
A Gate-Level Approach To
Compiling For Quantum Computers

IGSCC, 9AM Oct. 22, 2018

Hank Dietz
Professor and Hardymon Chair,

Electrical & Computer Engineering



Abstract

Programming language constructs generally operate on data words, and so 
does most compiler analysis and transformation. However, individual word-
level operations often harbor pointless, yet resource and power hungry, lower-
level operations. By transforming complete programs into gate-level 
operations on individual bits, and optimizing operations at that level, it is 
possible to dramatically reduce the total amount of work needed to execute 
the program’s algorithm. This gate-level representation can be in terms of any 
complete set of logic gate types; earlier work targeted conventional
multiplexor gates, but the work reported here centers on targeting CSWAP 
(Fredkin) gates without fanout – a form that can be implemented on a 
quantum computer. This paper will overview the approach, describe the 
current state of the prototype compiler, and suggest some ways in which 
compiler automatic parallelization technology might be extended to allow
ordinary programs to take advantage of the unique properties of quantum 
computers.



Green And Sustainable?

∙ Try to manage power more efficiently
– Whole-system power modeling
– Scheduling, Throttling, ...

∙ Use inherently more efficient circuitry
– Adiabatic, Quantum, ...

∙ Reduce the number of gate-level operations
needed to implement each computation



Optimizing / Parallelizing 
Compilers

∙ Programming languages like C and Fortran
∙ Lots of analysis and transformations!
∙ Speedup-oriented automatic parallelization

– Recognize parallelizable loops, etc.
– Rewrite for as parfor, etc.

∙ Many optimizations, mostly at the word level:
Common subexpression elimination, folding,
register allocation, code scheduling, ...minate 

stuff I don’t need to do



Compiler Should Eliminate 
Unnecessary Work

∙ What don’t we need to do?
– Algorithms with too high O() complexity
– Common subexpressions; recomputation
– Excessive data motion
…

These things also happen at the gate level, so 
compilers should optimize at the gate level



Many Early Machines Were Bit 
Serial, But Machines Got Wider

∙ 1958 EDSAC 2 used microcoded bit-slicing;
Various PDP-11 were 4-bit; then 8, 16, 32, 64

∙ Massively-parallel microcoded bit-slicing in
DAP, STARAN, MPP, CM, CM2, GAPP;
MP-1 was 4-bit; then 32 and 64

∙ Widening done to speed sequential code…
assuming not enough parallelism is available



From Bits To Words,
And Back Again

∙ Why go back to what is essentially bit-slicing?
– Sequential code is handled elsewhere
– Lots of parallelism available

∙ Fewer gates active per computation, e.g.:
– 32 ripple carry 32-bit Adds in 32 clocks
– To get one 32-bit Add in 1 clock, need

additional hardware for carry lookahead…

i.e., Lower power per computation!



True Bit-Level Optimization

∙ Bit-slice systems were generally microcoded
to implement a simple word-level ISA

∙ Word-level operations can imply useless work
– E.g., using an Add to add 4 to a register:



True Bit-Level Optimization



True Bit-Level Optimization



Language Support For
Bit-Level Specification

∙ How big is an int?
– C has types like int_fast8_t
– Only supports 8, 16, 32, or 64 bits
– PCC: 2,882 int, 174 unsigned, but

just 44 specifying 8, 16, 32, or 64 bits!
∙ Allow syntax like int:10
∙ Can also use for floats, although we prefer

specifying accuracy rather than precision



Language Support For
Explicit Quantum Algorithms

∙ Allowing quantum values has very little impact
on gate-level logic design optimization

∙ Could allow a q attribute for quantum bits
– q int:5 a; would be a 5-qubit integer
– int:5 *q p; would be a qubit pointer to

a randomly selected 5-bit signed integer
∙ Could allow ? to be Hadamard bits

– a=?; sets a to all possible 5-bit values



Basic Compilation To Bit-Level

∙ Bit-serial machines used world-level ISAs
∙ SWARC (SIMD within a register C):

– The model behind MMX, SSE, AVX...
– int:5[6] packed in 32-bit int; a=b+c is

a=((b&0x1ef7bdef)+(c&0x1ef7bdef))
^(0x21084210&(b^c))

∙ BitC language & compiler for nanocontrollers:
– Word ops ⇒1-bit multiplexor ops, SITEs
– Transformation to normal form (Karplus)

and heavy gate-level optimization



Basic Compilation In Prototype 
“Hardly Software” Compiler

∙ Similar to BitC, but able to convert a complete
program into a single combinatorial circuit
– Implements any state in the state machine
– Word level ⇒ vector of bit-level DAGs
– AND/OR/NOT/XOR DAG optimized by

scalable gate-level compiler methods
(not Quine-McClusky nor Espresso)

– Back-end generating CSWAPs
∙ A “research toy” testing ideas for a better

compiler to follow…



Issues In The Prototype
“Hardly Software” Compiler

∙ No range nor precision analysis
∙ No code generation for array references –

perhaps a conventional memory interface?
∙ Seamless handling of function calls, including

recursion, not yet implemented (needs arrays)
∙ No support for cracking basic blocks –

a single very complex basic block can
increase the size of the combinatorial
logic for all states



Basic Compilation Example

∙ Consider a trivial (8-bit default int) program:

int a, b, c;

main()
{
b = 42; a = 100;
while (a > b) a = a  1;
c = a  b;

}





CSWAP (Fredkin) Logic

∙ “Billiard-ball model” adiabatic gate
∙ All signals must be unit-fanout
∙ Efficient quantum implementation (2016)



CSWAP Output From Prototype 
“Hardly Software” Compiler

∙ Unit-fanout CSWAP generation:
1. AND/OR/NOT/XOR ⇒ mutiplexors (MUX)
2. MUX ⇒ CSWAP, inserting duplication

gates wherever there is fanout
3. Search to use alternate CSWAP outputs
4. Order CSWAPs to sequence use of control

pass-thru outputs, remove duplicate gates
∙ Considering Genetic Algorithm restructuring

to minimize CSWAP complexity...



After This Paper Was 
Submitted…

∙ Reimplementation using code from BitC
∙ New SITE ⇒ CSWAP algorithm

– Incrementally creates duplicates as needed
– Tracks “lanes” and routes new values to

same lane the target variable began in
∙ Output as Verilog code, text “lane” diagram,

gate list, and circuit diagram



int:4 a; a=a*a;



Use Of Entangled Qubit
Quantum Computation?

∙ Could express quantum algorithms using ?
Hadamard values… by writing new code

∙ Compiling ordinary C code results in CSWAP
logic that never uses entangled qubits?
– Could substitute quantum operations for

basic math functions, e.g., sqrt()
– Could recognize parallelizable loops

that produce a single result and
“parallelize” them using Hadamard inputs



Conclusions

∙ Reduce power by using fewer gate-level ops
∙ Complete state machines can be implemented

with minimal (if any) reconfiguration
∙ Gate-level compiler optimization of whole C

programs to unit-fanout CSWAPs is feasible
∙ More to do to make use of entangled qubits,

improve optimization


