

Quantum Superposition and Entanglement

EE599-001 & EE699-010, Spring 2026

Hank Dietz

<http://aggregate.org/hankd/>

Physics vs. Comp. Eng.

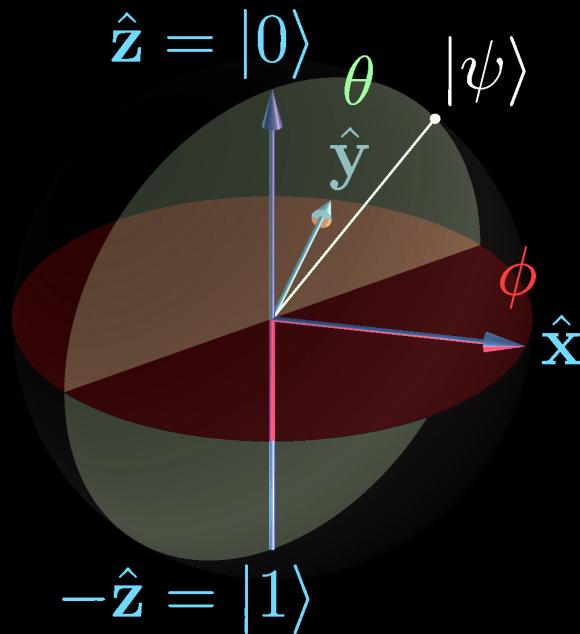
- Some terms don't mean the same thing...
 - **Qubit**: mathematical vector in Hilbert space, realized by quantum properties
 - **State**: mathematical description of current condition of a time-evolving system
 - **Gate**: unitary transform of a wave function to evolve state over time
 - **Quantum Circuit**: a sequence of gates
 - **Adiabatic**: implies cyclic relaxation, not just thermodynamic reversibility

Quantum Wave Function: Ψ

- $\Psi(x)$ or Ψ ... aka, Psi
 - Wave shape; solves Schrödinger equation
 - A wave function with a complex value, a **probability density function (PDF)**
 - $|\Psi|^2$ is probability of a measurement outcome, normalized so sum over all possible is 1
- If $|\Psi_1\rangle$ and $|\Psi_2\rangle$ are potential solutions, then $a|\Psi_1\rangle + b|\Psi_2\rangle$ is also a solution

Superposition

- Suppose both $|\text{live_cat}\rangle$ and $|\text{dead_cat}\rangle$ are valid solutions
- Then $\sqrt{\frac{1}{2}}(|\text{live_cat}\rangle + |\text{dead_cat}\rangle)$ is a **superposition** in which they are equiprobable
- Does this mean a cat can be simultaneously live and dead? *This is math...*
- An equiprobable superposition of 1 and 0 is:
 $\sqrt{\frac{1}{2}}(|1\rangle + |0\rangle)$


Interference

- Measurement gets you one value
- Wave functions can interfere
- Interference is largely about phase...
- We'll discuss this more later, but interference allows sampling the wave function in a way that acts more like summing than selecting

Decoherence

- Quantum wave functions are fragile
 - Any stray energy (noise) can interact
 - Phase information is particularly fragile (phase error \gg than wave function collapse)
- Main implications:
 - A superposed state does not last forever
 - Each operations adds noise & imprecision
 - Quantum computation inherently unreliable; error correction methods are needed

Bloch Sphere Qubit Model

$$\begin{aligned} |\psi\rangle &= \cos(\theta/2)|0\rangle + e^{i\phi} \sin(\theta/2)|1\rangle \\ &= \cos(\theta/2)|0\rangle + \\ &\quad (\cos\phi + i \sin\phi) \sin(\theta/2)|1\rangle \end{aligned}$$

where $0 \leq \theta \leq \pi$ and $0 \leq \phi < 2\pi$

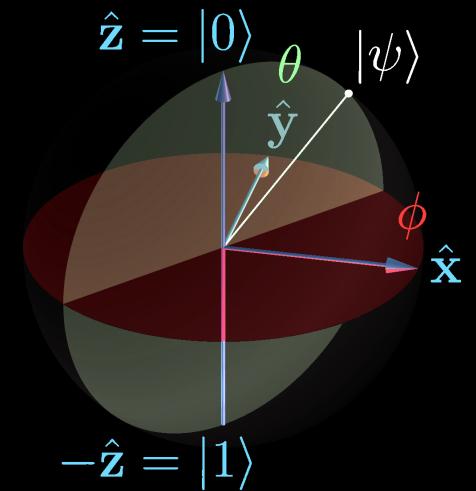
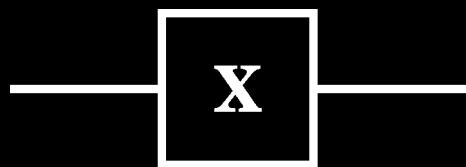
- Visualizes wave function of a single qubit
- Probability by coordinates on sphere surface

