ABSTRACT OF THESIS

HDL IMPLEMENTATION AND ANALYSIS OF A RESIDUAL REGISTER FOR A
FLOATING-POINT ARITHMETIC UNIT

Processors used in lower-end scientific applications like graphic cards and video game
consoles have IEEE single precision floating-point hardware [23]. Double precision
offers higher precision at higher implementation cost and lower performance. The need
for high precision computations in these applications is not enough to justify the use
double precision hardware and the extra hardware complexity needed [23]. Native-pair
arithmetic offers an interesting and feasible solution to this problem. This technique
invented by T. J. Dekker uses single-length floating-point numbers to represent higher
precision floating-point numbers [3]. Native-pair arithmetic has been proposed by Dr.
William R. Dieter and Dr. Henry G. Dietz to achieve better accuracy using standard IEEE
single precision floating point hardware [1]. Native-pair arithmetic results in better
accuracy however it decreases the performance by 11x and 17x for addition and
multiplication respectively [2]. The proposed implementation uses a residual register to
store the error residual term [2]. This addition is not only cost efficient but also results in
acceptable accuracy with 10 times the performance of 64-bit hardware. This thesis
demonstrates the implementation of a 32-bit floating-point unit with residual register and

estimates the hardware cost and performance.

Keywords: Native-pair floating-point unit residual VHDL

HDL IMPLEMENTATION AND ANALYSIS OF A RESIDUAL REGISTER FOR
A FLOATING-POINT ARITHMETIC UNIT

BY

Akil Kaveti

Dr. William R. Dieter

Director of Thesis

Dr. YuMing Zhang

Director of Graduate Studies

March 25, 2008

Rules for the use of theses

Unpublished theses submitted for the Master’s degree and deposited in the University of
Kentucky Library are as a rule open for inspection, but are to be used only with due
regard to rights of the authors. Bibliographical references may be noted, but quotations or
summaries of parts may be published only with the permission of the author, and with the

usual scholarly acknowledgements.

Extensive copying or publication of the thesis in whole or in part also requires the
consent of the Dean of the Graduate School of the University of Kentucky.

A Library that borrows this thesis for use by its patrons is expected to secure the
signature of each user.

Name Date

THESIS

Akil Kaveti

The Graduate School
University Of Kentucky
2008

HDL IMPLEMENTATION AND ANALYSIS OF A RESIDUAL REGISTER FOR
A FLOATING-POINT ARITHMETIC UNIT

MASTERS THESIS

A thesis submitted in partial fulfillment of the
requirements for the degree of Master of Science in
Electrical Engineering at the University of Kentucky
By
Akil Kaveti
Lexington, Kentucky
Director of Thesis: Dr. William Dieter
Electrical Engineering, University of Kentucky,
Lexington, Kentucky
2008
Copyright © Akil Kaveti 2008

ACKNOWLEDGEMENTS

Foremost I would like to thank my advisor, Dr. William R. Dieter for providing me the
opportunity to do this thesis. I am grateful to him for his constant guidance and support. |
would also like to thank Dr. Hank Dietz for his suggestions which have helped in

improving this thesis.

I would like to thank my Candy for being such a wonderful person and for motivating me

time and again.

Most importantly I would like to thank my parents for their love and support I dedicate

my thesis to them.

il

Table of Contents

ACKNOWLEDGEMENTS ...ttt e e e eeeaaa e e e e e e e eeanees i
Table Of CONTENTS ... \Y
LISt Of FIQUIES ettt e e e e e e ettt e e e e e e eeeeennnnns Vi
LIST OF TADIES .ot e e e vii
LIST OF FIlES et e e a e e e e viii
Chapter 1. INtrodUCTION ..uvueei e 1
1.1. Computer Representation of Real NUMDETScccveevviieiiiiiieiiieiiecieeeeee e 1
1.2. Hardware Assistance of Native-Pair..........ccoceiiiiiiiiiiiiiiiiieeceece e 3
1.3. ThesiS OrganizZationc.eecueerieeriienieeitienteeieeseeeteeseeeesseesseeeseessresseesseeenseesssesses 4
Chapter 2. BaCKgIrOUNGoiiiieiceeeeeee et e e e e e e enanaan s 6
2.1. IEEE 754 Floating-point Standardccccceerieeiiieniieiienie e 6
2.2. IEEE 754 Floating-point ATithmMetiC.........cceevieriiierieeiieiie ettt 12
2.3. History of Double-Double ArithmetiCcccueecuieriiiiiieiiieiieeieeeeeie e 16
2.4. The Residual REZISTETcccuuiiiiiiiiiiiieeie ettt ettt et 18
2.5. Native-pair Addition and Subtraction..........c..cccceeveerieririiniieneiieneereeeeecse e 20
2.6. Native-pair MUultipliCationcceoiiuieiiiiiiienie ettt 25
Chapter 3. Native-pair Floating-point Unit........cccccvviviiiiiiiiiiiiiiiiiiiiiieeeeeeeee, 30
3.1. Native Floating-Point Addition/Subtraction..........c.cceccevuereereeiiinienenieneeneeenenne 30
3.2. Native Floating-Point Multiplication.............coccueeiiieriieiiiiiiieieceeeeee e 34
3.3. Native-pair Floating-point Addition/sSubtractionccceeecveeerieeerieeeriee e 37
3.4. Native-pair Floating-point Multiplication............cccceeveeriiiiiriieeniie e 43
3.5. Debug@ing FPU UNIE ...cccciiiiiiiciieceeee ettt ite e et e et esaeeesnnae e 45
R I T B 11010 (1RO UURUUSRRURR 50
Chapter 4. Testing and RESUILSuuuiiiiiiiiieiie e 70
Chapter 5. Estimation of Hardware Cost and Performance............ccccc......... 71
5.1. Adder Implementationc.cecuieriiiiieniieieeeie et eiee et eeee et eebeeseeeeeseessee e 71
5.2. Multiplier Implementation............cccueeriieiiienieeiiienie et eiee e e sieeereeseeeeseeeeseeseees 73
CONCIUSTON et e et e e e e e et reeaeeeaans 76

v

AP PENAIX A ittt e e e e e e e e e e e aaaaaaaana_ 78

POSt-route SIMUIALIONS. ...c..eetieiiiiieiieie ettt et e 78
APPENTIX B ..t a e e e e e 83
High-1evel SChemMAtICSooouiieiieiiieiiecie ettt et e s esaae e 83
VHDL SOUICE COUEcuiiiiiniiiiiiiieieiiteste ettt ettt ettt sb et e b 90
REFEIENCES ...t e e 142
4L PP 144

List of Figures

Figure 1. Number line showing the ranges of single-precision denormalized and

normalized floating-point numbers in binary System.c.cccceeevvverveernienvennnnns 8
Figure 2. Ranges of overflow and underflow for single-precision floating-point numbers
.. 10
Figure 3. Basic floating-point addition algorithm...............ccoooiiiiiiiiniiiie e 13
Figure 4. Basic Floating-point multiplication algorithmccccoiiiiiiniiiiiie, 15
Figure 5. Residual T@@IStErcccuiiiiiiiiiiiiieeiiee ettt ettt ens 19
Figure 6. Native-pair addition data flow, conventional and residual algorithms. 25
Figure 7. Native-pair multiplication data flow, conventional and residual algorithms 29
Figure 8. Prenormalization unit for Floating-point addition.............c.cceeeieiiinienninnnn. 31
Figure 9. Addition unit for Floating-point additionccccceceeverviniiniiiinicneeicnienee 32
Figure 10. Postnormalization unit for Floating-point addition.ccccceevvierieenirennnnnn. 34
Figure 11. Prenormalization unit in floating-point multiplication.............c.ccccvveervreenen.. 35
Figure 12. Multiplication unit for Floating-point multiplication..............cccceeevvereveeennen.. 36
Figure 13. Postnormalization unit for Floating-point multiplication..........c.cceccvcveveennenn 37
Figure 14. Prenormalization unit for Native-pair Addition using Residual register......... 38
Figure 15. Postnormalization unit for Native-pair addition with Residual register.......... 41
Figure 16. Postnormalization unit for Native-pair multiplication with Residual register 43
Figure 17. Floating point arithmetic unit pipelingccceeeveeviieniiienieniieiecie e 46
Figure 18: High-level schematic of FPU Adderccccooviieiiiiiieiiiiieeieeiece e 83
Figure 19. High-level schematic Prenormalization unit used in Floating-point addition.84
Figure 20. High-level schematic of Addition unit used in Floating-point addition......... 85
Figure 21. High-level schematic of Postnormalization Unit used in Floating-point
T (4 11 T0) 1 LTRSS PSP 86
Figure 22. High-level schematic of Residual register used in prenormalization and
POSTNOTMALIZALION. ... eeentieeiiieiieeiie ettt ettt ettt e et esteesbeenaeaens 86
Figure 23. High-level schematic of FPU multiplier..............ccccoovieiiiiinieniieieeiecee e 87
Figure 24. High-level schematic of Prenormalization unit for Multiplier........................ 88
Figure 25. High-level schematic of Multiplier Unit...........cccoeecvveeveiieeniieeeniie e, 88
Figure 26. High-level schematic of Postnormalization for Multiplier.............c.ccccvenne... 89

vi

List of Tables

Table 1. Layouts for single and double precision numbers in IEEE 754 format................ 7
Table 2. Representation of single-precision binary floating-point numbers 9
Table 3. Different cases for sign and complement flag of residual register 20
Table 4. Cases for complement flags and signs of residual register............cccceeerveneennenn 25
Table 5. Addition or subtraction cases based on opcode and signs of the operands 33
Table 6. Comparison of Implementation cost and delay for Adders.........c.cccoeviirienncnnn 71
Table 7. Comparison of device utilization reports of Prenormalization unit for 32-bit FPU
adder with and without residual register hardwareccccoeeeeiiiciiinienneenen. 72
Table 8. Comparison of device utilization reports of Postnormalization unit for 32-bit
FPU adder with and without residual register hardwarec.ccocevveeevieennnnn. 73
Table 9. Comparison of Implementation cost and delay of Multipliersc.cccoceevueenene 74

Table 10. Comparison of device utilization reports of Postnormalization unit for 32-bit
FPU multiplier with and without residual register hardwarec.cccceee. 75

vii

List of Files

Name of figure Type | Size | Page
(KB)
Figure 6. Native-pair addition data flow, conventional and residual | .vsd | 50 25
algorithms.
Figure 7. Native-pair multiplication data flow, conventional and .vsd | 60 29
residual algorithms.
Figure 8. Prenormalization unit for Floating-point addition vsd | 114 |31
Figure 9. Addition unit for Floating-point addition .vsd | 96 32
Figure 10. Postnormalization unit for Floating-point addition. .vsd | 107 |34
Figure 11. Prenormalization unit in floating-point multiplication .vsd | 85 35
Figure 12. Multiplication unit for Floating-point multiplication .vsd | 50 36
Figure 13. Postnormalization unit for Floating-point multiplication | .vsd | 113 | 37
Figure 14. Prenormalization unit for Native-pair Addition using vsd | 122 |38
Residual register
Figure 15. Postnormalization unit for Native-pair addition with vsd | 152 |41
Residual register
Figure 16. Postnormalization unit for Native-pair multiplication vsd | 113 |43
with Residual register
Figure 17. Floating point arithmetic unit pipeline vsd | 64 46
Addition testbenchwave pdf | 130 |90
Additionwavel pdf |71 93
Additionwave?2 pdf | 69 97
Fpumultfinal 1 pdf |32 103
Fpumultfinal2 pdf | 44 104

vil

Chapter 1. Introduction

This chapter briefly introduces all the topics that will be encountered and described in the
later parts of the thesis. It starts by giving the reason for using floating-point numbers in
computation. It discusses the floating-point arithmetic, cost involved in implementing
higher precision than the existing floating-point hardware, native-pair arithmetic and its
usage for better precision and accuracy, performance-cost factor in native-pair arithmetic
and extra hardware support to improve the performance-cost factor. This chapter ends
with the author’s motivation to work on native-pair Floating-point Arithmetic unit and

the organization of the thesis.

1.1. Computer Representation of Real Numbers

Real numbers may be described as numbers that can represent a number with infinite
precision and are used to measure continuous quantities. Almost all computations in
Physics, Chemistry, Mathematics or scientific computations, all involve operations using
real numbers. Computers can only approximate real numbers, most commonly
represented as fixed-point and floating-point numbers. In a Fixed-point representation, a
real number is represented by a fixed number of digits before and after the radix point.
Since the radix point is fixed, the range of fixed-point also is limited. Due to this fixed
window of representation, it can represent very small numbers or very large numbers
accurately within the available range. A better way of representing real numbers is
floating-point representation. Floating-point numbers represent real numbers in scientific
notation. They employ a sort of a sliding window of precision or number of digits
suitable to the scale of a particular number and hence can represent of a much wider
range of values accurately. Floating-point representation has a complex encoding scheme
with three basic components: mantissa, exponent and sign. Usage of binary numeration
and powers of 2 resulted in floating point numbers being represented as single precision
(32-bit) and double precision (64-bit) floating point numbers. Both single and double
precision numbers are defined by the IEEE 754 standard. According to the standard, a

single precision number has one sign bit, 8 exponent bits and 23 mantissa bits where as a

double precision number comprises of one sign bit, 11 exponent bits and 52 mantissa bits.

Most processors designed for consumer applications, such as Graphical Processing Units
(GPUs) and CELL processors promise and deliver outstanding floating point
performance for scientific applications while using the single precision floating point
arithmetic hardware [23][6]. Video games rarely require higher accuracy in floating-point
operations, the high cost of extra hardware needed in their implementation is not
justified. The hardware cost of a higher precision arithmetic is lot greater than single-
precision arithmetic. For example, one double precision or 64-bit floating point pipeline
has approximately same cost as two to four 32-bit floating-point pipelines [1]. Most
applications use 64-bit floating point to avoid losing precision in a long sequence of
operations used in the computation, even though the final result may not be accurate to
more than 32-bit precision. The extra precision is used so the application developer does
not have to worry about having enough precision. Native-pair arithmetic presents an
opportunity to increase the accuracy of a single-precision or 32-bit floating-point
arithmetic without incurring the high expense of a double-precision or 64-bit floating-
point arithmetic implementation. Native-pair arithmetic uses two native floating-point
numbers to represent the base result and the resulting error residual term that would have
been discarded in a native floating point unit [23]. One native floating-point number is
represented using two native floating-point numbers. This approach has been adapted
from an earlier technique known as double-double arithmetic. Double-double arithmetic
is the special case of native-pair arithmetic using two 64-bit double precision floating
point numbers to represent one variable; the first floating-point number representing the
leading digits and the second the trailing digits [17]. Similarly in Native-pair arithmetic,
two 32-bit floating-point numbers are used to represent high and low terms where low
component encodes the residual error from high component representation. Though this
implementation results in higher accuracy without external hardware, it also degrades in

performance [2].

1.2. Hardware Assistance of Native-Pair

In order to obtain acceptable accuracy with less performance loss, addition of simple
micro-architectural hardware is needed. Dieter and Dietz proposed a residual register to
hold discarded information after each floating-point computation [2]. This feature not
only reduces the performance cost of native-pair arithmetic but also provides lower
latency and better instruction-level parallelism. A residual register has one sign bit, 8
exponent bits and 25 mantissa bits [23]. The usage of the residual register depends on

what operation is being performed and at what stage or stages are the bits being

discarded.

The most widely used floating-point standard is the IEEE 754 standard. The IEEE 754
standard prescribes a particular format for representing floating-point numbers in binary
system, special floating-point numbers, rounding modes, exceptions and how to handle
them. Floating-point operations such as addition, multiplication, division and square root
have three stages viz., prenormalization, arithmetic unit and postnormalization. In the
case of addition and subtraction, prenormalization increases or decreases the exponent
part to align the mantissa parts, calculates the sign bit of the final result. The arithmetic
unit does the basic arithmetic involving the mantissa bits. The result may not be in the
appropriate format, so it is sent into the postnormalization unit. It is in the
postnormalization that the result from previous stage is aligned to the IEEE 754 format,
rounded depending on the rounding mode and the number with its sign, exponent and

mantissa bits is given as the final result.

This thesis aims to prove that residual register hardware with minimal increase in
hardware cost results in accuracy close to double-precision and hence is the more
economically feasible solution for higher precision arithmetic than the double-precision
hardware. Native-pair arithmetic presents an opportunity for more accurate and precise
floating-point processing, but it also results in a decrease in performance and increase in
implementation cost when compared with the single precision or 32-bit floating-point

hardware [23]. The usage of residual register as the extra hardware for storing the error

residual term in native-pair arithmetic gives an implementation which has a slight
increase in hardware cost coupled with performance close to that of single precision
hardware [23]. Floating point arithmetic unit with residual register is implemented and its
hardware utilization, maximum operable frequency is compared with the 32-bit and 64-
bit floating-point arithmetic unit implementations. The main idea is to find the extra
hardware cost and the performance drop resulting due to the residual register usage,
moving the discarded bits into it, updating the residual register if bits are discarded more
than once and also setting the sign and exponent of the residual register. The
implemented floating-point unit uses the residual register with addition, subtraction and
multiplication. The extra hardware needed accounted to an increase of 18% in adder and
12% in multiplier. A minimum period increase of 19% for adder and 12% for multiplier
also resulted due to addition of extra hardware in the critical path. The divide and the

square root portions of the floating-point unit are left unchanged.

A floating-point unit coded in VHDL was adopted for the purpose of developing a
Native-pair Floating point unit from it [19]. The initial part of this thesis was to debug the
code and make it fully pipelined to generate outputs on continuous clock cycles. Signals
were added to carry the input operands and the intermediate outputs through the pipeline
to wherever needed. Those signals which were present in the final stages and required
input operands to be set have been moved to starting stage in order to eliminate the need
to carry input operands. The Native-pair floating point unit is implemented by adding the
residual register hardware to the debugged native floating point unit. The debugged code
is a single precision or 32-bit floating point unit and was scaled to serve as a 64-bit
floating point unit. The synthesis reports for the three implementations viz., 32-bit
version, native-pair version or 32-bit with residual register and 64-bit version were
obtained using Xilinx 9.1 ISE tool and a comparison of their resource utilizations and

minimum periods is obtained.

1.3. Thesis Organization
In Chapter 2 forms the background of this thesis. It discusses in detail the IEEE 754
floating-point arithmetic standard, IEEE 754 floating-point addition/subtraction,

multiplication, Native-pair arithmetic, Native-pair arithmetic algorithms. Chapter 3

describes the working of 32-bit floating-point unit and native-pair floating-point unit with
residual register. The different components of a floating-point unit are discussed in this
chapter. Also covered in this chapter is where the residual register is added, how it is set
or updated, when it is complemented and how its sign is set, usage of the MOVRR
instruction. Chapter 4 describes how the Native-pair floating-point unit is tested. This
chapter covers the test- benches used to test the implementation. Chapter 5 consists of the
post map and route simulation reports, synthesis reports of native-pair floating point unit,

32-bit floating point unit and 64-bit floating point unit.

Chapter 6 compares the synthesis reports, provides a more detailed analysis of the
implementation. Chapter 7 concludes the thesis and discusses the avenue for future

research.

Chapter 2. Background

Hardware supporting different floating-point precisions and various formats have been
adopted over the years. Amongst the earliest programmable and fully automatic
computing machines, the Z3 built of relays and performed calculations using 22-bit word
lengths in binary floating-point arithmetic [21]. The first commercial computer
supporting floating-point, the Z4, had floating point hardware that supported 32-bit word
length comprising of 7 bit exponent, 1 sign bit and 24 mantissa bits [22]. The second one
was the IBM 704 in 1954 whose floating point hardware supported a format consisting of
1 sign bit, 8-bit exponent and 29-bit magnitude. IBM considered the 704 format as single
precision and later in the IBM 7094 double precision was introduced which had a sign
bit, 17-bit exponent and 54-bit magnitude [20]. The DEC - Digital Equipment
Corporation’s PDP 11/45 had an optional floating point processor. This processor is
considered a predecessor to the IEEE 754 standard as it had a similar single precision
format. The NorthStar FPB-A was a S100 bus floating point microprogram controlled
processor, built on medium and small scale TTL parts and PROM memories to perform
high speed decimal floating point arithmetic operations. It supported 2, 4, 6, 8, 10, 12, 14
digit precision and 7-bit base-10 exponent [25] [23]. The MASPAR MP1 supercomputer
performed floating point operations using 4-bit slice operations on the mantissa with

special normalization hardware and supported 32-bit and 64-bit IEEE 754 formats.

The CELL processor, most DSPs and GPUs support the IEEE 32-bit format. The Intel
X87 floating point mechanism allows 32-bit, 64-bit and 80-bit operands but processes
these operands using an 80-bit pipeline [23] [6] [7]. The standardization of IEEE 754
floating point standard in 1985 has greatly improved the portability of floating-point
programs. This standard has been widely accepted and is used by most processors built

since 1985.

2.1. IEEE 754 Floating-point standard
The IEEE 754 floating-point standard is the most widely used standard for floating-point
computations and is followed in most of the CPU and FPU (Floating point unit)

implementations. The standard defines a format for floating-point numbers, special

numbers such as the infinite’s and NAN'’s, a set of floating-point operations, the rounding
modes and five exceptions. IEEE 754 specifies four formats of representation: single-
precision (32-bit), double-precision (64-bit), single extended (> 43 bits) and double

extended precisions (> 79 bits).

Under this standard, the floating point numbers have three components: a sign, an
exponent and a mantissa. The mantissa has an implicit hidden leading hidden bit and the
rest are fraction bits. The most used formats described by this standard are the single-
precision and the double-precision floating-point number formats which are shown in
Table 1. In each cell the first number indicates the number of bits used to represent each
component, and the numbers in square brackets specify bit positions reserved for each

component in the single-precision and double—precision numbers.

Table 1. Layouts for single and double precision numbers in IEEE 754 format.

Format Sign Exponent Fraction / Mantissa Bias
Single-precision 1[31] 8 [30—23] 23 [22-0] 127
Double-precision 1[63] 11 [62 - 52] 52 [51 - 0] 1023

The Sign bit: A sign bit value of 0 is used to represent positive numbers and 1 is used to

represent negative numbers

The Exponent: The exponent field has 8 bits in single-precision and 11 bits in double—
precision. The value is stored in unsigned format and a bias is added to the actual
exponent to get the stored exponent. For single-precision, the bias value is 127 and for
double-precision it is 1023. Actual exponent = stored exponent — 127 for single-precision
and it is equal to stored exponent — 1023 for double-precision. Denormalized numbers
and zero have all zeroes in the exponent field. The infinite and Not a number values have
all one’s in the exponent field. The range of the exponent for single precision is from -

126 to +127 and for double-precision it is -1022 to +1023.

The Mantissa: Apart from the sign and the exponent a floating-point number also has a

magnitude part which is represented by the mantissa field. For single-precision the

number of mantissa bits is 23 and for double-precision it is 52. Each mantissa has a
hidden bit which is not shown when the floating-point is represented in the IEEE format.
This is because all the floating-point numbers are adjusted to have this hidden bit equal to
1 and so the fact that hidden bit is 1 is understood and so is not specified explicitly.

Denormalized numbers have the hidden bit set to zero.

In general, floating-point numbers are stored in normalized form. This puts the radix
point after the first non-zero digit. In normalized form, six is represented as + 6.0 x 10°.
In binary floating-point number representation, the radix point is placed after a leading 1.
In this form six is represented as + 1.10 x 2% In general, a normalized floating-point
number is represented as + 1. /% 2°. There is an implicit leading hidden 1 before the radix
point and 23 visible bits after the radix point. The value of the IEEE 754 32-bit floating
point number can be computed from the sign bit (s), 8-bit biased exponent field (e), and

23-bit fraction field (f) and arranging them as follows: Value = (-1)°2 "% x L.f

When a nonzero number is being normalized, the mantissa is shifted left or right. Each
time a left shift is performed, the exponent is decremented. In case the minimum
exponent is reached but further reduction is still required, then the exponent value is
taken 0 after biasing, such a number is a denormalized number. Hence a number having
zeroes in its exponent field and at least a single 1 in its mantissa part is said to be a
denormalized number. The IEEE 754 standard represents the denormalized number as

follows:Value = (-1)°27%° x 0.f

_(2- 2—23)X2127 _2-126 _(1_ 2-23)X2—126 _2-149 0 2-149 (1_ 2-23)X2—126 2—126 (2_2-23)X2127

Negative Negative Zero Positive Positive

Normalized Denormalized Denormalized Normalized

Figure 1. Number line showing the ranges of single-precision denormalized and
normalized floating-point numbers in binary system.

Table 2. Representation of single-precision binary floating-point numbers

Sign Exponent Mantissa Value
0 00000000 00000000000000000000000 +0
1 00000000 00000000000000000000000 -0
0 11111111 00000000000000000000000 400
1 11111111 00000000000000000000000 —00
0 00000000 00000000000000000000001 Positive Denormalized
floating-point numbers
to
Tttt
1 00000000 00000000000000000000001 Negative Denormalized
floating-point numbers
to
LTITTITT11 1111111111111
0 00000001 XXXXXXXXXXXXXXXXXXXXXXX | Positive Normalized floating-
point numbers
to
11111110
1 00000001 XXXXXXXXXXXXXXXXXXXXXXX | Negative Normalized floating-
point numbers
to
11111110
0/1 11111111 10000000000000000000000 | QNaN - Quiet Not a Number
to
Tttt
0/1 11111111 00000000000000000000001 SNaN — Signaling Not a
Number
To
OITIT1I1111111111111111
Exceptions

IEEE 754 floating-point standard defines five exceptions that are generally signaled using

a separate flag. They are as follows:

Invalid Operation: Some operations like divide by zero, square root of a negative
number or addition and subtraction from infinite values are invalid. The result of
such invalid operation is NaN — Not a Number. NaNs are of two types: QNaNs, or
Quiet NaNs, and SNaNs or signaling NaNs. Their formats are shown in table 2.

The result of an invalid operation will result be a QNaN with a QNaN or SNaN
exception. The SNaN can never be the result of any operation, only its exception
can be signaled and this happens whenever one of the operands to a floating-point
operation is SNaN. The SNaN exception can be used to signal operations with
uninitialized operands, if we set the uninitialized operands to SNaN. The usage of

SNaN is not subject to the IEEE 754 standard.

Inexact: This exception is signaled when the result of an arithmetic operation
cannot be represented due to restricted exponent range or mantissa precision

Underflow: Two events cause that underflow exception to be signaled are tininess
and loss of accuracy. Tininess is detected after or before rounding when a result

lies between +27'%6

. Loss of accuracy is detected when the result is simply inexact
or only when a denormalization loss occurs.

Overflow: The overflow exception is signaled whenever the result exceeds the
maximum value that can be represented due to the restricted exponent range. It is
not signaled when one of the operands is infinity, because infinity arithmetic is

always exact.

_ (2_ 2—23) X 2127 _2-126 O 2—126 (2- 2—23)X2127

<4—

— «— —

Negative Negative Zero Positive Positive
Overflow underflow underflow overflow

Figure 2. Ranges of overflow and underflow for single-precision floating-point

numbers

10

Rounding modes

Precision is not infinite and sometimes rounding a result is necessary. To increase the
precision of the result and to enable round-to-nearest-even rounding mode, three bits are
added internally and temporally to the actual fraction: guard, round, and sticky bit. While
guard and round bits are normal storage holders, the sticky bit is turned ‘1’ whenever a

‘1’ is shifted out of range.

As an example we take a 5-bit binary number: 1.1001. If we left-shift the number four
positions, the number will be 0.0001, no rounding is possible and the result will not be
accurate. Now, let’s say we add the three extra bits. After left-shifting the number four
positions, the number will be 0.0001 101 (remember, the last bit is ‘1’ because a ‘1’ was
shifted out). If we round it back to 5-bits it will yield: 0.0010, giving a more accurate

result.

The four specified rounding modes are:

1. Round to nearest even: This is the default rounding mode. The value is rounded to
the nearest representable number. If the value is exactly halfway between two
infinitely precise results or between two representable numbers, then it is rounded
to the nearest infinitely precise even number. For example, in one digit base-10
floating-point arithmetic, 3.4 will be rounded to 3, 5.6 to 6, 3.5 to 4 and 2.5 to 2.

2. Round to zero: In this mode, the excess bits will simply get truncated. For
example, in two digit base-10 floating-point arithmetic, 3.47 will be truncated to
3.4, and -3.47 will be rounded to -3.4.

3. Round up: In round up mode, a number will be rounded towards +oo. For
example, 3.2 will be rounded to 4, while -3.2 to -3.

4. Round down: The opposite of round-up, a number will be rounded towards —co.

For example, 3.2 will be rounded to 3 while -3.2 to -4.

11

2.2. IEEE 754 Floating-point Arithmetic
The IEEE 754 standard apart from specifying the representation format, the rounding
modes and the exceptions also defines the basic operations that can be performed on

floating-point numbers.
The Floating-point addition requires the following steps:

1. Aligning the mantissa’s to make the exponent of the two operands equal and
calculating the sign based on two operands. This exponent becomes the output

exponent unless it is changed in the Step 3.
2. The mantissa bits are added or subtracted depending on the signs of the operands.

3. The result from the addition has to be rounded and normalized in order to
represent it correctly within the IEEE 754 floating-point format. These three steps
are implemented in the floating-point unit three pipeline stages labeled
prenormalization, addition unit and postnormalization. The three stages are
explained in detail in Chapter 3. Subtraction is the same as addition except that

the sign of the subtrahend is inverted before adding the two operands.
Floating-point multiplication also involves three steps:

1. Prenormalization: Multiplication does not require alignment of mantissa in order
to make the exponents of the operands equal. In multiplication, the exponents are
added and the mantissa bits are transferred to the multiplication stage. The sign of

the product is also calculated in this stage.

2. Multiplication: In this stage, the mantissa bits are multiplied using a
multiplication algorithm. The product has twice as many mantissa bits as the

multiplicands.

3. Postnormalization: The result from the multiplication is rounded and normalized
to represent in the given precision format while updating the output exponent

when required.

12

Figure 3 shows the basic algorithm for addition or subtraction of two floating-point

numbers.

Operand a= sign,, e,, frac,

Operand b= sign,, e, fracy

YES NO
ey, > €p
L \ 4
e, = e, er = €p
€s = €p s = €5
frac, = frac, frac;, = fracy

Diff = e; — €Eg

v

Right shift fracs by piff bits

ep = €

frac, = fracs +/- fracs

v

Calculate sign,, Round frac, [

YES
Signal Exception \ <

Mttt — NTaNT

Exception

Occurred?

Output = sign,, e,, fra hl Normalize

Figure 3. Basic floating-point addition algorithm

13

Consider a simple example for addition of two floating-point numbers:
Let’s say we want to add two binary FP numbers with 5-bit mantissas:
A =0]00000100/1001

signg=0; e,=00000100; frac,= 1001

B =0]00000010]0010

signpy=0; e,=00000010; fracy=0100

1. Get the number with the larger exponent and subtract it from the smaller

exponent.
e =4, es=2,s0diff =4-2=2.

2. Shift the fraction with the smaller exponent di £ £ positions to the right. We can

now leave out the exponent since they are both equal.
This gives us the following: 1.1001 000 + 0.0100 100
3. Add both fractions

1.1001 000
+0.0100 100

4. Round to nearest even gives us 1.1110.

5. Result = 0]00000100|1110.

14

The basic algorithm for floating-point multiplication is shown in Figure 4.

