s_exp_o_rr2,s_cmpl_out2,s_mant_o_rr2); 
        
--      signa<=s_opa_i(31); 
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--      signb<=s_opb_i(31); 
--      
-- s_infa <= '1' when s_opa_i(30 downto 23)="11111111"  else '0'; 
-- s_infb <= '1' when s_opb_i(30 downto 23)="11111111"  else '0'; 
 
-- s_nan_a <= '1' when (s_infa='1' and or_reduce (s_opa_i(22 downto 0))='1') else 
'0'; 
-- s_nan_b <= '1' when (s_infb='1' and or_reduce (s_opb_i(22 downto 0))='1') else 
'0'; 
-- s_nan_in <= '1' when s_nan_a='1' or  s_nan_b='1' else '0'; 
-- s_nan_op <= '1' when (s_infa and s_infb)='1' and (s_opa_i(31) xor (s_fpu_op_i 
xor s_opb_i(31)) )='1' else '0'; -- inf-inf=Nan 
--  
 s_nan_sign <= s_sign_i when (s_nan_a and s_nan_b)='1' else 
        signa when s_nan_a='1' else  
        signb; 
         
 -- check if result is inexact; 
 s_lost <= or_reduce(s_fract_28_i(2 downto 0)) or  or_reduce(s_fract_1(2 downto 
0)) or or_reduce(s_fract_2(2 downto 0)); 
 s_ine_o <= '1' when (s_lost or s_overflow)='1' and (s_infa or s_infb)='0' else '0';  
  
 s_overflow <='1' when (s_expr1_9(8) or s_expr2_9(8))='1' and (s_infa or 
s_infb)='0' else '0';  
 s_zero_fract <= '1' when s_zeros=27 and s_fract_28_i(27)='0' else '0'; -- '1' if 
fraction result is zero 
         
 process(s_sign_i, s_exp_2, s_fract_2, s_nan_in, s_nan_op, s_nan_sign, s_infa, 
s_infb, s_overflow, s_zero_fract) 
 begin 
  if (s_nan_in or s_nan_op)='1' then 
   s_output_o <= s_nan_sign & QNAN;                  
 
  elsif (s_infa or s_infb)='1' or s_overflow='1' then 
    s_output_o <= s_sign_i & INF;  
  elsif s_zero_fract='1' then 
    s_output_o <= s_sign_i & ZERO_VECTOR; 
  else 
    s_output_o <= s_sign_i & s_exp_2 & s_fract_2(25 downto 
3); 
  end if; 
 end process; 
   
 end rtl; 
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Package – FPU pack 
library  ieee; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
package fpupack is 
 
 
 -- Data width of floating-point number. Deafult: 32 
 constant FP_WIDTH : integer := 32; 
  
 -- Data width of fraction. Deafult: 23 
 constant FRAC_WIDTH : integer := 23; 
  
 -- Data width of exponent. Deafult: 8 
 constant EXP_WIDTH : integer := 8; 
 
 --Zero vector 
 constant ZERO_VECTOR: std_logic_vector(30 downto 0) := 
"0000000000000000000000000000000"; 
  
 -- Infinty FP format 
constant INF  : std_logic_vector(30 downto 0) := 
"1111111100000000000000000000000"; 
  
 -- QNaN (Quit Not a Number) FP format (without sign bit) 
  constant QNAN : std_logic_vector(30 downto 0) := 
"1111111110000000000000000000000"; 
     
    -- SNaN (Signaling Not a Number) FP format (without sign bit) 
  constant SNAN : std_logic_vector(30 downto 0) := 
"1111111100000000000000000000001"; 
     
    -- count the  zeros starting from left 
    function count_l_zeros (signal s_vector: std_logic_vector) return std_logic_vector; 
     
    -- count the zeros starting from right 
 function count_r_zeros (signal s_vector: std_logic_vector) return 
std_logic_vector; 
     
end fpupack; 
 
package body fpupack is 
     
    -- count the  zeros starting from left 
function count_l_zeros (signal s_vector: std_logic_vector) return std_logic_vector is 
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  variable v_count : std_logic_vector(5 downto 0);  
 begin 
  v_count := "000000"; 
  for i in s_vector'range loop 
   case s_vector(i) is 
    when '0' => v_count := v_count + "000001"; 
    when others => exit; 
   end case; 
  end loop; 
  return v_count;  
 end count_l_zeros; 
 
 
 -- count the zeros starting from right 
function count_r_zeros (signal s_vector: std_logic_vector) return std_logic_vector is 
  variable v_count : std_logic_vector(5 downto 0);  
 begin 
  v_count := "000000"; 
  for i in 0 to s_vector'length-1 loop 
   case s_vector(i) is 
    when '0' => v_count := v_count + "000001"; 
    when others => exit; 
   end case; 
  end loop; 
  return v_count;  
 end count_r_zeros; 
 
end fpupack; 
 
Testbench for Adder with residual register 
   
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_ARITH.all; 
use ieee.std_logic_textio.all; 
use std.textio.all; 
 
ENTITY fpu_add_test_vhd IS 
--port(clk_out: out std_logic); 
--Type Text is file of String;  
--Type Line is access String;  
 
END fpu_add_test_vhd; 
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ARCHITECTURE behavior OF fpu_add_test_vhd IS  
 
 -- Component Declaration for the Unit Under Test (UUT) 
 
 COMPONENT fpu_add 
 PORT( clk_i : IN std_logic;  
 movrr : IN std_logic;  
 opa_i : IN std_logic_vector(31 downto 0); 
 opb_i : IN std_logic_vector(31 downto 0); 
 fpu_op_i : IN std_logic_vector(2 downto 0); 
 rmode_i : IN std_logic_vector(1 downto 0); 
 output_o : OUT std_logic_vector(31 downto 0); 
 ine_o : OUT std_logic; 
 overflow_o : OUT std_logic; 
 underflow_o : OUT std_logic; 
 inf_o : OUT std_logic; 
 zero_o : OUT std_logic; 
 qnan_o : OUT std_logic; 
 snan_o : OUT std_logic; 
 post_in:out std_logic_vector(27 downto 0); 
 sign_rr0 : OUT std_logic;sign_rr1 : OUT std_logic; sign_rr2: OUT std_logic; 
 cmpl_rr0 :OUT std_logic;cmpl_rr1: OUT std_logic;cmpl_rr2 : OUT 
std_logic;ready_o:OUT std_logic; 
 exp_rr0:OUT std_logic_vector(7 downto 0);exp_rr1:OUT std_logic_vector(7 
downto 0);exp_rr2 : OUT std_logic_vector(7 downto 0); 
 mant_rr0 : OUT std_logic_vector(24 downto 0);mant_rr1 : OUT 
std_logic_vector(24 downto 0);mant_rr2 : OUT std_logic_vector(24 downto 0)); 
 
