
A Gate-Level Approach To
Compiling For Quantum Computers

Purdue ECE, 12:30 Feb. 15, 2019

Hank Dietz
Professor and Hardymon Chair,

Electrical & Computer Engineering

A Gate-Level Approach To
Compiling For Quantum Computers

A lot of interesting and exotic physics go into making a quantum computer – but this
talk isn't about that. Our goal is simply to leverage understanding of conventional
computing to take advantage of the benefits offered by quantum computation.

Programming language constructs generally operate on data words, and so does most
compiler analysis and transformation. By instead transforming complete programs into
gate-level operations on individual bits, and optimizing operations at that level, it is
possible to dramatically reduce the total amount of computational resources needed to
execute a program’s algorithm. Such a gate-level representation also can be
transformed to use other types of logic gates, including ones that efficiently can be
implemented by quantum computers. We have created a simple prototype of such a
system, which compiles C code into adiabatic CSWAP (Fredkin) gates without fanout.
This talk will briefly present a computer engineer's view of quantum computing,
overview our approach, describe the current state of the prototype compiler, and
suggest some ways in which compiler automatic parallelization technology might be
extended to allow ordinary programs to take better advantage of the unique properties
of quantum computers.

A Gate-Level Approach To
Compiling For Quantum Computers

What Limits
Computer Performance?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools
– Actually, a lot is “embarrassingly parallel”

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, VLIW, MIMD, GPU, …

∙ Not enough power!

What Limits
Computer Performance?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools
– Actually, a lot is “embarrassingly parallel”

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, VLIW, MIMD, GPU, …

∙ Not enough power!

What Limits
Computer Performance?

∙ No parallel programs!
– Compiler finds stuff to execute in parallel
– Parallel languages & libraries & tools
– Actually, a lot is “embarrassingly parallel”

∙ How should it be done in parallel?
– “All the wires, all the time”
– Pipeline, SIMD, VLIW, MIMD, GPU, …

∙ Not enough power!

It’s Really All About Power

∙ I’m one of the folks who started the cluster
supercomputing revolution…

∙ A few years ago, I realized:
– My lab has 30 tons cooling, 1.5kA power
– My lab heats half the Marksbury building
– My lab could not power 1 high-end rack!
– Big systems have thousands of racks

It’s Really All About Power

∙ Try to manage power more efficiently
– Whole-system power modeling
– Scheduling, Throttling, …

∙ Reduce the number of gate-level operations
needed to implement each computation

∙ Use inherently more efficient circuitry
– Adiabatic ⇒ near zero power per gate
– Quantum ⇒ exponentially less circuitry

It’s Really All About Power

∙ Try to manage power more efficiently
– Whole-system power modeling
– Scheduling, Throttling, …

● Reduce the number of gate-level operations
needed to implement each computation

∙ Use inherently more efficient circuitry
– Adiabatic ⇒ near zero power per gate
– Quantum ⇒ exponentially less circuitry

Compiler Should Eliminate
Unnecessary Work

∙ What don’t we need to do?
– Algorithms with too high O() complexity
– Common subexpressions; recomputation
– Excessive data motion
…

These things don’t just happen at the word level,
but also at the gate level...
compilers should optimize at the gate level

 A Word About Words

∙ Most programming languages treat data
objects as indivisible, atomic, entities

∙ The programmer specifies type and size
Fortran: REAL*8 A
C: int i; long long j;

∙ Compiler anaylsis should look inside
– Eliminate processing meaningless bits by

using smaller words or packed fields
– Optimize algorithms at the bit level

Not All The Bits,
Not All The Time

∙ Integer precision / value range
∙ Floating point accuracy (not precision)
∙ Packing of smaller data

Integer Precision / Value Range

∙ How big is an int?
– C has types like int_fast8_t
– Only supports 8, 16, 32, or 64 bits
– PCC: 2,882 int, 174 unsigned, but

just 44 specifying 8, 16, 32, or 64 bits!
∙ Allow syntax like int:10
∙ Can use compiler range analysis to set types…

which was demonstrated as early as 1965!