Operand a= sign,, e,, frac,

Operand b- sign,, e,, fracy,

A 4 A

fraco = frac, x fracp,

sign, = sign, XOR sign, eo = e, + ey,—-bias(127)

A 4

Round frac,

YES

Exception Signal Exception

Occurred? Output = NaN

Normalize

l

Output = sign,, eo, fraco

Figure 4. Basic Floating-point multiplication algorithm

15

Multiplication Example:

1. A =001001001
signs,=0; e,=01100100; frac,= 1001
B =000100010
signy=0; e,=01101110; fracy=0100

2. 100 and 110 are the stored exponents; logical exponents are obtained by

subtracting the bias of 127 from them.
That is, the logical exponents in this case are 100-127and 110-127.
3. Multiply the fractions and calculate the

1.1001
x1.0010

So frace=1.11000010 and

Output exponent: stored exponent= 100+110 and logical exponent = 100+110-
127=283

eo =83
4. Round the fraction to nearest-even: fracs=1.1100
5. Result: 0]11010010[1100
2.3. History of Double-Double Arithmetic

Using single-length floating point arithmetic to describe or represent multi-length floating

point arithmetic has been discussed and algorithms based on this approach were

16

described by T.J.Dekker in his research report [3]. The report represents a double length
floating point number as sum of two single length floating point numbers, one of them
being negligible in single length precision. It also discusses the algorithms for basic
operations like addition, subtraction and multiplication in the ALGOL 60 language. The
Fortran-90 double-double precision system developed by D.H.Bailey uses two 64-bit
IEEE arithmetic values to represent quad-precision values in the Fortran 90 programming
language [4]. “Implementation of float-float operators on graphics hardware” discusses
the methods for improving of precision in floating-point arithmetic on GPUs. The paper
discusses different algorithms by Dekker, Knuth and Sterbenz, and the results,
performance, and accuracy of these methods [7]. It describes the framework for software
emulation of float-float operators with 44 bits of accuracy and proves that these high-
precision operators are fast enough to be used in real-time multi pass algorithms [7]. The
residual register algorithms discussed by Dieter and Dietz [23] and this thesis can be used

with these or other precision extending algorithms.

Native-pair arithmetic is a more general term for double-double encompassing precisions
other than double. As with double-double, it uses an extra floating-point number to
represent error residual term resulting from a floating-point operation. A native-pair value
does not have exactly double the precision of the single native value due the occurrence
of zeroes in between the two mantissas. These zeroes make the precision equal to the
number of bits in the two mantissas plus the number of zeroes between the mantissas
[23]. In this approach, a higher-accuracy value is spread across the mantissas of two
native floating-point numbers and the exponent of the lower component is used to align
the mantissas [23]. The high component, called hi, takes the top most significant bits and
those that are left, also referred to as residual are represented using the low component,
called 1o. The exponent of 1o will be less than that of exponent of hi by a minimum of
Nm, where Ny, is the number of mantissa bits in the native floating-point number. This
means that if a higher precision value is spread over multiple native floating-point values,

the exponents of consecutive 1o components keep decreasing by Ny, [1].

When considering a pair of native floating-point numbers and a 32-bit native mantissa

being spread across them, the pair will have twice the precision of the mantissa being

17

spread only if the exponent of the hi is at least Ny, greater than that of the native bottom
of the exponent range [1]. That is the dynamic range of the exponent is reduced by Ny,
steps or 10 percent. In a single-precision or 32-bit floating point system, the precision is
limited by the exponent range to less than 11 float values [1]. Also, when there are zeros
in the top of the lower-half of the higher precision mantissa, then the exponent of 1o part
is further reduced by the number of zeros and the zeros are absorbed [2]. And if there are
K zeros at the top of the lower-half then, the exponent of 1o part is reduced by K. This

has certain implications which are as follows:

o Some values requiring up to K bits more precision than twice the native mantissa
can be represented precisely, as the K zeros that come between the top half and the

lower-half are absorbed [1].

o If the adopted native floating-point does not represent denormalized numbers, the
Low component may fall out of range sometimes. For example, if the High
exponent was 24 above the minimum value and number of zeros K = 1, then the
result has 25 bits only and not 48 bits as the stored exponent of Low would have to

be -1, which is not representable in IEEE format [1].

2.4. The Residual Register

Native-pair arithmetic involves computing the error residual term from the floating point
operation and using it to perform further computations. This error residual computation is
the major overhead in the native-pair arithmetic. Dieter and Dietz proposed adding a
residual register to save this left over information [23]. The residual register is only used
to store the mantissa bits, exponent bits, the sign bit, and a complement flag. The value
stored in the register need not be normalized immediately and has Ny, + 2 mantissa bits
with an implicit leading 1 bit. The same normalization hardware used for floating-point
operations normalizes the residual value only when it is being moved into an architectural
register. The complement flag indicates whether the residual value must be
complemented before moving into the architectural register. Normalizing the residual

register is done by giving a “MOVRR” instruction that copies the residual register value

18

into an architectural register after normalizing it into IEEE 754 format. Also each

operation results in updating the residual register with a new error residual value.

Sign | Complement Flag Exponent Mantissa

1 bit 1 bit <«— 8bits —p «— 25 bits -

Figure 5. Residual register

Consider two floating-point numbers x, y and o be an operation such as +, -, or x. Let
sign(x), exp(x) and mant (x), respectively denote the sign, exponent and
mantissa of x. 1 (x o y) denotes the primary result of a floating-point operation and
Res (x o y) be the residual of the floating-point operation. For operations discussed
here namely addition, subtraction and multiplication the primary result and the residual
arerelatedas x o y = F1(x o y) + Res(x o y). Thisproperty holds true only
for the round to nearest mode when IEEE 754 format is used. Depending on which
rounding mode is used, the sign of the residual register value is set accordingly [23]. The
residual logic only needs the information if the primary result is rounded up or down.
Depending on this information the sign and the complement flag of the residual register is

set as follows:

e When FI(x o y) =x o y,the primary result is correct and the residual value

1S zero.

¢ When F1(x o y) < x o y,the primary result p has been rounded down to
the floating-point value with next lower magnitude. The residual then takes the

same signasptomake x o y = Fl(x o y) + Res(x o y).

e WhenFl(x o y) > x o y,theprimaryresult 1 (x o y) is rounded up to
the next larger magnitude value. The residual » then takes the opposite sign as

Fl(x o y)tomakex o y = Fl(x o y) - Res(x o y).

19

2.5. Native-pair Addition and Subtraction

Addition or subtraction of two floating-point numbers ‘@’ and ‘b’ with ‘b’ being the
smaller of the two, involves the shifting of the smaller number to align its radix point
with that of the larger number. When the signs of the two numbers are the same, the
numbers are added whereas in the case of opposite signs, the numbers are subtracted. The

)=+ 1) are stored

mantissa bits in the smaller number with significance less than 2°*° (@
in the residual register with least significant bit in the rightmost position, and the
exponent is set to exp (b) when exp (a) —exp (b) 2 N,+1 and the complement
flag is not set. When exp (a) —exp (b) < Np+1 or the complement flag is set, the
residual register gets the bits in b with significance ranging from exp (a) -N,+1 down
to exp (a)-2 (Nn+1). That is, the residual register value is just below the primary
output value. In this case, the exponent is set to exp (a) =2 (N,+1) with the radix point
assumed to be to the right of the least significant residual register bit. The sign and
complement flag are set depending on the signs of ‘a’ and ‘b’, and whether result p is
rounded up or down. Four cases that arise depend on the signs of ‘a’, ‘6" and whether the

primary result is rounded up or down, are shown in Table 3 below:

Table 3. Different cases for sign and complement flag of residual register

Case |Signofa |Signofb | Rounded | Complement | Sign of Residual

up /down | flag register: Sign(rr)
Case 1 Sign(a) Sign(a) Down Cleared Sign(a)
Case2 | Sign(a) Sign(a) Up Set Opposite of sign(a)
Case3 | Sign(a) -Sign(a) | Down Set Sign(a)
Case4 | Sign(a) -Sign(a) | Up Cleared Opposite of Sign(a)

Native-pair Arithmetic Addition Algorithms

The algorithms that are discussed here are native-pair arithmetic algorithms for

normalizing and adding two native-pair numbers. Each algorithm can be implemented

with and without using the residual register.

20

Algorithm 1 shows the nativepair normalize function adds two native floating-
point numbers to produce a native-pair result. Given an unnormalized high and low pair
of native numbers, the normalized native-pair is computed using this function. In general,

the normalized native-pair is created without using the residual register.

Algorithm 1. Native-pair normalization algorithm without using the residual
register:

nativepair nativepair normalize (native hi, native 1lo)

nativepair r;
native hierr;

r.hi = hi + lo;
hierr = hi - r.hi;
r.lo = hierr + lo;

return (r);

Algorithm 2 shows the use of the residual register in the nativepair normalize function.
The hierr variable denotes the error residual computed from hi component. The
getrr () function is assumed to be an inline function that returns the residual
register value using a single MOVRR instruction. Compared to the Algorithm 1, Algorithm
2 does not need to compute hierr and as a result, the number of instructions is reduced

by one relative to Algorithm 1. Every basic operation ends by normalizing the result so

this reduction decreases the instruction count for every native-pair operation.
Algorithm 2. Native-pair normalization algorithm using the residual register:

nativepair nativepair normalize (native hi, native 1lo)

nativepair r;

21

return (r);
}

Algorithm 3 describes the addition of b (native floating point number) to a (native-pair
number). The algorithm adds b to hi component of a, computing the residual result and

adding the residual result to 10 component. It then normalizes the final result.

Algorithm 3. Addition of Native-pair number and a native number without residual

register hardware.

nativepair nativepair native add (nativepair a, native b)

native hi = a.hi + b ;
native bhi = hi - a.hi;
native ahi = hi - bhi;

native bhierr = b - bhi;

native ahierr = a.hi - ahi;
native hierr = bhierr + ahierr;
native lo = a.lo + hierr;

return (nativepair normalize (hi,lo));
}
Algorithm 4 describes the same native-pair and native number addition with the use of
residual register. This usage computes the hierr component using the getrr ()
inline function and so eliminates the use of ahierr, bhierr i.e., instructions to

compute ahi, bhi, ahierr, Dbhierr. As a result, number of instructions is

reduced by four when with respect to Algorithm 3 which does not use residual register.

22

Algorithm 4. Addition of Native-pair number and a native number with residual

register hardware.

nativepair nativepair native add (nativepair a, native b)

native hi = a.hi + b;
native hierr = getrr();
native lo = a.lo + hierr;

return (nativepair normalize (hi,lo));

Algorithm 5 shows addition of two native-pair numbers without using the residual
register and Algorithm 6 adds two native-pair numbers using the residual register. In
Algorithm 5, which shows addition without residual register, the residual from adding the
two high components is stored in ahierr or bhierr depending on the values of a
and b. When a > b, bhierr contains the residual and ahierr is zero and when b
> a, ahierr contains the residual and bhierr is zero. Such a system of computing
is faster than using a condition to decide which one to compute. The addition algorithm
with residual register reduces the instruction count to 6 compared to Algorithm 5 which

takes 11 instructions.

Algorithm 5. Addition of two Native-pair numbers without residual register

hardware.

nativepair nativepair add (nativepair a, nativepair b)

native hi = a.hi + b.hi;
native lo = a.lo + b.lo;
native bhi = hi - a.hi;
native ahi = hi - bhi;

native bhierr = b.hi - bhi;

23

native ahierr = a.hi - ahi;

native hierr = bhierr + ahierr;

lo = lo + hierr;

return (nativepair normalize (hi,lo));
}
Algorithm 6. Addition of two Native-pair numbers with residual register hardware.
nativepair nativepair add (nativepair a, nativepailr b)
{

native hi = a.hi + b.hi;

native hierr = getrr();

native lo = a.lo + b.lo;

lo = 1lo + hierr;

return (nativepair normalize (hi,lo));

Figure 6 shows the dataflow of the native-pair addition algorithm with and without
residual register. Each ADD or SUB instruction typically would have a latency of 4 clock
cycles. The MOVRR instruction is assumed to have a latency of 2 clock cycles as a worst
case. Native-pair addition without residual register requires 9 instructions in its critical
path and with a latency of 36 = 9 X 4 clock cycles. Addition with residual register
requires 3 ADD/SUB instructions and 2 MOVRR instructions yielding to a total latency
of 16 =3 x 4 + 2 x 2 clock cycles. But this latency can be decreased without changing the
critical path by delaying lo portions of an input to the algorithm in the dataflow. This
reduces the latency to 28 = 36—8 cycles in native-pair addition without residual register
and 14 =16—2 cycles in the native-pair addition with residual register. This results in

exactly 2 x speedup over the algorithm not using residual register [23].

24

Figure 6. Native-pair addition data flow, conventional and residual algorithms.

2.6. Native-pair Multiplication

In multiplication of two floating-point numbers as opposed to addition, there is no
shifting of the mantissa bits in order to make the exponents of the two numbers equal.
Multiplication of two n-bit mantissa numbers produces a 2n-bit result and the exponents
of the two numbers are simply added. The lower n-bits of the 2n-bit result are put into the
residual register and its exponent is set to exp (a) - (N,,+1). When the result is rounded
down, the sign of the residual register is same as that of the result and the complement
flag is cleared. On the other hand when the result is rounded up, the sign is set opposite to

the sign of the result and the complement flag is set.

Table 4. Cases for complement flags and signs of residual register

Case | Signof Rounded up / down | Complement Sign of Residual
product flag register : Sign(rr)

Case 1 | Sign(p) Down Cleared Sign(p)

Case 2 | Sign(p) Up Set Opposite of Sign(a)

25

Multiplication algorithms for native-pair multiplication

Algorithm 7 shows the multiplication of two native-pair numbers a and b without
residual register hardware. The algorithm uses a native mul function to multiply two
high components of the two native-pair numbers. The multiplication of the high and low
components also takes place producing three low components namely native mul result
low component, a.hi x Db.lo and b.hi x a.lo. The fourth term, a.hi x
b.1lo, is too small to have an influence on the result. All the three low components are
added to produce the final low component of the result. The native mul function
implementation is simplified if the processor has a fused multiply- subtract instruction
that preserves the full precision of the product before addition. In such a case the residual
value can be obtained by subtracting the rounded product from the full precision product.
When such a provision is unavailable the native mul function requires the entire

component-wise multiplication of the high and low components.
Algorithm 7. Native-pair multiplication without residual register hardware

nativepair nativepair mul (nativepair a, nativepalr b)

nativepair tops = native mul (a.hi, b.hi);

native hiloa = a.hi * b.lo;

native hilob b.hi * a.lo;
native hilo = hiloa + hilob;
tops.lo = tops.lo + hilo;
return (nativepair normalize (tops.hi, tops.lo));

}

Algorithm 7.1. native_mul function

#define NATIVEBITS 24

#define NATIVESPLIT ((1<<(NATIVEBITS - (NATIVEBITS/2))) +
1.0)

26

nativepair native mul (native a, native b)

nativepair c;

#ifdef HAS FUSED MULSUB

c.hi = a * b;
c.lo = a * b - c.hi;
#else

native asplit = a * NATIVESPLIT;
native bsplit = b * NATIVESPLIT;

native as = a - asplit;

native bs = b bsplit;

native atop = as + asplit;

native btop b + bsplit;

native abot = a - atop;
native bbot = b - btop;

native top = atop * btop;

native mida atop * bbot;

native midb = btop * abot;

native mid mida+ midb;
native bot = abot * bbot;
c = nativepair normalize (top, mid);
c.lo = c.lo + bot;
#end if
return(c) ;

}

When fused multiply-add is not available the residual register hardware simplifies the
native mul function from 17 instructions to two instructions. The Algorithm 8 shown

below takes 8 instructions to perform the multiplication. Though the instruction count is

27

the same as the fused multiply-add implementation, the need for a wider adder is

removed in the residual register implementation.

Algorithm 8. Native-pair multiplication using residual register hardware

}

native toplo

native hilob

tops.lo

nativepair nativepair mul (nativepair a, nativepair b)

nativepair tophi = a.hi * b.hi;
= getrr ();
native hiloa = a.hi * b.lo;

b.hi * a.lo;

native hilo = hiloa + hilob;

= toplo + hilo;

(nativepair normalize (tophi, toplo));

Nativepair multiplication has three data flow graphs: conventional, fused multiply-add

and residual register implementation which are shown in Figure 7 in the next page.

Depending on the latency of add and subtract operations in the critical path, the speed up

resulting from the fused multiply-add implementation is 2.3 and that resulting from

residual register implementation is 3 [23]. The residual register implementation also has

an added advantage that the critical path can be implemented with only a 2-stage pipeline

with careful instruction scheduling. Such improvisation is not possible in conventional

and fused multiply-add implementations as they suffer from greater need for a larger

pipeline [23].

28

Figure 7. Native-pair multiplication data flow, conventional and residual algorithms

29

Chapter 3. Native-pair Floating-point Unit

This chapter describes the working of the native floating-point unit addition/subtraction
and multiplication units, followed by the construction of the native-pair floating-point

unit and usage of the residual register hardware.

3.1. Native Floating-Point Addition/Subtraction
The native floating-point addition/subtraction is subdivided into three steps:

prenormalization, addition or subtraction and postnormalization.

3.1.1. Prenormalization

The input operands to the floating-point unit first go to the prenormalization unit. This
unit finds the difference between the exponents of the two operands, shift the mantissa
with lower exponent to make the two exponents equal and send the mantissa bits and the

exponent o the addition stage.

Initially the two operands A and B are divided into sign, exponent and mantissa fields.

After the last step the following fields or signals are obtained:

. Exp (A)
. Exp (B)
. Mant(A)
. Mant(B)

The exp (A) and exp (B) of all the input operands are checked for zero values to see if
they are denormalized. If an operand is denormalized, its exponent is incremented by 1 to
make the exponent equal to -126 after unbiasing. If exp(A) and exp(B) are non-zero
values ,the corresponding operands are considered normalized. The fraction values are
concatenated with 5 more bits — carry, hidden, guard, round and sticky bits. Carry and
hidden bits are added as most significant bits. Initially the carry bit is 0 and the hidden bit
is 0 if the operand is denormalized otherwise the hidden bit is 1. The guard, round and
sticky bits are appended at the end of the fraction bits and are initially all zeroes. After

this step fractions take the form of

30

° New Mant(B) = carry, hidden, mant(B), guard, round, sticky.

o New Mant(B) = carry, hidden, mant(B), guard, round, sticky.

A comparator COMP1 is used to check which exponent is greater and a multiplexer

MUXI1 is used to assign the greater exponent to the output exponent based on the

comparator output signal. Multiplexer MUX2 is used to give the difference of the two

exponents. If exp(A) > exp(B), then MUX2 gives the difference exp(A) — exp(B) if not it

gives the difference exp(B) — exp(A). The fraction bits of the lower exponent operand’s

mantissa are shifted right as many bits as the difference obtained from the exponent

difference. The sticky bit for the shifted mantissa is computed and updated. The two

updated mantissas with the output exponent and other signals are sent to the next stage.

Figure 8 shows the prenormalization process.

Multiplexer

Sy

Sz

C ENB

P»S_expa

S_exp_o S_fracta_28_o
Multiplexer Multiplexer
S_fracta_28 S_fractsmall
——s, o »——1s, o
s:

s,
S_fractsmall S_fi

C ENB C ENB

P-S_expb —»|

P “01” & s_fracta &"000" —» g,

P “00” & s_fracta & “000” —pg,

w

——p— “01” & s_fractb &7000" — g,

————"00" & s_fractb & “000” —»s,

= Zero Detector g—&_epa_«s»—f

Figure 8. Prenormalization unit for Floating-point addition

31

A
S_expa_lt_expb S_expa_lt_expb
Comparator S_expa_lt_expb
S_fractsmall
Multiplexer
D
S_fractq_28 s_fract_shr_28(27
Multiplexer downto 1) &
N :i"i."“ (sticky or
s, D| > ‘9 »- s_fract_shr_28(0))
C ENB
S_sticky
S_exp_diff
C ENB h.
S_expal It_expb Count Zeroes
L4 From
Multiplexer Right
D
S_fractb_28
C ENB S_rzeros
S_exp_diff
]
S_expa
Subtractor N S_exp_diff
S_expb "

: S_fractb_28 o

3.1.2. Addition/Subtraction Stage

This stage has a simple functionality of computing the sign of the output and performing
the addition or subtraction of mantissas based on the sign of the operands. The two
mantissas are compared and the operation i.e., addition or subtraction to be performed is
computed based on which mantissa is greater, signs of the two operands A and B and the
opcode. Table 5 shows the different cases that arise. A and B having same signs with an
opcode of 0, indicating addition is performed. If the opcode is a 1 then subtraction is
performed. On the other hand A and B having opposite signs, for opcode of 0, subtraction

is performed and for opcode of 1 addition is done.

S_fpu_op_i >
S_signa_i
S_signb_i
S_fracta_i
Comparator »
Sign
S_fractb_i calculator
[E— >
Addition >
o A\ A 4
" _>S_sign_o
Multiplexer lﬁ S_fract_o
L

A 4

A 4

Subtraction

A 4

Figure 9. Addition unit for Floating-point addition

The sign of the output is computed based on the signs of the operands A and B, which
mantissa is greater and the operation being performed. If the operation is an addition then
the two mantissas are added and if it is a subtraction then the lower mantissa is subtracted

from the higher mantissa. The output sign and mantissa are sent to the postnormalization

32

stage along with input operands passed by the prenormalization stage. Input operands are

required in postnormalization for generation of exceptions.

Table 5. Addition or subtraction cases based on opcode and signs of the operands

Opcode Sign of A Sign of B Operation
0 sign sign Addition
0 sign ~ sign Subtraction
1 sign sign Subtraction
1 sign ~sign Addition

3.1.3. Postnormalization
Postnormalization is the final stage of any floating-point operation. The inputs to this
stage are the addition/subtraction unit output, the output exponent, the output sign and the

rounding mode.

The postnormalization unit checks the result of the addition/subtraction stage for a carry.
If the carry bit in the result is set then, shift the result right once and increase the output
exponent by one. If the result has the hidden bit equal to zero then, the result must be left
shifted until the hidden bit is one. To determine how far to shift the mantissa, the number
of zeros starting from the most significant bit is counted. After the shift is performed, the
exponent is decreased by the same number. Once again the sticky bit is checked to find if
any bits were lost. Depending on the rounding mode and the sticky bits at different stages
in the postnormalization, the result is rounded up or rounded down. The carry bit is
checked again to see if carry occurred and if carry has occurred then the result is shift
right once and the exponent is incremented by one. Finally, the result is checked for
exceptions such as NaN, infinite, overflow, inexact result and depending on these values,
the final result along with the exception flags are send to the output. The

postnormalization unit is shown in Figure 10.

33

S_exp_i+1

S_exp_i
Subtractor

S_fract_i(n-1:n-2)
—|

Y

»
>

v

Comparator N S_shl
“00” >
R
S_expil=0 S fracti(n-1)| | S _shr
“000000” H
Multiplexer MUX S:exp_1
Shl_pos v 4
s: D >
S_fract_i N Left S_frict_shl
. Shift e
»
C ENB d
S_fract_1
is S_exp_i="000000001" * > MUX i
N Right S_tr;ct_shr
Shift
By 1 bit
S_round_mode_i————»———— Multiplexer
S_sign i ———»———] R >
S_fract 1(3) ———»———— ' " Incrementer S_fract_rnd
s_fract_1(2) ——»———— Rounding > s,
S_fract () ———»———— Logic P>
S_fract_i(n-1 R
S_stick
S, fract_i(0) il S-roundup > ‘ Mltplexer
S_fract_1(0) o < s,
S_sign_i S_fract_2

Output <

8| S_fract_shr2

ENB C
*S_shm

Multiplexer
S_exE_Z S exp 1 _
< D <
S <
S_exp_1+1

ENB C

Figure 10. Postnormalization unit for Floating-point addition.

3.2. Native Floating-Point Multiplication

The native floating-point multiplication unit is also subdivided into three steps:

prenormalization, multiplication and postnormalization.

3.2.1. Prenormalization

The input operands to the multiplication unit first go through the prenormalization unit.

As compared to prenormalization in addition, the prenormalization in multiplication has

less functionality. This unit checks if the operands A and B are denormalized, adds the

exponents of A and B and transfers the mantissas to the multiplication stage.

34

—)p S_expa —b

ADDER
L
> S_expb Subtractor .—> S_exp_o
127 P
S_opb_dn
— Zero Detector >
Concatenation > Fracta_o
Sfracta___ 4

S_opa_dn
™S,

—| Zero Detector |

Concatenation > Fractb_o

S_fractb——M——————p|

Figure 11. Prenormalization unit in floating-point multiplication.

Initially the two operands A and B are divided into sign, exponent and mantissa fields.

After the last step the following fields or signals are obtained:

. Exp(A)
. Exp(B)
. Mant(A)
. Mant(B)

The exp (A) and exp (B) of the all the incoming operands are checked for zero values to
see if they are denormalized. If an operand is denormalized, its exponent is incremented
by 1 to make the exponent equal to -126 after unbiasing. The fraction values are
appended with just 1 more bit, the hidden bit as the most significant bit. The hidden bit is
0 if the operand is denormalized otherwise the hidden bit is 1. After this step fractions

take the form of
o New Mant(B) = hidden, mant(B)

o New Mant(B) = hidden, mant(B)

35

The exponents are added, but since the exponents are already biased i.e., we are baising
the exponent twice and so 127 is subtracted from the sum. The two updated mantissas

with the output exponent and other signals are sent to the next stage.

3.2.2. Multiplication Stage

This stage is used to multiply the two mantissas obtained from the previous stage. The
multiplier used is a Booth’s parallel multiplier model. An exclusive-or gate is used to
obtain the sign of the product. The output sign s_sign o as well as the product s_fract o

are transferred along with the other signals to the postnormalization stage.

Opa_pretomultin(n-1)
S_sign_o
Opb_pretomultin(n-1)

Sfracta_i———p

Multiplier ey §_fract_o

Sfracth_i ————— >

Figure 12. Multiplication unit for Floating-point multiplication

3.2.3. Postnormalization

The inputs to this stage are the multiplication unit output, the prenormalization exponent
output, the multiplication sign output and the rounding mode. The postnormalization
stage checks the multiplication output for a carry. If a carry has occurred, the
multiplication output is shifted right once to normalize it. If the result has the hidden bit
equal to zero then, the result must be left shifted until the hidden bit is one. For this, the
number of zeros starting from the most significant bit is counted. After the shift is
performed, the exponent is decreased by the same number. Once again the sticky bit is
checked to find if any bits were lost. Depending on the rounding mode and the sticky bits
at different stages in the postnormalization, the result is rounded up or rounded down.

The carry bit is checked again to see if a carry occurred. If a carry has occurred then the

36

result is shift right once and the exponent is incremented by one. Finally, the result is

checked for exceptions such as NaN, infinite, overflow, inexact result and depending on

these values, the final result along with the exception flags are send to the output.

S_exp_i

A 4

S_zeros

S_fract i)y >

»
»

Shl_pos /= 0=>S_shi<=1

S_fract_i(n-1) S_shr
S_exp_i
Multiplexer s :.() S_eipo1
ract_i(n- >
D kShl |_pos Yy -
S_fract i : Left S_f":ﬂ_sm S_zeros
) Shift "
“000000" c B
! S_frac2a (n-1: 23,
S_fract_i(n-1) \ . mx | Sfracta(n:23)
, Right S_fr:c!_shr
Shift
By 1 bit
S_round_mode_j————»—————— Multiplexer
Ssigni———»———— N ' b >
S_fract_1(22) - guard bit———»————— . " Incrementer S_frac_md
S_fract_1(21) - round bit———»————— Rounding >
Logic —»—
$§_frac2a(20:0) or R
S-SﬁCky S_roundup ‘
Muliplexer
S_lost < D
S_sign_i S_frac3
S| S_fract_shr2
ENB C
*S_shn
Out ut < C Multiplexer
P S_eXEOJ N S_expol
S <
S_expol+1
ENB C
+S shr3

Figure 13. Postnormalization unit for Floating-point multiplication

3.3. Native-pair Floating-point Addition/subtraction

Native floating-point addition/subtraction has been discussed in Section 3.1.1. This

section discusses the 32-bit native-pair floating-point addition/subtraction and the extra

hardware added to the native floating-point addition/subtraction unit to make it work as a

native-pair floating-point addition/subtraction unit. Native-pair addition/subtraction also

37

is subdivided into three steps: prenormalization, addition or subtraction and

postnormalization. Each step and its hardware addition are discussed in detail below.

3.3.1. Prenormalization
The native-pair prenormalization unit, apart from doing the normal operation of making
the exponents equal and aligning the mantissa’ s, also includes the first of the residual

register operations.

.
S_exp_o
Multiplexer lad
S1 D'—> S_exp_o_rr0
Multiplexer
o Sz S_fracta_28_o
1
s, C ENB Multiplexer Multiplexer
S_fractsmall|
s _fracta_28[- B! fractsr o P s_fractb_28_o
C ENB > s
S_frdctsmall | S fi
C ENB C ENB
PS_expa S_expa_lt_expb S_expa_lt_expb S_mant_o_rr0
Comparator S_expa_lt_expb
PS_expb —»
S_fractsmall
Multiplexer —
P “01” & s_fracta &7000" —s, D
S_fracta_28
-frgcta_ fract_shr_28(27
N :i"'& (sticky or
s, D| > ‘ot » s_fract_shr_28(0))
C ENB
2 I S_sticky
T -
c ENB y
»
S_EXPZPLEXPb Count Zeroes v
[P N From

Muttiplexer Right k.

“01” & s_fractb &7000" — g, D Regﬁce
S_fractb_28
“00” & s_fractb & “000” —»s,
C ENB S_rzeros

J 748:696:6"_?
S_exp_diff

S_expa |
Subtractor N S_exp_diff . And Signal
»> > generator

Figure 14. Prenormalization unit for Native-pair Addition using Residual register

For a better understanding the steps of the native normalization are again repeated.
Initially the two operands A and B are divided into sign, exponent and mantissa fields.

After the last step the following fields or signals are obtained:

e Exp(A)
e Exp(B)
o Mant(A)

38

o Mant(B)

The exponents exp(A) and exp(B) of all the input operands are checked for zero values to
see if they are denormalized. The exponent is incremented by 1 to make the exponent
equal to -126 after unbiasing. The fraction values are concatenated with 5 more bits —
carry, hidden, guard, round and sticky bits. Carry and hidden bits are added as most
significant bits. Initially the carry bit is 0 and the hidden bit is O if the operand is
denormalized else hidden bit is 1. The guard, round and sticky bits are appended at the
end of the fraction bits and are initially all zeroes. After this step fractions take the form

of

o New Mant(B) = carry, hidden, mant(B), guard, round, sticky.

o New Mant(B) = carry, hidden, mant(B), guard, round, sticky.

A comparator COMP1 is used to check which exponent is greater and a multiplexer
MUXI1 is used to assign the greater exponent to the output exponent based on the
comparator output signal. Multiplexer MUX2 is used to give the difference of the two
exponents. If exp(A) > exp(B), then MUX2 gives the difference exp(A) — exp(B) if not it
gives the difference exp(B) — exp(A). An ‘andsignal’ is generated which is a 25 bit
signal consisting of zeroes and ones in till the position of the exponent difference
(s_exp diff-1) ie. if the exponent difference is 4 then the andsignal is
“0000000000000000000001111”. The fraction bits of the lower exponent operand’s
mantissa s_fract small are shifted right as many bits as the difference obtained from the
exponent difference. A bit-wise AND operation is performed between the smaller
mantissa s_fract small and the andsignal, the result is the initial mantissa part for the
residual register. The bits that are being shifted out are stored in the mantissa of the
residual register. The exponent of the residual register is set to the exponent of the lower
mantissa. The sticky bit for the shifted mantissa is computed and updated. One other
signal that is generated here is exp_greater 24 which indicates if the exponent difference
is greater than 24. The two updated mantissas with the output exponent, residual register

exponent, mantissa and other signals are sent to the next stage.

39

3.3.2. Addition/subtraction Stage

There is no change in the functionality of the addition/subtraction unit. It takes in the
mantissas and the operand signs as inputs. After logically generating which operation has
to be performed, it performs that operation i.e., addition or subtraction. Output sign is
generated based on the operation, the signs of the operands and which operand is greater.
The operation output, the output sign and other inputs such as the residual register values

from the prenormalization stage etc., are all passed to the postnormalization stage.