END COMPONENT; 
 
--Inputs 
SIGNAL clk_i :  std_logic := '0'; 
SIGNAL movrr :  std_logic := '0'; 
SIGNAL opa_i :  std_logic_vector(31 downto 0) := (others=>'0'); 
SIGNAL opb_i :  std_logic_vector(31 downto 0) := (others=>'0'); 
SIGNAL fpu_op_i :  std_logic_vector(2 downto 0) := (others=>'0'); 
SIGNAL rmode_i :  std_logic_vector(1 downto 0) := (others=>'0'); 
 
--Outputs 
SIGNAL output_o :  std_logic_vector(31 downto 0); 
SIGNAL ine_o :  std_logic; 
SIGNAL overflow_o :  std_logic; 
SIGNAL underflow_o :  std_logic; 
SIGNAL div_zero_o :  std_logic; 
SIGNAL inf_o :  std_logic; 
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SIGNAL zero_o :  std_logic; 
SIGNAL qnan_o :  std_logic; 
SIGNAL snan_o :  std_logic; 
SIGNAL sign_rr0 :  std_logic; 
SIGNAL sign_rr1 :  std_logic; 
SIGNAL sign_rr2 :  std_logic; 
SIGNAL cmpl_rr0 :  std_logic; 
SIGNAL cmpl_rr1 :  std_logic; 
SIGNAL cmpl_rr2 :  std_logic; 
SIGNAL exp_rr0 :  std_logic_vector(7 downto 0); 
SIGNAL exp_rr1 :  std_logic_vector(7 downto 0); 
SIGNAL exp_rr2 :  std_logic_vector(7 downto 0); 
SIGNAL mant_rr0:std_logic_vector(24 downto 0); 
SIGNAL mant_rr1:std_logic_vector(24 downto 0); 
SIGNAL mant_rr2:std_logic_vector(24 downto 0); 
signal sig,temp_mrr: std_logic := '0'; 
signal cnt : integer:=0; 
signal ready_o: std_logic; 
signal post_in: std_logic_vector(27 downto 0); 
signal result_in : std_logic_vector(31 downto 0); 
signal rr_in : std_logic_vector(31 downto 0); 
signal rr_out : std_logic_vector(31 downto 0); 
signal err_op,err_rr,err: std_logic:='0'; 
 
BEGIN 
 
 -- Instantiate the Unit Under Test (UUT) 
  
uut: fpu_add PORT MAP( 
  clk_i => clk_i, 
  movrr => movrr, 
  opa_i => opa_i, 
  opb_i => opb_i, 
  fpu_op_i => fpu_op_i, 
  rmode_i => rmode_i, 
  output_o => output_o, 
  ine_o => ine_o, 
  overflow_o => overflow_o, 
  underflow_o => underflow_o, 
  inf_o => inf_o, 
  zero_o => zero_o, 
  qnan_o => qnan_o, 
  snan_o => snan_o, 
  post_in => post_in, 
  sign_rr0 => sign_rr0, 
  sign_rr1 => sign_rr1, 
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  sign_rr2 => sign_rr2, 
  cmpl_rr0 => cmpl_rr0, 
  cmpl_rr1 => cmpl_rr1, 
  cmpl_rr2 => cmpl_rr2, 
  ready_o => ready_o, 
  exp_rr0 => exp_rr0, 
  exp_rr1 => exp_rr1, 
  exp_rr2 => exp_rr2, 
  mant_rr0 => mant_rr0, 
  mant_rr1 => mant_rr1, 
  mant_rr2 => mant_rr2); 
 
fpu_op_i<= "000"; 
rmode_i <= "00"; 
 
clk_i <= not (clk_i) after 50 ns; 
 
movrr_gen:process(clk_i) 
begin 
if(falling_edge(clk_i))then 
if(cnt/= 5)then 
cnt<=cnt+1; 
else 
cnt<=0; 
end if; 
end if; 
if(rising_edge(clk_i))then 
if(cnt=4)then 
movrr<='1'; 
else 
movrr<='0'; 
end if; 
if(cnt=5)then 
temp_mrr<='1'; 
else 
temp_mrr<='0'; 
end if; 
end if; 
end process movrr_gen; 
 
 
read_proc_ab : process is 
file infile : TEXT open read_mode is "testdata.txt"; 
variable opa_in : std_logic_vector(31 downto 0); 
variable opb_in : std_logic_vector(31 downto 0); 
variable val:std_logic_vector(127 downto 0); 
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variable buf_temp : line; 
BEGIN 
while not endfile(infile) loop 
READLINE(infile,buf_temp); 
hread(buf_temp,val); 
opa_i<= val(127 downto 96); 
opb_i<= val(95 downto 64); 
result_in<= val(63 downto 32); 
wait for 600 ns; 
end loop ; 
wait for 600 ns; 
end process read_proc_ab; 
 
read_proc_oprr : process is 
file infile : TEXT open read_mode is "testdata.txt"; 
variable val:std_logic_vector(127 downto 0); 
variable buf_temp : line; 
BEGIN 
while not endfile(infile) loop 
READLINE(infile,buf_temp); 
hread(buf_temp,val); 
rr_in <= val(31 downto 0); 
wait for 700 ns; 
end loop ; 
wait for 700 ns; 
end process read_proc_oprr; 
 
write_proc : process(temp_mrr)  is    
file outfile : text open write_mode is "sum_out.txt"; 
variable buf_temp : line; 
begin 
if(rising_edge(temp_mrr))then 
hwrite(buf_temp,output_o); 
writeline(outfile,buf_temp); 
 
if(output_o/=result_in)then 
err_op<='1'; 
else 
err_op<='0'; 
end if; 
end if; 
END PROCESS  write_proc; 
 
write_rr :process(temp_mrr) is     
file outfile : text open write_mode is "rr_out.txt"; 
variable buf1_temp,buf2_temp : line;  
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begin 
if(falling_edge(temp_mrr))then 
hwrite(buf1_temp,output_o); 
writeline(outfile,buf1_temp); 
 
if(rr_in/=output_o)then 
err_rr<='1'; 
else 
err_rr<='0'; 
end if; 
end if; 
END PROCESS  write_rr; 
 
err<= err_op or err_rr; 
 