Benefits Of Integer Ranging

∙ Can ignore the bits that aren’t active, e.g.,
only access low 16-bits of an int in [0..999]
– Disable some wires and circuitry
– Scatter/gather values (e.g., RISC-V AVS)

∙ Can use smaller storage space, thus reducing
power use by:
– Keeping more objects in registers/cache
– Moving fewer bits/object

FP Accuracy, Not Precision

∙ Normally specify precision of floating-point
(and could specify precisions in bits)

∙ Accuracy analysis is very difficult
∙ Accuracy analysis is very conservative;

analysis often finds no significant digits,
while computations typically have plenty

∙ Language constructs can help…

The Loosest Slots In Reno

∙ 32-bit usually ok; 64-bit sometimes isn’t!

Specifying FP Accuracy

#faildef exit();
#specdef fd(float, double)
#speculate fd
fd a=x; double b=sqrt(a);
if (!mytest(b, x)) {
#fail
} y=b;
#commit

Benefits For Floating-Point

∙ Huge performance gains for low precision
– AMD RADEON INSTINCT MI25 GPU:

64-bit: 0.768 TFLOPS
32-bit: 12.3 TFLOPS
16-bit: 24.6 TFLOPS

– Memory footprint & bandwidth
∙ Potential to use LNS or scaled integer

Packing Smaller Data

∙ SWAR (SIMD Within A Register)
– Originally, to obtain vector-like parallelism
– More efficient use of memory & datapaths

∙ Virtualized in RISC-V AVS
∙ Compiler can pack unstructured things:

Common Subexpression Induction (CSI)

Computer Architectures
Operate On Words, Not Bits

∙ 1958 EDSAC 2 used microcoded bit-slicing;
Various PDP-11 were 4-bit; then 8, 16, 32, 64

∙ Massively-parallel microcoded bit-slicing in
DAP, STARAN, MPP, CM, CM2, GAPP;
MP-1 was 4-bit; then 32 and 64

∙ This was done to speed sequential code…
assuming not enough parallelism is available

From Bits To Words,
And Back Again

∙ Why go back to what is essentially bit-slicing?
– Sequential code is handled elsewhere
– Lots of parallelism available

∙ Fewer gates active per computation, e.g.:
– 32 ripple carry 32-bit Adds in 32 clocks
– To get one 32-bit Add in 1 clock, need

additional hardware for carry lookahead…

i.e., Lower power per computation!

True Bit-Level Optimization

∙ How do we optimize gate-level designs?
– Karnaugh maps?
– Quine-McClusky algorithm?
– Espresso?
– Pattern matching with fixed modules?

∙ BitC language & compiler for nanocontrollers
– Karplus algorithm for BDD normal form
– Transformations to reduce execution cost

True Bit-Level Optimization

∙ Bit-slice systems were generally microcoded
to implement a simple word-level ISA

∙ Word-level operations can imply useless work
– E.g., using an Add to add 4 to a register:

True Bit-Level Optimization

True Bit-Level Optimization

Basic Compilation To Bit-Level

∙ Bit-serial machines used world-level ISAs
∙ SWARC (SIMD within a register C):

– The model behind MMX, SSE, AVX...
– int:5[6] packed in 32-bit int; a=b+c is

a=((b&0x1ef7bdef)+(c&0x1ef7bdef))
^(0x21084210&(b^c))

∙ BitC language & compiler for nanocontrollers:
– Word ops ⇒1-bit multiplexor ops, SITEs
– Transformation to normal form (Karplus)

and heavy gate-level optimization

Whole-Program Gate-Level
Optimization

∙ Similar to BitC, but able to convert a complete
program into a single combinatorial circuit
– Implements any state in the state machine
– Word level ⇒ vector of bit-level DAGs
– AND/OR/NOT/XOR DAG optimized by

scalable gate-level compiler methods
(not Quine-McClusky nor Espresso)