3.3.3. Postnormalization

Postnormalization in the Section 3.3.3 involves all the main operation surrounding the
residual register hardware operation. The inputs to this stage are the addition/subtraction
unit output, prenormalization output exponent, addition unit output sign, rounding mode,
residual register values from the prenormalization stage. The following are the steps

involved in the postnormalization stage:

Check the result of the addition/subtraction stage for a carry. If carry bit in the result is
set then, shift the result right by once and increase the output exponent by one. If the
result has the hidden bit equal to zero then, the result must be left shifted until the hidden
bit is one. For this, the number of zeros starting from the most significant bit is counted.

After the shift is performed, the exponent is decreased by the same number.

As the result is shifted, one bit before the guard bit is lost and this bit has to be
prepended to the residual register. This bit has to be prepended before the bits that were
inserted in the prenormalization stage. For this purpose a decoder is used which whose
output d1 has a value in the position which corresponds to the exponent difference. D1 is
logically ANDed with the output of the addition/subtraction and then ORed with the

mantissa from the prenormalization stage to get the new updated mantissa.

s mant 12 _br <= ('0' & mant i rr2) or (d1 and s_fract 28 i (27 downto 3));

40

S_exp_i+1

S_exp_i
Subtractor

v

v

S_fract_i(n-1:n-2)
’ >
Comparator . S_shl
“0g” >
—
S exp 170 S_fractiin1)] | s shr
“000000” L
4’—L Muliplexer 'y MUX
i " sy
S_fract_i s pos Left S_fraft_shl S_exp_diff S_shrt
’ shift >
S_exp 1
C ENB ™
is S_exp_i ="000000001" 4 > MUX
] S_fract_ifn-1:
R Right |S_fract shr Want_i_m2
Shift v
By 1 bit
Residual fegiste Mantssa
S_round_mode_i———»————— Multiplexer bolorronniing
S_sign i ———>———— N N) N
S fract 1(3) ———P———— : Incrementer S_fract rnd
s_fract_12) ——»——— Rounding b,

S_fract 1(f) ———»———— Logic >

S_fract_i(n-1 C ENB
i S.stdky e,]
S_fract_i(0) Multplexer
S_fract_1(0) D S

S_sign_i T S_fract_2 s s_sig,.ﬁ_ signb
ENB C
oundup
S oxp Mtipoer Output e Coreatereton + §_shr2
sy > ¥
L, . . ‘ Multiplexer s_exp_1
S_expa-Z(N'mH) Residual register Output]
C ENB S_exp_2 o
+ S_exp_1+1
N C Multipl
Exp_o_rr2 s_shr2
S_exp_diff> - _I -
Nm+1 S_signi :) Residual Register Mant_o_rr2
S_roundup

Figure 15. Postnormalization unit for Native-pair addition with Residual register

Once again the sticky bit is checked to find if any bits were lost. Depending on the
rounding mode and the sticky bits at different stages in the postnormalization, the result
is rounded up or rounded down. The carry bit is checked again to see if carry occurred
and if carry has occurred then the result is shift right once and the exponent is

incremented by one.

As the result is shifted right again, one bit before the guard bit is lost and this bit has to
be added to the residual register. This bit has to be added before the bit that was added
after the right shift performed before rounding. For this purpose another decoder is used

whose output D2 has a value ‘1’ in the position which next to ‘1’ in D1. D2 is logically

41

ANDed with the output of the after the rounded result is shifted right and then ORed with

the mantissa s mant rr2_br to get the new updated mantissa.
s mant rr2 ar <= ('0' & s_mant rr2 ar) or (d2 and s_fract rnd (27 downto 3));

Suppose that the exponent difference in the prenormalization was greater than 24, and
all the bits of the smaller mantissa are shifted into the residual register. Now in the
postnormalization stage if the result was shifted right twice once before rounding and
once after rounding, then 2 bits must be stuck on the So. In total the residual register
mantissa temporarily can have 27 bits and then the 25 most significant bits are stored as

final residual value.

The sign of the residual register and the complement flag are also generated in this stage.
If the complement flag is set, then residual value is complemented before it is stored in an
architectural register. The signal exp greater 24 that was generated in the
prenormalization stage to check if the exponential difference was greater than the number

of mantissa bits + 1 is used here.

If the signal is set, then the exponent of the residual is set to higher exponent — 2(N,+1)

else exponent is set to lower exponent, where Ny, is the number of mantissa bits.

Finally, the result is checked for exceptions such as NaN, infinite, overflow, inexact
result and depending on these values, the final result along with the exception flags are

send to the output.

The next instruction is to normalize the residual register value which happens with the
MOVRR signal going high. During this stage, residual register value is concatenated with
the guard, round and the sticky bits in the end to make it 28 bits and this value is directly
sent into the postnormalization input for normalization. This normalized residual register

value is later used in computation related to native-pair algorithms.

42

3.4. Native-pair Floating-point Multiplication

This section discusses the 32-bit native-pair floating-point multiplication and the extra
hardware added to the native floating-point multiplication unit to make it work as a
native-pair floating-point multiplication unit. The residual register hardware in a
multiplication is less complex when compared to addition. Since there is no shifting of
mantissas in multiplication, there is no residual register functionality in the
prenormalization. So the entire residual register operation takes place only in the
postnormalization stage. Hence only the changes and the steps involved to the

postnormalization are discussed here.

3.4.1. Postnormalization
The inputs to this stage are the multiplication unit output, the prenormalization output
exponent, the multiplication sign output and the rounding mode. The following are the

steps involved in the native-pair multiplication postnormalization stage

Shl_pos /=0 =>8_shi<=1 S_fract_i(22:0)
S_fract_i(n-1)| | S_shr A
Muttiplexer
» Count S _zeros | o _Shi_pos Y Y
S_fract_i Z'eros v Left S_fract_shl v
T loft ~ R shit FT==]
“000000" C ENB L]
S_fract_i(n-1) * > MUX v
_fract_i(22:0)
, Right S_fract_shr o
Shift
By 1 bit v
8_frac2a (n-1: 23) | Complementer |
S_fract| md(23)
Muttiplexer
» D| »-
" Incrementer S_frac_rnd .
S_fract_1(21) - round bit———»————— Rounding > ng.ht
Logic Shlf!'
S_frac2a(20:0) or ¢ e By 1 bit
Reduce S_sticky S_roundup I
> Multiplexer
S_lost S sian i e 43 D s— Final
sign| _frac: .
S| S_fract_shr2 Residual
value
ENB C
*S_shr&
< C i S_fract_i(n-1)
Muttpl _fract i
Output S_expo3 e oxpor S o
“p S A
S_fract_i(n-1) |_S-2gros
———— -
S_expol +1 S zeros [t
ENB C = S_exp_i
+S_shr3

Figure 16. Postnormalization unit for Native-pair multiplication with Residual
register

43

Check the result of the multiplication stage for a carry. If carry bit in the result is set then,
shift the result right by once and increase the output exponent by one. In
postnormalization, the 25 most significant bits are taken into consideration for the final

output, hence initially the residual register consists of the 23 least significant bits.

If a carry had occurred then, the result would be shifted right once, and the bit that comes
out is stored into the residual register. Compared to the addition, multiplication does not
involve shifting of mantissa in the prenormalization stage and so no decoder is required
here to append the discarded bit into the residual register. If the result has the hidden bit
equal to zero then, the result must be left shifted until the hidden bit is one. For this, the
number of zeros starting from the most significant bit is counted. After the shift is

performed, the exponent is decreased by the same number.

The sticky bit is checked to find if any bits were lost. Depending on the rounding mode
and the sticky bits at different stages in the postnormalization, the result is rounded up or
rounded down. The carry bit is checked again to see if carry occurred and if carry has
occurred then the result is shift right once and the exponent is incremented by one. When
a carry occurs second time and the result is shifted again, the discarded bit is again

appended as the most significant bit into the residual register, this becomes the 25™ bit.

The complement flag and the sign flag are generated. When he complement flag is set,
then the final residual value being stored into the residual register is complemented. The
exponent of the residual is set to higher exponent — (N, +1) to align the residual register

mantissa with the result, again N, denotes the number of mantissa bits.

Finally, the result is checked for exceptions such as NaN, infinite, overflow, inexact
result and depending on these values, the final result along with the exception flags are
send to the output. The MOVRR signal can be used to re-route the residual register

values into the postnormalization for getting the normalized value of the residual.

44

3.5. Debugging FPU Unit

The adopted FPU — floating-point unit suffered from some architectural errors related to
the routing of signals through the pipelines, carrying of input signals to the various stages
of the pipeline. This section discusses the changes made to the original Floating-point
unit in order to enable its proper functioning in pipelined fashion. The floating-point unit
pipeline consists of four stages: prenormalization stage, addition/multiplication stage,
postnormalization stage and final output stage. All of these are instantiated in the FPU
module. The clock, the input operands, the movrr signal, the rounding mode and the
opcode are the inputs to the FPU module. These inputs are sent into the various stages
depending on their usage. Apart from these primary inputs, at each stage intermediate
outputs such as the exponents, mantissas, signs, operation results are generated and need
to be carried to the later stages. The following sections discuss the changes made to the

original FPU architecture.

In pipelined operation, the inputs change every clock cycle. Also different instruction or
function or set of parallel instructions are executed in each clock cycle in different stages
of the pipeline. Hence, an operation performed in the third clock cycle might need an
input given in an earlier clock cycle. For this purpose, the needed inputs must be

propagated through each stage or each clock cycle using registers until it is used.

The input operands are required in the prenormalization stage to generate the sign,
exponent and mantissa bits. The input operands are also required in the postnormalization
stage to generate the NaN — Not a number signals. Similarly the FPU operation signal
fpu_op i and the rounding mode signal s rmode i are required in addition/multiplication
stage and the postnormalization stage. All these signals have to be propagated from

prenormalization through addition/multiplication stage to postnormalization.

45

clk_i

A\

Opa_addout
Opa_i @
Opb_addout
Opb_i @ Output_o
o Addition/ Postnormalization @——p| Final
Prenormalization Multiplication Formatted
i Fpu_op_out Output
Fpu op_i @
Rmode_out
Rmode_i @

2l

Figure 17. Floating point arithmetic unit pipeline

Figure 17 shows the four stages of the floating-point pipeline: prenormalization,
arithmetic core, postnormalization and formatting output. In the formatted output pipeline
stage, changes will be made in the output with respect to exceptions [19]. The right way
of propagating signals is through the pipelines stages and not those marked X in the
figure 17. Supposing the inputs to the FPU are opa i, opb i, fpu op i and rmode i,
fpu op 1 is used in addition/multiplication stage and the opa i is used in the
postnormalization stage. The operation is performed in the second clock-cycle and the
postnormalization in the third clock-cycle. When performing the operation, the input
through the pipeline is fpu_op whereas the other input could be fpu op_i. In the second
clock cycle, the value of the opcode fpu op i can change and so a wrong operation is
performed. Fpu op on the other hand was assigned original fpu op i at the end of the
clock cycle and so its value does not change and is the opcode for correct operation.
Similarly, opa_i changes value until it reaches postnormalization, hence it is propagated
through the pipeline stages via opa_out and opa _addout. All the signals that are added or
modified to fix this problem are added with a comment “propagated input through

pipeline register” in Modified FPU VHDL code given in Appendix B.

46

When a value or a signal generated in one pipeline stage is required in another stage, then
that signal also has to be propagated through the pipeline stages. For example, the output
exponent or the larger exponent output of the prenormalization stage is required in the
postnormalization stage and hence this has to be taken through the addition/multiplication
unit to the postnormalization stage. This is done using prenorm_addsub_exp signal to
take the exponent from prenormalization to addition stage and then by using
exp_o_addsubpost signal to take it from addition to postnormalization. These modified
signals are commented as “intermediate outputs through pipeline register in the modified

code.

All the pipeline stages should consume same number of clock cycles to produce the
outputs of a particular stage. If different pipeline stages consume different number of
clock cycles to produce the outputs of corresponding pipelines, then all the pipelines
stages should wait until all the pipelines stages are done with producing their outputs to
ensure the correct functioning of the pipelined system. This decreases the throughput of
the system as outputs will be produced at a reduced frequency than that of the clock
frequency. New output will be produced for every n clock cycles where n is the number
of clock cycles consumed by the pipeline stage that consumes highest number of clock

cycles to produce its output.

In the original adopted FPU [19], prenormalization takes two clock cycles, arithmetic
core takes one clock cycle, postnormalization takes three clock cycles and formatting
output takes one clock cycle to give their outputs. All the pipeline stages have been
modified such that each pipeline consumes only one clock cycle. For example, two
sequential process blocks used in Postnormalization caused two extra clock cycles to get
the output of that stage. The signal that is computed in the first sequential process block
is needed to compute the signals in second sequential process block and hence needs two
clock cycles to get the output of that stage. Those two sequential process blocks are
replaced by combinational logic as explained below to reduce the number of clock cycles

required by postnormalization pipeline stage to one.

47

When the hidden bit and carry bit of the arithmetic result are zeros, then the mantissa has
to be left-shifted to normalize it. The following sequential process block is used in
postnormalization unit of FPU [19] to compute the number of positions by which the
mantissa has to be shifted left.

Listing 1. Process to count zeroes from the left.

process (clk 1)

begin

if rising edge(clk 1) then

-— count the leading =zeros of fraction, needed for left-
shift

s zeros <= count 1 zeros(s fract 28 1i(26 downto 0));

end 1if;

end process;

The above process block is replaced by the following line of combinational logic.

s _zeros <= count 1 zeros(s fract 28 1i(26 downto 0));

This change reduced the number of clock cycles required by the postnormalization unit to
two. After the above mentioned sequential process block, combinational logic is used in
the FPU to compute the left shifted mantissa (s fract shl) and corresponding
decremented exponent (s_exp_shl) using the count of leading zeros of fraction (s_zeros)
computed in above process. After the combinational logic, the following sequential
process blocks are used in FPU to compute the normalized fraction and corresponding
exponent using left shifted mantissa (s_fract shl) and decremented exponent (s_exp shl)
computed using combinational logic.

Listing 2. Process to compute normalized fraction

process (clk 1)

begin

if rising edge(clk 1) then

if s shrl="'1' then -- if carry bit is set, then right shift
s fract 1 <= s fract shrl; -- assign right shifted fraction
elsif s shl='l"' then -- 1f carry bit and hidden bits are
zeros, then left shift

s _fract 1 <= s fract shl; -- assign right shifted fraction
else

s fract 1 <= s fract 28 i; -- assign already normalized
fraction

end 1if;

48

end 1if;
end process;

process (clk 1) -- process to compute normalized exponent
begin

if rising edge(clk i) then

if s shrl='l' or s shrle='l' then -- 1if carry bit 1is set,
then right shift

s exp 1 <= s exp shrl; -- assign incremented exponent

elsif s shl='l"' then -- 1f carry bit and hidden bits are
zeros, then left shift

s exp 1 <= s exp shl; -- assign decremented fraction

else

s exp 1 <= s exp 1i; -- assign already normalized exponent
end 1f;

end if;

end process;

The above two process blocks are used replaced with the following combinational logic.

s fract 1 <= s fract shrl when s shrl='l' else
s fract shl when s shl='l' else
s fract 28 1i;

s exp 1 <= s exp shrl when s shrl='l' or s shrle='l"' else
s _exp shl when s shl='1l' else
S _exp 1i;

Such similar changes have been made to the entire floating-point unit to enable its proper
functioning. This conversion of sequential logic to combination logic increases the clock
frequency. Postnormalization for multiplication is subdivided into more pipelines
internally and care is taken to see that no branch prediction hazards occur. The size of the
pipeline is influences the hardware cost; greater the size more is the cost. In the FPU, the
32-bit operands given to prenormalization are taken as inputs to postnormalization also to
find whether inputs are infinities (two 1-bit signals) or NaNs (two 1-bit signals). Changes
have been made to check the operands for infinity and SNaN in prenormalization unit
itself. If operands are checked for infinity and SNaN in prenormalization, then 6 bits

(four 1-bit signals indicating whether inputs are infinities are not and two 1-bit signals

49

indicating whether inputs are NaNs are not) can be carried across the pipeline registers
instead of 64-bits (two 32-bit operands). This checking of the inputs for infinity and NaN
does not increase the length of the critical path in prenormalization.

With all the changes made, the modified FPU was thoroughly tested by sending Gaussian
distributed synthetic test data inputs using a VHDL test bench for full pipelined operation

and this FPU has been later used for construction of native-pair FPU.

3.6. Examples

Based on the steps and the circuitry described for performing floating-point arithmetic in
Chapter 2 the following examples are worked out in a step by step fashion. Each sub-
section covers two examples. The same test cases are using for operation without residual
register and for operation with residual register. For example, the operands used in
addition are again used in addition with residual register to clearly differentiate the

functioning of the two approaches.

3.6.1. IEEE 754 Floating-point addition examples

Example 1:

A =0x (4171999A) =01000001011100011001100110011010
B =0x (3FC147AE)=00111111110000010100011110101110
Step 1: Prenormalization:

Sign (A) = 0; Exp (A) = 10000010 =130 — 127 = 3; Mantissa (A) =
11100011001100110011010;

Append# mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp

£ “00000000” that is number is not a denormalized number.

Mantissa (A) = 01|11100011001100110011010/000

50

Sign (B) =0; Exp (B)=01111111 =127 — 127 = 0; Mantissa (B) =
10000010100011110101110;

Append mantissa (B) with carry, hidden, guard, round and sticky bit.

Mantissa (B) = 01/10000010100011110101110]000

Exp difference = Exp (A)—Exp (B)=3-0=3

Exp (A)>Exp (B)=1

Smaller mantissa = Mantissa (B) = 01{10000010100011110101110]000

Larger mantissa = Mantissa (A) = 01|11100011001100110011010|000

Shift smaller mantissa right by Exp difference.

RS (Right shifted) Smaller Mantissa = 00/00110000010100011110101|110 000

Exponent to Postnormalization = 3

Step 2: Addition

Output sign = sign (A) if Exp (A) > Exp (B) =1 else Sign (B) = ‘0’
Larger mantissa= 01/11100011001100110011010]000

RS Smaller Mantissa = 00/00110000010100011110101{110

Sum =10/00010011100001010001111|110
Step 3: Postnormalization
Sum = 10]00010011100001010001111|110
Exponent to Postnormalization = 3
Carry =1 => right shift sum once

Right shifted Sum = 01/00001001110000101000111|111 0

51

Exponent =3+1 =4

Sum is rounded up assuming round-to-nearest mode.

Rounded Sum = Right shifted Sum + 1 =01|00001001110000101001000|111
Carry bit =0 =>No right shift.

Concatenating: Rounded Sum (excluding carry, hidden, guard, round and sticky bits)
with Sign and Exponent

0] 10000011 |00001001110000101001000 = 0x (4184E148)
Example 2:

A =0x (501502F9) = 01010000000101010000001011111001
B =0x (219392EF) = 00100001100100111001001011101111
Step 1: Prenormalization

Sign (A) = 0; Exp (A) = 10100000 = 160 — 127 = 33; Mantissa (A) =
00101010000001011111001;

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp #

“00000000” that is number is not a denormalized number.
Mantissa (A) =01/00101010000001011111001|000

Sign (B) = 0; Exp (B) = 01000011 =67 — 127 = -60; Mantissa (B) =
00100111001001011101111;

Append mantissa (B) with carry, hidden, guard, round and sticky bit.
Mantissa (B) =01/00100111001001011101111]000
Exp difference = Exp (A) — Exp (B) =33 — (-60) =93

Exp (A)>Exp (B)=1

52

Smaller mantissa = Mantissa (B) = 01/00100111001001011101111|000
Larger mantissa = Mantissa (A) = 01/00101010000001011111001|000
Shift smaller mantissa right by Exp difference.
RS (Right shifted) Smaller Mantissa = 00/00000000000000000000000|001
Discarded bits - 0111100011001100110011010
Exponent to Postnormalization = 33
Step 2: Addition
Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B) = ‘0’

Larger mantissa= 01/00101010000001011111001]000

RS Smaller Mantissa = 0000000000000000000000000|001

Sum =01/00101010000001011111001|001
Step 3: Postnormalization
Sum =01|00101010000001011111001]001
Exponent to Postnormalization = 33
Carry =0=> no right shift sum.
Sum = 01|00101010000001011111001]001
Exponent = 33
Sum is rounded down assuming round-to-nearest mode.
Rounded Sum = Sum = 01|00101010000001011111001]001

Carry bit =0 =>No right shift.

53

Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with
Sign and Exponent

0110100000 (00101010000001011111001 = 0x (501502F9)

3.6.2. Addition with Residual Register examples:

Example 1:

A =0x (4171999A) =01000001011100011001100110011010
B =0x (3FC147AE)=00111111110000010100011110101110
Step 1: Prenormalization

Sign (A) = 0; Exp (A) = 10000010 =130 — 127 = 3; Mantissa (A) =
11100011001100110011010;

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp #

“00000000” that is number is not a denormalized number.
Mantissa (A)=01/11100011001100110011010]000

Sign (B)=0; Exp (B)=01111111 =127 — 127 = 0; Mantissa (B) =
10000010100011110101110;

Append mantissa (B) with carry, hidden, guard, round and sticky bit.
Mantissa (B) = 01/10000010100011110101110]000

Exp difference = Exp (A) —Exp (B)=3-0=3

Exp (A)>Exp (B) =1

Smaller mantissa = Mantissa (B) = 01/10000010100011110101110]000
Larger mantissa = Mantissa (A) = 01|11100011001100110011010]000
Shift smaller mantissa right by Exp difference.

RS (Right shifted) Smaller Mantissa = 00/00110000010100011110101{110

54

Discarded bits — 110 go into residual register

Mantissa (RR) = 000000000000000000000000110

Exponent to Postnormalization = 3

Step 2: Addition

Output sign = sign (A) if Exp (A) > Exp (B) =1 else Sign (B) = ‘0’
Larger mantissa= 01/11100011001100110011010/000

RS Smaller Mantissa = 00/00110000010100011110101|110

Sum =10/00010011100001010001111|110
Step 3: Postnormalization
Sum = 10]00010011100001010001111|110
Exponent to Postnormalization = 3
Carry =1 => right shift sum once
Right shifted Sum = 01/00001001110000101000111|111
Discarded bit = 1; Goes into residual register.
Mantissa (RR) before rounding = 00000000000000000000000|1|110
Exponent =3+1 =4
Sum is rounded up assuming round-to-nearest mode.
Rounded Sum = Right shifted Sum + 1 =01]00001001110000101001000|111
Carry bit =0 =>No right shift.

Mantissa (RR) after rounding = 000000000000000000000001110

55

Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with
Output Sign and Output Exponent.

0110000011 |00001001110000101001000 = 0x (4184E148)

Complement flag for residual register = sign (a) XOR sign (b) XOR Roundup = 1
Residual register sign = Output Sign XOR Roundup =1

Hence, complement the added bits in residual: 000000000000000000000001110

2’s complement (1110) - 0010

Final residual mantissa = 000000000000000000000000010

Exponent (RR) = Exp (A) — 2(Ny, +1) when (exponent difference > Ny, +1) else Exp (B).

Where N, is number of mantissa bits in the native-precision floating-point number. For

Single-precision Ny, =23.

Accordingly, Exponent (RR) = Exp (B) =0

Final un-normalized residual value = Sign (RR) | Exponent (RR) | Final residual mantissa
Final outputs:

Output =0 | 10000011 |00001001110000101001000 = 0x (4184E148)
Sign (RR) =1

Exponent (RR) =“01111111"

Mantissa (RR) = “000000000000000000000000010

MOVRR =1

Step 4: Normalization of residual value

Sum = Mantissa (RR) & 000 = 00/0000000000000000000000010|000

Exponent = Exponent (RR) =01111111

56

Sign = Sign (RR) =0 => left shift till hidden bit =1

22 left shifts. Exponent = Exponent (RR) —22 =127 -22=105=01101001

Output mantissa = 01/0000000000000000000000000|000

Normalized Residual register value = 1]01101001/0000000000000000000000000
= 0x (B4800000)

Example 2:

A =0x (501502F9) = 01010000000101010000001011111001

B =0x (219392EF) = 00100001100100111001001011101111

Step 1: Prenormalization

Sign (A) = 0; Exp (A) = 10100000 = 160 — 127 = 33;

Mantissa (A) =00101010000001011111001

Append mantissa (A) with carry, hidden, guard, round and sticky bit. Hidden = 1 if Exp #

“00000000” that is number is not a denormalized number.

Mantissa (A) =01/00101010000001011111001|000

Sign (B) = 0; Exp (B) = 01000011 = 67 — 127 = -60;

Mantissa (B) =00100111001001011101111

Append mantissa (B) with carry, hidden, guard, round and sticky bit.
Mantissa (B) =01/00100111001001011101111]000

Exp difference = Exp (A) — Exp (B) =33 — (-60) =93

Exp (A)>Exp (B)=1

Smaller mantissa = Mantissa (B) = 01/00100111001001011101111]000

57

Larger mantissa = Mantissa (A) = 01/00101010000001011111001|000
Shift smaller mantissa right by Exp difference.
RS (Right shifted) Smaller Mantissa = 00/00000000000000000000000|001
Discarded bits - 0100100111001001011101111 go into residual register
Mantissa (RR) =0100100111001001011101111
Exponent to Postnormalization = 33
Step 2: Addition
Output sign = sign (A) if Exp (A) > Exp (B) = 1 else Sign (B) = ‘0’

Larger mantissa= 01/00101010000001011111001]000

RS Smaller Mantissa = 0000000000000000000000000|001

Sum =01/00101010000001011111001|001
Step 3: Postnormalization
Sum =01|00101010000001011111001]001
Exponent to Postnormalization = 33
Carry =0=> no right shift sum.
Sum = 01|00101010000001011111001]001
Exponent = 33
Mantissa (RR) before rounding = Mantissa (RR) =0100100111001001011101111
Sum is rounded down assuming round-to-nearest mode.
Rounded Sum = Sum = 01|00101010000001011111001]001

Carry bit =0 =>No right shift.

58

Mantissa (RR) after rounding = Mantissa (RR) before rounding =
0100100111001001011101111

Concatenate: Rounded Sum (excluding carry, hidden, guard, round and sticky bits) with

Sign and Exponent

0| 10100000 |00101010000001011111001 = 0x (501502F9)

Complement flag for residual register = sign (a) XOR sign (b) XOR Roundup = 0
Residual register sign = Output Sign XOR Roundup =0

Final residual mantissa = 0100100111001001011101111

Exponent (RR) = Exp (A) — 2(N,, +1) when (exponent difference > N, +1) else Exp (B).

Where Ny, is number of mantissa bits in the native-precision floating-point number. For

Single-precision Ny, =23.

Accordingly, Exponent (RR) = Exp (A) — 2(Ny, +1) = 65 =01000011
Final un-normalized residual value = Sign (RR) | Exponent (RR) | Final residual mantissa
Final outputs:

Output =0 | 10100000 [00101010000001011111001 = 0x (501502F9)
Sign (RR) =0

Exponent (RR) =“01000011"

Mantissa (RR) =*“0100100111001001011101111”

MOVRR =1

Step 4: Normalization of residual value

Sum = Mantissa (RR) & 000 =0100100111001001011101111|000

Hidden bit = 1 so no shifting Exponent = Exponent (RR) = 01000011

59

Output mantissa = 01/0000000000000000000000000]|000
Normalized Residual register value = 0/01000011{00100111001001011101111
= 0x (219392EF)

3.6.3. IEEE 754 Floating-point Multiplication Examples:

Example 1:
A =0x (4171999A) =01000001011100011001100110011010

B = 0x (40000011) = 01000000000000000000000000010001

Step 1: Prenormalization:

Sign (A) =0; Exp (A) = 10000010 =130 — 127 = 3; Mantissa (A) =
1100011001100110011010;

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp # “00000000” that is number

1s not a denormalized number.
Mantissa (A)=1|11100011001100110011010 -- Ox (F1999A)

Sign (B) = 0; Exp (B) = 10000000 = 128-127 = 1; Mantissa (B) =
10000010100011110101110;

Prepend mantissa (B) with a hidden bit.
Mantissa (B) = 1/00000000000000000010001 -- 0x (800011)
Exp (O) — exponent to the postnormalization = 130 + 128 -127 = 131 =4
Step 2: Multiplication
Output sign = sign (A) XOR Sign (B) = ‘0" XOR ‘0’ =0’
Mantissa (A) = 1/11100011001100110011010 — 0x (F1999A)

Mantissa (B) = 1]00000000000000000010001 — 0x (800011)

Product (48 bits) =01{1110001100110011011101000010110011001100111010

60

Step 3: Postnormalization
Product[47:0]=01|1110001100110011011101000010110011001100111010
Exponent to Postnormalization = Exp (O) =4

Carry =0 => No right shifting product[47:0]

Product 2[47:0] =01/ 11100011001100110111010 |00] 010110011001100111010
01 — carry and hidden bits.

00 — guard and round bits.

Sticky = OR (Product 2 [20:0]) =1

Roundup = guard and ((round or sticky) or Product 2(23) =0

Based on Rounding logic, product is rounded down

Rounded product = product 2 [47:23]+ 1 =01 11100011001100110111010
Lower 23 bits discarded - 00| 010110011001100111010

Carry bit =0 =>No right shift.

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent
0| 10000011 |11100011001100110111010 = 0x (41F199BA)

Example 2:

A =0x (501502F9) = 01010000000101010000001011111001
B =0x (41A77700) = 01000001101001110111011100000000
Step 1: Prenormalization

Sign (A) = 0; Exp (A) = 10100000 = 160 — 127 = 33;

Mantissa (A) =00101010000001011111001;

61

Prepend mantissa(A) with a hidden bit. Hidden = 1 if Exp # “00000000” that is number is

not a denormalized number.

Mantissa (A) = 1/00101010000001011111001

Sign (B) = 0; Exp (B) = 10000011 =131 — 127 = 4;

Mantissa (B) =01001110111011100000000;

Prepend mantissa(B) with a hidden bit.

Mantissa (B) = 1/01001110111011100000000

Exp(A)>Exp(B)=1

Mantissa (B) = 1/01001110111011100000000

Mantissa (A) = 1/00101010000001011111001

Exponent to Postnormalization = Exp (O) =160 + 131 -127 =164 =37 = 10100100

Step 2: Multiplication

Output sign = sign (A) XOR Sign (B) = ‘0> XOR ‘0’ =0’
Mantissa (A) = 1/00101010000001011111001

Mantissa (B) = 1/01001110111011100000000

Product (48 bits) = 01{1000010111101000110100110100001011111100000000
Step 3: Postnormalization
Product[47:0]=01/1000010111101000110100110100001011111100000000
Exponent to Postnormalization = Exp (O) = 37
Carry =0=> no right shift product[47:0]; Exp (O) =37

Product 2[47:0] =01 |10000101111010001101001] 10 {100001011111100000000

62

01 - carry and hidden bits.

10 — guard and round bits.

Sticky = OR (Product 2 [20:0]) =1

Roundup = guard and ((round or sticky) or Product 2(23) =1

Product is rounded up assuming round-to-nearest mode.

Rounded Product = Product 2 [47:23] + 1 =01/10000101111010001101001 + 1
=01/10000101111010001101010

Discarded bits — Product 2 [23:0] - 10 [{100001011111100000000

Carry bit =0 =>No right shift.

Exp (O) =37 = 164 (without bias) = 10100100

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent

01]10100100]10000101111010001101010 = 0x (5242F46A)

3.6.3. Multiplication with Residual Register Examples

Example 1:

A =0x(4171999A) = 01000001011100011001100110011010
B = 0x (40000011) = 01000000000000000000000000010001
Step 1: Prenormalization:

Sign (A) = 0; Exp (A) = 10000010 =130 — 127 = 3; Mantissa (A) =
1100011001100110011010;

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp # “00000000” that is number

is not a denormalized number.