END; 
 
 
 
 
FPU – Multiplier 
 
 
 
library ieee; 
use ieee.std_logic_1164.all; 
use ieee.numeric_std.all; 
use ieee.std_logic_misc.all; 
 
library work; 
 
use work.fpupack.all; 
 
 
entity fpu_mult is 
    port ( 
        clk_i,movrr    : in std_logic; 
 
        -- Input Operands A & B 
        opa_i         : in std_logic_vector(FP_WIDTH-1 downto 0);  -- Default: 
FP_WIDTH=32  
        opb_i           : in std_logic_vector(FP_WIDTH-1 downto 0); 
         
        -- fpu operations (fpu_op_i): 
  -- ======================== 
  -- 000 = add,  
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  -- 001 = substract,  
  -- 010 = multiply, 
        fpu_op_i  : in std_logic_vector(2 downto 0); 
         
        -- Rounding Mode:  
        -- ============== 
        -- 00 = round to nearest even(default),  
        -- 01 = round to zero,  
        -- 10 = round up,  
        -- 11 = round down 
        rmode_i   : in std_logic_vector(1 downto 0); 
         
        -- Output port    
        output_o        : out std_logic_vector(FP_WIDTH-1 downto 0); 
    sign_rr_out:out std_logic; 
    exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
        cmpl_out:out std_logic; 
    mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0);  
         
         ready_o   : out std_logic; 
   post_in: out std_logic_vector(47 downto 0); 
        
        -- Exceptions 
        ine_o    : out std_logic; -- inexact 
        overflow_o   : out std_logic; -- overflow 
        underflow_o  : out std_logic; -- underflow 
         
        inf_o   : out std_logic; -- infinity 
        zero_o   : out std_logic; -- zero 
        qnan_o   : out std_logic; -- queit Not-a-Number 
        snan_o   : out std_logic -- signaling Not-a-Number 
     
 );    
end fpu_mult; 
 
architecture rtl of fpu_mult is 
     
 
 -- Input/output registers 
 signal s_opa_i, s_opb_i : std_logic_vector(FP_WIDTH-1 downto 0); 
 signal s_fpu_op_i  : std_logic_vector(2 downto 0); 
 signal s_rmode_i : std_logic_vector(1 downto 0); 
 signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0); 
   signal s_ine_o, s_overflow_o, s_underflow_o, s_inf_o, s_zero_o, s_qnan_o, s_snan_o : 
std_logic; 
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 signal cnt : integer; 
 signal ready : std_logic; 
 signal s_output1 : std_logic_vector(FP_WIDTH-1 downto 0);  
 signal s_infa, s_infb : std_logic; 
  
 -- ***Multiply units signals*** 
  
 signal pre_norm_mul_exp_10 : std_logic_vector(9 downto 0); 
 signal pre_norm_mul_fracta_24 : std_logic_vector(23 downto 0); 
 signal pre_norm_mul_fractb_24 : std_logic_vector(23 downto 0); 
    
 signal mul_fract_48,s_postnorm_fract_in: std_logic_vector(47 downto 0); 
 signal mul_sign,s_postnorm_sign_in: std_logic; 
  
 signal post_norm_mul_output : std_logic_vector(31 downto 0); 
 signal post_norm_mul_ine : std_logic; 
  
 signal 
s_expa_pretomultin,s_expb_pretomultin,s_expa_pretomultout,s_expb_pretomultout:std_l
ogic_vector(EXP_WIDTH-1 downto 0); 
 signal s_exp_10_pretomultout,s_postnorm_exp_in: 
std_logic_vector(EXP_WIDTH+1 downto 0); 
  
 signal 
s_sign_pretomultin,s_op_0_pretomultin,s_fracta0_pretomultin,s_fractb0_pretomultin: 
std_logic; 
 signal s_op_0_multopostin,s_fracta0_multopostin,s_fractb0_multopostin: 
std_logic; 
  ----- components ----- 
   
  signal s_sign_rr_out,s_cmpl_out:std_logic; 
  signal s_exp_rr_out:std_logic_vector(EXP_WIDTH - 1 downto 0); 
  signal s_mant_rr_out:std_logic_vector(FRAC_WIDTH+1 downto 0); 
 
   
 component pre_norm_mul is 
 port( 
    clk_i    : in std_logic; 
    opa_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
    opb_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
    exp_10_o   : out 
std_logic_vector(EXP_WIDTH+1 downto 0); 
    fracta_24_o  : out std_logic_vector(FRAC_WIDTH 
downto 0); -- hidden(1) & fraction(23) 
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    fractb_24_o  : out std_logic_vector(FRAC_WIDTH 
downto 0); 
    expa_o,expb_o: out std_logic_vector(EXP_WIDTH-1 downto 0); 
    sign_o,op_0,fracta0,fractb0:out std_logic 
  ); 
 end component; 
   
 component mul_24 is 
 port( 
    clk_i       : in std_logic; 
    fracta_i   : in std_logic_vector(FRAC_WIDTH 
downto 0); -- hidden(1) & fraction(23) 
    fractb_i   : in std_logic_vector(FRAC_WIDTH 
downto 0); 
    expa_pretomultin    : in 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    expb_pretomultin    : in 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    exp_10_pretomultin   : in 
std_logic_vector(EXP_WIDTH+1 downto 0); 
    
sign_pretomultin,op_0_pretomultin,fracta0_pretomultin,fractb0_pretomultin:in std_logic; 
    fract_o   : out 
std_logic_vector(2*FRAC_WIDTH+1 downto 0); 
    sign_pretomultout    : out std_logic; 
    expa_pretomultout    : out 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    expb_pretomultout    : out 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    op_0_pretomultout,fracta0_pretomultout,fractb0_pretomultout:out 
std_logic; 
    exp_10_pretomultout   : out 
std_logic_vector(EXP_WIDTH+1 downto 0) 
     