Entanglement

- An equiprobable superposition of 1 and 0 is:
 $\sqrt{\frac{1}{2}}(|1\rangle + |0\rangle)$
- Suppose I have two such superpositions in two separate qubits:
 $\sqrt{\frac{1}{2}}(|1\rangle + |0\rangle)$ and $\sqrt{\frac{1}{2}}(|1\rangle + |0\rangle)$
- **Entanglement** simply sums the products:
 $\frac{1}{2}(|11\rangle + |10\rangle + |01\rangle + |00\rangle)$

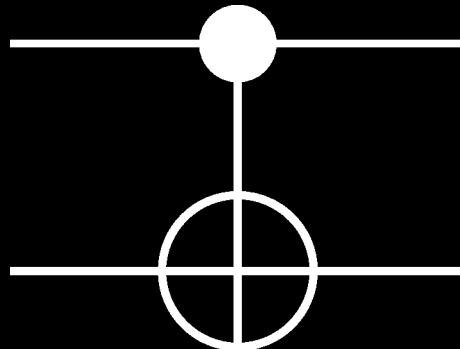
Measurement

- What is **measurement**?
 - Collapse superposition to a single state?
 - Entangle observer with a single state?
- Returns a single state (*value*) *selected at random* with probabilities given by $|\Psi|^2$
- Superposed value is not accessible after measurement



Quantum Processor

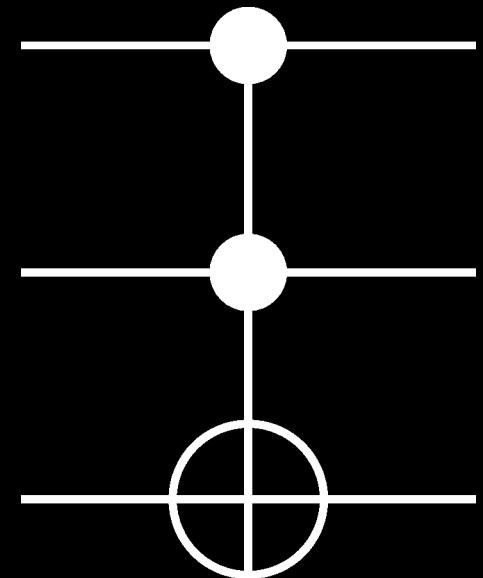
- Gates are not hardware structures
 - Gates operate on qubits “in place”
 - Gates are forces imposed on qubits
 - Conventional computer implements control
- Processor (ideally, one per qubit)
 - Only **thermodynamically reversible** gates
 - No fanout; ancilla

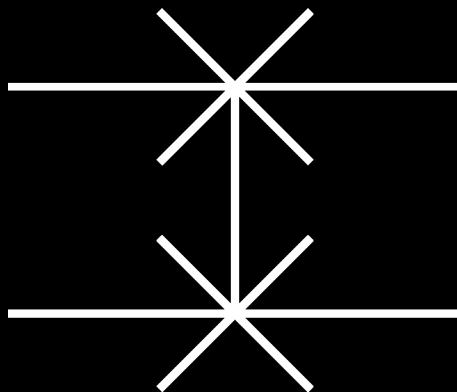
Quantum Gates: Conventional Logic


- Most quantum gates do things you could do with ordinary logic...
- Constraints:
 - Must be reversible
 - Cannot have duplicated inputs
 - Cannot have fanout
(sequential re-use is OK)

Quantum Gates: Pauli **x**

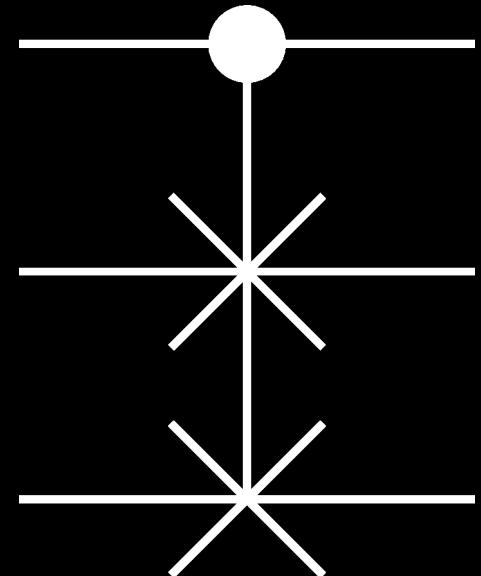
- Pauli **x** is also known as **NOT**
 - Rotates Bloch Sphere around X by π radians
 - Given $|\Psi\rangle = a|0\rangle + b|1\rangle$, returns $|\Psi\rangle = b|0\rangle + a|1\rangle$
 - Functions like conventional **NOT**
 - **x** is its own inverse


