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Course Overview

• You’ll be learning about quantum computing,
which is not yet a fully-developed technology

• This is a computer engineering course
• You have some exposure to digital logic
• You have done conventional programming
• No quantum physics understanding required



Major Topics

• Course overview and introduction. Moore's law. The relationship between parallel and quantum computing.
What is a quantum computer? Why do we care? Quantum computers as attached accelerators.

• Review of classical digital logic gates. Introduction to reversible logic. Ancilla. Logic optimization with and
without fanout.

• Quantum superposition, entanglement, and measurement. Notations and models including the Bloch sphere,
unitary matrix formulations, and wave models. Probability amplitude. The quantum circuit model and quantum
gates.

• Quantum circuits and algorithms, the use of interference. Quantum superiority and RCS (Random Circuit
Sampling). Algorithms including Deutsch-Jozsa, Grover's search, Simon's problem, QFT (Quantum Fourier
Transform), and Shor's factoring algorithm.

• Quantum annealing.

• NISQ (Noisy Intermediate Scale Quantum) computer implementations. Superconducting, trapped ion,
photonics, spins, etc. Qubit implementations. Qubit layout and operation scheduling issues. Error correction.

• Quantum-inspired methods. Randomized and probabilistic algorithms. Alternative representations for
entangled superpositions: PBP (Parallel Bit Pattern computing, developed here at UK).

• The architecture of a computer system with an attached quantum coprocessor.

• Quantum programming above the Qubit level.

• Where is quantum going? Cryptography, machine learning, networking and teleportation. Scaling.



Schedule (very tentative!)
Lectures Topic
3 Introduction, parallel and quantum
4 Classical & adiabatic logic (project)
3 Quantum concepts and models
3 Quantum circuits and algorithms (project)
1 Quantum annealing
1 Midterm exam
3 NISQ computer implementations (homework)
4 Quantum-inspired methods (project)
2 Architecture of computer with quantum coprocessor
2 Higher-level quantum programming (homework)
2 Where is quantum going?
2 reserved for schedule slippage
1 Review for final exam



Schedule Notes

• Homeworks/projects will involve some
programming using simulation environments
(probably Verilog, Qiskit, and C++)

• Some topics may be given more or less time
depending on how students are doing

• I will be presenting research at the IS&T
Electronic Imaging conference, so we will not
have regular class meetings 3/3 & 3/5



Grading & Such

• Several homeworks/projects, total 50%
(a little extra on these for grad credit)

• In-person Midterm exam, 20%
• In-person Final exam, 30%

• Material from lectures, canvas, & course URL:
http://aggregate.org/QC

• You are expected to regularly attend class

• I try not to curve much; always in your favor

http://aggregate.org/QC


Me (and why I'm biased)

• Hank Dietz, ECE Professor and
James F. Hardymon Chair in Networking

• Office: 203 Marksbury

• Research in parallel compilers & architectures:
• Built 1st Linux PC cluster supercomputer
• Antlr, AFNs, SWAR, FNNs, MOG, ...
• Various awards & world records for best

price/performance in supercomputing

• Lab: 108/108A Marksbury – I have TOYS!



This cluster was
Finally retired in
Summer 2025!



Am I A Quantum Expert?

• Nope. This is my 1st time teaching this...

• Two main aspects to quantum computing:
• Quantum physics: many A+ folks, I’m C-
• Computer engineering: most D or F, I’m A+

• My background in QC:
• Many conferences, 1st QC publication in 2017
• Built optimizing compilers for QC
• Designed quantum-inspired HW/SW
• Committee member for several QC PhDs



What Is This Course About?

• Using quantum phenomena in clever ways.

• Solving computational problems faster.†

• Using fewer resources while doing that.

† Especially problems that supercomputers can’t feasibly solve.



How Computers Get Faster:
Moore’s Law

• 1965 prediction
• Not about chip speed
• Circuit complexity 2X

every 18-24 months

• Speedup is mostly about
parallel processing



Parallel Processing

• Break program into N pieces that can execute
simultaneously
– Scalable: bigger N, more speedup
– Modular hardware
– Can be fault tolerant using redundancy

• This scales up forever, right?



Moore’s Law is still sort-of OK…
(using tricks like multichip modules)



Kentucky ASYmmetric Zero supercomputer
Built July 16, 2003; 1st Teraflop/s system in KY
Cost $39K, 25kW + 5 Ton air conditioner

https://aggregate.org/KASY0/buildmovie.html
https://aggregate.org/KASY0/wiremovie.html


El Capitan supercomputer:
11,039,616 cores, 2.821 Exaflop/s
Cost approx. $600M, 29.7 MW power



SI Terminology of Scale

1000^1 kilo k 1000^-1 milli m
1000^2 mega M 1000^-2 micro u
1000^3 giga G 1000^-3 nano n
1000^4 tera T 1000^-4 pico p
1000^5 peta P 1000^-5 femto f
1000^6 exa E

• 1000^x vs. 1024^x ; e.g., giga vs. giba
• 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
• Hertz (Hz) is frequency (vs. period)
• A flop is a floating-point op like add or multiply



The Bad News

• Moore’s Law is slowing

• Power/transistor ▼
slower than
transistors/chip ▲

• Individual ops not
getting much faster



Power & Heat

• Chips can have dark silicon, special-purpose
function units normally unpowered, but…

• Remember my machine room? It has 170kW
and 30 Tons of air conditioning, but there are
individual racks it couldn’t power & cool!