    ); 
 end component; 
  
 component post_norm_mul is 
 port( 
    clk_i      : in std_logic; 
    expa_multopostin : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
    expb_multopostin : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
    exp_10_i   : in 
std_logic_vector(EXP_WIDTH+1 downto 0); 
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    fract_48_i   : in 
std_logic_vector(2*FRAC_WIDTH+1 downto 0); -- hidden(1) & fraction(23) 
    sign_i    : in std_logic; 
    rmode_i      : in std_logic_vector(1 downto 0); 
    op_0_multopostin,fracta0_multopostin,fractb0_multopostin: in 
std_logic; 
    output_o         : out std_logic_vector(FP_WIDTH-1 downto 0); 
    ine_o: out std_logic ; 
---------------------------------------------------------------------- 
 sign_rr_out,cmpl_out:out std_logic; 
 exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
 mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0) 
  ); 
 end component; 
  
 
begin 
  
 --***Multiply units*** 
  
 i_pre_norm_mul: pre_norm_mul 
 port map( 
  clk_i => clk_i,   
  opa_i => s_opa_i, 
  opb_i => s_opb_i, 
  exp_10_o => pre_norm_mul_exp_10, 
  fracta_24_o => pre_norm_mul_fracta_24, 
  fractb_24_o => pre_norm_mul_fractb_24, 
  expa_o => s_expa_pretomultin, 
  expb_o => s_expb_pretomultin, 
  sign_o => s_sign_pretomultin, 
  op_0 => s_op_0_pretomultin, 
  fracta0 => s_fracta0_pretomultin, 
  fractb0 => s_fractb0_pretomultin 
  ); 
 
 i_mul_24 : mul_24 
 port map( 
    clk_i => clk_i, 
    fracta_i => pre_norm_mul_fracta_24, 
    fractb_i => pre_norm_mul_fractb_24, 
    expa_pretomultin => s_expa_pretomultin, 
    expb_pretomultin => s_expb_pretomultin, 
    exp_10_pretomultin =>pre_norm_mul_exp_10, 
    sign_pretomultin => s_sign_pretomultin, 
    op_0_pretomultin => s_op_0_pretomultin, 
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    fracta0_pretomultin => s_fracta0_pretomultin, 
    fractb0_pretomultin => s_fractb0_pretomultin, 
    fract_o => mul_fract_48,  
    sign_pretomultout => mul_sign, 
    expa_pretomultout => s_expa_pretomultout, 
    expb_pretomultout => s_expb_pretomultout, 
    op_0_pretomultout => s_op_0_multopostin, 
    fracta0_pretomultout => s_fracta0_multopostin, 
    fractb0_pretomultout => s_fractb0_multopostin, 
    exp_10_pretomultout => s_exp_10_pretomultout 
    ); 
     
 i_post_norm_mul : post_norm_mul 
 port map( 
    clk_i => clk_i, 
    expa_multopostin => s_expa_pretomultout, 
    expb_multopostin => s_expb_pretomultout, 
    --exp_10_i => s_exp_10_pretomultout, 
    exp_10_i => s_postnorm_exp_in, 
    --fract_48_i => mul_fract_48, 
    fract_48_i =>s_postnorm_fract_in, 
    --sign_i => mul_sign, 
    sign_i => s_postnorm_sign_in, 
    rmode_i => s_rmode_i, 
    op_0_multopostin => s_op_0_multopostin, 
    fracta0_multopostin => s_fracta0_multopostin, 
    fractb0_multopostin => s_fractb0_multopostin, 
    output_o => post_norm_mul_output, 
    ine_o => post_norm_mul_ine , 
    sign_rr_out => s_sign_rr_out, 
    exp_rr_out => s_exp_rr_out, 
          cmpl_out => s_cmpl_out, 
    mant_rr_out => s_mant_rr_out 
   ); 
   s_postnorm_fract_in<=(s_mant_rr_out & "00000000000000000000000")when 
(movrr='1')else mul_fract_48; 
   s_postnorm_exp_in<=("00" & s_exp_rr_out) when (movrr='1')else 
s_exp_10_pretomultout;  
   s_postnorm_sign_in<=s_sign_rr_out when (movrr='1')else mul_sign; 
  
--  s_postnorm_fract_in<= mul_fract_48; 
--   s_postnorm_exp_in<=s_exp_10_pretomultout;  
--   s_postnorm_sign_in<=mul_sign; 
    
 -----------------------------------------------------------------    
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 -- Input Register 
 
   s_opa_i <= opa_i; 
   s_opb_i <= opb_i; 
   s_fpu_op_i <= fpu_op_i; 
   s_rmode_i <= rmode_i; 
   
 -- Output Register 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then  
  if(ready = '1')then 
   output_o <= s_output_o; 
   ine_o <= s_ine_o; 
   overflow_o <= s_overflow_o; 
   underflow_o <= s_underflow_o; 
    
   inf_o <= s_inf_o; 
   zero_o <= s_zero_o; 
   qnan_o <= s_qnan_o; 
   snan_o <= s_snan_o; 
    
   sign_rr_out<=s_sign_rr_out; 
   cmpl_out<=s_cmpl_out; 
   exp_rr_out<=s_exp_rr_out; 
   mant_rr_out<=s_mant_rr_out; 
    
   post_in<=s_postnorm_fract_in; 
  end if; 
  end if; 
 end process;  
 
              
 -- Output Multiplexer 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then 
   if fpu_op_i="010" then 
    s_output1  <= post_norm_mul_output; 
    s_ine_o   <= post_norm_mul_ine;  
    
   else 
    s_output1  <= (others => '0'); 
    s_ine_o   <= '0'; 
   end if; 
  end if; 
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 end process;  
 
   
  
 s_infa <= '1' when s_opa_i(30 downto 23)="11111111"  else '0'; 
 s_infb <= '1' when s_opb_i(30 downto 23)="11111111"  else '0'; 
  