Quantum Gates: CNOT


- CNOT is the Controlled NOT gate
 - Top input is control, passes thru unchanged
 - Bottom input is inverted where control is 1
 - Both inputs can't be the same qubit
 - Similar to conventional XOR gate

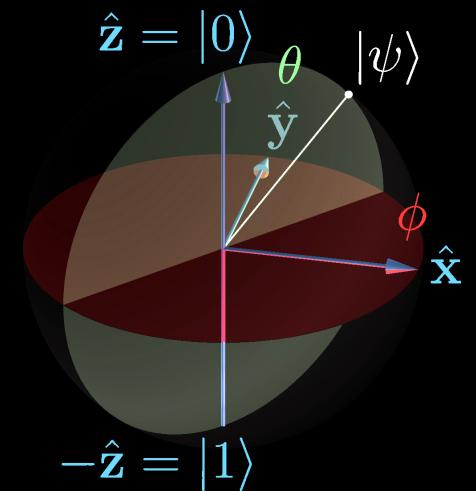
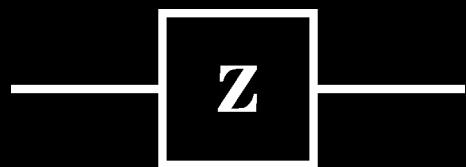
Quantum Gates: CCNOT

- CCNOT is the **Controlled Controlled NOT** gate, also known as **Toffoli** gate
 - A classical universal gate
 - Top two inputs pass unchanged
 - No two inputs can be the same qubit
 - Behaves like $C = (A \text{ AND } B) \text{ XOR } C$

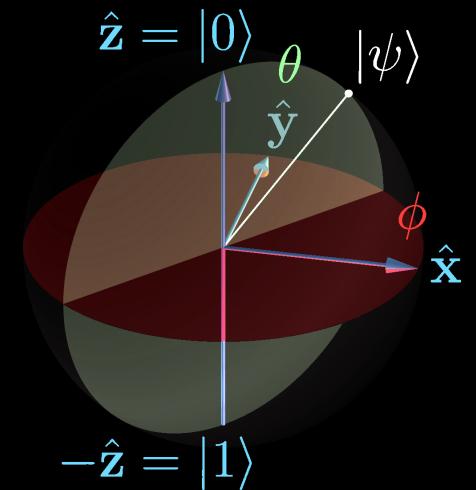
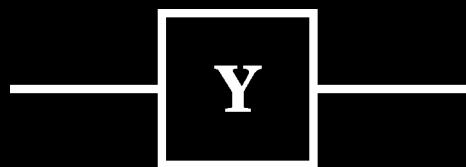

Quantum Gates: **SWAP**

- **SWAP** exchanges the values of two qubits
 - Seems pointless... but this is a **reversible assignment**
 - This is also how to *move* qubits to near other qubits so they can interact
 - Both inputs can't be the same qubit

Quantum Gates: CSWAP



- CSWAP is the **Controlled SWAP**, also known as **Fredkin** gate
 - A classical universal gate... and *billiard-ball* conservative
 - Top input passes unchanged
 - No two inputs can be the same qubit
 - Behaves like paired conventional **MUXes**

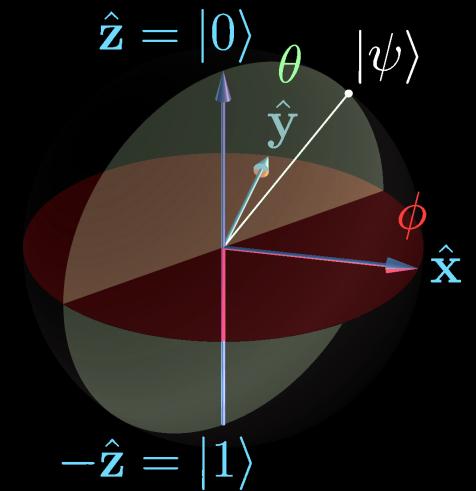
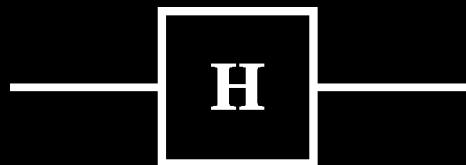
Quantum Gates: Phase Operations



