
Parallel Bit Pattern Computing

Computing with Unconventional
Technologies, IGSCC, Oct. 21, 2019

Henry (Hank) Dietz
Professor and Hardymon Chair,

Electrical & Computer Engineering

I Want It All.

∙ Reduce power / computation... while
getting speedup… while leveraging standard
engineering practices… which requires CUT

∙ UTs we propose to use include:
– Implement using low-power gates
– Operate only on active bits
– Apply compiler optimization at gate level
– Amortize control logic overhead
– N-way parallel without O(N) hardware

Implement Using
Low-Power Gates

∙ Traditional digital logic wastes power
– Inputs are absorbed
– Outputs are generated from Vcc/Gnd

∙ Adiabatic (thermodynamically reversible)
logic could avoid that waste
– Can recover energy
– Can use “billiard ball conservancy”

E.g., CSWAP (Fredkin) Gate

∙ Functionally complete adiabatic gate

∙ All signals must be unit-fanout

∙ Efficient circuit & quantum implementations

Operate Only On Active Bits

∙ How big is an int?
– Typically, 32 bits
– E.g., a value ∈ [0..100] only needs 7 bits
– Why store, copy, & process inactive bits?

∙ SWARC (SIMD Within A Register C) operates
on packed fields, saving space & operations

∙ BitC targets bit-serial nanocontrollers

∙ Specify floating-point accuracy, not precision

Apply Compiler Optimization
At The Gate Level

∙ Compiler optimization applied at word level:

a=4; b=a-3; c=c+b; d=a*c; e=c*a*b;

Becomes:

a=4; b=1; ++c; d=c<<2; e=d;

∙ At gate level, improvement can be huge

unsigned int:4 a, b;
c = a + b;

∙ Unoptimized, 35 single-gate operations:

c0=(a0ˆb0); c1=((a0&b0)ˆ(a1ˆb1));
c2=(((a1&b1)|((a0&b0)&(a1ˆb1)))ˆ
 (a2ˆb2));
c3=(((a2&b2)|(((a1&b1)|((a0&b0)&
 (a1ˆb1)))&(a2ˆb2)))ˆ(a3ˆb3));
c4=((a3&b3)|(((a2&b2)|(((a1&b1)|
 ((a0&b0)&(a1ˆb1)))&(a2ˆb2)))&
 (a3ˆb3)));

unsigned int:4 a, b;
c = a + b;

∙ Optimized, 17 single-gate operations:

c0=(a0ˆb0); t0=(a0&b0); t1=(a1ˆb1);
c1=(t0ˆt1); t2=(a1&b1); t3=(t0&t1);
t4=(t2|t3); t5=(a2ˆb2); c2=(t4ˆt5);
t6=(a2&b2); t7=(t4&t5); t8=(t6|t7);
t9=(a3ˆb3); c3=(t8ˆt9);
c4=((a3&b3)|(t8&t9));

∙ By common subexpression elimination (CSE)

unsigned int:4 a, b;
c = a + b;

∙ Optimized, 17 single-gate operations:

c0=(a0ˆb0); t0=(a0&b0); t1=(a1ˆb1);
c1=(t0ˆt1); t2=(a1&b1); t3=(t0&t1);
t4=(t2|t3); t5=(a2ˆb2); c2=(t4ˆt5);
t6=(a2&b2); t7=(t4&t5); t8=(t6|t7);
t9=(a3ˆb3); c3=(t8ˆt9);
c4=((a3&b3)|(t8&t9));

∙ By common subexpression elimination (CSE)

unsigned int:4 a, b;
b = 1; c = a + b;

∙ Optimized, 7 single-gate operations:

c0= ̃a0; c1=(a0ˆa1); t0=(a0&a1);
c2=(a2ˆt0); t1=(a2&t0); c3=(a3ˆt1);
c4=(a3&t1);

∙ By value forwarding, constant folding,
algebraic simplification, and CSE…
standard compiler optimizations!

unsigned int:4 a, b;
b = 1; c = a + b;

∙ Optimized, 7 single-gate operations:

c0= ̃a0; c1=(a0ˆa1); t0=(a0&a1);
c2=(a2ˆt0); t1=(a2&t0); c3=(a3ˆt1);
c4=(a3&t1);

∙ By value forwarding, constant folding,
algebraic simplification, and CSE…
standard compiler optimizations!

unsigned int:4 a, b;
b = a; c = a + b;

∙ Optimized, ZERO single-gate operations:

c0=0; c1=a0; c2=a1; c3=a2; c4=a3;

∙ Compiler simplified addition into a shift
∙ Shift left by one is literally changing where

each bit of c is found, doesn’t even copy bits

unsigned int:4 a, b;
b = a; c = a + b;

∙ Optimized, ZERO single-gate operations:

c0=0; c1=a0; c2=a1; c3=a2; c4=a3;

∙ Compiler simplified addition into a shift
∙ Shift left by one is literally changing where

each bit of c is found, doesn’t even copy bits

Amortize
Control Logic Overhead

∙ Much of a conventional machine’s power
is spent implementing control logic
– Dominates in conventional processors
– Here, e.g., 1-bit ALU vs. increment the PC

∙ Virtualized SIMD can hide overhead
– M-bit wide machine given M ⨉N work
– Cycling thru N can hide O(N) overhead
– Same trick used in CM1/2/200, GPUs, ...