Mantissa (A) =1|11100011001100110011010 -- Ox (F1999A)

63

Sign (B) = 0; Exp (B) = 10000000 = 128-127 = 1; Mantissa (B) =
10000010100011110101110;

Prepend mantissa (B) with a hidden bit.
Mantissa (B) = 1/00000000000000000010001 -- 0x (800011)
Exp (O) — exponent to the postnormalization = 130 + 128 -127 = 131 =4
Step 2: Multiplication
Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ =0’
Mantissa (A) =1{11100011001100110011010 — 0x (F1999A)

Mantissa (B) = 1]00000000000000000010001 — 0x (800011)

Product (48 bits) =01{1110001100110011011101000010110011001100111010
Step 3: Postnormalization
Product[47:0]=01|1110001100110011011101000010110011001100111010
Exponent to Postnormalization = 4
Carry =0 => No right shift product[47:0]

Product 2 [47:0]1=01] 11100011001100110111010 |00 010110011001100111010
01 - carry and hidden bits.

00 — guard and round bits.

Sticky = OR (Product 2 [20:0]) =1

Roundup = guard and ((round or sticky) or Product 2(23) =0

Based on rounding logic, product is rounded down.

Rounded product = product 2 [47:23]+ 1 =01 11100011001100110111010

64

Lower 23 bits discarded go into the residual register - 00| 010110011001100111010
Residual register mantissa = Mantissa (RR) =00/ 010110011001100111010

Carry bit =0 =>No right shift. Nothing goes into residual register.

Mantissa (RR) =000/ 010110011001100111010

Exponent (RR) = Output Exponent — 24 = 131-24 =107 =01101011

Complement (RR) = roundup =’0’

Sign (RR) = sign (O) XOR roundup = ‘0’

Concatenate: Rounded Sum (excluding carry and hidden bits) with Sign and Exponent
0110000011]11100011001100110111010 = 0x (41F199BA)

Outputs:

Output =0 | 10000011 |11100011001100110111010 = 0x (41F199BA)

Mantissa (RR) = 0000010110011001100111010; Exponent (RR) =01101011; Sign (RR)
— ‘0’;

MOVRR =1
Step 4: Normalization of Residual Register Value
Input = Product[47:0] = Mantissa (RR) & “00000000000000000000000”
=00/ 0001011001100110011101000000000000000000000000
Exponent to postnormalization = 107 = 01101011
Sign (RR) = <0’

Hidden bit = 0 => count zeros from left starting from hidden bit or Product[46] = 2

65

Shift left product 2 times.

Shifted product = Product 2 [46] =
00001]0110011001100111010000]00,00000000000000000

Exponent (RR) =107 -5 =102

01 - carry and hidden bits.

00 — guard and round bits.

Sticky = OR (Product 2 [20:0]) =0

Roundup = guard and ((round or sticky) or Product 2(23) =0

Shifted product is rounded down based on the rounding logic.

Rounded product =00010110011001100111010

Carry bit = 0 => no right shift.

Output = Sign (RR) | Exponent (RR)| Rounded Product (excluding carry and hidden bits)
Normalized Residual value = 0/01100110[00010110011001100111010 = 0x (330B333A)

Example 2:

A =0x (501502F9) = 01010000000101010000001011111001
B =0x (41A77700)=01000001101001110111011100000000
Step 1: Prenormalization

Sign (A) = 0; Exp (A) = 10100000 = 160 — 127 = 33;
Mantissa (A) =00101010000001011111001;

Prepend mantissa (A) with a hidden bit. Hidden = 1 if Exp # “00000000” that is number

1s not a denormalized number.

Mantissa (A) = 1/00101010000001011111001

66

Sign (B) = 0; Exp (B) = 10000011 =131 — 127 = 4;
Mantissa (B) =01001110111011100000000;
Prepend mantissa (B) with a hidden bit.

Mantissa (B) = 1/01001110111011100000000
Exp(A)>Exp(B)=1

Mantissa (B) = 1/01001110111011100000000
Mantissa (A) =1/00101010000001011111001

Exponent to Postnormalization = Exp (O) = 160 + 131 -127 = 164 = 37(with bias) =
10100100

Step 2: Multiplication
Output sign = sign (A) XOR Sign (B) = ‘0’ XOR ‘0’ =0’
Mantissa (A) = 1/00101010000001011111001

Mantissa (B) = 1/01001110111011100000000

Product (48 bits) = 01{1000010111101000110100110100001011111100000000
Step 3: Postnormalization
Product [47:0]= 01]1000010111101000110100110100001011111100000000
Exponent to Postnormalization = Exp (O) = 37
Carry =0=> no right shift product [47:0]; Exponent = Exp (O) =37
Product 2 [47:0]1 =01 |10000101111010001101001| 10 {100001011111100000000
01 - carry and hidden bits.

10 — guard and round bits.

67

Sticky = OR (Product 2 [20:0]) =1

Roundup = guard and ((round or sticky) or Product 2(23) =1

Product is rounded up assuming round-to-nearest mode.

Rounded Product = Product 2 [47:23]+ 1 =01/10000101111010001101001 + 1
=01/10000101111010001101010

Discarded bits — Product 2 [23:0] - 10 |100001011111100000000 go into the residual

register
Residual Register Mantissa = 10100001011111100000000
Carry bit =0 =>No right shift. So nothing is added into the residual register.
Concatenate: Rounded product (excluding hidden bit) with Sign and Exponent
Product output =0| 10100100 |10000101111010001101010 = 0x (5242F46A)
Mantissa (RR) = 00/10100001011111100000000
Exponent (RR) = Exp (O) — 24 = 164 — 24 = 140 (without bias) = 10001100
Sign (RR) = Sign (O) XOR roundup = ‘0’ XOR ‘1’ =1’
Complement (RR) = roundup = ‘1’ => bits added in Mantissa (RR) are complemented.
Mantissa (RR) = 00 & (~ Mantissa (RR))

=00]01011110100000011111111
Outputs:
Product output =01010010010000101111010001101010 = 0x (5242F46A)
Mantissa (RR)=00|01011110100000011111111

Exponent (RR) = 10001100; Sign (RR) =1’

68

MOVRR =1

Step 4: Normalization of Residual register value

Input = Product [47:0] = Mantissa (RR) & “00000000000000000000000”
=00]01011110100000011111111000000000000000000000000

Exponent to postnormalization = 140 = 10001100

Sign (RR) = ‘1"

Hidden bit = 0 => count zeros from left starting from hidden bit or Product[46] = 2

Shift left product 3 times.

Shifted product product2 [47:0] =
01]011110100000011111111000000000000000000000000[00

Exponent (RR) =140 -3 =137

01 - carry and hidden bits.

00 — guard and round bits.

Sticky = OR (Product 2 [20:0]) =0

Roundup = guard and ((round or sticky) or Product 2(23) =0

Shifted product is rounded down based on the rounding logic.

Rounded product =01|01111010000001111111100

Carry bit = 0 => no right shitft.

Output = Sign (RR) | Exponent (RR)| Rounded Product (excluding carry and hidden bits)

Normalized Residual value = 1{10001001/01011110100000011111111 = 0x (C4AF40FF)

69

Chapter 4. Testing and Results

The Native-pair FPU adder and multiplier have been verified using 6,300 test cases. Both
behavioral and post-route simulations were run using Modelsim for this purpose. A set of
Gaussian distributed data was used for the purpose of thorough testing of both the adder
and the multiplier. This Gaussian sequence was a sequence 6300 million randomized
numbers with mean value of zero and variance value of 1. The sequence values were
stored into a text file in IEEE 754 format. A VHDL test bench was written to read this
data from this text file, generate results. These same test cases have been used to test both
the adder and multiplier and the results so obtained were compared to the results by the
software program. The VHDL test benches and the residual.cpp codes are given in the

Appendix B

Appendix A describes in detail the place and route simulation output waveforms.

70

Chapter 5. Estimation of Hardware Cost and Performance

The Floating-point unit with residual register needed to perform Native-pair floating-
point arithmetic has been implemented in VHDL. The floating-point adder and multiplier
with residual register have been synthesized to evaluate the hardware complexity and
speed of the design. Implementation costs of these designs are compared with those of
32-bit FPU and 64-bit FPU without the residual register hardware. Xilinx 9.1 ise tool is
used to generate post-route synthesis reports and Modelsim is used to generate place and
route simulation waveform. The three designs — 32-bit FPU with residual register, 32-bit
FPU without residual register, 64-bit FPU without residual register are targeted to Xilinx
Virtex 4 FPGA xc4vIx25 device. Also the individual stages of the floating-point unit
adder and multiplier i.e., prenormalization unit, addition unit, multiplication unit and
postnormalization unit are also synthesized in order to analyze the residual register
hardware needed to support the Native-pair floating-point arithmetic in a native 32-bit

FPU.

5.1. Adder Implementation

Table 6. Comparison of Implementation cost and delay for Adders

ADDER Implementation cost Minimum period
Slices % Increase (ns) % Increase
32-bit FPU adder without 1437 0.0 20.924 0.0
residual register
32-bit FPU adder with 1674 16.5 24.971 19.34
residual register
64-bit FPU adder without 2272 56.4 62.1 197.8
residual register

Table 6 above gives the number of slices used and the minimum period of the critical
path obtained from the post-route synthesis reports of the floating-point adders. The
Implementation cost column is divided into the absolute utilization and relative

utilization. The absolute utilization gives the exact number of slices needed for each

71

design and the relative utilization indicates the percentage increase in number of slices
for each design relative to 32-bit FPU adder without residual register. The second column
gives the minimum period or the delay in the critical path of the three adders and their
relative increases taking 32-bit FPU adder without residual register as the mean. The

observations drawn from Table 6 are:

e The percentage increase in hardware from using residual register for 32-bit FPU
adder instead of 32- FPU adder without residual register is 16.5% and the
percentage increase jumps 56.4% when 64-bit FPU adder without residual register

1s used

e The minimum period increased by 4.67 ns for 32-bit FPU adder with residual
register compared to the increase of 41 ns for 64-bit FPU adder hardware. The

relative increase in the minimum period changes from 19.34% to 197.8%.

e Comparing only 32-bit FPU adder and 64-bit FPU adder, the relative hardware

cost increases by a factor of 3.4 and minimum period increases by a factor of 10.

The hardware cost of 64-bit FPU adder is due to increase in the use of resources and
increase in the size of pipeline. Table 7 shows the comparison of 32-bit FPU adders with
and without residual register hardware. This rise in the hardware cost involves addition of
no new logic but only increasing the size of all the combinational and sequential logic
within the 32-bit FPU adder hardware. But the increase in the hardware cost of 32-bit
FPU adder with residual register is due to addition of new logic which is needed in the

residual value computation.

Table 7. Comparison of device utilization reports of Prenormalization unit for 32-bit
FPU adder with and without residual register hardware

ADDER - Prenormalization 32-bit FPU adder without 32-bit FPU adder with residual
residual register register
Number of Slices 498 492
Number of Slice Flip Flops 16 64
Number of 4 input LUTs 889 880
Minimum period 1.10 ns 1.648 ns

72

Table 7 shows the device utilization summary of the prenormalization unit for 32-bit FPU
adder with and without the residual register. The overall hardware needed for adder with
residual register increased due the addition of residual register and the storing it with the
discarded bits after a right-shift is performed in prenormalization. This extra hardware
shown in bold in Figure 14, adds sequential logic in the critical data path which becomes

the cause for the delay and the increase in the minimum period.

Table 8. Comparison of device utilization reports of Postnormalization unit for 32-
bit FPU adder with and without residual register hardware

ADDER - Postnormalization

32-bit FPU adder with residual
register

32-bit FPU adder without
residual register

Number of Slices

522

639

Number of 4 input LUTs

932

1130

Table 9 shows the extra hardware in the Postnormalization unit of the FPU adder with
residual register. The extra hardware shown in Figure 15 is due to the appending of the
discarded bits in to the residual register value that comes from the prenormalization unit,
the computation of the sign, the complement flag and the exponent value, computing the
2’s complement of the residual value based on the complement flag and storing all this
into a residual register. As there is no delay in the critical datapath as the extra hardware

does not involve any sequential logic in the datapath.

5.2. Multiplier Implementation

Table 10 shows the results of the place-route synthesis reports. The increase in number of
slices for 32-bit FPU multiplier with residual register is 330 and it is 4497 for 64-bit FPU

multiplier. The minimum period increases by 11.8% and 61.7% respectively for 32-bit

FPU multiplier with residual register hardware and 64-bit FPU multiplier.

73

Table 9. Comparison of Implementation cost and delay of Multipliers

MULTIPLIER

Implementation cost Minimum period
Slices % Increase (ns) % Increase
32-bit FPU multiplier 2703 0.0 34.754 0.0
without residual register
32-bit FPU multiplier with 3033 12.2 38.875 11.8
residual register
64-bit FPU multiplier 7200 166.3 55.7 61.74
without residual register

The inferences that can be drawn from table 10:

e The extra hardware needed for 32-bit FPU multiplier with residual register
increases by 12.2% and for 64-bit FPU multiplier the hardware cost increases by
166%.

e The minimum period increases by 4 ns for 32-bit FPU multiplier with residual

register hardware and 21 ns for 64-bit FPU multiplier.

e Hardware cost (64-bit FPU multiplier) = 13.6 x hardware cost (32-bit FPU

multiplier with residual register).

e Minimum period increase (64-bit FPU multiplier) = 5.23 x minimum period

increase (32-bit FPU multiplier with residual register).

Similar to the adders, the hardware increase in 64-bit multiplier is primarily due to
increase in the size of the resources and the pipeline. From Table 9 it can also be
observed that the increase in the hardware when residual register is used for multiplier is
less than the increase for adder with residual register. Floating-point multiplication does
not have any shifting or discarding of bits in prenormalization but floating-point addition
involves shifting of mantissa in the prenormalization unit. The residual register hardware

and the related logic are present only in the postnormalization unit for a FPU multiplier.

74

Table 10. Comparison of device utilization reports of Postnormalization unit for 32-
bit FPU multiplier with and without residual register hardware

Multiplier - Postnormalization | 32-bit FPU adder with | 32-bit FPU adder without
residual register residual register
Number of Slices 1817 1807
Number of Slice flip flops 112 146
Number of 4 input LUTs 3322 3311
Minimum period 8.332 ns 7.637 ns

Table 12 shows the device utilization of postnormalization unit in FPU multiplier with
residual register and FPU multiplier without residual register. All the extra logic resulting
in extra hardware is due to setting of the residual mantissa before and after rounding,
computing the residual register exponent, the sign and complement flag and
complementing the residual register value if the complement flag is set. The delay in the

critical path increases by 0.7 ns due to this extra hardware.

75

Conclusion

Most processors in video game consoles and graphics hardware widely use 32-bit or
single precision floating-point hardware which is available at low cost. To harness this
hardware for scientific computing, the intermediate results in these processors require
precision higher than 32-bits. Usage of double precision or 64-bit floating-point
arithmetic is not justifiable for this purpose because the scientific computing market is
too small to justify the added expense. Using 32-bit Native-pair arithmetic increases the
accuracy of these applications close to that offered when double precision arithmetic is

used but at a fraction of the cost of 64-bit floating point.

The FPU unit [19] used for this thesis has been debugged extensively before being used
to implement the residual register hardware needed for adder and multiplier. The signals
between modules have been routed correctly to enable pipelined operation. The input
signals were carried through various stages in the pipeline or till where ever they were
needed. The pipelines were balanced to attain maximum operable frequency. Signals
present in the last stage and that required wider operands to be enabled have been
computed in the earlier stage of the pipeline. There by the requirement for wider
operands to be routed through the pipeline was negated and the width of the pipeline was
reduced. The debugged FPU gave addition outputs every 3 clock cycles and
multiplication output every 5 clock cycles. The residual register hardware was added to
the FPU adder and FPU multiplier and its proper functioning has been implemented. Both
the FPU adder and the FPU multiplier have been thoroughly tested by performing post-
route simulations and also performing test-bench analysis using the synthetic data
generated by the test code. The synthesis reports after the placement and routing have

been obtained and a detailed analysis has been show in Chapter 5.

As can be seen from the synthesis results in Table 6, the increase in the hardware cost of
due to residual register hardware is 15.4% for adders and 12.2% for multipliers. The
increase in the hardware for 64-bit floating-point hardware is 55% for adders and 166%
for multipliers. When comparing just 64-bit floating-point hardware and the 32-bit

residual register hardware, there is a cost increases by a factor of 3.6 for adders and 13.6

76

for multipliers. The minimum period comparison as obtained from the Table 6 shows that
the period increases for adder with residual register by 37% where as in multiplier with
residual register the increase is just 11.8%. In comparison, the 64-bit adder has a decrease

in performance by 226% and 64-bit multiplier has a decrease by 61%.

These results prove that with a minimal increase in hardware cost and a moderate slow
down in performance, the native-pair arithmetic can be used to increase the accuracy of
floating-point computations rather than going for the high cost double precision
hardware. The residual register arithmetic unit performance can be enhanced greatly
through the use of speculation. Using the native-pair hardware only when the speculation
software detects loss of information above a certain limit will certainly result in floating-

point arithmetic with higher precision, better accuracy and improved performance [31].

77

Appendix A

Post-route simulations

The simulation reports for the addition with residual register are presented in the next two
pages. The next page shows the post-route simulation for 8 pairs of operands inputs were
given in continuous clock cycles. The 1% signal is the clock input; the 2™ signal is the
MOVRR input; 3" and 4" signals are the operands A and B represented as opa i and
opb_i; 5" signal is the opcode 000-addition, 001-subtraction; the 6" signal is the rounding
mode; the 7™ signal is the output of the FPU, it could be the result or the normalized
residual value depending on the MOVRR signal; 8" and 16" signals are the output of the
postnormalization and the input to the postnormalization. These signals have been used to
check if the right residual value was going into the postnormalization unit when MOVRR
goes high; the 17" signal is the final sign of the residual register value from the
postnormalization unit; the 20" signal is the complement flag output of the residual
register in the postnormalization unit and it is used to keep track of when the residual
value is being complemented; signals 24,25 and 26 are the exponent values of residual
registers in the prenormalization unit, addition/subtraction unit and postnormalization
unit. But as the final exponent is set only in the postnormalization unit only the 26"
signal can be considered important; the 27" signal, 28" signal and 29" signal are residual
register mantissa outputs from prenormalization unit, addition/subtraction unit and
postnormalization unit. Since the mantissa is set in both prenormalization and
postnormalization, signals 27 and 29 are important. Apart from these, signals 9 to 15 give
the inexact, overflow and the exception outputs. 17" signal is the post in signal and it is
used to see if the residual register mantissa mant rr2, exponent exp rr2 and sign rr2
obtained in the previous clock cycle is sent as input into the postnormalization when the
MOVRR signal is one. 23" signal is the ready signal, valid postnormalization unit
outputs are sent to the FPU output only after this signal goes high. The FPU addition
takes place in 3 clock cycles, one clock cycle each for prenormalization, addition and

postnormalization.

78

In the wave form shown in the next page, signal 3 indicates the operand A - opa i; it is
4171999A in the 1* clock cycle, C17199A in the 2“d, 4171999A in the 3rd clock cycle,
C17199A in the 4", 501502F9 in the 5" and 7", DO1502F9 in the 6" and 8" and
3F893773 in the 9™ clock cycle. 4™ signal is operand B — opb i which takes value
3FC147AE in 1* and 2™ clock cycles, BFC147AE in 3rd and 4th clock cycles, 219392EF
in the 5™ and 6™ clock cycles, A19392EF in the 7™ and 8" clock cycles and 00000000 in
the 9™ clock cycle. The output for the inputs in the 1* clock cycle that is opa i =
4171999A and opb_i = 3FC147AE comes in the 4™ clock cycle with the falling edge of
the clock and its value is shown by the 70 signal output o = 4184E148. The outputs for
the other inputs come along the consequent clock cycles. MOVRR signal goes high at the
end of the 3™ clock cycle, at this time the post_out = 4184E148 and post_in becomes the
residual register mantissa value obtained in the previous clock cycle. The normalized
residual value to be stored in the architectural register B48000000 is obtained in the 5™
clock cycle with the falling edge of the clock. Similarly MOVRR again goes high in the
8™ clock cycle to give the normalized residual register value 219392EF as output in the

9™ clock cycle.

The second wave form has been run to check if the all the 8 input vectors are giving the
correct values of output and residual register values. As can be seen in the wave form

MOVRR signal is made to go high after every 3 clock cycles for this purpose.

79

/fpuaddition/clk_i

/fpuaddition/movrr
/fpuaddition/opa_i
/fpuaddition/opb_i
/fpuaddition/fpu_op_i
/fpuaddition/rmode_i
/fpuaddition/output_o
/fpuaddition/post_out
/fpuaddition/ine_o
/fpuaddition/overflow_o
/fpuaddition/underflow_o
/fpuaddition/inf_o
/fpuaddition/zero_o
/fpuaddition/gnan_o
/fpuaddition/snan_o
/fpuaddition/post_in
/fpuaddition/sign_rr0
[fpuaddition/sign_rr1
/fpuaddition/sign_rr2
/fpuaddition/cmpl_rr0
/fpuaddition/cmpl_rr1
/fpuaddition/cmpl_rr2
/fpuaddition/ready_o
/fpuaddition/exp_rr0
/fpuaddition/exp_rr1
[fpuaddition/exp_rr2
/fpuaddition/mant_rrO
/fpuaddition/mant_rr1

/fpuaddition/mant_rr2

[I A A O O O I O A
[[
— Jer7tonon fer form Jomom fhours Joomrs Jureas faneom [3FBO3773
- [3FC147AE| |BFC147AE J219392EF)(A19392EF)(00008000
0
0
00000000 Jorstren Joemoom Yororone Yorwsers Jsvsaro Yorstoer famsors Yomuro 3F893773
5700000 Jswooo |[rromon Jusiers Yoo [asorons Jorers Jwrars Torwer Jowsiom Yovsu [3F893773
[L L] I
Jooooooo sac1a7e [~ Joooooto Jeo Jaserare Junstrcs [Joor [Yo Jansizes [440BBO8
L
L
. [|
L
L
| L[
. |
00 [7F [43 Joo
00 7F [43 Joo
00 [7F 43 13 Y43 Joo
0000000 0000006 J09392EF)(0300000
0000000 0000006 Jo9392EF Joo00000
J00000x0}0000000 0000002 osa0zer Jrecsor1 J09392EF J0000000
T e e e et e e o O I A A A
1000000 2000000 3000000 4000000

Entity:fouaddition Architecture:testbench_arch Date: Tue Mar 18 7:53:12 PM Eastern Daylight Time 2008 Row: 1 Page: 1

/fpuaddition/clk_i

/fpuaddition/movrr
/fpuaddition/opa_i
/fpuaddition/opb_i
/fpuaddition/fpu_op_i
/fpuaddition/rmode_i
/fpuaddition/output_o
/fpuaddition/post_out
/fpuaddition/ine_o
/fpuaddition/overflow_o
/fpuaddition/underflow_o
/fpuaddition/inf_o
/fpuaddition/zero_o
/fpuaddition/gnan_o
/fpuaddition/snan_o
/fpuaddition/post_in
/fpuaddition/sign_rr0
[fpuaddition/sign_rr1
/fpuaddition/sign_rr2
/fpuaddition/cmpl_rr0
/fpuaddition/cmpl_rr1
/fpuaddition/cmpl_rr2
/fpuaddition/ready_o
/fpuaddition/exp_rr0
/fpuaddition/exp_rr1
[fpuaddition/exp_rr2
/fpuaddition/mant_rrO
/fpuaddition/mant_rr1

/fpuaddition/mant_rr2

[5 I I O
1 [
3F893773 Ja171900m Yoo Yorrsomn Yerisos Juosoars Joorsoara Jaoisuro Jous |3F893773
00000050 [3FC147AE |BFC147AE [219392EF XA19392EFX+00000000
0
0
3F893773 Jroopoooc [rsscras Josomoo Yersorone Yormserss Joorsiors Jorsszer Ysororo Yoo {3F8Q3773
3F8937;3 Jooossooox Juostran Jossoomo Yorssons Yormeres Joorsoaro Jorsezer Yuorsrs foowero f3F8Q3773
T L] L |
1 1
1 1
1 1
1 1
1 1
449BB98 oo Jaaeraze J— Joooooto Juws Joserare Jansrrco |- Joon | = [Jansizeo J440B B 98
']
L] 1
00 IxXx |7F [43 Joo
00 5 J7F 43 Joo
00 [sE J7F (43 113 J43 00
0000000 Joxane 0000006 J09392EF {0000000
0000005 oxnxe [0000006 09392EF Joooooo00
0000005 Jrosocons Xogooooz Josssoer J1sceo1 J09392EF 0000000
T T T e e e e e B O O
5000000 6000000 7000000 8000000 9000000

Entity:fouaddition Architecture:testbench_arch Date: Tue Mar 18 7:53:12 PM Eastern Daylight Time 2008 Row: 2 Page: 2

/fpuaddition/clk_i
/fpuaddition/movrr
/fpuaddition/opa_i
/fpuaddition/opb_i

[fpuaddition/fpu_op_i
/fpuaddition/rmode_i

/fpuaddition/output_o

/fpuaddition/post_out 3F893773

/fpuaddition/ine_o
/fpuaddition/overflow_o
/fpuaddition/underflow_o
/fpuaddition/inf_o
/fpuaddition/zero_o
/fpuaddition/gnan_o
/fpuaddition/snan_o
/fpuaddition/post_in
/fpuaddition/sign_rr0
[fpuaddition/sign_rr1
/fpuaddition/sign_rr2
/fpuaddition/cmpl_rr0
/fpuaddition/cmpl_rr1
/fpuaddition/cmpl_rr2
/fpuaddition/ready_o
/fpuaddition/exp_rr0
/fpuaddition/exp_rr1
[fpuaddition/exp_rr2
/fpuaddition/mant_rrO
/fpuaddition/mant_rr1

/fpuaddition/mant_rr2

[

3F893773
00000000

0

0

3F893773

449BB98

00
00
00

00000
00000
00000

10000000

RN
11000000

RN
12000000

RN
13000000

Entity:fopuaddition Architecture:testbench_arch Date: Tue Mar 18 7:53:12 PM Eastern Daylight Time 2008 Row: 3 Page: 3

RN RAREN
14000000

/fpu_add_mar14tone/clk_i
/fpu_add_mar14tone/movrr
/fpu_add_mar14tone/opa_i
/fpu_add_mar14tone/opb_i

/fpu_add_mar14tone/fpu_op_i
/fpu_add_mar14tone/rmode_i
/fpu_add_mar14tone/output_o
/fpu_add_mar14tone/post_out
/fpu_add_mar14tone/ine_o
/fpu_add_mar14tone/overflow_o
/fpu_add_mar14tone/underflow_o
/fpu_add_mar14tone/inf_o
/fpu_add_mar14tone/zero_o
/fpu_add_mar14tone/gnan_o
/fpu_add_mar14tone/snan_o
/fpu_add_mar14tone/post_in
/fpu_add_mar14tone/sign_rr0
/fpu_add_mar14tone/sign_rr1
/fpu_add_mar14tone/sign_rr2
/fpu_add_mar14tone/cmpl_rr0
/fpu_add_mar14tone/cmpl_rr1
/fpu_add_mar14tone/cmpl_rr2
/fpu_add_mar14tone/ready o
/fpu_add_mar14tone/exp_rr0
/fpu_add_mar14tone/exp_rr1
/fpu_add_mar14tone/exp_rr2
/fpu_add_mar14tone/mant_rr0
/fpu_add_mar14tone/mant_rr1

/fpu_add_mar14tone/mant_rr2

gy wuyr gy u ey L
[[[[
- {4171999A [501502F9 [3F893773 [BF591417 |BFB363ED
- Y3FC147AE [219392EF Jooooo000 [BF02C7D7 |BE3F7FFE
0
0
00000000 [ueris Jowomo J4184E148 [501502F9 Jewseer {501502F9 [3F893773 Juooos {3F893773 JBFADEDF7 Jowsusrs [BFADEDF7
57C00000 Jesooon frrcoomo Jurssers Yousoon Y4184E148 [501502F9 Jesseer [501502F9 3F893773 Jomerow [3F893773 [BFADEDF7 [ssstiwso JBFADEDF7 [omee
I L L | |
—
Jooo0000 84E147E Joo |- [84E147E J4AB17CQ Jeoos J4ns17co [440BBO8 Jooooooo [4408B98 JADEDF70 [~ |- JADEDF70]65A9F66
L
L
L L
L
L
| L
I B
00 [7F [43 Joo [7E [7C
00 7F 43 Joo [7E [7C
00 [7F 43 00 7E 7C
0000000 J0000006 J09392EF Joo00000 0000006
0000000 0000006 J09392EF J0000000 0000006
Joooooxo J0000000 Jooeooc2 Josooeos (0000002 J09392EF 0000000 0000001 Jooosoo0 (0000001 ooz
frrrrrererrerrrrrrrrrrerrrrrerrrrerrrrrrrrrrerrertrerrrrerretrrrrrrrrrrtrrrrrrrrrr e e e e e
1000000 2000000 3000000 4000000

Entity:fpu_add_mar14tone Architecture:testbench_arch Date: Wed Mar 19 1:28:31 AM Eastern Daylight Time 2008 Row: 1 Page: 1

/fpu_add_mar14tone/clk_i
/fpu_add_mar14tone/movrr

/fpu_add_mar14tone/opa_i BFB363ED

T
/fpu_add_mar14tone/opb_i BE3F7FFE

/fpu_add_mar14tone/fpu_op_i

/fpu_add_mar14tone/rmode_i

/fou_add_mar14tone/output o |BFCBS3E

/fpu_add_mar14tone/post_out

/fpu_add_mar14tone/ine_o |

/fpu_add_mar14tone/overflow_o

/fpu_add_mar14tone/underflow_o

/fpu_add_mar14tone/inf_o

/fpu_add_mar14tone/zero_o

/fpu_add_mar14tone/gnan_o

/fpu_add_mar14tone/snan_o

/fpu_add_mar14tone/post_in -

/fpu_add_mar14tone/sign_rr0

/fpu_add_mar14tone/sign_rr1

/fpu_add_mar14tone/sign_rr2

/fpu_add_mar14tone/cmpl_rr0

/fpu_add_mar14tone/cmpl_rr1

/fpu_add_mar14tone/cmpl_rr2

/fpu_add_mar14tone/ready o

/fpu_add_mar14tone/exp_rr0

/fpu_add_mar14tone/exp_rr1

/fpu_add_mar14tone/exp_rr2

/fpu_add_mar14tone/mant_rr0

/fpu_add_mar14tone/mant_rr1

/fpu_add_mar14tone/mant_rr2

[e A O A
[1 [1 [1
[4171999A [501502F9 [3F893773 [rsoerr
)(3FC1+47AE)(219392I+EF)(00000080 [srozcror
0
0
D Jswuo JBFCB53ED Jroosoou siseres Yoo [4184E148 J501502F9 [z [501502F9 |3F893773 |-
e)(BFCBSSEB Josocoooarsires Yoo Y4184E148 X501502F+9 [z {501502F9 X3F8937;3 Joososooo |-
L] L L I I
T 1
T 1
T 1
T 1 |_
T 1
[-]-165A9F66 woourc [B4E147E ||~ [84E147E [AAB17CO Jwere |4A817C9 [449BBO8 Jooooooo Jasseess
,_l
L] L]
7C Jox |7F [43 foo e
7C 1A J7F 43 00
7C XX J7F [43 Joo
0000006 Jooo0e02 0000006 J09392EF Jo000000
oooooog oooo0s2 0000006 09392EF 0000000
0000002 Joooooos | 0000002 | Xoojooz Jooo000s J0000002 J09392EF Jo000000
frrretrrerrrrrerrrrerrrrrrrrrrerrerrrrrrrerrrtrrrrrrrererrrrrrrrererrrrrrrrrrrrrrrrrrrrrrrrrrrrd
5000000 6000000 7000000 8000000 9000000

Entity:fpu_add_mar14tone Architecture:testbench_arch Date: Wed Mar 19 1:28:31 AM Eastern Daylight Time 2008 Row: 2 Page: 2

/fpu_add_mar14tone/clk_i
/fpu_add_mar14tone/movrr
/fpu_add_mar14tone/opa_i
/fpu_add_mar14tone/opb_i

/fpu_add_mar14tone/fpu_op_i
/fpu_add_mar14tone/rmode_i
/fpu_add_mar14tone/output_o
/fpu_add_mar14tone/post_out
/fpu_add_mar14tone/ine_o
/fpu_add_mar14tone/overflow_o
/fpu_add_mar14tone/underflow_o
/fpu_add_mar14tone/inf_o
/fpu_add_mar14tone/zero_o
/fpu_add_mar14tone/gnan_o
/fpu_add_mar14tone/snan_o
/fpu_add_mar14tone/post_in
/fpu_add_mar14tone/sign_rr0
/fpu_add_mar14tone/sign_rr1
/fpu_add_mar14tone/sign_rr2
/fpu_add_mar14tone/cmpl_rr0
/fpu_add_mar14tone/cmpl_rr1
/fpu_add_mar14tone/cmpl_rr2
/fpu_add_mar14tone/ready o
/fpu_add_mar14tone/exp_rr0
/fpu_add_mar14tone/exp_rr1
/fpu_add_mar14tone/exp_rr2
/fpu_add_mar14tone/mant_rr0
/fpu_add_mar14tone/mant_rr1

/fpu_add_mar14tone/mant_rr2

Entity:fou_add_mar14tone Architecture:testbench_arch Date: Wed Mar 19 1:28:31 AM Eastern Daylight Time 2008 Row: 3 Page: 3

[
f

BF591417
BF02C7D7

0

0

— |3F893773 -

3F893773_JerapEDF?