– Back-end generating CSWAPs
∙ A “research toy” testing ideas for a better

compiler to follow…

Issues In The Prototype
“Hardly Software” Compiler

∙ No range nor precision analysis
∙ No code generation for array references

(it’s an open problem for quantum mahines)
∙ Seamless handling of function calls, including

recursion, not yet implemented (needs arrays)
∙ No support for cracking basic blocks –

a single very complex basic block can
increase the size of the combinatorial
logic for all states

Basic Compilation Example

∙ Consider a trivial (8-bit default int) program:

int a, b, c;

main()
{
b = 42; a = 100;
while (a > b) a = a 1;
c = a b;

}

Cool… But Isn’t This Talk About
Quantum Computing?

∙ Yes, it is!
∙ Quantum computers are gate-level systems
∙ Rather than using strange, new, programming

methods, why not leverage the conventional?

What Is A Quantum Computer?

Parallel processing without parallel hardware.

∙ Qubits instead of bits
– Each qubit can be 0, 1, or superposed
– Entangled qubits maintain values together
– Measuring a qubit’s value picks 0 or 1

 ∙ Quantum computers are not state machines;
all they implement is combinatorial logic

 ∙ Gates implemented in sequence

One OF IBM’s Q
Quantum Computers

KREQC: Kentucky’s Rotationally
Emulated Quantum Computer

∙ 6 qubits encode up to 26 6-bit values

“Spooky action at a
distance via USB

and servos”

 Run it at
 http://aggregate.org/KREQC/

http://aggregate.org/KREQC/

CSWAP (Fredkin) Logic

∙ “Billiard-ball model” adiabatic gate
∙ All signals must be unit-fanout
∙ Efficient quantum implementation (2016)

CSWAP Full Adder

 {carry, parity} = p + q + carry

Figure from Bret Mulvey, Wikipedia page on Fredkin gates

CSWAP Output From Prototype
“Hardly Software” Compiler

∙ Unit-fanout CSWAP generation:
1. AND/OR/NOT/XOR ⇒ mutiplexors (MUX)
2. MUX ⇒ CSWAP, inserting duplication

gates wherever there is fanout
3. Search to use alternate CSWAP outputs
4. Order CSWAPs to sequence use of control

pass-thru outputs, remove duplicate gates
∙ Considering Genetic Algorithm restructuring

to minimize CSWAP complexity...

Second Prototype Compiler

∙ Reimplementation using code from BitC
∙ New SITE ⇒ CSWAP algorithm

– Incrementally creates duplicates as needed
– Tracks “lanes” and routes new values to

same lane the target variable began in
∙ Output as Verilog code, text “lane” diagram,

gate list, and circuit diagram

int:4 a; a=a*a;

Language Support For
Explicit Quantum Algorithms

∙ Allowing quantum values has very little impact
on gate-level logic design optimization

∙ Could allow a q attribute for quantum bits
– q int:5 a; would be a 5-qubit integer
– int:5 *q p; would be a qubit pointer to

a randomly selected 5-bit signed integer
∙ Could allow ? to be superpositioned bits

– a=?; sets a to all possible 5-bit values

Use Of Superposed-Qubit
Quantum Computation?

∙ Could express quantum algorithms using ?
superposed values… by writing new code

∙ Compiling ordinary C code results in CSWAP
logic that never uses entangled qubits?
– Could substitute quantum operations for

basic math functions, e.g., sqrt()
– Could recognize parallelizable loops

that produce a single result and
“parallelize” them using superposed inputs

Conclusions

∙ Reduce power by using fewer gate-level ops
∙ Can implement using a quantum computer:

– State machines can be implemented
with minimal (if any) reconfiguration

– Gate-level compiler optimization of whole C
programs to CSWAPs is feasible

∙ Future work: use superposed qubits, improve
optimization, & build quantum computers ;-)