- Some operations are specific to having two-dimensional (complex) representations, as in PDFs of superposed values
- Precision of phase operations?
 - 180° rotations
 - Arbitrary rotations of unspecified precision are supported in some quantum computers

Quantum Gates: Pauli **z**

- Pauli **z** flips phase sign
 - Rotates Bloch Sphere around Z by π radians
 - Given $|\Psi\rangle = \sqrt{\frac{1}{2}}(|0\rangle + |1\rangle)$, returns $|\Psi\rangle = \sqrt{\frac{1}{2}}(|0\rangle - |1\rangle)$
 - Doesn't alter measured value
 - z is its own inverse

Quantum Gates: Pauli y

- Pauli y like combined x and z
 - Rotates Bloch Sphere around Y by π radians
 - Given $|\Psi\rangle = a|0\rangle + b|1\rangle$, returns $|\Psi\rangle = ia|1\rangle - ib|0\rangle$
 - y is its own inverse

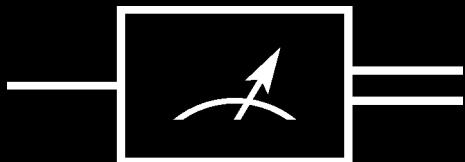
Quantum Gates: Entangled Operations

- Initialization of a qubit is limited:
 - Only conventional, non-superposed, 0 or 1; **no superposed initializers**
 - Often restricted to start of computation
- **All the conventional and phase operations also work on entangled superpositions**

Quantum Gates: Hadamard

- **Hadamard** transforms 0 or 1 into equiprobable superposition
- On Bloch Sphere, like rotate **y** by $\pi/2$ followed by rotate **x** by π
- **H** can be an n -ary operator, entangling n ways
- **H** is its own inverse

Quantum Gates: Hadamard


- Equiprobable superpositions created by the Hadamard operator are the primary parallel data structure
- Applying **H** to E qubits is essentially producing 2^E superposed E -bit values from $0..(2^E - 1)$
 - Like initializing `v` on SIMD PEs with `iprocs`
 - Operations on `v` have parallelism width 2^E

Parallel processing without parallel hardware!

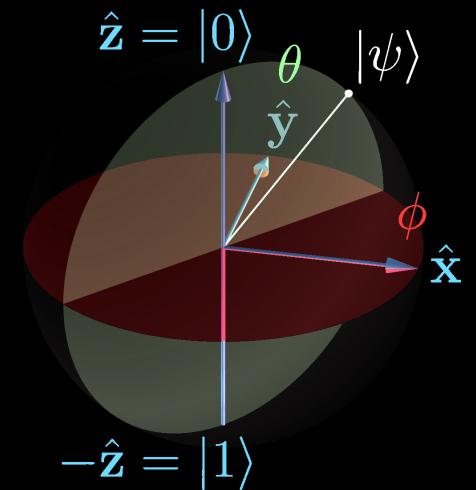
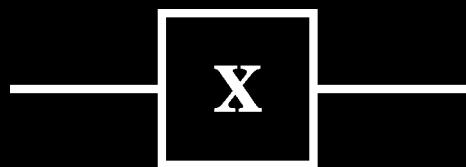
Universal Quantum Gates

- Various options...
 - Rotation in X, Y, Z + Phase + CNOT
 - Clifford set (CNOT, H, S) + T gate
 - Toffoli + H gate
 - Deutsch gate... *which nobody uses*
- Technically, the set of possible quantum gates is uncountable, so any finite sequence of gates only approximates...