 
 --In round down: the subtraction of two equal numbers other than zero are always 
-0!!! 
 process(s_output1, s_rmode_i, s_infa, s_infb, s_qnan_o, s_snan_o, s_zero_o, 
s_fpu_op_i, s_opa_i, s_opb_i ) 
 begin 
    
   if s_rmode_i="00" or ((s_infa or s_infb) or s_qnan_o or 
s_snan_o)='1' then --round-to-nearest-even 
    s_output_o <= s_output1; 
   elsif s_rmode_i="01" and s_output1(30 downto 23)="11111111" 
then 
    --In round-to-zero: the sum of two non-infinity operands is 
never infinity,even if an overflow occures 
    s_output_o <= s_output1(31) & 
"1111111011111111111111111111111"; 
   elsif s_rmode_i="10" and s_output1(31 downto 23)="111111111" 
then 
    --In round-up: the sum of two non-infinity operands is 
never negative infinity,even if an overflow occures 
    s_output_o <= "11111111011111111111111111111111"; 
   elsif s_rmode_i="11" then 
    --In round-down: a-a= -0 
    if (s_fpu_op_i="000" or s_fpu_op_i="001") and 
s_zero_o='1' and (s_opa_i(31) or (s_fpu_op_i(0) xor s_opb_i(31)))='1' then 
     s_output_o <= "1" & s_output1(30 downto 0);  
    --In round-down: the sum of two non-infinity operands is 
never postive infinity,even if an overflow occures 
    elsif s_output1(31 downto 23)="011111111" then 
     s_output_o <= 
"01111111011111111111111111111111"; 
    else 
     s_output_o <= s_output1; 
    end if;    
   else 
    s_output_o <= s_output1; 
   end if; 
    
 end process; 
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 -- Generate Exceptions  
 s_underflow_o <= '1' when s_output1(30 downto 23)="00000000" and 
s_ine_o='1' else '0';  
 s_overflow_o <= '1' when s_output1(30 downto 23)="11111111" and s_ine_o='1' 
else '0'; 
 
 s_inf_o <= '1' when s_output1(30 downto 23)="11111111" and (s_qnan_o or 
s_snan_o)='0' else '0'; 
 s_zero_o <= '1' when or_reduce(s_output1(30 downto 0))='0' else '0'; 
 s_qnan_o <= '1' when s_output1(30 downto 0)=QNAN else '0'; 
    s_snan_o <= '1' when s_opa_i(30 downto 0)=SNAN or s_opb_i(30 downto 0)=SNAN 
else '0'; 
   
  ----Ready signal to indicate start of valid outputs --  
 process(clk_i) 
 begin 
 if(rising_edge(clk_i))then 
 if(cnt/=4)then 
 cnt <= cnt + 1; 
 else 
 cnt <= cnt; 
 end if; 
  
 if(cnt=4)then 
 ready<='1'; 
 else 
 ready<='0'; 
 end if; 
 end if; 
 end process; 
 
   ready_o<=ready; 
 
 
 
end rtl; 
 
Prenormalization 
 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_misc.all; 



130 

 
library work; 
use work.fpupack.all; 
 
entity pre_norm_mul is 
 port( 
    clk_i    : in std_logic; 
    opa_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
    opb_i   : in std_logic_vector(FP_WIDTH-1 downto 
0); 
    exp_10_o   : out 
std_logic_vector(EXP_WIDTH+1 downto 0); 
    fracta_24_o  : out std_logic_vector(FRAC_WIDTH 
downto 0); -- hidden(1) & fraction(23) 
    fractb_24_o  : out std_logic_vector(FRAC_WIDTH 
downto 0); 
    expa_o,expb_o: out std_logic_vector(EXP_WIDTH-1 downto 0); 
    sign_o,op_0,fracta0,fractb0:out std_logic 
  ); 
end pre_norm_mul; 
 
architecture rtl of pre_norm_mul is 
 
signal s_expa, s_expb : std_logic_vector(EXP_WIDTH-1 downto 0); 
signal s_fracta, s_fractb : std_logic_vector(FRAC_WIDTH-1 downto 0); 
signal s_exp_10_o, s_expa_in, s_expb_in : std_logic_vector(EXP_WIDTH+1 downto 0); 
 
signal s_opa_dn, s_opb_dn : std_logic; 
 
begin 
 
  
  s_expa <= opa_i(30 downto 23); 
  s_expb <= opb_i(30 downto 23); 
  s_fracta <= opa_i(22 downto 0); 
  s_fractb <= opb_i(22 downto 0); 
 
  -- Output Register 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then  
   exp_10_o <= s_exp_10_o; 
--   opa_o<=opa_i; 
--   opb_o<=opb_i; 
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   sign_o <= opa_i(31) xor opb_i(31); 
 
   expa_o<=opa_i(30 downto 23); 
   expb_o<=opb_i(30 downto 23); 
   fracta_24_o <= not(s_opa_dn) & s_fracta; 
       fractb_24_o <= not(s_opb_dn) & s_fractb; 
   ------------------------------signals reqd in postnormalization-----------
----- 
    op_0 <= not(or_reduce(opa_i(30 downto 0)) and or_reduce(opb_i(30 
downto 0))); 
    fracta0<= or_reduce (opa_i(22 downto 0)); 
    fractb0<= or_reduce (opb_i(22 downto 0)); 
  end if; 
 end process; 
  
 -- opa or opb is denormalized 
 s_opa_dn <= not or_reduce(s_expa); 
 s_opb_dn <= not or_reduce(s_expb); 
  
 
 s_expa_in <= ("00"&s_expa) + ("000000000"&s_opa_dn); 
 s_expb_in <= ("00"&s_expb) + ("000000000"&s_opb_dn); 
 
 s_exp_10_o <= s_expa_in + s_expb_in - "0001111111"; 
  
  end rtl; 
 
Multiplier 
 
 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
 
library work; 
use work.fpupack.all; 
 
entity mul_24 is 
 port( 
    clk_i       : in std_logic; 
    fracta_i   : in std_logic_vector(FRAC_WIDTH 
downto 0); -- hidden(1) & fraction(23) 
    fractb_i   : in std_logic_vector(FRAC_WIDTH 
downto 0); 
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    expa_pretomultin    : in 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    expb_pretomultin    : in 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    exp_10_pretomultin   : in 
std_logic_vector(EXP_WIDTH+1 downto 0); 
    
sign_pretomultin,op_0_pretomultin,fracta0_pretomultin,fractb0_pretomultin:in std_logic; 
    fract_o   : out 
std_logic_vector(2*FRAC_WIDTH+1 downto 0); 
    sign_pretomultout    : out std_logic; 
    expa_pretomultout    : out 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    expb_pretomultout    : out 
std_logic_vector(EXP_WIDTH-1 downto 0); 
    op_0_pretomultout,fracta0_pretomultout,fractb0_pretomultout:out 
std_logic; 
    exp_10_pretomultout   : out 
std_logic_vector(EXP_WIDTH+1 downto 0) 
     
