
A Computer Engineering
Approach To Design For

3D-Printing Manufacturability

Professor Henry (Hank) Dietz

Session 3A, 2:15PM, July 31, 2019

University of Kentucky
Electrical & Computer Engineering

What Is 3D Printing?

Subtractive Building:

“Every block of stone has a statue inside it and it
is the task of the sculptor to discover it.”

– Michelangelo

Additive Building:

“The whole is greater than the sum of its parts.”
– Aristotle

What Is Design For
Manufacturability (DFM)?

Design product so that it is easy to manufacture.

∙ Lego doesn’t easily do curves...
∙ Some methods don’t easily do unsupported...

– Extrusion: Fused Deposition Modeling (FDM, aka FFF)
– Material Jetting (MJ), Drop On Demand (DOD)

∙ Some methods don’t easily do cavities…
– Stereolithography (SLA and DLP systems)
– Selective Laser Sintering/Melting (SLS/SLM, also EBM)
– Binder Jetting (BJ)

∙ Can decompose into parts made separately

What Is A Design?

∙ A 3D drawing of an object isn’t sufficient
– Material, tolerance, & other constraints
– Functional requirements (e.g., processors)
– Means to adjust the design for DFM

∙ We suggest a design should be a program:
– Parameterized (e.g., by tolerances)
– Structured, hierarchical, & composable

∙ Programs can be automatically transformed

How Is This Different?

∙ Normal process for 3D printing:
1. Create design by drafting in CAD system
2. Convert design into “portable” STL file

(polygonal surface patches)
3. Slice STL into G code X,Y,Z,E movements

∙ Proposed process:
1. Create parametric design as a program
2. Compile design + parameter values into

DFM-optimized machine-specific design
3. Convert design into G code (STL optional)

Designs As Programs

∙ Not really a new idea
– G code is a low-level program
– Most CAD systems internally specify a

design as a program composing solids

∙ Leverage what we know about programming
– Language design, programming practices
– Parameters & selection of DFM options
– Compiler optimization technology:

“correctness-preserving transformations”

An Example Using OpenSCAD

difference() {
 scale([0.5, 1, 2])
 sphere(d=100);
 translate([0, 0, 20])
 rotate([30, -115, 0])
 cylinder(d1=80, d2=20,
 h=100, center=true);
}

How About A Base Fitting This?

∙ Make this a module:

module statue() { … }

∙ Make a base module too
∙ Just difference ‘em:

difference {base(); statue();}

A printer-dependent tolerance
between them for best fit?

Parametric OpenSCAD

module tol(xt=defxt, yt=defyt, zt=defzt) {
 for(c=[0:1:$children-1]) minkowski() {
 children(c); scale([xt, yt, zt]) cylinder();
} }

difference() {base(80); tol() statue(80);}
difference() {base(); tol() statue();}
difference() {base(); tol(yt=2) statue();}

A Manufacturability Example

∙ The Unified Thread Standard (UTS) specs
a 30° angle for screw threads

∙ Most FDMs can’t print that without droop
∙ So, replace 30° angle with a printable one...

 45° is safe.

Could allow
 for droop...

A 3D-Printed
UTS-Compatible Thread

Lens adapter
M42 x 1mm pitch
to Sony E

on $225 printer,
0.25mm layers!

Another Manufacturability
Example: Spanless Hinges

∙ There are many types of hinge, but most
require some type of trapped pin… which
generally implies an unsupported span

 ∙ This doesn’t… the 45°
angle is its own inverse
and is self-supporting
(and can print-assembled):

3D-Printed Spanless Hinges

Multiple Substitutions

∙ In 2016, researchers at the Hasso Plattner
Institute made “metamaterial pliers”: a single
part with stiffness, spring, & bending hinge

∙ Our metamaterial version
has a spring and
a spanless
hinge and
it works…

Status & Future Work

∙ A design should allow DFM transformations
∙ Optimizing compiler technology can transform

designs expressed as programs
∙ Creating the library of transformations is hard,

we welcome collaborators

Other Stuff We’re Doing

∙ Quantum computing Education & Research
In Kentucky – QERKY.ORG

∙ Optimizing / parallelizing compilers
∙ Nanocontrollers to cluster supercomputing

(we built the world’s 1st Linux cluster back in 1994)
∙ Computational photography