Quantum Gates: Measurement

- **Measurement** collapses a superposition
 - Superposed PDF is *randomly* sampled
 - Superposed qubit becomes either 0 or 1 (two output lines signify conventional 0/1)
 - PDFs of all entangled qubits prune cases where this qubit was not as measured

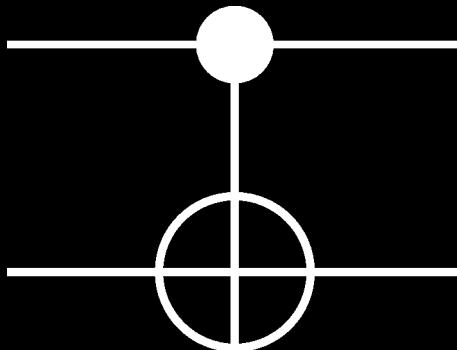
Matrix Representations



- A single bit value is $|0\rangle = \begin{bmatrix} 1 \\ 0 \end{bmatrix}$ or $|1\rangle = \begin{bmatrix} 0 \\ 1 \end{bmatrix}$
- A single qubit is: $|a\rangle = v_0|0\rangle + v_1|1\rangle \rightarrow \begin{bmatrix} v_0 \\ v_1 \end{bmatrix}$
- The value of a pair of qubits is:
 $|\psi\rangle = v_{00}|00\rangle + v_{01}|01\rangle + v_{10}|10\rangle + v_{11}|11\rangle \rightarrow \begin{bmatrix} v_{00} \\ v_{01} \\ v_{10} \\ v_{11} \end{bmatrix}$

Quantum Operators are Unitary Matrix Operations

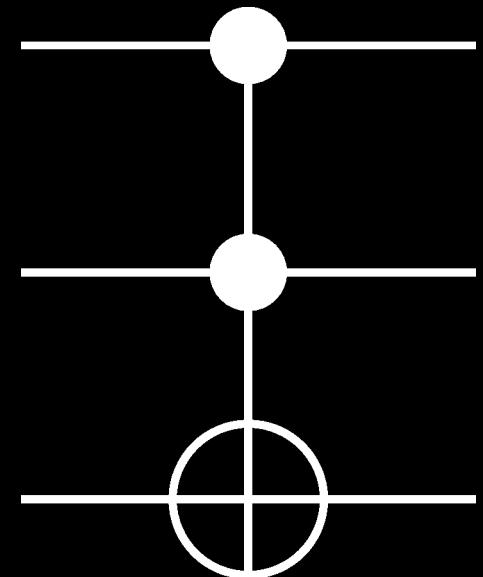
- A unitary matrix is a complex square matrix whose inverse is its conjugate transpose
- Each gate acting on n qubits is $2^n \times 2^n$
- Gate A followed by B is the same as gate B·A
- Tensor/Kronecker product for gates in parallel
- Any unitary can be converted to a set of gates each acting on either one or two qubits
- Measurement is not a unitary operation, and it is not reversible

Quantum Gates: Pauli **x**


$$\begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}$$

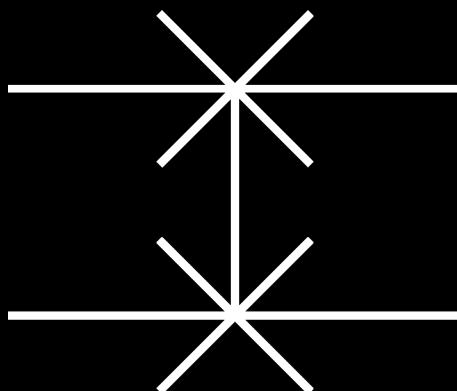
- Pauli **x** is also known as **NOT**
 - Rotates Bloch Sphere around X by π radians
 - Given $|\Psi\rangle = a|0\rangle + b|1\rangle$, returns $|\Psi\rangle = b|0\rangle + a|1\rangle$
 - Functions like conventional **NOT**
 - **x** is its own inverse

Quantum Gates: CNOT


$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

- CNOT is the Controlled NOT gate
 - Top input is control, passes thru unchanged
 - Bottom input is inverted where control is 1
 - Both inputs can't be the same qubit
 - Similar to conventional XOR gate

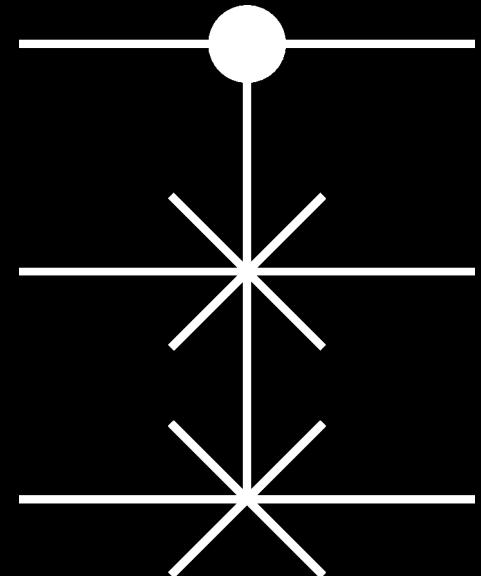
Quantum Gates: CCNOT


$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \end{bmatrix}$$

- **CCNOT** is the **Controlled Controlled NOT** gate, also known as **Toffoli** gate
 - A classical universal gate
 - Top two inputs pass unchanged
 - No two inputs can be the same qubit
 - Behaves like $C = (A \text{ AND } B) \text{ XOR } C$

