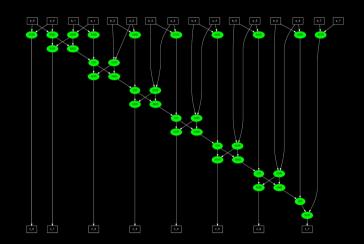
Basic Operations And Structure Of An FPGA Accelerator For Parallel Bit Pattern Computation

December 2, 2021

Henry Dietz, Paul Eberhart, & Ashley Rule Electrical & Computer Engineering

LCPC 2017: How Low Can You Go?

- Now it's all about power / computation
- Work only on active bits (bit-serial)
- Aggressive gate-level optimization
- Potential exponential benefit from Quantum?

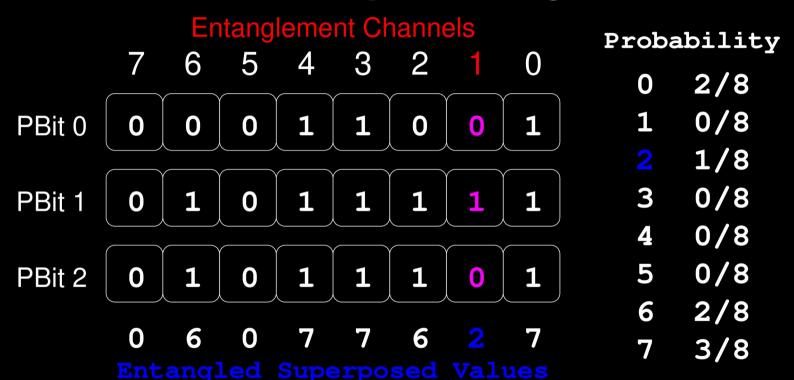


Savings at the Gate Level

int
$$a$$
, b , c ; $c = a + b$;

- 32-bit Carry Lookahead:
 ~645 gates
- 8-bits active Ripple Carry:
 34 gates

Parallel Bit Pattern Computing


- A pbit value is an array of 2^e bits (AoB)
 - Allows up to e-way entangled superposition
 - Value probabilities are in parts per 2^e
 - Each array index is an entanglement channel
- Operation on a pbit is SIMD-parallel:
 - 1 bit per each of 2^e bit-serial SIMD PEs

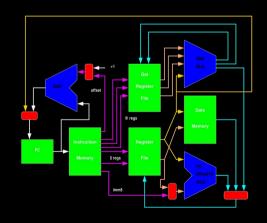
AoB for 3-way Entanglement

AoB Values Have Low Entropy

- Don't store AoB values!
 - Store generative regular expression (RE)
 - Operate directly on RE-compressed form
- Each RE symbol is an AoB chunk
 - Only store unique AoB chunks
 - Applicative caching ⇒ no chunk recompute

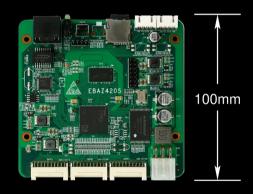
Where Is PBP Now?

- Avoids major quantum restrictions:
 Coherence, cloning, measurement, gate types
- PBP implementations:
 - ∘ ≥16-way in software



Where Is PBP Now?

- Avoids major quantum restrictions:
 Coherence, cloning, measurement, gate types
- PBP implementations:
 - ∘ ≥16-way in software
 - Tangled + Qat Verilog design



Where Is PBP Now?

- Avoids major quantum restrictions:
 Coherence, cloning, measurement, gate types
- PBP implementations:
 - ∘ ≥16-way in software
 - Tangled + Qat Verilog design
 - FPGA AoB chunk coprocessor

New AoB Chunk Primitive Operations

- Target EBAZ4205 Zynq Z7010, surplus ≤\$20
- PL implements a PBP Chunk coprocessor
 - ° 10-way entangled within a chunk, ≥16 in REs
 - ∘≥1024 registers for *unique* chunk values
 - Classical constants: @0 is 0*, @1 is 1*
 - @(h+2) is Hadamard h pattern (0^h1^h)*

Arithmetic/Logic Operations

Instruction		Description	LUTs	Delay
and	@a,@b	@c=AND(@a, @b)	1024	1
or	@a,@b	@c=OR(@a,@b)	1024	1
xor	@a,@b	@c=XOR(@a,@b)	1024	1

- Conventional gates simpler than reversible
- Note not @a is xor @a, @1; cnot is xor

Permutations

Instruction		Description	LUTs	Delay
rot	@a,b	@c=RotateLeft(@a,b)	5120	4
flip	@a,b	@c=Flip(@a,b)	5120	4

- No such things in previous PBP models...
- RotateLeft is like a Quantum phase shift
- Flip is a generalized sorting network

Entanglement-Channel Addressing

Instruction		Description	LUTs	Delay
tog	@a,b	@c=Toggle(@a,b)	576	2
dom	@a,b	@c=Domino(@a,b)	1079	3
meas	@a,b	@c=Measure(@a[b])	273	7

- Alter specific channels with tog or dom
- Read a channel with meas (can use random b)

Aggregate Operations

Instruction		Description	LUTs	Delay
first	@a	First b where @a[b] == 1	976	5
ones	Qа	count of Ones in @a	1444	5

- Result is an integer, not a register number
- Can summarize an entangled superposition
- Can be exponentially faster than Quantum

Future Work (nothing's concluded yet)

- PBP is very new, but progressing well...
 - Compiler infrastructure has been built
 - Software & full custom processor design
 - ° "Toy" Quantum apps ⇒ a new & better model
- The current work is a key step, creating practical hardware to show reduced power/computation