N -way Parallel Execution
Without N Units Of Hardware

∙ Parallel processing has been the primary way
to obtain speedup, but N-way parallelism
conventionally implies O(N) hardware…
and O(N) power consumption

∙ The best known way to avoid this is Quantum
computing… which is NOT what we’re doing,
but understanding it clarifies our method

Quantum Computers at SC18
(Left: D-Wave, Center, right: IBM Q)

Bloch Sphere Qubit Model

∙ Value of a Qubit is a wave function

∙ Probability by coordinates on sphere surface

What Does That Mean?

Parallel processing without parallel hardware.

∙ Qubits instead of bits
– Each qubit can be 0, 1, or superposed
– A “gate” operates on superposed values
– Entangled qubits maintain values together
– Measuring a qubit’s value picks 0 or 1

 ∙ Quantum computers are not state machines;
all they implement is combinatorial logic

 ∙ Gates are implemented in sequence

KREQC: Kentucky’s Rotationally
Emulated Quantum Computer

∙ 6 qubits simultaneously encode 26 6-bit values

“Spooky action at a
distance via USB

and servos”

 Run it at
 http://aggregate.org/KREQC/

How Does KREQC Work?

On pattern bits, pbits, not exactly qubits…

∙ Superposition:
Each pbit is an ordered set of bit values

∙ Each gate is applied to all bits in the set

∙ N-way entanglement:
The set of 2N bit values is ordered such that
each position is entangled across pbits

Addition Of Two 2-pbit Values

∙ Superposed state of a pbit is a set of bits

∙ N-way entangled pbit is ordered 2N bits

Parallel Bit Pattern Computing

∙ Provides pint interface as well as pbit

∙ Ordered bit set is compressed by coding a
generative Regular Expression (RE):
{0,0,1,1,0,0,1,1} → (02 12)2

∙ Finding minimal RE is hard, but can just use
Run Length Encoding (RLE) subset of REs:
{1,0,0,0,0,1,1,1} → 11 04 13

∙ Operates on REs without expanding them

Parallel Bit Pattern Computing

∙ Can use symbols larger than 1 bit; prototype
uses 4096-bit symbols (12-way entanglement)
in patterns with up to 32-way entanglement

∙ Duplicate symbols are recognized
(FBP – Factored Bit Parallel chunks)
– Only keep one copy (with reference count)
– Applicative caching of chunk operations

∙ Just-in-time optimizing compiler translates
pint ops into optimized pbit ops

http://aggregate.org/KREQC/

4 Fully-Entangled pbits

4 Fully-Entangled pbits

Complexity Of FBP Operations

∙ R is # of symbols in the regular expression
∙ N is # of bits in the entangled value

An Example: Find sqrt(29929)

∙ Initialize pbit (thus, also pint) system
 pbit_init();

∙ Create a 16-pbit value of 29929
 pint a = pint_mk(16, 29929);

∙ Create 8-way entangled Hadamard value,
the superposition of 0, 1, 2, … 255

 pint b = pint_h(8, 0xff);

∙ Square all 256 possible values
 pint c = pint_mul(b, b);

An Example: Find sqrt(29929)

∙ Make an entangled value that’s 1 only where
the squared value is equal to 29929

 pint d = pint_eq(c, a);

∙ Multiply entangled values of original guesses
by the mask so only the solution is not 0

 pint e = pint_mul(d, b);

∙ Measure the result, printing all unique values
 pint_measure(e);

An Example: Find sqrt(29929)

∙ The complete C program, prints 0 173

int main(int argc, char **argv) {
 pbit_init();
 pint a = pint_mk(16, 29929);
 pint b = pint_h(8, 0xff);
 pint c = pint_mul(b, b);
 pint d = pint_eq(c, a);
 pint e = pint_mul(d, b);
 pint_measure(e);
}

An Example: Find sqrt(29929)

∙ 310 single-gate operations:

int main(int argc, char **argv) {
 pbit_init();
 pint a = pint_mk(16, 29929);
 pint b = pint_h(8, 0xff);
 pint c = pint_mul(b, b);
 pint d = pint_eq(c, a);
 pint e = pint_mul(d, b);
 pint_measure(e);
}

Conclusions

∙ Green & sustainable computing isn’t just
– Better power management
– More efficient gates …

∙ Use UTs to reduce power/computation

∙ Parallel Bit Pattern Computing might work
– C laptop prototype: 32-way, ≥1024 pbit
– Lots to fully implement & improve:

architecture, C++ wrappers, pfloat, etc.

An Example: Find sqrt(29929)

∙ Only 159 single-gate operations for BitC:

int main(int argc, char **argv) {
 pbit_init();
 pint a = pint_mk(16, 29929);
 pint b = pint_h(8, 0xff);
 pint c = pint_mul(b, b);
 pint d = pint_eq(c, a);
 pint e = pint_mul(d, b);
 pint_measure(e);
}