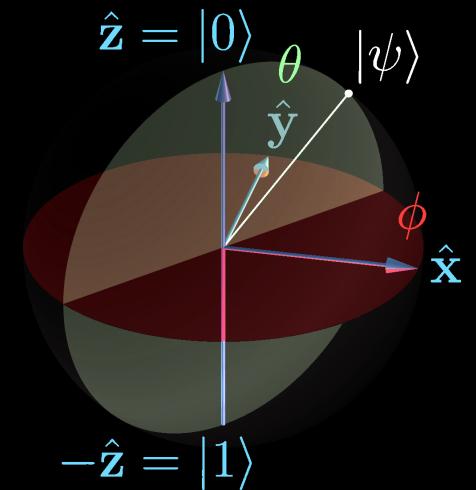
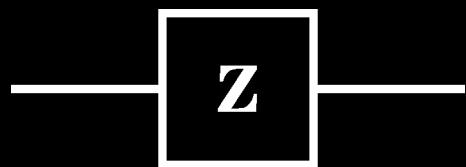
Quantum Gates: **SWAP**

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$



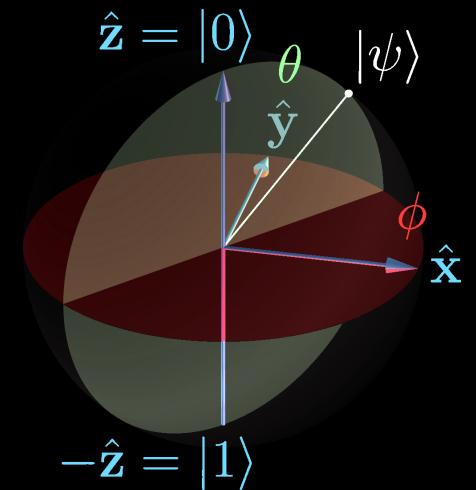
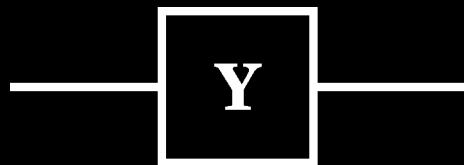
- **SWAP** exchanges the values of two qubits
 - Seems pointless... but this is a **reversible assignment**
 - This is also how to *move* qubits to near other qubits so they can interact
 - Both inputs can't be the same qubit

Quantum Gates: CSWAP



$$\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \end{bmatrix}$$

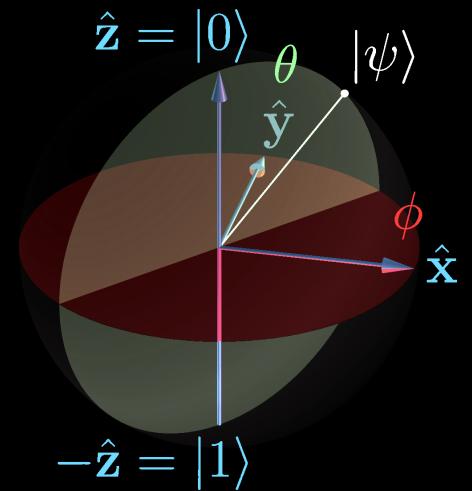
- CSWAP is the **Controlled SWAP**, also known as **Fredkin** gate
 - A classical universal gate... and *billiard-ball* conservative
 - Top input passes unchanged
 - No two inputs can be the same qubit
 - Behaves like paired conventional **MUXes**

Quantum Gates: Pauli z



$$\begin{bmatrix} 1 & 0 \\ 0 & -1 \end{bmatrix}$$

- Pauli z flips phase sign
 - Rotates Bloch Sphere around Z by π radians
 - Given $|\Psi\rangle = \sqrt{\frac{1}{2}}(|0\rangle + |1\rangle)$, returns $|\Psi\rangle = \sqrt{\frac{1}{2}}(|0\rangle - |1\rangle)$
 - Doesn't alter measured value
 - z is its own inverse