    ); 
end mul_24; 
 
architecture rtl of mul_24 is 
 
 
 
signal s_fracta_i, s_fractb_i : std_logic_vector(FRAC_WIDTH downto 0); 
signal s_fract_o: std_logic_vector(2*FRAC_WIDTH+1 downto 0); 
 
signal a_h, a_l, b_h, b_l : std_logic_vector(11 downto 0); 
signal a_h_h, a_h_l, b_h_h, b_h_l, a_l_h, a_l_l, b_l_h, b_l_l : std_logic_vector(5 downto 
0); 
 
type op_6 is array (7 downto 0) of std_logic_vector(5 downto 0); 
type prod_6 is array (3 downto 0) of op_6; 
 
type prod_48 is array (4 downto 0) of std_logic_vector(47 downto 0); 
type sum_24 is array (3 downto 0) of std_logic_vector(23 downto 0); 
 
type a is array (3 downto 0) of std_logic_vector(23 downto 0); 
type prod_24 is array (3 downto 0) of a; 
 
signal prod : prod_6; 
signal sum : sum_24; 
signal prod_a_b : prod_48; 
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signal prod2 : prod_24; 
begin 
 
 
-- Input Register 
  s_fracta_i <= fracta_i; 
  s_fractb_i <= fractb_i; 
    
-- Output Register 
process(clk_i) 
begin 
 if rising_edge(clk_i) then  
  fract_o <= s_fract_o; 
  sign_pretomultout <= sign_pretomultin; 
  expa_pretomultout <= expa_pretomultin; 
  expb_pretomultout <= expb_pretomultin; 
  op_0_pretomultout<=op_0_pretomultin; 
  fracta0_pretomultout<=fracta0_pretomultin; 
  fractb0_pretomultout<=fractb0_pretomultin; 
  exp_10_pretomultout<=exp_10_pretomultin; 
 end if; 
end process; 
 
------------------------------------------------------------------------------ 
--"000000000000" 
-- A = A_h x 2^N + A_l , B = B_h x 2^N + B_l 
-- A x B = A_hxB_hx2^2N + (A_h xB_l + A_lxB_h)2^N + A_lxB_l 
a_h <= s_fracta_i(23 downto 12); 
a_l <= s_fracta_i(11 downto 0); 
b_h <= s_fractb_i(23 downto 12); 
b_l <= s_fractb_i(11 downto 0); 
 
 
 
a_h_h <= a_h(11 downto 6); 
a_h_l <= a_h(5 downto 0); 
b_h_h <= b_h(11 downto 6); 
b_h_l <= b_h(5 downto 0); 
 
a_l_h <= a_l(11 downto 6); 
a_l_l <= a_l(5 downto 0); 
b_l_h <= b_l(11 downto 6); 
b_l_l <= b_l(5 downto 0); 
 
------------------------------------------------------------------------------ 
prod(0)(0) <= a_h_h; prod(0)(1) <= b_h_h; 
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prod(0)(2) <= a_h_h; prod(0)(3) <= b_h_l;  
prod(0)(4) <= a_h_l; prod(0)(5) <= b_h_h; 
prod(0)(6) <= a_h_l; prod(0)(7) <= b_h_l; 
 
 
prod(1)(0) <= a_h_h; prod(1)(1) <= b_l_h; 
prod(1)(2) <= a_h_h; prod(1)(3) <= b_l_l; 
prod(1)(4) <= a_h_l; prod(1)(5) <= b_l_h; 
prod(1)(6) <= a_h_l; prod(1)(7) <= b_l_l; 
 
prod(2)(0) <= a_l_h; prod(2)(1) <= b_h_h; 
prod(2)(2) <= a_l_h; prod(2)(3) <= b_h_l; 
prod(2)(4) <= a_l_l; prod(2)(5) <= b_h_h; 
prod(2)(6) <= a_l_l; prod(2)(7) <= b_h_l; 
 
prod(3)(0) <= a_l_h; prod(3)(1) <= b_l_h; 
prod(3)(2) <= a_l_h; prod(3)(3) <= b_l_l; 
prod(3)(4) <= a_l_l; prod(3)(5) <= b_l_h; 
prod(3)(6) <= a_l_l; prod(3)(7) <= b_l_l; 
 
------------------------------------------------------------------------------- 
      prod2(0)(0) <= (prod(0)(0)*prod(0)(1))&"000000000000";  
  prod2(0)(1) <= "000000"&(prod(0)(2)*prod(0)(3))&"000000"; 
  prod2(0)(2) <= "000000"&(prod(0)(4)*prod(0)(5))&"000000"; 
  prod2(0)(3) <= "000000000000"&(prod(0)(6)*prod(0)(7)); 
   
  prod2(1)(0) <= (prod(1)(0)*prod(1)(1))&"000000000000";  
  prod2(1)(1) <= "000000"&(prod(1)(2)*prod(1)(3))&"000000"; 
  prod2(1)(2) <= "000000"&(prod(1)(4)*prod(1)(5))&"000000"; 
  prod2(1)(3) <= "000000000000"&(prod(1)(6)*prod(1)(7)); 
   
  prod2(2)(0) <= (prod(2)(0)*prod(2)(1))&"000000000000";  
  prod2(2)(1) <= "000000"&(prod(2)(2)*prod(2)(3))&"000000"; 
  prod2(2)(2) <= "000000"&(prod(2)(4)*prod(2)(5))&"000000"; 
  prod2(2)(3) <= "000000000000"&(prod(2)(6)*prod(2)(7)); 
   
  prod2(3)(0) <= (prod(3)(0)*prod(3)(1))&"000000000000";  
  prod2(3)(1) <= "000000"&(prod(3)(2)*prod(3)(3))&"000000"; 
  prod2(3)(2) <= "000000"&(prod(3)(4)*prod(3)(5))&"000000"; 
  prod2(3)(3) <= "000000000000"&(prod(3)(6)*prod(3)(7)); 
  
------------------------------------------------------------------------------ 
 sum(0) <= prod2(0)(0) + prod2(0)(1) + prod2(0)(2) + prod2(0)(3); 
 sum(1) <= prod2(1)(0) + prod2(1)(1) + prod2(1)(2) + prod2(1)(3); 
 sum(2) <= prod2(2)(0) + prod2(2)(1) + prod2(2)(2) + prod2(2)(3); 
 sum(3) <= prod2(3)(0) + prod2(3)(1) + prod2(3)(2) + prod2(3)(3); 
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------------------------------------------------------------------------------ 
 