- JADEDF70

L

7E

00| 7E

00 7E
0000000
0000000

0000000 *0000001

RN RN RN
10000000

11000000

12000000

13000000

NENRREERRRAREN
14000000

The wave form shown in the next page is the wave form of the test bench file that is used
to test the FPU adder with the synthetic data. The MOVRR signal is made to periodically
go high, one clock cycle before the addition output appears. The inputs from the text file
are given periodically to the operands, and the outputs from the text file are read with the
rising and falling edge of temp mirr signal. This signal has been generated so that the
outputs from the MUT - module under test and outputs from the text file match i.e., they

correspond to the same operands.

The 1% signal is the clock input;; 2" and 3" signals are the operands A and B represented
as opa_i and opb i; the 6™ signal is the MOVRR input; 4™ signal is the opcode 000-
addition, 001-subtraction; 5" signal is the rounding mode; 9" signal is the output of the
FPU, it could be the result or the normalized residual value depending on the MOVRR

1™ signals are the output and the residual register values read from the

signal; 10" and 1
test data file. 7" signal is the input to the postnormalization. 26", 27" and 28" signals are
the error signals generated after comparing the outputs of MUT — module under test and

the output values read from the test data file.

80

/fpu_add_test_vhd/clk_i
/fpu_add_test_vhd/opa_i
/fpu_add_test_vhd/opb_i

/fpu_add_test_vhd/fpu_op_i
/fpu_add_test_vhd/rmode_i
/fpu_add_test_vhd/movrr
/fpu_add_test_vhd/post_in
/fpu_add_test_vhd/ready_o
/fpu_add_test_vhd/output_o
/fpu_add_test_vhd/result_in
/fpu_add_test_vhd/rr_in
/fpu_add_test_vhd/temp_mrr
/fpu_add_test_vhd/sign_rrO
/fpu_add_test_vhd/sign_rr1
/fpu_add_test_vhd/sign_rr2
/fpu_add_test_vhd/cmpl_rrO
/fpu_add_test_vhd/cmpl_rr1
/fpu_add_test_vhd/cmpl_rr2
/fpu_add_test_vhd/exp_rr0
/fpu_add_test_vhd/exp_rr1
/fpu_add_test_vhd/exp_rr2
/fpu_add_test_vhd/mant_rr0
/fpu_add_test_vhd/mant_rr1
/fpu_add_test_vhd/mant_rr2
/fpu_add_test_vhd/cnt
/fpu_add_test_vhd/err_op
/fpu_add_test_vhd/err_rr
/fpu_add_test_vhd/err
/fpu_add_test_vhd/ine_o
/fpu_add_test_vhd/overflow_o
/fpu_add_test_vhd/underflow_o
/fpu_add_test_vhd/inf_o
/fpu_add_test_vhd/zero_o
/fpu_add_test_vhd/gnan_o

/fpu_add_test_vhd/snan_o

TUUUUUUU U UL U U U U U iU U Ui Ui uuu UL
4171999A [C171999A [4171999A [C171999A [501502F9 D01502F9 [501502F9 [D01502F9
3FC147AE XBFC147+AE X21+9392EF [A19392EF
0
0

Ml [] M1 [] M1 Ml [] [
Josooooo foag1a7e [| Josetare focesszo]- [6CBB522 |- Jocmssezfasetare | [[fansiroo]- Jansizcofansircr] [[4A817C7 | | [Jersrrcr fansrrco]
L
00000000 | |~ |~ Jats4148 [errn = (597084 Jersrone | Ya15070a4 Jerseria J= Jormcrss J— frsms = [501502F0 Joreiers {= YD01502F0 fsmsers f— [501502F9 |-
4184E148 [C15970A4 [415970A4 [C184E148 [501502F9 D01502F9 [501502F9 [D01502F9
B4800000 X34+800000 [219392EF XA19392EF

[] M1 [] M1 M1 [] M1
L
L
LI L 1
L
L
| LI 4 []
00)7F [43
00 J7F 43
00 J7F [x<J43 1343 [1s)43
- {~ Jooo0006 [~ {09392EF
0000000 J-- Xooogoos - J09392EF
| Joo00000 Joooreez |- 0000002 [~ Joootee= |- J09392EF - J09392EF | |- [09392EF
of1)2)3J4)s)o)1)2)3]a)5)0)1)23)4)5)o)1 2)3)4)5) o 1 2)3)4)5] o 1)2)3)4]5)0)1)2)3)4)5)0)1)2])3])4
Iy L L] L Y L] L
freerrrrrtrrrrerrrrrrrrrrrrrrrrrrrrrerrrrrrrrerrrerrrrerrrrrtrrrrrrrrrrtrrrrrrrrrrrrrrrrrrrtr el
1000000 2000000 3000000 4000000

Entity:fpu_add_test_vhd Architecture:behavior Date: Wed Mar 19 2:11:58 AM Eastern Daylight Time 2008 Row: 1 Page: 1

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i — [3F893773
T

/fpu_add_test_vhd/opb_i — 00000000

/fpu_add_test_vhd/fpu_op_i
/fpu_add_test_vhd/rmode_i
/fpu_add_test_vhd/movrr
/fpu_add_test_vhd/post_in
/fpu_add_test_vhd/ready_o
/fpu_add_test_vhd/output_o
/fpu_add_test_vhd/result_in
/fpu_add_test_vhd/rr_in
/fpu_add_test_vhd/temp_mrr
/fpu_add_test_vhd/sign_rr0
/fpu_add_test_vhd/sign_rr1
/fpu_add_test_vhd/sign_rr2
/fpu_add_test_vhd/cmpl_rrO
/fpu_add_test_vhd/cmpl_rr1
/fpu_add_test_vhd/cmpl_rr2
/fpu_add_test_vhd/exp_rr0
/fpu_add_test_vhd/exp_rr1
/fpu_add_test_vhd/exp_rr2
/fpu_add_test_vhd/mant_rr0
/fpu_add_test_vhd/mant_rr1
/fpu_add_test_vhd/mant_rr2
/fpu_add_test_vhd/cnt
/fpu_add_test_vhd/err_op
/fpu_add_test_vhd/err_rr
/fpu_add_test_vhd/err
/fpu_add_test_vhd/ine_o
/fpu_add_test_vhd/overflow_o
/fpu_add_test_vhd/underflow_o
/fpu_add_test_vhd/inf_o
/fpu_add_test_vhd/zero_o
/fpu_add_test_vhd/gnan_o

/fpu_add_test_vhd/snan_o

UUUU U U U U Ui iU iU uU UL
[3F800000 BF6AE458 [BF591417 [BFB363ED |BF214188 [3F81FE13 3F8BF5EB
3FC685E5 [BF02C7D7)(BE3F7F+FE)(3FD7+DBB1)(3F+ASB33E 3F903174
0
0
i [] M1 M1 M1 [] [] M1
-~ T Jfeee - T 4000000)= [~ Tesssooe] | T T Jrosornt [= I~ Jossorse [T== T Jossorss |- == | Josswms [1= - e
B 0 5 oy ey o o o o o ey ey o o o ey)) g
- {3F893773 [3F800000 3F222772 |BFADEDF7 |BFCB53ED [3F873AED [401458A8 400E13B0
A19392+EF J00000000)(BSBOOOBO)(3:;000000 J 00000000
I M1 Ml M1 [] M1 M1 M1
R — M [
—] -~ U [
43J00 7)7E [x)7C [7F)7E [7F
43 Joo [7F)7E [7C [7¢|[7E 7F
43 00 [x]7E x<|7E [x{[7C xF[7E [7F
- J0000000 - Jooo0000 | |-)(0000005 Joooo006 |- J0000000)~ J0000000
05302EF Xogooooo [- Jooooooo -)(0000+000 Xogoooos |- ooo0000 - 0000000
09392eF 0000000 Hooogooz I-)(oojom |~ Yoooaoor Y~ Yooooooz |~ Yooooec2 |- J0000002 | Joooooo1 |- 0000001
5JoJ1)2)3)4)5] o)1)2)3)4 5] 0 1)2)3)4])5)0)1)2)3])4)5] o)1)23)4)5 0)1]2)3)4)5])0]1)2)3)4])5]01)2]3
[|
[|
L = | [SO A e N
1]
1]
1]
|_ 1]
1]
frerertrrrrerrrerrrrerrrertrrrrrrerrrrrrrrrrrrerrrerrrrertrrrrrrrrrerrrrrrrrrrrrrrrrrrrtrrrrrrred
5000000 6000000 7000000 8000000 9000000

Entity:fpu_add_test_vhd Architecture:behavior Date: Wed Mar 19 2:11:58 AM Eastern Daylight Time 2008 Row: 2 Page: 2

/fpu_add_test_vhd/clk_i
/fpu_add_test_vhd/opa_i
/fpu_add_test_vhd/opb_i

/fpu_add_test_vhd/fpu_op_i
/fpu_add_test_vhd/rmode_i
/fpu_add_test_vhd/movrr
/fpu_add_test_vhd/post_in
/fpu_add_test_vhd/ready_o
/fpu_add_test_vhd/output_o
/fpu_add_test_vhd/result_in
/fpu_add_test_vhd/rr_in
/fpu_add_test_vhd/temp_mrr
/fpu_add_test_vhd/sign_rr0
/fpu_add_test_vhd/sign_rr1
/fpu_add_test_vhd/sign_rr2
/fpu_add_test_vhd/cmpl_rrO
/fpu_add_test_vhd/cmpl_rr1
/fpu_add_test_vhd/cmpl_rr2
/fpu_add_test_vhd/exp_rr0
/fpu_add_test_vhd/exp_rr1
/fpu_add_test_vhd/exp_rr2
/fpu_add_test_vhd/mant_rr0
/fpu_add_test_vhd/mant_rr1
/fpu_add_test_vhd/mant_rr2
/fpu_add_test_vhd/cnt
/fpu_add_test_vhd/err_op
/fpu_add_test_vhd/err_rr
/fpu_add_test_vhd/err
/fpu_add_test_vhd/ine_o
/fpu_add_test_vhd/overflow_o
/fpu_add_test_vhd/underflow_o
/fpu_add_test_vhd/inf_o
/fpu_add_test_vhd/zero_o
/fpu_add_test_vhd/gnan_o

/fpu_add_test_vhd/snan_o

UL U U U U U U U U U U U U U iU iU U u U
weres [BFO26AC3 |3CEO5E29 [BFAF10F1 [BF83B3C1 3F8F599A [BF0462A1 [BF54ACAE |BEBasors
)(BF498DF§)(3F17E6+F6)(3F1E+E836)(BIiZD10DB BEBDB7D7 | |BFA53659 X3F59E|§D8 [BFCond10
0

0
71 M1 [] M1 [] Ml M1 []

0 T 0) D) e B B B) B L B) () e B = B B B) B
e e o ey o ey e) e) o e) o o ey o e e o (o
weie [BFAG145B [3F1EE9E7 [BF3F36AC |BFDA3C2E 3F3FD748 [BFE767AA |3CA7E540 [FrecesF
00000000)(3400+0000 B4000000)(00000050 32900000 {00000000 XB3880000 -
] M1 M1 M1 Ml M1 M1 M1

L = — -
pEE - [LITL

7F_J7E [79 [7F)7E 7x[7D [7F)7E [7D
7E [7E [79 [7FI7E [7F7D [7F)7E [7D
7E [xx|7E [79 7 |7E [7r)7D [7F)7E [7E ™
0800000)(0000+009 |- Jo0o00000 0000001 - 0000003 |)0000001 {0000000) oo0t0s
0800000)(0500009 [- foooooo0 0000001 [~ Yo000003 J0000001)(0003000 -
- [~ J0000001 | - Joooooot |~ 0000009 - J0000002 | J0000001 I- Xooogom [- Yoooo001
4)15)o)1)2)3)a)5 o)1) 2)3)4)5) 0 1)2)3)4)5) o1)2)3)4) 5] o) 1)2)3)4])5)0)1)2)3)4)5)0)1)2]3)4)5)0])1]2
N ‘— L L L L] L] L |

1 1

1 1

1 1

1 1

1 1
frrrrrrrreerrreerrrrrrrrrrrerrrrrrrrerrrrrrrrrrrrrrrrerrrrrrrrerrrrrrrrrtrrrrrrrrr e rrrr il
10000000 11000000 12000000 13000000 14000000

Entity:fou_add_test_vhd Architecture:behavior Date: Wed Mar 19 2:11:58 AM Eastern Daylight Time 2008 Row: 3 Page: 3

/fpu_add_test_vhd/clk_i

/fpu_add_test_vhd/opa_i
/fpu_add_test_vhd/opb_i
/fpu_add_test_vhd/fpu_op_i
/fpu_add_test_vhd/rmode_i
/fpu_add_test_vhd/movrr
/fpu_add_test_vhd/post_in
/fpu_add_test_vhd/ready_o
/fpu_add_test_vhd/output_o
/fpu_add_test_vhd/result_in
/fpu_add_test_vhd/rr_in
/fpu_add_test_vhd/temp_mrr
/fpu_add_test_vhd/sign_rr0
/fpu_add_test_vhd/sign_rr1
/fpu_add_test_vhd/sign_rr2
/fpu_add_test_vhd/cmpl_rrO
/fpu_add_test_vhd/cmpl_rr1
/fpu_add_test_vhd/cmpl_rr2
/fpu_add_test_vhd/exp_rr0
/fpu_add_test_vhd/exp_rr1
/fpu_add_test_vhd/exp_rr2
/fpu_add_test_vhd/mant_rr0
/fpu_add_test_vhd/mant_rr1
/fpu_add_test_vhd/mant_rr2
/fpu_add_test_vhd/cnt
/fpu_add_test_vhd/err_op
/fpu_add_test_vhd/err_rr
/fpu_add_test_vhd/err
/fpu_add_test_vhd/ine_o
/fpu_add_test_vhd/overflow_o
/fpu_add_test_vhd/underflow_o
/fpu_add_test_vhd/inf_o
/fpu_add_test_vhd/zero_o
/fpu_add_test_vhd/gnan_o

/fpu_add_test_vhd/snan_o

BEB4897B

T
BFC9A410

0

0

N) I

=] | [7B63376

88

e

BFF6C66F

BFF6C66F

33000000

33800000

-

-

L

7D

7D

7D

0000003

0000003

0000001 X— XOO

00001 |-

3J4)5]o

1)2)3)4])5

]

]

oy

15000000

16000000

17000000

Entity:fpu_add_test_vhd Architecture:behavior Date: Wed Mar 19 2:11:58 AM Eastern Daylight Time 2008 Row: 4 Page: 4

18000000

The simulation reports for the Native-pair multiplication are presented in the next two
pages. The next page shows the post-route simulation for 8 pairs of operands inputs were
given in continuous clock cycles. The 1% signal is the clock input; the 2™ signal is the
MOVRR input; 3 and 4" signals are the operands A and B represented as opa i and
opb_i; 5™ signal is the opcode 010 - multiplication; 6™ signal is the rounding mode; 7"
signal is the output of the FPU, it could be the result or the normalized residual value
depending on the MOVRR signal; 8" and 9™ signals are the sign output and exponent
output of the residual register. 10" signal is the complement flag output and is used to
check the proper functioning of the residual register hardware. 11™ signal is the residual
register mantissa output. 12" signal is the ready signal used to indicate the valid output of
the FPU multiplier. 12" signal is the post in signal and it used to check if the right
residual value was going into the postnormalization unit when MOVRR goes high; Apart
from these, signals from 13™ to 19th give the inexact, overflow and the exception outputs.
The FPU multiplication takes place in 5 clock cycles, one clock cycle each for
prenormalization and multiplication, two clock cycles for postnormalization and once

clock cycle for formatting output.

In the wave form shown in the next page, the signal 3 indicates the operand A - opa_i; it
is 501502F9 in the 1* clock cycle, 417199A in the 2" and is periodically repeated. 4
signal is operand B — opb_i which takes value 41A77700 in 1* cycle, 400000011 in 2nd
clock cycle and there after repeats itself alternatively with 41A77700 and 40000011. This
has been done in order to show the residual register value resulting from multiplication of
these operands. The outputs are obtained from 6™ clock cycle onwards. Consider the
inputs in the 2™ clock cycle that is opa_i=4171999A and opb_i= 40000011 and product
is shown by the 70 signal output o = 41F199BA obtained in the 7™ clock cycle with the
rising edge of the clock. The outputs for the other inputs come along the consequent
clock cycles. MOVRR signal goes high at the end of the 7™ clock cycle, at this time the
post_in becomes the residual register mantissa value obtained in the previous clock cycle.
The normalized residual value to be stored in the architectural register C4AF40FF is

obtained in the 10™ clock cycle with the rising edge of the clock. This is the residual

81

register value for the inputs opa i = 501502F9 and opb i = 41A77700. Similarly
MOVRR again goes high in the 12" clock cycle to give the normalized residual register
value 330B333A as output in the 15™ clock cycle which is the residual value for opa i
=4171999A and opb_i = 40000011. The output of opa i = 501502F9 and opb i =
41A77700 can be observed in 8" clock cycle with the input being given in the 3™ clock

cycle.

The second wave form has been run to check if the all the proper functioning of the FPU

multiplier unit.

82

/fpumulttest/clk_i
/fpumulttest/movrr
/fpumulttest/opa_i
/fpumulttest/opb_i

[fpumulttest/fpu_op_i
/fpoumulttest/rmode_i
/fpoumulttest/output_o
[fpumulttest/sign_rr_out
/fpumulttest/exp_rr_out
/fpumulttest/cmpl_out
/fpumulttest/mant_rr_out
/fpumulttest/ready_o
[fpumulttest/post_in
/fpumulttest/ine_o
/fpumulttest/overflow_o
/fpumulttest/underflow_o
/fpumulitest/inf_o
/fpumulttest/zero_o
/fpumulttest/gnan_o

/fpumulttest/snan_o

ey

L L

LT L L

P L L

~ Jarososoo Yt Yo fomr Yoo Yo Jrots Yoo Yoo Yoo JAT300000 Jowoon Jirome Jowen |
~ J40000000 Jrsouto Jssoor fsorn)(+‘moooo Jiowomo Yoot 140000000 Jfocono)(4oooooo+0

0]2

0

00000000 Joroomon Yusmo Yreoooo Jtwouoo Yarromor Jrssaon Yormsioo Yoramoms Yerwomo (v Ysto00000
00 (6B J6A (6B J6A 6B

L

0000000

. |

000000000000 | el) e e (580000000000 Jw=me |

L

1000000

2000000

AR
3000000

Entity:foumulttest Architecture:testbench_arch Date: Mon Mar 24 2:45:40 AM Eastern Daylight Time 2008 Row: 1 Page: 1

PErrrrr b
4000000

/fpumult_testexamples/clk_i
[fpumult_testexamples/movrr
/fpumult_testexamples/opa_i
/fpumult_testexamples/opb_i

/fpumult_testexamples/fpu_op_i
/fpumult_testexamples/rmode_i
[fpumult_testexamples/output_o
/fpumult_testexamples/sign_rr_out
[fpumult_testexamples/exp_rr_out
[fpumult_testexamples/cmpl_out
[fpumult_testexamples/mant_rr_out
/fpumult_testexamples/ready_o
/fpumult_testexamples/post_in
/fpumult_testexamples/ine_o
/fpumult_testexamples/overflow_o
/fpumult_testexamples/underflow_o
/fpumult_testexamples/inf_o
[fpumult_testexamples/zero_o
/fpumult_testexamples/gqnan_o

/fpumult_testexamples/snan_o

[[

— Y= Joreszme Yurrsgon Ysorsozrs Yarrroosn Yporsozro Yurrrosan Yaorodeo Yorrssan Yaorsars Ylrroson Ysorsars Jarnaton Ysorsors Jurmeson 501502F9 [~ Jeorsotes -
— Y= Jerwrmso Yoo nrrrso Yaauooos Ylsurrroo Yussoors Yararrioo Yisooors Yararrron Yhooouors Yerwrran Jaoatns Yarwrros Juomoors 41 A77700 [Jemrrroo Y-
0])2
0
00000000 [erermsss Yerermn Yooiarian Yorersmn Joviamon Jorrosen Jouuduorr Jssssrs fraszrion |(arrssnn [saizrion [somison Yomesson Yurrrooms | 5242 F 46.A

| L] I |
00 IeB [8C JeB J8c [eB |71)6C)8C)6B |[8C J4E)8B |6B)8C

| L] |
0000000 Jooosssn Joarsee Jooosssn Yoariore Josmsssn Yooooono Jurccces Yozriore Yosmsssn Jczmiorr J 000000 Yoosioon [wsssn JO2F40FF
. |
000000000000 X ,,,,,,,,,,, Xymx ,,,,,,,,, X ,,,,,, Y — X ,,,,,,,,,, X ,,,,, X ,,,,,,,,, XWHW J— X ,,,,,,,,, “X617A34DOBFOO

|
Prrrrrrrrbrrrrrrrrrbrrrrrrrrrbrrrrrrrrrbrrrrrrrrrbrrrrererr b rrrrrrrrrbrrrrrrrerbrrrrrrrr b
1000000 2000000 3000000 4000000

Entity:fpumult_testexamples Architecture:testbench_arch Date: Mon Mar 24 5:57:02 AM Eastern Daylight Time 2008 Row: 1 Page: 1

/fpumult_testexamples/clk_i
[fpumult_testexamples/movrr
/fpumult_testexamples/opa_i
/fpumult_testexamples/opb_i

/fpumult_testexamples/fpu_op_i
/fpumult_testexamples/rmode_i
[fpumult_testexamples/output_o
/fpumult_testexamples/sign_rr_out
[fpumult_testexamples/exp_rr_out
[fpumult_testexamples/cmpl_out
[fpumult_testexamples/mant_rr_out
/fpumult_testexamples/ready o
/fpumult_testexamples/post_in
[fpumult_testexamples/ine_o
[fpumult_testexamples/overflow_o
/fpumult_testexamples/underflow_o
/fpumult_testexamples/inf_o
[fpumult_testexamples/zero_o
/fpumult_testexamples/gnan_o

/fpumult_testexamples/snan_o

LI

~] s01502Fg

41A77700

i

N

5242F4

617A34D0BF00

L L

ls171900A | 501502F9
ls0000011 | 41477700

6A

1
1
1
F]

02F40F

5000000

6000000

7000000

8000000

Entity:foumult_testexamples Architecture:testbench_arch Date: Mon Mar 24 5:57:02 AM Eastern Daylight Time 2008 Row: 2 Page: 2

RN NN RA RN
9000000

Appendix B

High-level Schematics

fpu_op_i(2:0) exp_rrO(7:0)
exp_rr1(7:0)
exp_rr2(7:0)
mant_rro(24:0)
opa_i(31:0) mant_rr1(24:0)
mant_rr2(24:0)
output_o(31:0)
post_in(27:0)
post_out(31:0)

opb_i(31:0)
cmpl_rrO
cmpl_rr1i
cmpl_rr2
ine_o
rmode_i(1:0) Inf_o
overflow_o
qgnan_o
ready_o
clk_i sign_rrO
sign_rr1
sign_rr2
snan_o
underflow_o

mowvrr

Zero_o

Figure 18: High-level schematic of FPU Adder

83

— opa_i(31:0)

— opb_i(31:0)

—— rmode_pretoaddsub_in(1:0)

ok

— fpu_op_prefoaddsub in

expdiff_out(7:.0)
exp_o_pretoaddsub_out(7:0)
exp_o_n0(7:0)

fracta_28 0(27:0)
fracth 28 0(27:0)
mant_o_rr0(24:0)
rmode_pretoaddsub_out(1:0)
cmpl_outd
fpu_op_pretoaddsub_out
infa

infl

nan_a

nan_b

nan_in

nan_op

signa

signb

sign_o_rm0

test_exp_gr8r 24 preout

Figure 19. High-level schematic Prenormalization unit used in Floating-point

addition.

84

expdiff_in(7:0)
exp_i_rm(7.0)
exp_o_addsub_in(7:0)
fracta_i(27.0)
fractb_i(27:0)
mant_i_rr1(24:0)
rmode_addsub_in(1:0)
clk_i

cmpl_int
fou_op_addsub _in
infa

infh

nan_a

nan_h

nan_in

nan_op

signa

signb

sign i rr1

test_exp_grér_24 addin

expdiff_out(7:0)
exp_o_addsub_out(7:0)
exp_o_rri(7:0)
fract_o(27:0)
mant_o_11(24:0)
rmode_addsub_out(1:0)
cmpl_out1
fpu_op_addsub_out
infa_postin

infb_postin
nan_a_postin
han_b_postin
nan_in_postin
nan_op_postin
signa_postin
signb_postin

sign_o

sign_o_rr1

test_exp_gr8r 24 addout

Figure 20. High-level schematic of Addition unit used in Floating-point addition

85

— expdiff_postin(7:0) exp_o_rr2(7:0) ———
— exp_i(7:0)
— exp_i_rr2(7:0) mant_o_rr2(24:0) —
— fract_28_i(27:0)
— mant_i_rr2(24:0) output_o(31:0) —

— 1 rmode_i(1:0)

— clk_i cmpl_out2 —
——— cmpl_in2

— | fpu_op_i ine_o —
— infa_postin

—] infb_postin infa_postout —

— han_a_postin
— han_b_postin infb_postout ——
— 1 nan_in_postin
— 1 han_op_postin sigha_postout —
— posthorm_exprr_set_in
——] sigha_postin signhb_postout ——
— 1 sighb_postin
— sign_i sign_o_rr2 ——

— sign_i_rr2

Figure 21. High-level schematic of Postnormalization Unit used in Floating-point
addition

— exp_rr(7:0) exp_rr_out(7:0) ———
— mant_rr(24:0) mant_rr_out(24:0) ——
—— cmpl_in cmpl_out ——

— sign_rr sign_rr_out —

Figure 22. High-level schematic of Residual register used in prenormalization and
postnormalization

86

— fpu_op_i(2:0) exp_rr_out(7:0) ——

— opa_i(31:0)

mant_rr_out(24:0) —
output_o(31:0) ———
post in(47:0) ——

cmpl_out ——

— opb _i(31:0) ine 0 ———

— rmode_i(1:0)

inf 0 —
overflow_o ——
gnan_o ——

ready o ———

— clk_i sign_rr_out ———

— MOovIr

Figure 23. High-level schematic of FPU multiplier

87

snan_o ———
underflow_o ——

zZero_ o ——

—— opa_i(31:0) expa_o(7:0) ——
expb_o(7:0) ——
exp_10_o(9:0) I——
fracta_24 o(23:0) I——
— opb_i(31:0) fractb_24 o(23:0) ——
fractaO —
fractbO —
op_ 0 —

— clk_i sign_o I—

Figure 24. High-level schematic of Prenormalization unit for Multiplier

— expa_pretomultin(7:0) expa_pretomultout(7:0) ——

expb_pretomultin(7:0) expb_pretomultout(7:0) ——
— exp_10_pretomultin(9:0)
exp_10_pretomultout(9:0) ——
— fracta_i(23:0)

— fractb_i(23:0) fract 0(47:0) ——

—clk_i fracta0_pretomultout ——

fracta_pretomultin fractbQ_pretomultout ——
— fractbO_pretomultin
op_0_pretomultout ——
— op_0_pretomultin

—— sign_pretomultin sign_pretomultout ——

Figure 25. High-level schematic of Multiplier unit

88

— expa_multopostin(7:0) exp_rr_out(7:0) ———

—— expb_multopostin(7:0)

— exp_10_i(9:0) mant_rr_out(24:0) —

— fract_48_i(47:0)
output_o(31:0) ———

— rmode_i(1:0)
— clk_i
- cmpl_out ——
— fractaO_multopostin
— fractbO_multopostin ine_o ———
— op_0_multopostin
sign_rr_out ———

— sign_i

Figure 26. High-level schematic of Postnormalization for Multiplier

89

VHDL Source Code

FPU Adder

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric_std.all;

use ieee.std logic misc.all;
use ieee.std_logic ARITH.all;
library work;

use work.fpupack.all;

entity fpu_add is

port (
clk_i,movrr: in std_logic;
-- Input Operands A & B
opa_i :in std_logic_vector(FP_ WIDTH-1 downto 0); -- Default:
FP_WIDTH=32
opb 1 :in std_logic_vector(FP_WIDTH-1 downto 0);
-- fpu operations (fpu_op_1i):
-- 000 = add,
-- 001 = substract,
fpu op i :in std_logic_vector(2 downto 0);
-- Rounding Mode:
rmode i :in std_logic_vector(1 downto 0);
-- Output port
output o, post out :outstd logic vector(FP_ WIDTH-1 downto 0);
-- Exceptions
ine o : out std_logic; -- inexact
overflow o : out std_logic; -- overflow
underflow o : out std_logic; -- underflow
inf o : out std_logic; -- infinity
Zero_o :out std_logic; -- zero
gnan_o : out std_logic; -- queit Not-a-Number
snan_o : out std_logic; -- signaling Not-a-Number

post_in:out std logic vector(27 downto 0);--;

--residuals

sign_rr0,sign_rrl,sign_rr2,cmpl_rr0,cmpl _rrl,cmpl rr2,ready o:out std logic;
exp_rr0,exp_rrl,exp rr2:out std logic vector(EXP_ WIDTH-1 downto 0);

90

mant_rrO,mant_rrl,mant rr2:out std logic vector(FRAC WIDTH + 1 downto

);

end fpu_add;

architecture rtl of fpu_add is

-- Input/output registers

signal s opa i,s opb i:std logic vector(FP_ WIDTH-1 downto 0);
signal s _fpu op i : std_logic vector(2 downto 0);

signal s rmode 1 : std logic vector(1 downto 0);

signal s_output o : std logic_vector(FP_WIDTH-1 downto 0);
signal s ine o, s overflow o, s underflow o, s inf 0,s zero o,s gnan o,s snan O :

std_logic;

signal s_outputl : std logic vector(FP_ WIDTH-1 downto 0);

-- *#%* Add/Substract units signals***

signal s mant rr2:std logic vector(FRAC WIDTH + 1 downto 0);

signal post norm_fract in:std logic vector(FRAC WIDTH + 4 downto 0);
signal post norm_exp in:std logic vector(EXP_ WIDTH-1 downto 0);
signal post norm_sign_in:std_logic;