Quantum Gates: Pauli y


$$\begin{bmatrix} 0 & -i \\ i & 0 \end{bmatrix}$$

- Pauli y like combined x and z
 - Rotates Bloch Sphere around Y by π radians
 - Given $|\Psi\rangle = a|0\rangle + b|1\rangle$, returns $|\Psi\rangle = ia|1\rangle - ib|0\rangle$
 - y is its own inverse

Quantum Gates: Phase

$$\begin{bmatrix} 1 & 0 \\ 0 & i \end{bmatrix}$$

- Phase shift **S** by i
- There is also a **P** (Ψ) gate that shifts by $e^{i\varphi}$ instead of i
- **P** ($\pi/4$) is also known as **T**
- There are parametric rotations about X, Y, Z
- The accuracy of Ψ , etc. are unspecified...

Quantum Gates: Hadamard

$$\frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \quad \begin{array}{c} \text{---} \\ \text{H} \\ \text{---} \end{array}$$

- Two-qubit **Hadamard** is:

$$H_2 = H \otimes H = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} \otimes \frac{1}{\sqrt{2}} \begin{bmatrix} 1 & 1 \\ 1 & -1 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix}$$

- Applying to two 0 qubits:

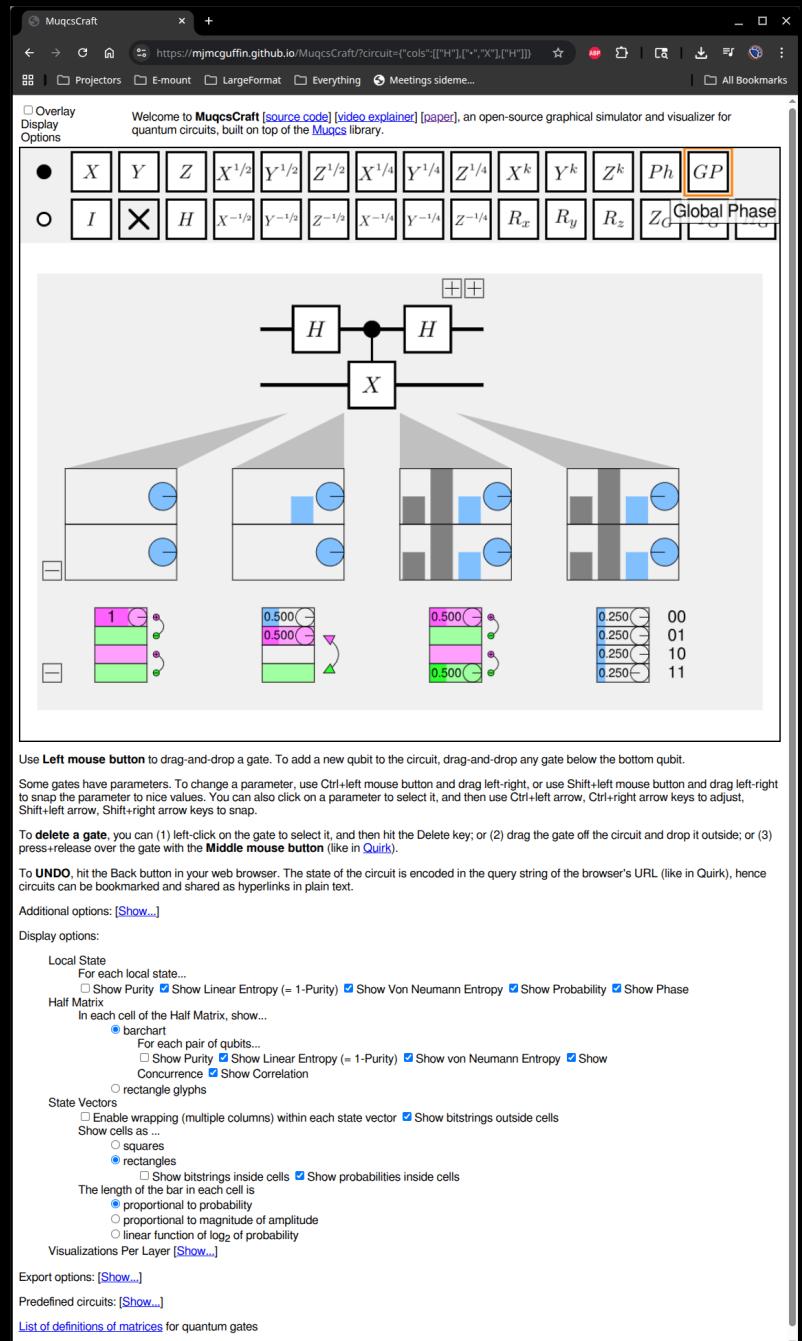
$$H_2|00\rangle = \frac{1}{2} \begin{bmatrix} 1 & 1 & 1 & 1 \\ 1 & -1 & 1 & -1 \\ 1 & 1 & -1 & -1 \\ 1 & -1 & -1 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \\ 0 \end{bmatrix} = \frac{1}{2} \begin{bmatrix} 1 \\ 1 \\ 1 \\ 1 \end{bmatrix} = \frac{1}{2}|00\rangle + \frac{1}{2}|01\rangle + \frac{1}{2}|10\rangle + \frac{1}{2}|11\rangle = \frac{|00\rangle + |01\rangle + |10\rangle + |11\rangle}{2}$$