-- Last stage 
 
 
 prod_a_b(0) <= sum(0)&"000000000000000000000000"; 
 prod_a_b(1) <= "000000000000"&sum(1)&"000000000000"; 
 prod_a_b(2) <= "000000000000"&sum(2)&"000000000000"; 
 prod_a_b(3) <= "000000000000000000000000"&sum(3); 
 
 prod_a_b(4) <= prod_a_b(0) + prod_a_b(1) + prod_a_b(2) + prod_a_b(3); 
------------------------------------------------------------------------------ 
 s_fract_o <= prod_a_b(4); 
 
end rtl; 
 
Postnormalization 
 
library ieee ; 
use ieee.std_logic_1164.all; 
use ieee.std_logic_unsigned.all; 
use ieee.std_logic_misc.all; 
use ieee.std_logic_arith.all; 
 
library work; 
use work.fpupack.all; 
 
entity post_norm_mul is 
 port( 
    clk_i      : in std_logic; 
    expa_multopostin : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
    expb_multopostin : in std_logic_vector(EXP_WIDTH-1 
downto 0); 
    exp_10_i   : in 
std_logic_vector(EXP_WIDTH+1 downto 0); 
    fract_48_i   : in 
std_logic_vector(2*FRAC_WIDTH+1 downto 0); -- hidden(1) & fraction(23) 
    sign_i    : in std_logic; 
    rmode_i      : in std_logic_vector(1 downto 0); 
    op_0_multopostin,fracta0_multopostin,fractb0_multopostin: in 
std_logic; 
    output_o         : out std_logic_vector(FP_WIDTH-1 downto 0); 
    ine_o: out std_logic; 
---------------------------------------------------------------------- 
 sign_rr_out,cmpl_out:out std_logic; 
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 exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
 mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0) 
  ); 
end post_norm_mul; 
 
architecture rtl of post_norm_mul is 
 
signal s_expa1, s_expb1: std_logic_vector(EXP_WIDTH-1 downto 0); 
signal s_exp_10_i : std_logic_vector(EXP_WIDTH+1 downto 0); 
 
signal s_sign_1: std_logic; 
signal s_output_o : std_logic_vector(FP_WIDTH-1 downto 0):=X"00000000"; 
signal s_ine_o, s_overflow : std_logic; 
signal s_rmode_1: std_logic_vector(1 downto 0); 
 
signal s_zeros  : std_logic_vector(5 downto 0); 
signal s_carry  : std_logic; 
signal s_shr2, s_shl2 : std_logic_vector(5 downto 0):="000000"; 
signal s_expo1 : std_logic_vector(8 downto 0); 
signal s_exp_10a, s_exp_10b : std_logic_vector(9 downto 0);  
signal s_frac2a: std_logic_vector(47 downto 0); 
 
signal s_sticky, s_guard, s_round : std_logic; 
signal s_roundup : std_logic; 
signal s_frac_rnd, s_frac3 : std_logic_vector(24 downto 0); 
signal s_shr3 : std_logic; 
signal s_r_zeros1: std_logic_vector(5 downto 0); 
signal s_lost : std_logic; 
signal s_op_0 : std_logic; 
signal s_expo3, s_expo2b : std_logic_vector(8 downto 0); 
 
signal s_infa, s_infb : std_logic; 
signal s_nan_in, s_nan_op, s_nan_a, s_nan_b : std_logic; 
----------------------------------------------------------- 
----pipeline signals----- 
signal s_fract_48_1:std_logic_vector(2*FRAC_WIDTH+1 downto 0); 
signal s_or_a,s_or_b:std_logic; 
----------------------------------------------------------- 
----residual register component----- 
component residualreg is port(sign_rr:in std_logic;exp_rr:in 
std_logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std_logic; 
mant_rr:in std_logic_vector(FRAC_WIDTH+1 downto 0);sign_rr_out:out 
std_logic;exp_rr_out:out std_logic_vector(EXP_WIDTH - 1 downto 0); 
cmpl_out:out std_logic;mant_rr_out:out std_logic_vector(FRAC_WIDTH+1 downto 0)); 
end component; 
----------------------------------------------------------- 
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----residual register signals---- 
signal s_sign_rr,s_sign_rr_out,s_cmpl_in,s_cmpl_out:std_logic; 
signal s_exp_rr,s_exp_rr_out:std_logic_vector(EXP_WIDTH - 1 downto 0); 
signal s_mant_rr_br:std_logic_vector(FRAC_WIDTH-1 downto 0); 
signal s_mant_rr_ar:std_logic_vector(FRAC_WIDTH downto 0); 
signal s_mant_rr_final,s_mant_rr_out:std_logic_vector(FRAC_WIDTH+1 downto 0); 
----------------------------------------------------------- 
 
signal s_r_zeros2: std_logic_vector(5 downto 0); 
signal s_sign_2,s_op_0_2,s_or_a2,s_or_b2:std_logic; 
 
begin 
 
 -- Input Register 
  
   s_expa1 <= expa_multopostin; 
   s_expb1 <= expb_multopostin; 
   s_exp_10_i <= exp_10_i; 
   s_fract_48_1 <= fract_48_i; 
   s_sign_1 <= sign_i; 
   s_rmode_1 <= rmode_i; 
   s_op_0 <= op_0_multopostin; 
   s_or_a <= fracta0_multopostin; 
   s_or_b <= fractb0_multopostin; 
    
--  -- Output Register 
 process(clk_i) 
 begin 
  if rising_edge(clk_i) then  
   output_o <= s_output_o; -- 
   ine_o <= s_ine_o; 
   sign_rr_out<=s_sign_rr_out; 
   cmpl_out<=s_cmpl_out; 
   exp_rr_out<=s_exp_rr_out; 
   mant_rr_out<=s_mant_rr_out; 
  end if; 
 end process;     
   
     s_zeros <= count_l_zeros(s_fract_48_1(46 downto 1)) when 
(s_fract_48_1(47)='0')else "000000"; 
   s_r_zeros1 <= count_r_zeros(s_fract_48_1); 
  
   s_exp_10a <= s_exp_10_i + ("000000000"& s_fract_48_1(47)); 
   s_exp_10b <= s_exp_10_i + ("000000000"& s_fract_48_1(47)) - 
("0000"&s_zeros); 
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     s_carry <= s_fract_48_1(47);   
 