------------- pipelining signals

signal fpu_op addsub:std logic;--
signal rmode_pretoaddsub:std logic vector(1 downto 0);--
signal prenorm_addsub fracta 28 o:std logic vector(FRAC WIDTH+4 downto 0);
signal prenorm_addsub_fractb 28 o:std logic vector(FRAC WIDTH+4 downto 0);
signal prenorm_addsub_exp:std logic vector(EXP WIDTH-1 downto 0);
signal test_exp gr8r 24 addin:std logic;
signal s_sign_rrpretoadd:std logic;
signal s_cmpl rrpretoadd:std logic;
signal s_exp_rrpretoadd:std_logic vector(EXP_WIDTH-1 downto 0);
signal s mant rrpretoadd:std logic vector(FRAC WIDTH + 1 downto 0);
signal addsub_fract o: std logic vector(FRAC WIDTH+4 downto 0);
signal addsub_sign o : std_logic;
signal rmode_addsubpost:std logic vector(1 downto 0);--
signal exp_o_addsubpost:std logic_vector(EXP_WIDTH -1 downto 0);--
signal test exp gr8r 24 addsubpost:std logic;--

signal postnorm_addsub_output o : std logic_vector(31 downto 0);
signal postnorm_addsub_ine o : std _logic;

signal fpu_op_addsubpost :std _logic;--
signal s_sign_rraddtopost,s cmpl rraddtopost:std logic;

91

signal s_exp_rraddtopost:std logic vector(EXP WIDTH-1 downto 0);
signal s mant rraddtopost:std logic vector(FRAC WIDTH + 1 downto 0);
signal s_sign 1r2,s cmpl rr2:std logic;

signal s _exp rr2:std logic_vector(EXP_WIDTH-1 downto 0);

component prenorm_new is

port(

0);

0);

clk 1 :in std_logic;
opa_i :in std_logic_vector(FP_ WIDTH-1 downto

opb i :in std_logic_vector(FP_ WIDTH-1 downto

fpu op pretoaddsub in: in std_logic;--

rmode pretoaddsub in: in std_logic vector(1 downto 0);--
fpu op pretoaddsub out: out std logic;--

rmode pretoaddsub out: out std_logic vector(1 downto 0);--
fracta 28 o : out std_logic_vector(FRAC WIDTH+4

downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

downto 0);

fractb 28 o : out std_logic_vector(FRAC WIDTH+4

exp_o_pretoaddsub out :out

std_logic vector(EXP_WIDTH-1 downto 0);--

)

end component;

test exp gr8r 24 preout:out std logic;--
sign_o_rr0,cmpl_outO:out std_logic;

exp_o rr0:out std logic vector(EXP_WIDTH-1 downto 0);
mant o rr0:out std logic vector(FRAC WIDTH + 1 downto 0);

expdiff out:out std logic_vector(EXP_WIDTH-1 downto 0);
infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:out std_logic

component addsub_ 28 is

port(

clk 1 : in std_logic;
fracta i :in std_logic_vector(FRAC WIDTH+4

downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

downto 0);

downto 0);--

fractb i :in std_logic_vector(FRAC WIDTH+4
fpu op addsub in :instd logic;--
rmode_addsub_in :in std_logic_vector(1 downto 0);--

exp_o addsub in :in std_logic vector(EXP_WIDTH-1

test exp gr8r 24 addin:in std logic;--

92

exp i rrl :in std_logic_vector(EXP_WIDTH-1 downto 0);
mant i rrl :instd logic vector(FRAC WIDTH + 1 downto 0);
sign i rrl,cmpl inl :instd logic;

expdiff in:in std logic vector(EXP_WIDTH-1 downto 0);
infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:in std_logic;

fract o :out std_logic vector(FRAC WIDTH-+4
downto 0);

sign_o : out std_logic;

rmode_addsub_out:out std_logic vector(1 downto 0);--

exp_o_addsub out:out std logic vector(EXP_ WIDTH -1 downto
0);--

test exp gr8r 24 addout:out std logic;--
fpu op addsub out :outstd logic;--
sign o rrl,cmpl outl :out std logic;
exp o_rrl :out std_logic vector(EXP_WIDTH-1 downto 0);
mant o rrl :outstd logic vector(FRAC WIDTH + 1 downto

0);
expdiff out:out std logic vector(EXP_WIDTH-1 downto 0);
infa_postin,infb_postin,signa_postin,signb_postin:out std_logic;
nan_a postin,nan b postin,nan_in_postin,nan_op postin:out
std_logic);

end component;

component postnorm_june20 is

port(

clk 1 :in std_logic;

fract 28 i :in std_logic vector(FRAC WIDTH+4
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

exp i :in std_logic_vector(EXP_WIDTH-1
downto 0);

sign 1 :in std_logic;

postnorm_exprr_set in:in std_logic;

exp i _rr2:in std _logic_vector(EXP_WIDTH-1 downto 0);

mant i _rr2:in std_logic_vector(FRAC WIDTH +1 downto 0);

sign_i rr2,cmpl_in2: in std_logic;

fpu op i . in std_logic;

rmode i :in std_logic_vector(1 downto 0);

expdiff postin:in std_logic_vector(EXP_WIDTH-1 downto 0);

infa_postin,infb_postin,signa_postin,signb_postin:in std logic;

nan_a_ postin,nan_b_postin,nan_in_postin,nan_op_postin:in
std_logic;

output o : out std_logic vector(FP_ WIDTH-1
downto 0);

infa_postout,infb_postout: out std_logic;
signa_postout,signb_postout: out std_logic;

93

exp_o_rr2:out std logic_vector(EXP_WIDTH-1 downto 0);
mant o rr2:out std logic vector(FRAC WIDTH + 1 downto 0);
ine_o,sign_o_rr2,cmpl out2: out std_logic
)i

end component;

signal ready: std_logic;

signal cnt: integer:=0;

signal expdiffpre add,expdiffadd post:std logic vector(EXP_WIDTH-1 downto
0):="00000000";

signal s_infa,s infb,s signa,s signb,s nan a,s nan b,s nan in,s nan op: std logic;
signal

s_infa postin,s_infb_postin,s signa postin,s_signb postin,s nan a postin,s nan_b_post
in,s nan_in_postin,s nan_op postin: std logic;

signal s_infa postout,s_infb postout,s_signa postout,s signb_postout: std logic;

begin

i_prenorm_addsub: prenorm_new
port map (
clk i=>clk i,
opa 1=>s opa I,
opb i=>s opb i,
fpu op pretoaddsub in=>s fpu op i(0),
rmode_pretoaddsub_in =>s rmode i,
fpu op pretoaddsub out => fpu op addsub,
rmode_pretoaddsub_out =>rmode pretoaddsub,
fracta 28 o => prenorm_addsub fracta 28 o,
fractb 28 o => prenorm_addsub_fractb 28 o,
exp_o_pretoaddsub_out=> prenorm_addsub_exp,
test_exp gr8r 24 preout =>test exp gr8r 24 addin,
sign o rr0=>s_sign_rrpretoadd,
cmpl out0=>s cmpl rrpretoadd,
exp_o rr0=>s_exp rrpretoadd,
mant_o_rr0=>s_mant_rrpretoadd,
expdiff out=>expdiffpre add,
infa=>s_infa,infb=>s_infb,signa=>s_signa,
signb=>s_signb,nan_a=>s nan_a,
nan_b=>s nan b,nan_in=>s_nan_in,nan_op=>s_nan_op);

i_addsub: addsub 28

port map(

clk i=>clk i,

fracta_i=> prenorm_addsub_fracta 28 o,
fractb_i=> prenorm_addsub_fractb 28 o,

94

fpu op_addsub_in => fpu op addsub,
rmode addsub in =>rmode pretoaddsub,
exp_o_addsub_in => prenorm addsub_exp,
test exp gr8r 24 addin => test exp gr8r 24 addin,
exp i rrl=>s exp rrpretoadd,
mant_i_rrl=>s_mant rrpretoadd,
sign i _rrl=>s sign rrpretoadd,
cmpl_inl=>s cmpl rrpretoadd,
expdiff in=>expdiffpre add,
infa=>s_infa,infb=>s_infb,
signa=>s_signa,signb=>s_signb,
nan_a=>s nan_a,nan_b=>s nan b,
nan_in=>s nan_in,nan_op=>s_nan_op,
fract o => addsub _fract o,
sign_o => addsub_sign o,
rmode addsub out => rmode addsubpost,
exp_o _addsub out =>exp o addsubpost,
test exp gr8r 24 addout => test exp gr8r 24 addsubpost,
fpu op_addsub_out => fpu op addsubpost,
sign o rrl=>s sign rraddtopost,
cmpl_outl=>s cmpl rraddtopost,
exp_o rrl=>s _exp rraddtopost,
mant o _rrl=>s mant_rraddtopost,
expdiff out=>expdiffadd post,
infa_postin=>s_infa postin,infb_postin=>s_infb_postin,
signa_postin=>s_signa_postin,signb_postin=>s_signb_ postin,
nan_a postin=>s nan_a postin,nan_b_postin=>s _nan_b_postin,
nan_in_postin=>s_nan_in_postin,nan_op_postin=>s nan_op_postin);

i_postnorm_addsub: postnorm_june20

port map(

clk i=>clk i,

fract 28 i=>post norm_fract in,

exp_1=>post norm_exp _in,

sign_i=>post_norm_sign_in,

postnorm_exprr_set in=>test exp gr8r 24 addsubpost,

exp_i rr2=>s_exp_rraddtopost,

mant_i_rr2=>s mant_rraddtopost,

sign i _rr2=>s_sign rraddtopost,

cmpl in2=>s_cmpl rraddtopost,

fpu op i=>fpu op addsubpost,

rmode_i=>rmode_addsubpost,
expdiff postin=>expdiffadd post,
infa_postin=>s_infa_postin,infb_postin=>s_infb_postin,
signa_postin=>s_signa_postin,signb_postin=>s_signb_postin,

95

nan_a postin=>s nan_a postin,nan_b_postin=>s nan_b_postin,
nan_in_postin=>s_nan_in_postin,nan_op_postin=>s nan_op_postin,

output_o => postnorm_addsub_output_o,
infa_postout=>s_infa postout,infb_postout=>s_infb postout,
signa_postout=>s_signa_postout,signb_postout=>s_signb_postout,
exp_o rr2=>s _exp rr2,

mant o_r1r2=>s_mant 112,

ine_o => postnorm_addsub_ine o,

sign o rr2=>s_sign 112,

cmpl_out2=>s cmpl rr2);

--Multplexer for either supplying add/sub output or residual reg value to the post
normalization unit

post norm_fract in<=(s_mant rr2 &"000")when (movrr="1")else addsub_fract o;
post norm_exp in<=s_exp_rr2 when (movrr='1")else exp o addsubpost;
post norm_sign in<=s_sign rr2 when (movrr='1")else addsub_sign o;

post_in<=post norm_fract in;
post_out<=postnorm_addsub_output o;

-- Input Register

s opa i<=opa i;

s opb_i<=opb i;

s fpu op i<=fpu op i;
s rmode i1 <=rmode i;

--Output Register

process(clk 1)

begin

if falling_edge(clk i) then

if (ready = '1")then

output o <=s_output o;
ine_ 0 <=s_ine o;
overflow o <=s_overflow o;
underflow o <=s_underflow_o;

inf o <=s_inf o;
ZEeT0_0 <= S_Zero_o;
gnan_o <=s_qnan_o;
snan_o <=s_snan_o;

96

end if;

end if;
end process;

sign_rr0<=s_sign_rrpretoadd;
cmpl_rr0<=s_cmpl rrpretoadd;
exp_rr0<=s_exp_rrpretoadd;
mant_rr0<=s_mant _rrpretoadd;

sign_rrl<=s_sign rraddtopost;
cmpl_rr1<=s _cmpl rraddtopost;
exp_rrl<=s exp rraddtopost;
mant_rrl<=s_mant rraddtopost;

mant 1r2<=s_mant 112;
exp_rr2<=s exp rr2;
sign_rr2<=s_sign r1r2;
cmpl_1r2<=s_cmpl r112;

-- Output Multiplexer

process(clk 1)
begin
if rising_edge(clk 1) then
if fpu_op_1="000" or fpu_op i="001" then

s_outputl <= postnorm_addsub_output_o;
s ine o <= postnorm_addsub_ine o;
else
s_outputl <= (others =>"'0");
s ine o <='0"
end if;

end if}
end process;

--In round down: the subtraction of two equal numbers other than zero are always
-0
process(s_outputl, s rmode i, s infa postout, s infb postout, s gnan o,
s snan_o, s zero o,s fpu op i, s signa postout, s_signb_postout)
begin
if s rmode i="00" or ((s_infa or s_infb) or s_gqnan_o or
s_snan_o)='l" then --round-to-nearest-even

97

s_output o <=s_outputl;
elsif s rmode i="01" and s_output1(30 downto 23)="11111111"
then
--In round-to-zero: the sum of two non-infinity operands is
never infinity,even if an overflow occures
s output o <=s outputl(31) &
"I1r1t1tottritit e,
elsif s rmode i="10" and s_outputl(31 downto 23)="111111111"
then
--In round-up: the sum of two non-infinity operands is
never negative infinity,even if an overflow occures
s output o<="1111111101111111111 1111111 111111";
elsif s rmode i="11" then
--In round-down: a-a= -0
if (s_fpu op_i="000" or s fpu op i="001") and s_zero o='1"and
(s _opa i(31) or (s _fpu op i(0) xors opb i(31)))='1" then
s _output o <="1" & s_outputl(30 downto 0);
--In round-down: the sum of two non-infinity operands is
never postive infinity,even if an overflow occures
elsif s_output1(31 downto 23)="011111111" then
S_output o <=
"O1T11111101 1ttt etItantnent™,

else
s_output o <=s_outputl;
end if;
else
s_output o <=s_outputl;
end if;

end process;

-- Generate Exceptions

s _underflow o <="'1' when s_output1(30 downto 23)="00000000" and
s ine_o='1"else '0";

s _overflow o <='"1'when s_output1(30 downto 23)="11111111" and s_ine_o="1"
else '0';

s inf o <='1"when s _outputl(30 downto 23)="11111111" and (s_gnan_o or
s_snan_o0)='0"else '0";
s zero o <="'"l1"when or_reduce(s_outputl(30 downto 0))='0" else '0';
s _gnan_o <="'l'when s_output1(30 downto 0)=QNAN else '0';
s snan o <="l1"when s opa i(30 downto 0)=SNAN or s_opb i(30 downto 0)=SNAN
else '0';

----Ready signal to indicate start of valid outputs --
process(clk 1)

98

begin

if(falling_edge(clk 1))then
if(cnt/=2)then

cnt<=cnt + 1;

else

cnt <= cnt;

end if;

if(cnt=2)then
ready<='1";
else
ready<='0";
end if;

end if}

end process;

ready o<=ready;

end rtl;
---prenormalization unit---

library ieee ;

use ieee.std_logic 1164.all;

use ieee.std logic unsigned.all;
use ieee.std logic_misc.all;

use ieee.std logic ARITH.all;

library work;
use work.fpupack.all;

entity prenorm_new is

port(

0);

0);

downto 0);

downto 0);

clk 1 :in std_logic;
opa_i :in std_logic_vector(FP_ WIDTH-1 downto

opb i :in std_logic_vector(FP_ WIDTH-1 downto

fpu_op pretoaddsub in:
rmode_pretoaddsub_in:

fpu_op_ pretoaddsub out:
rmode_pretoaddsub_out:

in std_logic;--

in std_logic_vector(1 downto 0);--
out std_logic;--

out std logic_vector(1 downto 0);--

fracta 28 o : out std_logic vector(FRAC WIDTH+4

-- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

fractb 28 o : out std logic vector(FRAC WIDTH+4

99

exp_o pretoaddsub out : out
std logic_vector(EXP_WIDTH-1 downto 0);--
test exp gr8r 24 preout:out std logic;--
sign o rr0,cmpl outO:out std logic;
exp_o_rr0:out std logic_vector(EXP_WIDTH-1 downto 0);
mant_o_rr0:out std logic vector(FRAC WIDTH + 1 downto 0);

expdiff out:out std logic vector(EXP_ WIDTH-1 downto 0);
infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:out std logic
);

end prenorm_new;

architecture rtl of prenorm_new is

signal s_exp_o :std logic_vector(EXP_WIDTH-1 downto 0);

signal s fracta 28 o, s fractb 28 o:std logic vector(FRAC WIDTH+4
downto 0);

signal s _expa, s_expb : std logic vector(EXP WIDTH-1 downto 0);

signal s_fracta, s_fractb : std logic vector(FRAC WIDTH-1 downto 0);

signal s_fracta 28, s fractb 28, s fract sm 28:
std logic vector(FRAC WIDTH+4 downto 0);

signal s exp diff,s exp sm: std logic vector(EXP_WIDTH-1 downto 0);
signal s_rzeros : std_logic_vector(5 downto 0);

signal s_expa It expb : std_logic;
signal s_expa eq _expb : std_logic;
signal s_fracta_1 : std_logic;
signal s_fractb 1 : std logic;

signal s op dn: std_logic;

signal s opa dn,s opb dn: std logic;
signal s mux_diff: std logic_vector(1 downto 0);
signal s mux_exp,exp_gr8r 24 : std logic;
signal s_sticky : std_logic;
signal s_rr_mant:std_logic_vector(FRAC_ WIDTH + 1 downto 0);
signal s_expdiff int:integer:=0;

signal s_fract shr 28:std logic vector(FRAC WIDTH+4 downto 0);
signal andsig:std logic vector(FRAC WIDTH+1 downto 0);
signal rr_rev:std logic vector(FRAC WIDTH+1 downto 0);

signal s_sign o rr0,s cmpl outO:std logic:='Z";
signal s_exp_ o rr0:std logic vector(EXP_WIDTH-1 downto 0);

100

signal s mant o rr0:std logic vector(FRAC WIDTH+1 downto 0) ;
signal s_infa,s infb,s nan a,s nan b,s nan in,s nan op:std logic;

component residualreg is port(sign_rr:in std_logic;exp_rr:in

std logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std logic;

mant_rr:in std_logic_vector(FRAC WIDTH+1 downto 0);sign_rr_out:out

std logic;exp rr out:out std logic vector(EXP WIDTH - 1 downto 0);

cmpl_out:out std_logic;mant_rr _out:out std logic_vector(FRAC WIDTH+1 downto 0));
end component residualreg;

begin
-- Input Register

s_expa <= opa_i(30 downto 23);
s_expb <= opb_1(30 downto 23);
s _fracta <= opa_i(22 downto 0);
s _fractb <=opb i(22 downto 0);

-- Output Register

process(clk 1)

begin

if falling_edge(clk i) then
exp_o pretoaddsub out <=s exp o;
fracta 28 o <=s fracta 28 o;
fractb 28 o<=s fractb 28 o;

fpu op_ pretoaddsub_out<=fpu op pretoaddsub in;

rmode_pretoaddsub_out<=rmode pretoaddsub in;
test exp gr8r 24 preout<=exp gr8r 24;
expdiff out<=s exp_diff;
sign_o_rr0<=s_sign o rr0;
exp_o_rr0<=s_exp o r1r0;
cmpl_out0<=s _cmpl out0;

signa<=opa_i(31);
signb<=opb_i(31);

infa <=s_infa;
infb <=s_intb;

nan_a<=s nan_a;
nan_b<=s nan b;

101

nan_in<=s nan_in;
nan_op<=s nan op;

end if;
end process;

mant o_1r0<=s_mant o rr0;

-- s _expa_eq_expb <='l1'when s _expa=s_expb else '0';
s _expa It expb <="'l'when s _expa>s expb else '0';

--'1" if fraction is not zero
-- s fracta 1 <=or reduce(s fracta);
- s fractb 1 <=or reduce(s_fractb);

-- opa or Opb is denormalized

-- s op dn<=s opa dnors opb dn;
s opa_dn <=not or_reduce(s_expa);
s opb_dn <=not or reduce(s_expb);

-- output the larger exponent

s mux_exp <=s_expa It expb;
process(clk 1)

begin
if rising_edge(clk i) then
case S_mux_exp is
when '0' =>s_exp_o <=s_expb;
when 'l'=>s exp o <=s expa;
when others =>s exp o<="11111111";
end case;
end if}
end process;

-- convert to an easy to handle floating-point format

s fracta 28 <="01" & s_fracta & "000" when s opa_dn='0'"else "00" & s _fracta
& "000";

s fractb 28 <="01" & s_fractb & "000" when s_opb_dn='0' else "00" & s_fractb
& "000";

s mux_diff <=s expa It expb & (s opa_dn xors opb dn); ---a>b concat
expa/expb..one only =0 .

s _exp_diff <=s_expb - s_expa when(s_mux_diff="00")else
s_expb - (s_expa+"00000001")when(s_mux_diff="01")else

102

s_expa - s_expb when(s_mux_diff="10")else

s_expa -
(s_expb+"00000001")when(s_mux_diff="11")else

"77777777",

s_expdiff int<=conv_integer(s exp_diff);

process(clk 1)

begin
if rising_edge(clk 1) then

andsig<="0000000000000000000000000";
if(s_expdiff int<25)then

andsig(s_expdiff int-1 downto 0)<=(others=>'1");

else

andsig<=(others=>'1");

end if;
end if}

end process;

process(clk 1)

begin

if(falling_edge(clk 1))then
S_IT_mant<=rr_rev;

end if;

end process;

s fract sm 28 <=s fracta 28 when s_expa It expb='0'else s_fractb 28;
s _exp_sm<=s_expb when s _expa It expb='l'else s_expa;

s fract shr 28 <=shr(s_fract sm 28,s exp diff);

rr_rev<=s_fract sm 28(FRAC WIDTH+4 downto 3) and andsig;
-- count the zeros from right to check if result is inexact
s _rzeros <= count r zeros(s_fract sm 28);

s_sticky <="'1"when s_exp_diff > s rzeros and or_reduce(s_fract sm 28)='l" else
VOV;

s fracta 28 o<=s fracta 28 when s expa It expb='1'else s fract shr 28(27 downto
1)&(s_sticky ors_fract shr 28(0));

s fractb 28 o<=s fractb 28 when s expa It expb='0'else s_fract shr 28(27 downto
1)&(s_sticky ors_fract shr 28(0));

103

rr0:residualreg port

map('0',s exp sm,'0',s rr mant,s_sign o rr0,s exp o rr0,s cmpl outO,s mant o rr0);

exp_gr8r 24<="1'when (s_expdiff int>23) else '0";

s_infa <="1' when opa (30 downto 23)="11111111" else '0';
s_infb <="1' when opb_i(30 downto 23)="11111111" else '0";
s nan_a <="'l"'when (s_infa='1" and or reduce (opa (22 downto 0))='1") else '0";
s nan_b <="1'when (s_infb="1' and or_reduce (opb _i(22 downto 0))='1") else '0';

s nan_in <='l"when s nan_a='l'or s nan b='1"else '0';

s nan_op <="'l1"when (s_infa and s_infb)='1" and (opa_i(31) xor

(fpu_op pretoaddsub in xor opb i(31)))='1" else '0'; -- inf-inf=Nan

end rtl;

Adder/subtractor

library ieee ;

use ieee.std_logic 1164.all;

use ieee.std logic unsigned.all;
use ieee.std logic_misc.all;

use IEEE.std _logic_arith.all;

library work;
use work.fpupack.all;

entity addsub_28 is

port(

clk 1 : in std_logic;

fracta i :in std_logic_vector(FRAC WIDTH+4
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

fractb i : in std_logic_vector(FRAC WIDTH+4
downto 0);

fpu op addsub in :instd logic;--

rmode_addsub_in :in std_logic_vector(1 downto 0);--

exp_o addsub in :in std_logic vector(EXP_ WIDTH-1
downto 0);--

test exp gr8r 24 addin:in std_logic;

exp 1 rrl :in std_logic_vector(EXP_WIDTH-1 downto 0);
mant i rrl :instd logic vector(FRAC WIDTH + 1 downto 0);

104

downto 0);

0);

0);

std_logic);
end addsub 28;

sign i rrl,cmpl inl :instd logic;

expdiff in:in std logic vector(EXP_WIDTH-1 downto 0);
infa,infb,signa,signb,nan_a,nan_b,nan_in,nan_op:in std_logic;
fract o :out std_logic vector(FRAC WIDTH-+4

sign_o : out std_logic;
rmode_addsub_out:out std logic vector(1 downto 0);--
exp_o_addsub out:out std logic vector(EXP WIDTH -1 downto

test exp gr8r 24 addout:out std logic;--

fpu op addsub out :outstd logic;--

sign o rrl,cmpl outl :out std logic;

exp o_rrl :out std_logic vector(EXP_WIDTH-1 downto 0);
mant o rrl :outstd logic vector(FRAC WIDTH + 1 downto

expdiff out:out std logic vector(EXP_WIDTH-1 downto 0);
infa_postin,infb_postin,signa_postin,signb_postin:out std_logic;
nan_a postin,nan b postin,nan_in_postin,nan_op_ postin:out

architecture rtl of addsub 28 is

signal s_fracta i, s fractb i:std logic vector(FRAC WIDTH+4 downto 0);
signal s fract o : std logic vector(FRAC WIDTH+4 downto 0);

signal s_signa i, s signb i, s sign o :std logic;

signal s_fpu op i: std logic;

signal fracta It fractb : std logic;

signal s_addop: std_logic;

begin

-- Input Register

s fracta i <= fracta i;

s_fractb i <= fractb i;
s_signa_i<= signa;

s_signb_i<= signb;

s fpu op i<=fpu op addsub in;

-- Output Register
process(clk 1)
begin

if falling_edge(clk i) then
fract o <=s_fract o;

105

sign_o0 <=s_sign 0;
rmode addsub out<=rmode addsub in;
exp o _addsub out<=exp o addsub in;
test exp gr8r 24 addout<=test exp gr8r 24 addin;
infa_postin<=infa;
infb_postin<=infb;
signa_postin<=signa;
signb_postin<=signb;
nan_a postin<=nan_a;
nan_b postin<=nan_b;
nan_in_postin<=nan_in;
nan_op_postin<=nan_op;
fpu op addsub_out<=fpu op addsub in;
sign o rrl<=sign i rrl;
exp o _rrl<=exp i rrl;
cmpl_outl<=cmpl inl;
mant o rrl<=mant i rrl;
expdiff out<=expdiff in;

end if}
end process;

fracta It fractb <='l' whens_fracta i>s fractb ielse'0";

-- check if its a subtraction or an addition operation
s _addop <= ((s_signa_ixor s_signb i)and not (s _fpu op 1)) or ((s_signa i xnor
s_signb _i)and (s_fpu op 1));

-- sign of result
s sign 0 <='0'when s fract o=conv_std logic vector(0,28) and (s_signa i and
s_signb_1)='0"else

((not
s _signa i) and ((not fracta It fractb) and (s_fpu op_ixors_signb i))) or

((s_signa i)
and (fracta_It fractb or (s_fpu op ixors_signb 1i)));

-- add/substract
process(s_fracta i, s fractb i, s addop, fracta It fractb)
begin
if s_addop="0' then
s fract o <=s fracta i+s fractb i;
else
if fracta It fractb ='1' then
s fract o <=s fracta i-s_fractb i;
else
s fract o <=s fractb i-s fracta i;

106

end if;
end if}
end process;

end rtl;
Postnormalization

library ieee ;

use ieee.std logic 1164.all;
use ieee.std_logic unsigned.all;
use ieee.std logic misc.all;
use ieee.std logic arith.all;

library work;

use work.fpupack.all;

entity postnorm_june20 is

port(

clk 1 :in std_logic;

fract 28 i :in std_logic vector(FRAC WIDTH+4
downto 0); -- carry(1) & hidden(1) & fraction(23) & guard(1) & round(1) & sticky(1)

exp 1 :in std_logic vector(EXP_WIDTH-1
downto 0);

sign 1 :in std_logic;

postnorm_exprr_set in:in std_logic;

exp i _rr2:in std _logic_vector(EXP_WIDTH-1 downto 0);

mant i rr2:in std_logic_vector(FRAC WIDTH +1 downto 0);

sign_i rr2,cmpl_in2: in std_logic;

fpu op i . in std_logic;

rmode i :in std_logic_vector(1 downto 0);

expdiff postin:in std_logic_vector(EXP_WIDTH-1 downto 0);

infa_postin,infb_postin,signa_postin,signb_postin:in std logic;

nan_a postin,nan_b_postin,nan_in_postin,nan_op_postin:in
std_logic;

output o :out std_logic vector(FP_ WIDTH-1
downto 0);

infa_postout,infb_postout: out std logic;
signa_postout,signb_postout: out std_logic;

exp_o rr2:out std logic vector(EXP_WIDTH-1 downto 0);
mant o rr2:out std logic vector(FRAC WIDTH + 1 downto 0);

ine_o,sign_o_rr2,cmpl_out2: out std_logic

107

)

end postnorm_june20;

architecture rtl of postnorm_june20 is

signal s_fract 28 i : std_logic vector(FRAC WIDTH+4 downto 0);
signal s _exp i : std_logic vector(EXP_WIDTH-1 downto 0);
signal s_sign_i,signa,signb : std_logic;

signal s fpu op i : std_logic;

signal s rmode i : std_logic vector(1 downto 0);

signal s _output_o: std logic_vector(FP_. WIDTH-1 downto 0);

signal s_ine o : std_logic;

signal s overflow . std_logic;

signal s shrl, s shr2, s shl, s shrle: std logic;

signal s exprl 9,s expr2 9 :std logic vector(EXP_ WIDTH downto 0);

signal s_exp shrl, s exp shr2,s exp shl: std logic vector(EXP WIDTH-1 downto 0);
signal s fract shrl, s fract shr2: std logic vector(FRAC WIDTH+4 downto 0);

signal s_fract shl : std_logic vector(FRAC WIDTH + 4 downto 0);

signal s_zeros : std logic_vector(5 downto 0);

signal shl pos: std logic vector(5 downto 0);

signal s_fract 1,s fract 2 :std logic vector(FRAC WIDTH+4 downto 0);
signal s exp 1,s exp 2 :std logic vector(EXP_ WIDTH-1 downto 0);

signal s_fract rnd : std_logic_vector(FRAC WIDTH+4 downto 0);
signal s_roundup : std_logic;
signal s_sticky : std logic;

signal s_zero fract : std_logic;

signal s_lost : std_logic;

signal s_infa, s infb : std_logic;

signal s nan_in, s nan_op,s nan a,s nan b, s nan_sign : std logic;

signal cmpl 2 br,cmpl 2 ar,rr sign2 br,rr_sign2 ar:std logic;

signal s_exp rr2 br,s exp rr2 ar,s _exptemprr ar:std logic vector(EXP WIDTH-1
downto 0);

signal s mant rr2 final:std logic vector(FRAC WIDTH+2 downto 0);

signal mantrr2_cmpl:std logic_vector(FRAC WIDTH+1 downto 0):=(others=>'0");
signal s mant rr2 br:std logic vector(FRAC WIDTH+2 downto 0);

signal s mant rr2_ar:std logic_vector(FRAC WIDTH+3 downto 0);

signal s mant rr2 ar trunc:std logic vector(FRAC WIDTH+1 downto
0):=(others=>'0");

signal s_exp o rr2:std logic vector(EXP_WIDTH-1 downto 0);