Quantum Javascript

- **Q.js** drag-and-drop simulator

<https://quantumjavascript.app/playground.html>

The screenshot shows the Quantum JavaScript (Q.js) application interface. At the top, there's a navigation bar with links for 'Projectors', 'E-mount', 'LargeFormat', 'Everything', 'Meetings', and 'All Bookmarks'. The main header features a logo with a stylized 'Q' and the text 'QUANTUM JAVASCRIPT'. Below the header, there's a brief introduction and links to 'Quantum concepts', 'Circuit playground', 'Circuit tutorials', and 'Join our project'. A sidebar on the left lists API documentation for 'Q', 'Q.ComplexNumber', 'Q.Matrix', 'Q.Qubit', 'Q.Gate', and 'Q.Circuit'. The central area is a 'Circuit playground' where a quantum circuit is being built. The circuit consists of two qubits, each with four horizontal lines representing states. The first qubit has an 'H' gate at position 1 and another 'H' gate at position 3. The second qubit has an 'X' gate at position 2. Below the circuit, a note says: 'This circuit is accessible in your JavaScript console as document.getElementById('example').circuit'. At the bottom, there's a 'Live probability results' section showing the state probabilities for 16 possible outcomes (0000 to 1111). The results are as follows:

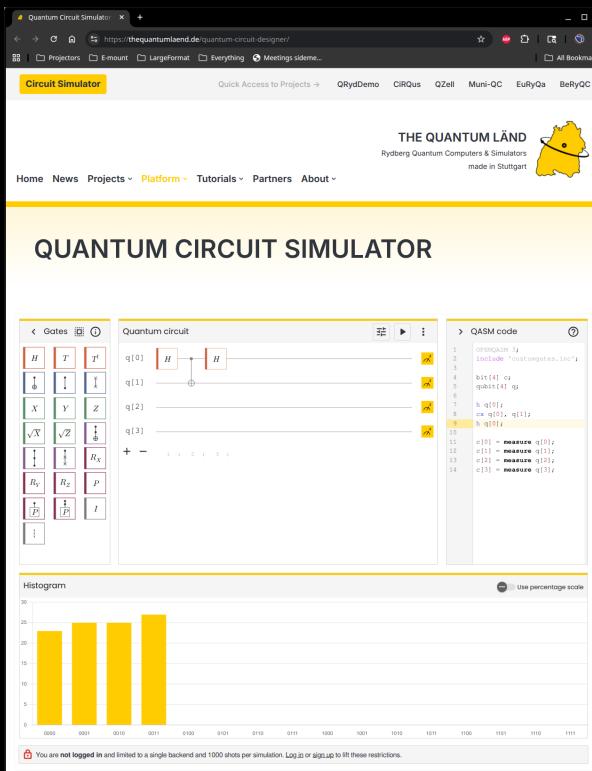

State	Probability
0000>	25% chance
0001>	0% chance
0010>	0% chance
0011>	0% chance
0100>	25% chance
0101>	0% chance
0110>	0% chance
0111>	0% chance
1000>	25% chance
1001>	0% chance
1010>	0% chance
1011>	0% chance
1100>	25% chance
1101>	0% chance
1110>	0% chance
1111>	0% chance

At the very bottom, there's a 'Free and open-source' section with a note about the project being open-source and free to use.

MuqcsCraft

- **MuqcsCraft**

<https://mjmcfuffin.github.io/MuqcsCraft/>


Quirk Circuit Simulator

- **Quirk** open source drag-and-drop simulator
<https://algassert.com/quirk>

THE QUANTUM LÄND

- **Rydberg Quantum Computers & Simulators, Stuttgart** <https://thequantumlaend.de/quantum-circuit-designer/>