   process(clk_i) 
 variable v_shr1, v_shl1 : std_logic_vector(9 downto 0);  
 begin 
 if rising_edge(clk_i) then 
  if s_exp_10a(9)='1' or s_exp_10a="0000000000" then 
   v_shr1 := "0000000001" - s_exp_10a + ("000000000"&s_carry); 
   v_shl1 := (others =>'0'); 
   s_expo1 <= "000000001"; 
  else 
   if s_exp_10b(9)='1' or s_exp_10b="0000000000" then 
    v_shr1 := (others =>'0'); 
    v_shl1 := ("0000"&s_zeros) - s_exp_10a; 
    s_expo1 <= "000000001"; 
   elsif s_exp_10b(8)='1' then 
    v_shr1 := (others =>'0'); 
    v_shl1 := (others =>'0'); 
    s_expo1 <= "011111111"; 
   else 
    v_shr1 := ("000000000"&s_carry); 
    v_shl1 := ("0000"&s_zeros); 
    s_expo1 <= s_exp_10b(8 downto 0); 
   end if; 
  end if; 
  if  v_shr1(6)='1' then --"110000" = 48; maximal shift-right postions 
       s_shr2 <= "111111"; 
    else  
      s_shr2 <= v_shr1(5 downto 0); 
  end if; 
 
  s_shl2 <= v_shl1(5 downto 0); 
 
  end if;   
 end process;  
-- *** Stage 2 *** 
     
 process(clk_i) 
 begin 
 if(rising_edge(clk_i))then 
 if(s_shr2 /= "000000")then 
 s_frac2a <= shr(s_fract_48_1, s_shr2); 
 elsif(s_shl2 /= "000000")then 
   s_frac2a <= shl(s_fract_48_1, s_shl2);             
 else 
 s_frac2a <= s_fract_48_1; 
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 end if; 
 end if; 
 end process; 
  
 
  
  
 -- signals if precision was last during the right-shift above 
 s_lost <= '1' when (s_shr2+("00000"&s_shr3)) > s_r_zeros1 else '0';  
 -- ***Stage 3*** 
 -- Rounding 
 --           23 
 --         |  
 --    xx00000000000000000000000grsxxxxxxxxxxxxxxxxxxxx 
 -- guard bit: s_frac2a(23) (LSB of output) 
   -- round bit: s_frac2a(22) 
 s_guard <= s_frac2a(22); 
 s_round <= s_frac2a(21); 
 s_sticky <= or_reduce(s_frac2a(20 downto 0)) or s_lost; 
  
 s_roundup <= s_guard and ((s_round or s_sticky)or s_frac2a(23)) when 
s_rmode_1="00" else -- round to nearset even 
       (s_guard or s_round or s_sticky) and (not s_sign_1) when 
s_rmode_1="10" else -- round up 
       (s_guard or s_round or s_sticky) and (s_sign_1) when 
s_rmode_1="11" else -- round down 
       '0'; -- round to zero(truncate = no rounding)  
  
    
 s_mant_rr_br<= s_frac2a(22 downto 0);    -- before rounding 
  
 process(clk_i) 
 begin 
 if(rising_edge(clk_i))then  
   s_r_zeros2<=s_r_zeros1; 
 s_sign_2<=s_sign_1; 
 s_op_0_2<=s_op_0; 
 s_or_a2<=s_or_a; 
 s_or_b2<=s_or_b; 
 end if; 
 end process; 
 
   s_frac_rnd <= (s_frac2a(47 downto 23)) + "1" when(s_roundup='1')else s_frac2a(47 
downto 23); 
 s_expo2b <= s_expo1 - "000000001" when s_frac2a(46)='0' else s_expo1;  
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   s_shr3 <= s_frac_rnd(24);  
  
  
 s_frac3 <= ("0"&s_frac_rnd(24 downto 1))when(s_shr3='1' and s_expo2b /= 
"011111111")else s_frac_rnd; 
 s_expo3 <= s_expo2b + '1' when(s_shr3='1' and s_expo2b /= "011111111")else 
s_expo2b; 
    
 s_mant_rr_ar<= (s_frac_rnd(0) & s_mant_rr_br) when(s_shr3='1' and s_expo2b 
/= "011111111")else ('0' & s_mant_rr_br); 
     
   
 ---***Stage 4**** 
 -- Output 
   
  
  
 s_infa <= '1' when s_expa1="11111111"  else '0'; 
 s_infb <= '1' when s_expb1="11111111"  else '0'; 
 
 s_nan_a  <= '1' when (s_infa='1' and s_or_a2='1') else '0'; 
 s_nan_b  <= '1' when (s_infb='1' and s_or_b2='1') else '0'; 
 s_nan_in <= '1' when s_nan_a='1' or  s_nan_b='1' else '0'; 
 s_nan_op <= '1' when (s_infa or s_infb)='1' and s_op_0_2='1' else '0';-- 0 * inf = 
nan 
 
 s_overflow <= '1' when s_expo3 = "011111111" and (s_infa or s_infb)='0' else '0'; 
 s_ine_o    <= '1' when s_op_0_2='0' and (s_lost or s_or_a2 or s_overflow)='1' else 
'0'; 
  
 process(s_sign_2, s_expo3, s_frac3, s_nan_in, s_nan_op, s_infa, s_infb, 
s_overflow, s_r_zeros2) 
 begin 
  if (s_nan_in or s_nan_op)='1' then 
      s_output_o <= s_sign_2 & QNAN; 
  elsif (s_infa or s_infb)='1' or s_overflow='1' then 
    s_output_o <= s_sign_2 & INF;  
  elsif s_r_zeros1=48 then 
    s_output_o <= s_sign_2 & ZERO_VECTOR;  
  
  else 
    s_output_o <= s_sign_2 & s_expo3(7 downto 0) & 
s_frac3(22 downto 0); 
  end if; 
 end process; 
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 s_sign_rr<= s_sign_1 xor s_roundup; 
 s_cmpl_in<= s_roundup; 
  
 s_exp_rr<= conv_std_logic_vector(conv_integer(s_expo3(7 downto 0) -
(FRAC_WIDTH+1)),8); 
  
--residual register added---- 
    
s_mant_rr_final<=('0' & not(s_mant_rr_ar))when((s_shr3='1')and(s_cmpl_in='1'))else 
                 ("00" & not(s_mant_rr_ar(22 downto 
0)))when((s_shr3='0')and(s_cmpl_in='1'))else 
                 ('0' & s_mant_rr_ar);      
    
rreg:residualreg port 
map(s_sign_rr,s_exp_rr,s_cmpl_in,s_mant_rr_final,s_sign_rr_out,s_exp_rr_out,s_cmpl_o
ut,s_mant_rr_out);   
      
end rtl; 
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