108

signal s mant o rr2:std logic_vector(FRAC WIDTH + 1 downto 0);
signal s sign o rr2,s cmpl out2:std logic;

signal d1:std logic vector(FRAC WIDTH + 2 downto 0):=(others=>'0");
signal d2:std logic vector(FRAC WIDTH + 3 downto 0):=(others=>'0");

component residualreg is port(sign_rr:in std_logic;exp_rr:in

std logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std logic;

mant_rr:in std_logic_vector(FRAC WIDTH+1 downto 0);sign_rr_out:out

std logic;exp rr out:out std logic vector(EXP WIDTH - 1 downto 0);

cmpl_out:out std_logic;mant_rr out:out std logic_vector(FRAC WIDTH+1 downto 0));
end component residualreg;

component dec_br is port(sel:in std logic vector(7 downto 0);en:in std logic;d:out
std_logic_vector(25 downto 0));
end component dec br;

component dec_ar is port(sel:in std logic vector(7 downto 0);enl,en2:in std logic;d:out
std_logic_vector(26 downto 0));
end component dec_ar;

signal a:std logic; -- to see if expdiff>24

signal sum:std logic vector(8 downto 0);
signal al:std_logic;
signal mask:std logic vector(24 downto 0):=(others=>'0");

begin
-- Input Register

s fract 28 i<=fract 28 i;
s exp_i<=exp_i;

s _sign i<=sign i,

s fpu op i<=fpu op i;

s rmode i <=rmode i;
cmpl 2 br<=cmpl in2;
rr_sign2 br<=sign i rr2;
s_infa<=infa_postin;
s_infb<=infb_postin;

s _nan_a<=nan_a_postin;

s nan_b<=nan_b_ postin;
$_nan_in<=nan_in_postin;
s _nan_op<=nan_op_postin;
signa<=signa_postin;

109

signb<=signb_postin;

a<=expdiff postin(7)or expdiff postin(6)or
expdiff postin(5)or(expdiff postin(4)and expdiff postin(3) and(expdiff postin(2) or
expdiff postin(1) or expdiff postin(0)));

--Output Register

process(clk 1)

begin

if falling_edge(clk 1) then
output o0 <=s_output o;
infa_postout<=infa postin;
infb_postout<=infb_postin;
signa_postout<=signa_ postin;
signb_postout<=signb_postin;
ine_ 0 <=s ine o;
eXp_0 Ir2<=s_exp_o_Ir2;
mant o rr2<=s mant o rr2;
sign_o rr2<=s_sign o r1r2;
cmpl_out2<=s cmpl out2;

end if;

end process;

-- check if shifting is needed
-- stage la: right-shift (when necessary)
s shrl <=s fract 28 i(27);
s shrle <='1'when s_fract 28 i(26)='1"and or_reduce(s_exp 1)='0' else '0"; --if
exp is zero, and hidden bit=1, then exp=exp+1 (no need to check s_fract 28 i(27)!)
s exprl 9<="0"&s exp i+ "000000001";
s_fract shrl <=shr(s_fract 28 i, "1");
s _exp_shrl <=s_exprl 9(7 downto 0);

-- stage 1b: left-shift (when necessary)

s _shl <="1'when s_fract 28 i(27 downto 26)="00" and s_exp_i /= "00000000"
else '0';

-- count the leading zero's of fraction, needed for left-shift

s_zeros <= count 1 zeros(s_fract 28 i(26 downto 0));

--s_expl 9 <=("0"&s exp i) - ("000"&s_zeros);

shl pos <="000000" when s_exp i="00000001" else s_zeros;

s fract shl <=shl(s_fract 28 i, shl pos);
s_exp_shl <="00000000" when s_exp_i="00000001" else s_exp i -
("00"&shl_pos);

s fract 1<=s fract shrl when(s_shr1='1")else
s_fract shl when(s_shl='1")else

110

s fract 28 i;

s exp_ l<=s exp shrl when(s_shrl='l")else
s_exp_shl when(s_shl="1")else
S exp 1i;

decl:dec_br port map(expdiff postin,s shrl,dl);
s mant 12 br<=("0' & mant i rr2)or dl;

S exp_rr2 br<=exp i 112;
-- round

s sticky <='1' when s_fract 1(0)='1"or (s_fract 28 i(0) and s fract 28 1(27))='1"
else '0'; --check last bit, before and after right-shift

s roundup <=s_ fract 1(2) and ((s_fract 1(1) ors_sticky)or s_fract 1(3)) when

s rmode i="00" else -- round to nearset even

(s_fract 1(2) ors fract 1(1) or
s_sticky) and (not s_sign i) when s rmode i="10" else -- round up

(s_fract 1(2) ors fract 1(1) or
s sticky) and (s_sign i) when s_rmode i="11" else -- round down

'0"; -- round to zero(truncate = no
rounding)

s fract rnd <=s fract 1+ "0000000000000000000000001000" when
s _roundup='1"'else s_fract 1;

-- stage 2: right-shift after rounding (when necessary)
s shr2 <=s fract rnd(27);

s expr2 9 <=("0"&s_exp_1) +"000000001";
s_fract shr2 <=shr(s_fract md, "1");

s _exp_shr2 <=s_expr2 9(7 downto 0);

s fract 2 <=s fract shr2 when s shr2='l'else s_fract rnd;
s exp 2 <=s exp_shr2 when s shr2='1"else s_exp 1;

dec2:dec_ar port map(expdiff postin,s shrl,s shr2,d2);
s mant rr2 ar<=('0' & s mant rr2 br)or d2;
s_exptemprr_ar<=conv_std logic vector(conv_integer(s_exp 1) -
2*(FRAC_WIDTH+1),8);

111

s exp rr2_ar<=s_exptempir ar
when((postnorm_exprr_set in='1"Jand(cmpl 2 ar='1"))else s _exp rr2 br;

s mant _rr2_ar trunc<=s mant rr2 ar(FRAC WIDTH+1 downto 0)
when((s_shrl or s_shr2)='0"else
s mant 112 _ar(FRAC WIDTH+1 downto 0) when(((s_shrl xor
s_shr2)="1")and(a="0"))else

s mant rr2_ar(FRAC WIDTH+2 downto 1) when(((s_shrl xor
s _shr2)='1")and(a='1"))else

s mant 12 _ar(FRAC WIDTH+1 downto 0) when(((s_shrl and
s_shr2)="1")and(a="0"))else

s mant rr2_ar(FRAC WIDTH+3 downto 2) when(((s_shrl and
s _shr2)='1")and(a='1"))else

s mant 12 _ar(FRAC WIDTH+1 downto 0);

cmpl 2 ar<=signa xor signb xor s_roundup;
rr_sign2 ar<=s_sign ixor s_roundup;
mantrr2_cmpl<=(nots_mant rr2 ar trunc);

---- process(clk 1)
---- begin
-—-- if rising_edge(clk i) then
---- if(cmpl 2 ar='0")then
-—-- s mant rr2 final<=s mant rr2 ar trunc;
elsif((s_expdiff int<25)and(s_shr1='0")and(s_shr2='0")and(cmpl 2 ar='1"))then
- s mant rr2 final<=s mant rr2_ar trunc(FRAC WIDTH + 1 downto
s_expdiff int)& mantrr2 cmpl(s_expdiff int-1 downto 0);
-—-- elsif((s_expdiff int<25)and((s_shrl xor
s_shr2)="1")and(cmpl 2 ar='1"))then
- s mant rr2 final<=s mant rr2_ar trunc(FRAC WIDTH + 1 downto
s_expdiff int+1)& mantrr2 _cmpl(s_expdiff int downto 0);
- elsif((s_expdiff int<25)and((s_shrl and
s_shr2)="1")and(cmpl 2 ar='1"))then
- s mant rr2 final<=s mant rr2_ar trunc(FRAC WIDTH + 1 downto
s_expdiff int+2)& mantrr2_cmpl(s_expdiff int+1 downto 0);
- elsif((s_expdiff int>25)and(cmpl 2 ar='1"))then
-—-- s mant rr2 final<=mantrr2 cmpl;
-—-- end if;

112

-—-- end if;
---- end process;

sum<=('0"' & expdiff postin)+("00000000"&s shrl)+("00000000"&s shr2);
al<=(sum(4)and sum(3)and(sum(0) or sum(1)or sum(2)))or sum(8)or sum(7)or sum(6)or
sum(5);

mask <= "0000000000000000000000000" when ((sum = "000000000")and(a1='0")) else
"0000000000000000000000001" when ((sum = "000000001")and(a1='0")) else
"000000000000000000000001 1" when ((sum = "000000010")and(a1='0')) else
"0000000000000000000000111" when ((sum = "000000011")and(a1='0")) else
"0000000000000000000001 111" when ((sum = "000000100")and(a1='0")) else
"0000000000000000000011111" when ((sum = "000000101")and(a1='0")) else
"0000000000000000000111111" when ((sum = "000000110")and(a1='0")) else
"0000000000000000001111111" when ((sum = "000000111")and(al='0")) else
"0000000000000000011111111" when ((sum = "000001000")and(a1='0")) else
"0000000000000000111111111" when ((sum = "000001001")and(al='0")) else
"0000000000000001111111111" when ((sum = "000001010")and(a1='0")) else
"0000000000000011111111111" when ((sum = "000001011")and(al='0")) else
"0000000000000111111111111" when ((sum = "000001100")and(a1='0")) else
"0000000000001111111111111" when ((sum = "000001101")and(al='0")) else
"0000000000011111111111111" when ((sum = "000001110")and(al='0")) else
"0000000000111111111111111" when ((sum = "000001111")and(al="0")) else
"0000000001111111111111111" when ((sum = "000010000")and(a1='0")) else
"0000000011111111111111111" when ((sum = "000010001")and(al="0")) else
"0000000111111111111111111" when ((sum = "000010010")and(al='0")) else
"0000001111111111111111111" when ((sum = "000010011")and(al='0")) else
"0000011111111111111111111" when ((sum = "000010100")and(al="0")) else
"0000111111111111111111111" when ((sum = "000010101")and(al='0")) else
"0001111111111111111111111" when ((sum = "000010110")and(a1='0")) else
"0011111111111111111111111" when ((sum = "000010111")and(al='0")) else
"0111111111111111111111111" when ((sum = "000011000")and(a1='0")) else
"ITIIITTTIITTI111111111111" when (al="1") else
"I I,

s mant_rr2_final<=("0'&(mantrr2_cmpl and

mask)+"00000000000000000000000001")ywhen(cmpl 2 ar='1")else ('0' &
s mant _rr2_ar_trunc);

rr2:residualreg port
map(rr_sign2_ar,s exp rr2 ar,cmpl 2 ar,s mant rr2 final(24 downto
0),s sign o rr2,s exp o rr2,s cmpl out2,s mant o rr2);

-- signa<=s opa 1(31);

113

- signb<=s opb i(31);

-- s infa <="'1'when s _opa i(30 downto 23)="11111111" else '0";
-- s _infb <='1'when s opb 1(30 downto 23)="11111111" else '0';

-- s nan_a <="'l"'when (s_infa='1"and or reduce (s _opa (22 downto 0))='1") else
-- s nan_b <="1'when (s_intb='1" and or_reduce (s_opb (22 downto 0))='1") else

-- s nan_in <='l'when s nan_a='l'or s nan b='1"else '0';
-- s nan_op <='l"' when (s_infa and s_intb)="1" and (s_opa_i(31) xor (s_fpu_op i
xor s_opb i(31)))="1"else '0'; -- inf-inf=Nan
s nan_sign <=s_sign i when (s_nan_aand s nan b)='l"else
signa when s nan_a='1" else
signb;

-- check if result is inexact;

s lost <= or reduce(s_fract 28 i(2 downto 0)) or or reduce(s fract 1(2 downto
0)) or or_reduce(s_fract 2(2 downto 0));

s ine o <="'1"when (s_lost or s_overflow)='1"and (s_infa or s_infb)='0' else '0'";

s _overflow <='1' when (s_exprl 9(8) or s_expr2 9(8))='1"and (s_infa or
s _infb)='0" else '0";

s zero fract <='l'when s zeros=27 and s_fract 28 i(27)='0'else '0'; -- '1" if
fraction result is zero

process(s_sign i, s _exp 2,s fract 2,s nan in, s nan_op, s _nan sign, s_infa,
s _infb, s_overflow, s _zero fract)
begin
if (s_nan_in or s_nan_op)='1' then
s output 0 <=s nan_sign & QNAN;

elsif (s_infa or s_infb)='1' or s_overflow='1" then
s output o <=s sign i & INF;
elsif s zero fract="1' then
s output o <=s sign i & ZERO VECTOR;
else
s output o<=s sign 1 &s exp 2 & s fract 2(25 downto
3);
end if}
end process;

end rtl;

114

Package — FPU pack

library ieee;

use ieee.std_logic 1164.all;

use ieee.std logic unsigned.all;

package fpupack is

-- Data width of floating-point number. Deafult: 32
constant FP. WIDTH : integer := 32;

-- Data width of fraction. Deafult: 23
constant FRAC_WIDTH : integer := 23;

-- Data width of exponent. Deafult: 8
constant EXP_ WIDTH : integer := §;

--Zero vector
constant ZERO VECTOR: std logic_vector(30 downto 0) :=
"0000000000000000000000000000000";

-- Infinty FP format
constant INF : std logic vector(30 downto 0) :=
"1111111100000000000000000000000";

-- QNaN (Quit Not a Number) FP format (without sign bit)
constant QNAN : std_logic_vector(30 downto 0) :=
"1111111110000000000000000000000";
-- SNaN (Signaling Not a Number) FP format (without sign bit)
constant SNAN : std logic vector(30 downto 0) :=
"1111111100000000000000000000001";

-- count the zeros starting from left
function count 1 zeros (signal s_vector: std_logic_vector) return std_logic _vector;

-- count the zeros starting from right
function count_r_zeros (signal s_vector: std logic vector) return
std_logic_vector;
end fpupack;
package body fpupack is

-- count the zeros starting from left
function count 1 zeros (signal s_vector: std logic vector) return std logic vector is

115

variable v_count : std logic_vector(5 downto 0);
begin
v_count :="000000";
for iins_vector'range loop
case s_vector(i) is
when '0'=>v_count ;= v_count + "000001";
when others => exit;
end case;
end loop;
return v_count;
end count_| zeros;

-- count the zeros starting from right
function count_r zeros (signal s_vector: std logic_vector) return std logic_vector is
variable v_count : std logic vector(5 downto 0);
begin
v_count :="000000";
foriin O to s_vector'length-1 loop
case s_vector(i) is
when '0' =>v_count :=v_count + "000001";
when others => exit;
end case;
end loop;
return v_count;
end count r zeros;

end fpupack;

Testbench for Adder with residual register

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric_std.all;

use ieee.std logic_misc.all;
use ieee.std logic ARITH.all;
use ieee.std logic textio.all;
use std.textio.all;

ENTITY fpu add test vhd IS
--port(clk_out: out std logic);
--Type Text is file of String;
--Type Line is access String;

END fpu_add test vhd;

116

ARCHITECTURE behavior OF fpu add test vhd IS
-- Component Declaration for the Unit Under Test (UUT)

COMPONENT fpu_add

PORT(clk i:IN std logic;

movrr : IN std logic;

opa i:IN std logic vector(31 downto 0);

opb i:IN std logic vector(31 downto 0);

fpu op i:INstd logic vector(2 downto 0);

rmode i:IN std logic vector(1 downto 0);

output o : OUT std logic_vector(31 downto 0);

ine_o: OUT std_logic;

overflow o : OUT std_logic;

underflow o : OUT std_logic;

inf o: OUT std _logic;

zero o : OUT std logic;

gnan_o : OUT std_logic;

snan_o : OUT std logic;

post_in:out std logic vector(27 downto 0);

sign_rr0 : OUT std logic;sign rrl : OUT std logic; sign_rr2: OUT std_logic;

cmpl_rr0 :OUT std_logic;cmpl rrl: OUT std logic;cmpl rr2 : OUT
std logic;ready 0:OUT std logic;

exp_rr0:OUT std _logic vector(7 downto 0);exp rr1:OUT std logic vector(7
downto 0);exp rr2 : OUT std logic vector(7 downto 0);

mant 110 : OUT std_logic vector(24 downto 0);mant rrl : OUT
std_logic_vector(24 downto 0);mant_rr2 : OUT std _logic vector(24 downto 0));

END COMPONENT;

--Inputs

SIGNAL clk i: std logic :='0";

SIGNAL movrr : std _logic :='0";

SIGNAL opa i: std logic vector(31 downto 0) := (others=>'0");
SIGNAL opb i: std logic vector(31 downto 0) := (others=>'0");
SIGNAL fpu op i: std logic vector(2 downto 0) := (others=>'0");
SIGNAL rmode i: std logic vector(1 downto 0) := (others=>'0");

--Outputs

SIGNAL output o : std logic_vector(31 downto 0);
SIGNAL ine o: std logic;

SIGNAL overflow o : std logic;

SIGNAL underflow o : std logic;

SIGNAL div_zero o : std logic;

SIGNAL inf o: std logic;

117

SIGNAL zero o : std logic;

SIGNAL gnan o : std logic;

SIGNAL snan_o : std logic;

SIGNAL sign_rr0 : std logic;

SIGNAL sign rrl : std_logic;

SIGNAL sign rr2 : std logic;

SIGNAL cmpl 110 : std logic;

SIGNAL cmpl rrl : std logic;

SIGNAL cmpl rr2 : std logic;

SIGNAL exp 110 : std logic vector(7 downto 0);
SIGNAL exp rrl : std logic vector(7 downto 0);
SIGNAL exp 112 : std logic vector(7 downto 0);
SIGNAL mant rr0:std logic_vector(24 downto 0);
SIGNAL mant rrl:std logic vector(24 downto 0);
SIGNAL mant rr2:std logic_vector(24 downto 0);
signal sig,temp mrr: std logic :="'0';

signal cnt : integer:=0;

signal ready o: std logic;

signal post_in: std_logic_vector(27 downto 0);
signal result in : std logic vector(31 downto 0);
signal rr_in : std_logic_vector(31 downto 0);
signal rr_out : std_logic vector(31 downto 0);
signal err_op,err_rr,err: std_logic:='0'";

BEGIN
-- Instantiate the Unit Under Test (UUT)

uut: fpu_add PORT MAP(
clk i=>clk i,
MmovIT => movVIT,
opa_i=>opa i,
opb_i=>opb i,
fpu op 1=>fpu op 1,
rmode_i=>rmode i,
output_o => output o,
ine_o=>1ne o,
overflow o => overflow o,
underflow o => underflow o,
inf o=>1nf o,
Zero_0 => Zero_o,
gnan_o => ¢gnan_o,
snan o => snan o,
post_in => post_in,
sign_rr0 => sign_110,
sign_rrl =>sign_rrl,

118

sign_rr2 =>sign 112,
cmpl_rr0 => cmpl 110,
cmpl_rrl =>cmpl _r1rl,
cmpl 112 => cmpl 112,
ready o=>ready o,
exp_rrQ =>exp 110,
exp_rrl =>exp r1rl,
exp_rr2 =>exp 1r2,
mant_1r0 => mant rr0,
mant rrl => mant rrl,
mant_rr2 => mant_rr2);

fpu op i<="000";
rmode 1 <="00";

clk i <=not (clk 1) after 50 ns;

movrr_gen:process(clk 1)
begin

if(falling_edge(clk 1))then
if(cnt/= 5)then
cnt<=cnt+1;

else

cnt<=0;

end if;

end if}
if(rising_edge(clk_1))then
if(cnt=4)then

movrr<='1";

else

movrr<='0";

end if;

if(cnt=5)then

temp mrr<='1";

else

temp mrr<='0";

end if}

end if;

end process movrr_gen;

read proc_ab : process is

file infile : TEXT open read mode is "testdata.txt";
variable opa in : std_logic_vector(31 downto 0);
variable opb_in : std_logic vector(31 downto 0);
variable val:std logic vector(127 downto 0);

119

variable buf temp : line;
BEGIN

while not endfile(infile) loop
READLINE(infile,buf temp);
hread(buf temp,val);
opa_i<=val(127 downto 96);
opb_i<=val(95 downto 64);
result_in<= val(63 downto 32);
wait for 600 ns;

end loop ;

wait for 600 ns;

end process read_proc_ab;

read proc_oprr : process is

file infile : TEXT open read mode is "testdata.txt";
variable val:std logic vector(127 downto 0);
variable buf temp : line;

BEGIN

while not endfile(infile) loop
READLINE(infile,buf temp);

hread(buf temp,val);

rr_in <= val(31 downto 0);

wait for 700 ns;

end loop ;

wait for 700 ns;

end process read_proc_oprr;

write_proc : process(temp mrr) is

file outfile : text open write_mode is "sum_out.txt";
variable buf temp : line;

begin

if(rising_edge(temp_mrr))then

hwrite(buf temp,output o);
writeline(outfile,buf temp);

if(output_o/=result in)then
err_op<='1";

else

err_op<='0";

end if;

end if}

END PROCESS write proc;

write_rr :process(temp_mrr) is

file outfile : text open write_mode is "rr_out.txt";
variable bufl temp,buf2 temp : line;

120

begin

if(falling_edge(temp mrr))then
hwrite(bufl temp,output o);
writeline(outfile,bufl temp);

if(rr_in/=output o)then
err_1r<='1";

else

err_1r<='0";

end if}

end if;

END PROCESS write rt;

err<= err_op or err_It;

END;

FPU — Multiplier

library ieee;

use ieee.std logic 1164.all;
use ieee.numeric_std.all;
use ieee.std logic misc.all;
library work;

use work.fpupack.all;

entity fpu_mult is

port (
clk_i,movrr :in std_logic;
-- Input Operands A & B
opa_i :in std_logic_vector(FP_ WIDTH-1 downto 0); -- Default:
FP_WIDTH=32
opb i :in std_logic_vector(FP_WIDTH-1 downto 0);

-- fpu operations (fpu_op _1i):

-- 000 = add,

121

-- 001 = substract,
-- 010 = multiply,
fpu op i :in std_logic_vector(2 downto 0);

-- Rounding Mode:

-- 00 = round to nearest even(default),
-- 01 =round to zero,

-- 10 =round up,

-- 11 =round down

rmode i :in std_logic_vector(1 downto 0);
-- Output port

output o : out std_logic vector(FP_WIDTH-1 downto 0);
sign_rr_out:out std_logic;
exp_rr_out:out std logic_vector(EXP_WIDTH - 1 downto 0);
cmpl_out:out std_logic;
mant_rr_out:out std logic vector(FRAC WIDTH+1 downto 0);

ready o : out std_logic;
post_in: out std_logic_vector(47 downto 0);

-- Exceptions
ine o : out std_logic; -- inexact
overflow o : out std_logic; -- overflow
underflow o : out std_logic; -- underflow
inf o : out std_logic; -- infinity
Zero_o :out std_logic; -- zero
gnan_o : out std_logic; -- queit Not-a-Number
snan_o : out std_logic -- signaling Not-a-Number
)i
end fpu_mult;

architecture rtl of fpu_mult is

-- Input/output registers
signal s opa i,s opb _i: std logic vector(FP_WIDTH-1 downto 0);
signal s_fpu op i : std_logic_vector(2 downto 0);
signal s rmode i : std logic_vector(1 downto 0);
signal s_output o : std logic_vector(FP_WIDTH-1 downto 0);
signal s_ine o, s_overflow o, s underflow o,s inf o,s zero o,s gnan o,s snan o :
std_logic;

122

signal cnt : integer;

signal ready : std_logic;

signal s_outputl : std logic vector(FP_ WIDTH-1 downto 0);
signal s_infa, s_infb : std logic;

-- **#*Multiply units signals®**

signal pre norm_mul exp 10 : std logic vector(9 downto 0);
signal pre norm_mul fracta 24 : std_logic vector(23 downto 0);
signal pre_ norm mul fractb 24 : std_logic_vector(23 downto 0);

signal mul fract 48,s postnorm_fract in: std logic vector(47 downto 0);
signal mul_sign,s postnorm_sign_in: std_logic;

signal post norm_mul_output : std_logic vector(31 downto 0);
signal post norm mul ine :std logic;

signal
s_expa_pretomultin,s_expb_pretomultin,s_expa_pretomultout,s expb pretomultout:std 1
ogic_vector(EXP_WIDTH-1 downto 0);

signal s_exp 10 pretomultout,s postnorm_exp_in:
std logic vector(EXP_WIDTH+1 downto 0);

signal
s_sign_pretomultin,s op 0 pretomultin,s fracta0 pretomultin,s fractbO pretomultin:
std_logic;
signal s op 0 multopostin,s fracta0 multopostin,s fractb0 multopostin:
std_logic;
————— components -----

signal s_sign rr_out,s_cmpl out:std logic;

signal s_exp rr out:std logic vector(EXP_WIDTH - 1 downto 0);
signal s mant rr out:std logic vector(FRAC WIDTH+1 downto 0);

component pre_norm_mul is

port(

clk 1 :in std_logic;

opa i :in std logic_vector(FP_ WIDTH-1 downto
0);

opb i :in std_logic_vector(FP_ WIDTH-1 downto
0);

exp_10 o :out
std_logic_vector(EXP_WIDTH+1 downto 0);

fracta 24 o : out std_logic vector(FRAC WIDTH
downto 0); -- hidden(1) & fraction(23)

123

fractb 24 o : out std_logic vector(FRAC WIDTH
downto 0);
expa_o,expb_o: out std_logic vector(EXP_ WIDTH-1 downto 0);
sign_o,op_0,fracta0,fractbO:out std logic
);

end component;

component mul 24 is

port(
clk 1 :in std_logic;
fracta i :in std_logic_vector(FRAC WIDTH
downto 0); -- hidden(1) & fraction(23)
fractb i :in std_logic_vector(FRAC WIDTH
downto 0);
expa_pretomultin :in
std logic_vector(EXP_WIDTH-1 downto 0);
expb_pretomultin :in
std logic_vector(EXP_WIDTH-1 downto 0);
exp 10 pretomultin :in

std logic vector(EXP_WIDTH+1 downto 0);

sign_pretomultin,op 0 pretomultin,fracta0 pretomultin,fractb0 pretomultin:in std logic;

fract o : out
std logic_vector(2*FRAC_ WIDTH+1 downto 0);
sign_pretomultout : out std_logic;
expa_pretomultout :out
std_logic_vector(EXP_WIDTH-1 downto 0);
expb_pretomultout :out

std_logic_vector(EXP_WIDTH-1 downto 0);

op_ 0 pretomultout,fracta0 pretomultout,fractb0 pretomultout:out
std_logic;

exp_ 10 pretomultout : out
std_logic_vector(EXP_WIDTH+1 downto 0)

);

end component;

component post norm_mul is

port(
clk i :in std_logic;
expa_multopostin :in std logic_vector(EXP_WIDTH-1
downto 0);
expb_multopostin :in std logic_vector(EXP_WIDTH-1
downto 0);

exp 10 i :in
std_logic_vector(EXP_WIDTH+1 downto 0);

124

std logic_vector(2*FRAC_ WIDTH+1 downto 0);

std_logic;

fract 48 i :in

sign i :in std_logic;

rmode i :in std_logic_vector(1 downto 0);
op_0_ multopostin,fracta0 multopostin,fractb0 _multopostin: in

output o :out std_logic vector(FP_WIDTH-1 downto 0);

ine_o: out std_logic ;

sign_rr_out,cmpl out:out std logic;
exp_rr_out:out std logic_vector(EXP_WIDTH - 1 downto 0);
mant_rr_out:out std logic vector(FRAC WIDTH+1 downto 0)

)

end component;

begin

_ExxMultiply units***

i pre_ norm_mul: pre_ norm_mul
port map(

clk i=>clk i,

opa i=>s opa i,

opb i=>s opb i,

exp 10 o=>pre norm mul exp 10,
fracta 24 o =>pre norm mul fracta 24,
fractb 24 o =>pre norm mul fractb 24,
expa_o=>s_expa_ pretomultin,

expb_o=>s expb pretomultin,

sign_o =>s_sign pretomultin,

op 0=>s op 0 pretomultin,

fracta0 =>s_fracta0 pretomultin,

fractb0 =>s_fractb0_pretomultin

)

1 mul 24 :mul 24
port map(

clk i=>clk i,

fracta i=>pre norm mul fracta 24,

fractb i =>pre norm mul fractb 24,
expa_pretomultin =>s_expa_ pretomultin,
expb_pretomultin =>s_expb_pretomultin,
exp_10_pretomultin =>pre_norm_mul exp 10,
sign_pretomultin =>s_sign_pretomultin,

op_0 pretomultin =>s op 0 pretomultin,

125

-- hidden(1) & fraction(23)

fracta0 pretomultin =>s_fracta0 pretomultin,
fractb0 pretomultin =>s_fractbO pretomultin,
fract o =>mul_fract 48,

sign_pretomultout =>mul_sign,
expa_pretomultout =>s_expa_pretomultout,
expb_pretomultout =>s _expb pretomultout,
op_0 pretomultout =>s op 0 multopostin,
fracta0 pretomultout =>s_fracta0 multopostin,
fractb0 pretomultout =>s_fractbO0 multopostin,
exp_ 10 pretomultout =>s exp 10 pretomultout

)

i post norm_mul : post norm mul
port map(
clk i=>clk i,
expa_multopostin =>s_expa_pretomultout,
expb_multopostin =>s_expb_pretomultout,
--exp_10 i=>s exp 10 pretomultout,
exp 10 i=>s postnorm_exp in,
--fract 48 1 =>mul fract 48,
fract 48 i =>s postnorm fract in,
--sign_i =>mul_sign,
sign i =>s_postnorm_sign_in,
rmode i=>s rmode i,
op_0 multopostin =>s op 0 multopostin,
fracta0 multopostin =>s_fracta0 multopostin,
fractb0)_multopostin => s_fractb0 _multopostin,
output_o => post norm_mul_output,
ine_o =>post norm_mul ine,
sign_rr_out=>s sign rr_out,
exXp_rr out=>s exp_Ir out,
cmpl_out =>s cmpl out,
mant rr out=>s mant rr out
);
s _postnorm_fract in<=(s_mant rr _out & "00000000000000000000000")when
(movrr="1")else mul_fract 48;
s _postnorm_exp in<=("00" & s_exp_rr out) when (movrr='1")else
s _exp 10 pretomultout;
s_postnorm_sign in<=s_sign rr_out when (movrr='1")else mul sign;

-- s_postnorm_fract in<=mul fract 48;
-- s _postnorm_exp in<=s_exp 10 pretomultout;
-- s_postnorm_sign_in<=mul_sign;

126

-- Input Register

s opa_i<=opa_i;

s opb i<=opb i;

s fpu op i<=fpu op i;
s rmode i <=rmode i;

-- Output Register
process(clk 1)
begin
if rising_edge(clk 1) then
if(ready = '1")then
output 0 <=s_output o;
ine_ 0 <=s ine o;
overflow o <=s_overflow o;
underflow o <=s underflow o;

inf 0 <=s_inf o;
Zero 0 <=s_zero_o;
gnan_o <=s_gnan_o;
snan_o <=s_snan_o;

sign_rr_out<=s_sign rr_out;
cmpl_out<=s_cmpl out;
exp_rr out<=s_exp Ir out;
mant_rr_out<=s_mant rr_out;

post_in<=s_postnorm_fract in;
end if}
end if;
end process;

-- Output Multiplexer
process(clk 1)
begin
if rising_edge(clk 1) then
if fpu_op_ i="010" then

s_outputl <=post norm_mul output;
s ine o <=post_norm_mul _ine;
else
s_outputl <= (others =>"'0");
s ine o <='0"
end if;
end if;

127

end process;

s infa <='1'when s _opa i(30 downto 23)="11111111" else '0";
s _infb <='1'when s opb i(30 downto 23)="11111111" else '0';

--In round down: the subtraction of two equal numbers other than zero are always
-0

process(s_outputl, s rmode i, s infa, s infb, s qnan o, s snan 0,s zero o,
s fpu op i,s opa 1,s opb 1)

begin

if s rmode i="00" or ((s_infa or s_infb) or s_gqnan_o or
s _snan_o)='l" then --round-to-nearest-even
s_output o <=s_outputl;
elsif s rmode i="01" and s_output1(30 downto 23)="11111111"
then
--In round-to-zero: the sum of two non-infinity operands is
never infinity,even if an overflow occures
s output o <=s outputl(31) &
"I1r1t1tottritt e,
elsif s rmode i="10" and s outputl(31 downto 23)="111111111"
then
--In round-up: the sum of two non-infinity operands is
never negative infinity,even if an overflow occures
s output o<="11111111011 111 11111111111 1111111";
elsif s rmode i="11" then
--In round-down: a-a= -0
if (s_fpu op_1="000" or s_fpu op i="001") and
s zero o='1"and (s_opa i(31) or (s_fpu op i(0) xor s opb i(31)))='1" then
s _output o <="1" & s_outputl(30 downto 0);
--In round-down: the sum of two non-infinity operands is
never postive infinity,even if an overflow occures
elsif s_outputl(31 downto 23)="011111111" then
S_output o <=
"O111111101 11ttt taananent™,

else
s_output o <=s_outputl;
end if;
else
s_output o <=s_outputl;
end if;

end process;

128

-- Generate Exceptions

s underflow o <='1'when s_output1(30 downto 23)="00000000" and
s ine o="l"else '0";

s overflow o <='l'when s outputl(30 downto 23)="11111111" and s_ine o='"1"
else '0';

s_inf o <='l1"when s outputl(30 downto 23)="11111111" and (s_qgnan_o or
s snan_0)='0"else '0';
s zero o <="'"l"'when or_reduce(s_outputl(30 downto 0))='0' else '0';
s gnan_o <="'l1'when s_outputl(30 downto 0)=QNAN else '0";
s snan_o <='"l1'when s_opa i(30 downto 0)=SNAN or s_opb _i(30 downto 0)=SNAN
else '0";

----Ready signal to indicate start of valid outputs --
process(clk 1)

begin

if(rising_edge(clk i))then

if(cnt/=4)then

cnt <=cnt + 1;

else

cnt <= cnt;
end if;
if(cnt=4)then
ready<='1";
else
ready<='0';
end if;

end if}

end process;

ready o<=ready;

end rtl;

Prenormalization

library ieee ;

use ieee.std logic 1164.all;

use ieee.std _logic unsigned.all;
use ieee.std logic_misc.all;

129

library work;
use work.fpupack.all;

entity pre_norm_mul is

port(

clk i1 :in std_logic;

opa i :in std_logic_vector(FP. WIDTH-1 downto
0);

opb i :1in std_logic_vector(FP. WIDTH-1 downto
0);

exp 10 o :out
std_logic_vector(EXP_WIDTH+1 downto 0);

fracta 24 o :out std_logic vector(FRAC WIDTH
downto 0); -- hidden(1) & fraction(23)

fractb 24 o : out std_logic vector(FRAC WIDTH
downto 0);

expa_o,expb_o: out std logic_vector(EXP_WIDTH-1 downto 0);
sign_o,0p_0,fracta0,fractbO:out std logic
);

end pre_norm_mul;
architecture rtl of pre norm mul is

signal s_expa, s_expb : std_logic_vector(EXP_WIDTH-1 downto 0);
signal s fracta, s fractb : std logic vector(FRAC WIDTH-1 downto 0);
signal s exp 10 o,s expa in,s expb in: std logic vector(EXP WIDTH+1 downto 0);

signal s opa dn,s opb dn: std logic;

begin

s _expa <= opa_i(30 downto 23);
s_expb <= opb_i(30 downto 23);
s _fracta <= opa i(22 downto 0);
s_fractb <= opb_i(22 downto 0);

-- Output Register
process(clk 1)
begin
if rising_edge(clk 1) then
exp_10 o<=s exp 10 o;
-- opa_o<=opa i,
-- opb_o<=opb i;

130

sign_o <=opa_i(31) xor opb_i(31);

expa_o<=opa_i(30 downto 23);
expb_o<=opb i(30 downto 23);
fracta 24 o <=not(s_opa dn) & s_fracta;
fractb 24 o <=not(s_opb dn) & s_fractb;
signals reqd in postnormalization-----------

op_0 <=not(or_reduce(opa_i(30 downto 0)) and or_reduce(opb _i(30
downto 0)));
fracta0<= or_reduce (opa i(22 downto 0));
fractbO<= or_reduce (opb_i1(22 downto 0));
end if;
end process;

-- opa or opb is denormalized

s opa_dn <=not or_reduce(s_expa);
s opb_dn <=not or reduce(s_expb);

s _expa_in <= ("00"&s_expa) + ("000000000"&s_opa_dn);

s _expb _in <= ("00"&s_expb) + ("000000000"&s opb dn);

s exp 10 o<=s expa in+s expb in-"0001111111";
end rtl;

Multiplier

library ieee ;
use ieee.std _logic 1164.all;
use ieee.std logic unsigned.all;

library work;
use work.fpupack.all;

entity mul 24 is

port(
clk 1 : in std_logic;
fracta i :in std_logic_vector(FRAC_ WIDTH
downto 0); -- hidden(1) & fraction(23)
fractb i :in std_logic_vector(FRAC_ WIDTH
downto 0);

131

expa_pretomultin :in
std logic_vector(EXP_WIDTH-1 downto 0);

expb_pretomultin :in
std logic_vector(EXP_WIDTH-1 downto 0);

exp 10 _pretomultin :in
std logic vector(EXP_WIDTH+1 downto 0);

sign_pretomultin,op 0 pretomultin,fracta0 pretomultin,fractb0 pretomultin:in std logic;

fract o : out
std logic_vector(2*FRAC_ WIDTH+1 downto 0);
sign pretomultout : out std_logic;
expa_pretomultout :out
std_logic_vector(EXP_WIDTH-1 downto 0);
expb_pretomultout :out

std_logic_vector(EXP_WIDTH-1 downto 0);

op 0 pretomultout,fracta0 pretomultout,fractbO pretomultout:out
std_logic;

exp_ 10 pretomultout :out
std_logic vector(EXP_WIDTH+1 downto 0)

);
end mul 24;

architecture rtl of mul 24 is

signal s_fracta i, s fractb i: std logic vector(FRAC WIDTH downto 0);
signal s_fract o: std logic vector(2*FRAC_WIDTH+1 downto 0);

signala h,a I,b h,b I:std logic vector(11 downto 0);
signala h h,a h 1,b h "h,bhlLalhallLblhbll:std logic vector(5downto
0);

type op_6 is array (7 downto 0) of std_logic_vector(5 downto 0);
type prod_6 is array (3 downto 0) of op_6;

type prod_48 is array (4 downto 0) of std_logic_vector(47 downto 0);
type sum_24 is array (3 downto 0) of std_logic_vector(23 downto 0);

type a is array (3 downto 0) of std _logic_vector(23 downto 0);
type prod_24 is array (3 downto 0) of a;

signal prod : prod_6;

signal sum : sum_24;
signal prod a b : prod 48;

132

signal prod2 : prod 24;
begin

-- Input Register
s fracta i <=fracta i,
s _fractb i <= fractb i;

-- Output Register
process(clk 1)
begin
if rising_edge(clk 1) then
fract o <=s_fract o;
sign_pretomultout <= sign_pretomultin;
expa_pretomultout <= expa_pretomultin;
expb_pretomultout <= expb_pretomultin;
op_0 pretomultout<=op 0 pretomultin;
fracta0 pretomultout<=fracta0 pretomultin;
fractb0 pretomultout<=fractbO pretomultin;
exp_ 10 pretomultout<=exp 10 pretomultin;
end if;
end process;

--"000000000000"

-A=A hx2"N+A 1,B=B hx2"N+B 1

-AxB=A hxB hxX2"2N+ (A hxB 1+ A IxB h)2"N+ A IxB 1
a_h<=s fracta i(23 downto 12);

a 1 <=s fracta i(11 downto 0);

b h <=s_fractb i(23 downto 12);

b 1 <=s fractb i(11 downto 0);

a h h<=a h(11 downto 6);
a_h 1<=a h(5 downto 0);
b h h<=b h(11 downto 6);
b h 1<=b h(5 downto 0);

<=a I(11 downto 6);
=a_1(5 downto 0);
<=b _1(11 downto 6);

<=b_1(5 downto 0);

e

prod(0)(0) <=a_h_h; prod(0)(1) <=b_h_h;

133

prod(0)(2) <=a_h_h; prod(0)(3) <=b
prod(0)(4) <=a h_I; prod(0)(5) <=b
prod(0)(6) <=a_h_[; prod(0)(7) <=b_

_h [
" h h;
h [;

prod(1)(0) <=a h_h; prod(1)(1) <
prod(1)(2) <=a_h _h; prod(1)(3) <
prod(1)(4) <=a h_I; prod(1)(5) <
prod(1)(6) <=a_h [; prod(1)(7) <

prod(2)(0) <=a_1 h; prod(2)(1) <=b_h h;
prod(2)(2) <=a 1 h; prod(2)(3) <=b_h |;
prod(2)(4) <=a_l 1; prod(2)(5) <=b_h h;
prod(2)(6) <=a 1 I; prod(2)(7) <=b h I;

prod(3)(0) <=a 1 h; prod(3)(1)<=b 1 h;
prod(3)(2) <=a_l h;prod(3)(3)<=b 1 [;
prod(3)(4) <=a_ l I; prod(3)(5) <=b 1 h;
prod(3)(6) <=a 1 I; prod(3)(7)<=b 1 1;

prod2(0)(0) <= (prod(0)(0)*prod(0)(1))&"000000000000";

prod2(0)(1) <= "000000"&(prod(0)(2)*prod(0)(3))&"000000";
prod2(0)(2) <= "000000"&(prod(0)(4)*prod(0)(5))&"000000";
prod2(0)(3) <= "000000000000"&(prod(0)(6)*prod(0)(7));

prod2(1)(0) <= (prod(1)(0)*prod(1)(1))&"000000000000";
prod2(1)(1) <= "000000"&(prod(1)(2)*prod(1)(3))&"000000";
prod2(1)(2) <= "000000"&(prod(1)(4)*prod(1)(5))&"000000";
prod2(1)(3) <= "000000000000" & (prod(1)(6)*prod(1)(7));

prod2(2)(0) <= (prod(2)(0)*prod(2)(1))&"000000000000";
prod2(2)(1) <="000000"&(prod(2)(2)*prod(2)(3))&"000000";
prod2(2)(2) <="000000"&(prod(2)(4)*prod(2)(5))&"000000";
prod2(2)(3) <= "000000000000" &(prod(2)(6)*prod(2)(7));

prod2(3)(0) <= (prod(3)(0)*prod(3)(1))&"000000000000";
prod2(3)(1) <= "000000"&(prod(3)(2)*prod(3)(3))&"000000";
prod2(3)(2) <= "000000"&(prod(3)(4)*prod(3)(5))&"000000";
prod2(3)(3) <= "000000000000"&(prod(3)(6)*prod(3)(7));

sum(0) <= prod2(0)(0) + prod2(0)(1) + prod2(0)(2) + prod2(0)(3);
sum(1) <= prod2(1)(0) + prod2(1)(1) + prod2(1)(2) + prod2(1)(3);
sum(2) <= prod2(2)(0) + prod2(2)(1) + prod2(2)(2) + prod2(2)(3);
sum(3) <= prod2(3)(0) + prod2(3)(1) + prod2(3)(2) + prod2(3)(3);

134

-- Last stage

prod_a_b(0) <= sum(0)&"000000000000000000000000";
prod_a_b(1) <= "000000000000" &sum(1)&"000000000000";
prod_a_b(2) <= "000000000000" &sum(2)&"000000000000";
prod_a_b(3) <= "000000000000000000000000" &sum(3);

prod a b(4) <=prod a b(0)+ prod a b(1)+prod a b(2)+ prod a b(3);

s fract o <=prod a b(4);
end rtl;
Postnormalization
library ieee ;
use ieee.std logic 1164.all;
use ieee.std logic unsigned.all;
use ieee.std logic misc.all;

use ieee.std logic arith.all;

library work;
use work.fpupack.all;

entity post norm_mul is

port(

clk i :in std_logic;

expa_multopostin :in std logic_vector(EXP_WIDTH-1
downto 0);

expb_multopostin :in std logic_vector(EXP_WIDTH-1
downto 0);

exp 10 i :in
std_logic_vector(EXP_WIDTH+1 downto 0);

fract 48 i :in
std_logic_vector(2*FRAC_ WIDTH+1 downto 0); -- hidden(1) & fraction(23)

sign_i :in std_logic;

rmode i :in std_logic_vector(1 downto 0);

op_0_ multopostin,fracta0 multopostin,fractb0_multopostin: in
std_logic;

output o :out std_logic vector(FP_WIDTH-1 downto 0);
ine_o: out std_logic;

sign_rr_out,cmpl _out:out std_logic;

135

exp_rr_out:out std logic_vector(EXP_WIDTH - 1 downto 0);
mant_rr_out:out std logic vector(FRAC WIDTH+1 downto 0)
);

end post norm_mul;
architecture rtl of post norm mul is

signal s _expal, s _expbl: std logic vector(EXP _WIDTH-1 downto 0);
signal s_exp 10 i:std logic_vector(EXP_WIDTH+1 downto 0);

signal s_sign 1: std logic;

signal s output o : std logic vector(FP_ WIDTH-1 downto 0):=X"00000000";
signal s_ine o, s_overflow : std logic;

signal s rmode 1: std logic_vector(1 downto 0);

signal s zeros : std logic vector(5 downto 0);

signal s_carry : std_logic;

signal s shr2, s shl2 : std logic vector(5 downto 0):="000000";
signal s_expol : std logic_vector(8 downto 0);

signal s exp 10a,s exp 10b:std logic vector(9 downto 0);
signal s_frac2a: std logic_vector(47 downto 0);

signal s_sticky, s _guard, s round : std logic;

signal s roundup : std_logic;

signal s frac rnd, s frac3 : std logic_vector(24 downto 0);
signal s _shr3 : std_logic;

signal s_r zerosl: std logic_vector(5 downto 0);

signal s_lost : std_logic;

signal s op O :std logic;

signal s_expo3, s _expo2b : std logic vector(8 downto 0);

signal s_infa, s infb : std_logic;
signal s nan_in, s nan_op,s nan _a,s nan b :std logic;

----pipeline signals-----
signal s_fract 48 1:std logic vector(2*FRAC WIDTH+1 downto 0);
signal s_or a,s or b:std logic;

----residual register component-----

component residualreg is port(sign_rr:in std_logic;exp_rr:in

std logic_vector(EXP_WIDTH - 1 downto 0);cmpl_in:in std_logic;

mant_rr:in std_logic_vector(FRAC_ WIDTH+1 downto 0);sign_rr_out:out

std_logic;exp rr_out:out std_logic vector(EXP_ WIDTH - 1 downto 0);

cmpl_out:out std logic;mant rr out:out std logic_vector(FRAC WIDTH+1 downto 0));
end component;

136

----residual register signals----

signal s sign rr,s sign rr out,s cmpl in,s cmpl out:std logic;

signal s_exp _rr,s_exp rr out:std logic vector(EXP WIDTH - 1 downto 0);

signal s mant rr br:std logic vector(FRAC WIDTH-1 downto 0);

signal s mant rr ar:std logic vector(FRAC WIDTH downto 0);

signal s mant rr final,s mant rr out:std logic vector(FRAC WIDTH+1 downto 0);

signal s r zeros2: std logic vector(5 downto 0);
signal s sign 2,s op 0 2,s or a2,s or b2:std logic;

begin
-- Input Register

s _expal <= expa_ multopostin;

s_expbl <= expb_multopostin;
s exp 10 i<=exp 10 i;

s fract 48 1 <=fract 48 i;

s sign 1 <=sign i;

s rmode 1 <=rmode i,

s op 0 <=op 0 multopostin;

s _or_a <= fracta0 multopostin;
s _or b <= fractb0 multopostin;

-- -- Output Register
process(clk 1)
begin
if rising_edge(clk 1) then
output o <=s_output o; --
ine 0 <=s_ine o;
sign_rr_out<=s_sign rr out;
cmpl_out<=s_cmpl out;
eXp_IT out<=s_exp Ir out;
mant rr out<=s _mant rr out;
end if;
end process;

s_zeros <= count | zeros(s_fract 48 1(46 downto 1)) when
(s_fract 48 1(47)='0"else "000000";
s r zerosl <=count r zeros(s_fract 48 1);

s exp_l0a<=s exp 10 i+ ("000000000"& s fract 48 1(47));

s exp_10b<=s exp 10 i+ ("000000000"& s fract 48 1(47)) -
("0000"&s_zeros);

137

s carry <=s_fract 48 1(47);

process(clk 1)
variable v_shrl, v_shll : std logic_vector(9 downto 0);
begin
if rising_edge(clk 1) then
if s_exp 10a(9)="1"ors_exp 10a="0000000000" then
v_shrl :="0000000001" - s_exp_ 10a + ("000000000"&s_carry);
v_shll := (others =>'0");
s_expol <="000000001";
else
if s exp 10b(9)='1"or s_exp 10b="0000000000" then
v_shrl := (others =>'0");
v_shll :=("0000"&s_zeros) - s_exp 10a;
s_expol <="000000001";
elsif s_exp 10b(8)='1"' then
v_shrl := (others =>'0");
v_shll := (others =>'0");
s expol <="OI1111111";
else
v_shrl :=("000000000"&s_carry);
v_shll :=("0000"&s_zeros);
s _expol <=s exp 10b(8 downto 0);
end if}
end if;
if v_shr1(6)="1"' then --"110000" = 48; maximal shift-right postions
s shr2 <="111111";
else
s_shr2 <=v_shr1(5 downto 0);
end if;

s_shl2 <=v_shl1(5 downto 0);

end if}
end process;
-- F*% Stage 2 ***

process(clk 1)
begin
if(rising_edge(clk i))then
if(s_shr2 /="000000")then
s frac2a <=shr(s_fract 48 1,s shr2);
elsif(s_shl2 /="000000")then
s frac2a <=shl(s_fract 48 1, s shl2);
else
s frac2a <=s fract 48 1;

138

end if;
end if}
end process;

-- signals if precision was last during the right-shift above
s lost <="1' when (s_shr2+("00000"&s_shr3)) >s r zerosl else '0';
- *H*Gtage JHH*
-- Rounding
- 23
- |
-- xx00000000000000000000000grsXxXXXXXXXXXXXXXXXXXXX
-- guard bit: s_frac2a(23) (LSB of output)
-- round bit: s_frac2a(22)
s _guard <=s_frac2a(22);
s round <=s frac2a(21);
s_sticky <= or_reduce(s_frac2a(20 downto 0)) or s_lost;

s _roundup <=s_guard and ((s_round or s_sticky)or s frac2a(23)) when
s rmode 1="00" else -- round to nearset even
(s_guard or s_round or s_sticky) and (not s_sign 1) when
s rmode 1="10" else -- round up
(s_guard or s_round or s_sticky) and (s_sign 1) when
s rmode 1="11" else -- round down
'0'; -- round to zero(truncate = no rounding)

s mant rr_br<=s frac2a(22 downto 0); -- before rounding

process(clk 1)

begin

if(rising_edge(clk i))then
S T zeros2<=s r_zerosl;

s _sign 2<=s sign 1;

s op 0 2<=s op O;

s or a2<=s or_a;

s _or_b2<=s or b;

end if;

end process;

s_frac_rnd <= (s_frac2a(47 downto 23)) + "1" when(s_roundup='1")else s_frac2a(47

downto 23);
s_expo2b <=s_expol - "000000001" when s_frac2a(46)="0" else s_expol;

139

s _shr3 <=s frac rnd(24);

s frac3 <= ("0"&s_frac_rnd(24 downto 1))when(s shr3='1' and s_expo2b /=
"011111111")else s_frac rnd,

s expo3 <=s_expo2b +'l' when(s_shr3='1'and s expo2b /="011111111")else
s_expo2b;

s mant rr _ar<=(s_frac rnd(0) & s mant rr br) when(s_shr3='1' and s_expo2b
/="011111111")else ('0' & s_mant _rr_br);

- EEESage 4HHHE
-- Output

s infa<="l'whens expal="11111111" else '0";
s infb <="1' whens_expbl="11111111" else '0";

s nan_a <='l'when (s_infa='1'and s_or _a2='1") else '0';

s nan_b <='"l'when (s_infb='1"and s_or b2='1") else '0";

s nan_in <='l'whens nan a='l'or s nan b='1"else '0';

s nan_op <="'1'when (s_infa or s_infb)='1'and s op 0 2="1'else '0';-- 0 * inf =
nan

s _overflow <="1'when s_expo3 ="011111111" and (s_infa or s_infb)='0' else '0';
s ine o <='l'"'whens op 0 2='0'and (s _lostors or a2 ors overflow)='1" else
VOI;

process(s_sign 2,s expo3,s frac3,s nan in,s nan op,s_infa, s infb,
s_overflow, s r zeros2)
begin
if (s_nan_in or s nan_op)='1' then
s output o <=s sign 2 & QNAN;
elsif (s_infa or s_infb)='1' or s_overflow='1" then
s output o <=s sign 2 & INF;
elsif s r zeros1=48 then
s output o <=s sign 2 & ZERO VECTOR;

else
s output o <=s sign 2 & s_expo3(7 downto 0) &
s_frac3(22 downto 0);
end if;
end process;

140

s sign rr<=s_sign 1 xor s_roundup;
s _cmpl in<=s roundup;

s _exp_rr<=conv_std logic vector(conv_integer(s expo3(7 downto 0) -
(FRAC_WIDTH+1)),8);

--residual register added----
s mant rr final<=("0' & not(s_mant rr ar))when((s_shr3='1")and(s_cmpl in='1"))else
("00" & not(s mant_rr_ar(22 downto
0)))when((s_shr3='0")and(s_cmpl in="1"))else
('0' & s mant rr_ar);
rreg:residualreg port
map(s_sign_rr,s_exp_rr,s cmpl in,s mant rr final,s sign rr out,s exp rr out,s cmpl o

ut,s mant _rr_out);

end rtl;

141

References

1.

10.

11.

12.

13.

H. G. Dietz, W. R. Dieter, R. Fisher, and K. Chang, “ Floating-point computation
with just enough accuracy,” Lecture Notes in Computer Science, vol. 3991,
pp-226 — 233, April 2006.

W. R. Dieter, H. G. Dietz, Low-Cost Microarchitectural Support for Improved
Floating-point Accuracy, UK ECE Technical Report #£ECE—-2006-10-14, October
2006.

T. J. Dekker, A Floating-point Technique for extending the available precision,
Numerische Mathematik, vol. 18, no. 3, June 1971.

D. H. Bailey, High-precision Software Directory.
http://crd.1bl.gov/~dhbailey/mpdist/

“Basic requirements for a future floating-point arithmetic standard”., GAMM
Fachausschuss on Computer Arithmetic —and Scientific Computing.
http://www.math.uni-wuppertal.de/~xsc/gamm-fa/BasicRequ.pdf

Samuel Williams, John Shalf, Leonid Oliker, Shoaib Kamil, Parry Husbands,
Katherine Yelick, “The Potential of the Cell processor for scientific computing,”
Proceedings of the 3" conference on Computing frontiers, pp.9-20,2006

Guillaume Da Gracca, David Defour, “Implementation of float-float operators on
graphics hardware,” http://hal.archives-ouvertes.fr/ccsd-00021443/

D. Goldberg. “What every computer scientist should know about floating-point
arithmetic”. ACM Computing Surveys, vol. 23, no. 1, Mar 1991.

D. H. Bailey, H. Simon, J. Barton, and M. Fouts. “Floating-point arithmetic in
future supercomputers”. Int. J. Supercomput. Appl. High Perform. Eng. vol. 3, no.
3, pp. 86-90, 1989.

D. H. Bailey, “High-precision floating-point arithmetic in scientific computation”.

http://crd.Ibl.gov/~dhbailey/dhbpapers/high-prec-arith.pdf

Bruce Greer, John Harrison, Greg Henry and Wei Li Peter Tang. Scientific
computing on the Itanium processor.

Julie Langou, Piotr Luszczek, Alfredo Buttari, Julien Langou, Jakub Kurzak and
Jack Dongarra, “Exploiting the performance of 32 bit floating point arithmetic in
obtaining 64 bit accuracy”. http://icl.cs.utk.edu/projectsfiles/iter-ref/files/iter-

ref.pdf

W. Kahan, “On the cost of floating-point computation without extra-precise
arithmetic,” http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf, Nov 2004.

142

http://ieeexplore.ieee.org/iel5/10208/4278823/04278827.pdf�
http://ieeexplore.ieee.org/iel5/10208/4278823/04278827.pdf�
http://www.springerlink.com/content/h9l8421wt4480530/�
http://www.springerlink.com/content/100497/?p=03b0824fa99e4af7959104c4125c7fc0&pi=0�
http://crd.lbl.gov/~dhbailey/mpdist/�
http://www.math.uni-wuppertal.de/~xsc/gamm-fa/BasicRequ.pdf�
http://hal.archives-ouvertes.fr/ccsd-00021443/�
http://crd.lbl.gov/~dhbailey/dhbpapers/high-prec-arith.pdf�
http://delivery.acm.org/10.1145/590000/582075/p41-greer.pdf?key1=582075&key2=0836636021&coll=GUIDE&dl=GUIDE&CFID=60731677&CFTOKEN=45980960�
http://delivery.acm.org/10.1145/590000/582075/p41-greer.pdf?key1=582075&key2=0836636021&coll=GUIDE&dl=GUIDE&CFID=60731677&CFTOKEN=45980960�
http://icl.cs.utk.edu/projectsfiles/iter-ref/files/iter-ref.pdf�
http://icl.cs.utk.edu/projectsfiles/iter-ref/files/iter-ref.pdf�
http://www.cs.berkeley.edu/~wkahan/Qdrtcs.pdf�

14.

15.

16.

17.

18.

19.

20.

21.
22.

23.

24.

25.

26.

27.

28.
29.

Tech report, W. R. Dieter and H. G. Dietz, “Horseshoes & Hand Grenades”.
http://ageregate.org/ WHITE/scO6accprec.pdf, November 2006.

Poster Presentation, Andrew Thall, “Extended-precision floating-point numbers
for GPU computation,” ACM SIGGRAPH, 2006.
http://delivery.acm.org/10.1145/1180000/1179682/p52-
thall.pdf?key1=1179682&key2=1986636021&coll=GUIDE&dI=GUIDE&CFID=
60732742&CFTOKEN=20419339

W. Kahan, “Why do we need a floating-point arithmetic standard?” February,
1981. http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf

Nicholas J. Higham, “Accuracy and stability of numerical algorithms”, Society
for Industrial and Applied Mathematics, 2002.

IEEE 754 Standard for floating-point arithmetic, ANSI/IEEE Std 754-1985 Vol ,
Issue , 12 Aug 1985.

Jidan Al-Eryani, Floating point unit.
http://www.opencores.org.uk/projects.cgi/web/fpul 00/, August 2006.
IBM 700/7000 series. Wikipedia Document.

http://en.wikipedia.org/wiki/IBM_705#Data_formats

Konrad Zuse, Z3 Computer, http://en.wikipedia.org/wiki/Z3

Konrad Zuse, 74 Computer, http://irb.cs.tu-
berlin.de/~zuse/Konrad_Zuse/en/Rechner Z4.html.

William R. Dieter, Akil Kaveti, Henry G. Dietz, Low-Cost Microarchitectural
Support for Improved Floating-Point Accuracy, IEEE Computer Architecture
Letters, Vol. 6, No. 1, 2007.

Floating-point formats, http://www.quadibloc.com/comp/cp0201.htm.

North Star Computers Inc., NorthStar Hardware Floating point board FPB-A
manual, 25015B, 1977.

Yozo Hida, Xiaoye S. Li and David H. Bailey, "Algorithms for Quad-Double
Precision Floating Point Arithmetic", ARITH-15, Oct. 2000.

D. H. Bailey. “A Fortran-90 based multiprecision system,” ACM Transactions on
Mathematical Software, vol. 21, no. 4, pp. 379-387, 1995.

K. Briggs. The doubledouble library, 1998. http://keithbriggs.info/software.html

Jonathan R. Shewchuk. “Adaptive precision floating-point arithmetic and fast

robust geometric predicates”. In Discrete and Computational Geometry, vol. 18,
pp. 305-363, 1997.

143

http://aggregate.org/WHITE/sc06accprec.pdf�
http://delivery.acm.org/10.1145/1180000/1179682/p52-thall.pdf?key1=1179682&key2=1986636021&coll=GUIDE&dl=GUIDE&CFID=60732742&CFTOKEN=20419339�
http://delivery.acm.org/10.1145/1180000/1179682/p52-thall.pdf?key1=1179682&key2=1986636021&coll=GUIDE&dl=GUIDE&CFID=60732742&CFTOKEN=20419339�
http://delivery.acm.org/10.1145/1180000/1179682/p52-thall.pdf?key1=1179682&key2=1986636021&coll=GUIDE&dl=GUIDE&CFID=60732742&CFTOKEN=20419339�
http://www.cs.berkeley.edu/~wkahan/ieee754status/why-ieee.pdf�
http://www.opencores.org.uk/projects.cgi/web/fpu100/�
http://en.wikipedia.org/wiki/IBM_705%23Data_formats�
http://en.wikipedia.org/wiki/Z3�
http://irb.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/Rechner_Z4.html�
http://irb.cs.tu-berlin.de/~zuse/Konrad_Zuse/en/Rechner_Z4.html�
http://www.engr.uky.edu/~dieter/pub/cal07-finalrevised.pdf�
http://www.engr.uky.edu/~dieter/pub/cal07-finalrevised.pdf�
http://www.quadibloc.com/comp/cp0201.htm�
http://keithbriggs.info/software.html�

Vita

e Date of Birth: 6™ Feb, 1984.
e Place of Birth: Hyderabad, Andhra Pradesh, India.

e Bachelor of Engineering, M.V.S.R Engineering College (Affiliated to Osmania
University), Nadergul, R.R. District, A.P, India.

e Publications:

o William R. Dieter, Akil Kaveti, Henry G. Dietz, Low—Cost Microarchitectural
Support for Improved Floating-Point Accuracy, IEEE Computer Architecture Letters,
Vol. 6, No. 1,2007.

o Akil Kaveti, N.Lakshmi, G.K. Sandeep, Implementation of Rijndael-AES Crypto-
processor in FPGA, IETE Journal, 2005.

e Name: Akil Kaveti.

144

	ABSTRACT OF THESIS
	Rules for the use of theses
	Title
	ACKNOWLEDGEMENTS
	Table of Contents
	List of Figures
	List of Tables
	List of Files
	Chapter 1. Introduction
	1.1. Computer Representation of Real Numbers
	1.2. Hardware Assistance of Native-Pair
	1.3. Thesis Organization

	Chapter 2. Background
	2.1. IEEE 754 Floating-point standard
	2.2. IEEE 754 Floating-point Arithmetic
	2.3. History of Double-Double Arithmetic
	2.4. The Residual Register
	2.5. Native-pair Addition and Subtraction
	2.6. Native-pair Multiplication

	Chapter 3. Native-pair Floating-point Unit
	3.1. Native Floating-Point Addition/Subtraction
	3.1.1. Prenormalization
	 3.1.2. Addition/Subtraction Stage
	3.1.3. Postnormalization

	3.2. Native Floating-Point Multiplication
	3.2.1. Prenormalization
	3.2.2. Multiplication Stage
	3.2.3. Postnormalization

	3.3. Native-pair Floating-point Addition/subtraction
	3.3.1. Prenormalization
	3.3.2. Addition/subtraction Stage
	3.3.3. Postnormalization

	3.4. Native-pair Floating-point Multiplication
	3.5. Debugging FPU Unit
	3.6. Examples
	3.6.1. IEEE 754 Floating-point addition examples
	3.6.2. Addition with Residual Register examples:
	3.6.3. IEEE 754 Floating-point Multiplication Examples:
	3.6.3. Multiplication with Residual Register Examples

	Chapter 4. Testing and Results
	Chapter 5. Estimation of Hardware Cost and Performance
	5.1. Adder Implementation
	5.2. Multiplier Implementation

	Conclusion
	Appendix A
	Post-route simulations

	Appendix B
	High-level Schematics
	VHDL Source Code

	References
	Vita