• Colossus, xAI’s Memphis, TN supercomputer,
in April 2025 had 422MW gas turbine power!

• Exotic water cooling systems dominated SC25!





Amdahl’s Law

• In the best case, as parallelism width N→∞,
runtime should go to 0, right?

• If 1/K of the program’s work cannot be run in
parallel, the best possible speedup is only K

If a program spends 10% of its time sequentially 
reading a input file, you can't get more than a 10X 
speedup by parallelizing just the other 90%!
You need to parallelize everything possible.



Flavors of Parallel Processing

• Bit-parallel within a word
• Pipelined
• Superscalar, VLIW, EPIC
• SWAR (SIMD Within A Register), Vector
• SMP (Symmetric MultiProcessor; multi-core)
• GPU (Graphics Processing Unit)
• Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed



Flavors of Parallel Processing

• Bit-parallel within a word
• Pipelined
• Superscalar, VLIW, EPIC
• SWAR (SIMD Within A Register), Vector
• SMP (Symmetric MultiProcessor; multi-core)
• GPU (Graphics Processing Unit)
⇒ Quantum
• Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed



Bit-parallel within a word

• Used by most computers (even Z3, ENIAC)

• Each machine has a word size

• Each operation produced a word result, with
many bit-level operations happening in parallel;
e.g., A&B simultaneously A0&B0, A1&B1, ...



Word-Level Parallelism

• Consider adding 4-bit integers:

c = a + b



Vector parallelism across words

• Used by Cray 1, many others from the 1970s

• Applies same operation to all vector elements:
A[0..N-1] = B[0..N-1] + C[0..N-1]

• A SIMD (Single Instruction, Multiple Data)
model, but often implemented as a pipeline 



Vector Pipeline Processing

• Consider the previous example:
A[0..N-1] = B[0..N-1] + C[0..N-1]

• Suppose addition takes 3 clock cycles:

Stage 0 Stage 1 Stage 2
Cycle 0: B[0]+C[0]

Cycle 1: B[1]+C[1] B[0]+C[0]

Cycle 2: B[2]+C[2] B[1]+C[1] A[0]=B[0]+C[0]

Cycle 3: B[3]+C[3] B[2]+C[2] A[1]=B[1]+C[1]

Cycle 4: B[4]+C[4] B[3]+C[3] A[2]=B[2]+C[2]



Modern Pipeline Processing

• Consider another example:
add a,b; sub c,d; mul e,a; xor f,a

• 3-stage pipe (with bubble):

Stage 0 Stage 1 Stage 2
Cycle 0: add a,b

Cycle 1: sub c,d add a,b

Cycle 2: mul e,a sub c,d a = add a,b

Cycle 3: mul e,a nop c = sub c,d

Cycle 4: xor f,a mul e,a nop



Where Is The Circuitry?

IF: Instruction Fetch EX: Execute WB: Write Back
ID: Instruction Decode MEM: Memory Access



Where Is The Circuitry?



SIMD parallel across PEs (processing elements)

• E.g.: Thinking Machines, MasPar

• Each PE either applies same operation or
is disabled for that operation

• 1980s examples were bit-serial, but parallel
across massive number of PEs (e.g., 64K)



Generic SIMD Architecture

• Control Unit
conventional processor…

• Processing Elements
ALUs + local data

• PE Data Memory
Optional; coherent?

• GPUs nest  this structure
within each PE+REGS



Generic GPU Architecture

• Graphics Processing Unit
attached to a Host computer

• Processing Elements
have 2D PE numbering

• Virtualized PEs behave
like vector pipelines

• If PEx.y for all y are
disabled, CUx can skip



Generic SIMD Programming

• A program has two parts:
• Sequential (singular) part run on CU or Host
• Parallel (plural) part run on PEs

• Parallel code says what happens to an
element, hardware applies that to all elements
on PEs that are not disabled

• SIMD: inter-PE communication is cheap
GPU: inter-CUx communication is expensive,
but lower fanout allows a higher clock speed



Sample Algorithm: Compute π
• Area of a circle is rπ 2, so r=1 area is π
• Area under y=4/(1+x2) over x=0..1 is also π



π in C as an integral
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 // sum curve height at each interval
 for (i=0; i<intervals; ++i) {
  double x = (i + 0.5) * width;
  sum += 4.0 / (1.0 + x * x);
 }
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}



π in MPL (MasPar’s SIMD C)

#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 plural double dsum = 0;
 plural int i;
 // sum curve height at each interval
 for (i=iproc; i<intervals; i+=nproc) {
  plural double x = (i + 0.5) * width;
  dsum += 4.0 / (1.0 + x * x);
 }
 sum = reduceAddd(dsum); // tree summation of dsum from all PEs
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}



π in MPL (MasPar’s SIMD C)
#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 plural double dsum = 0;
 plural int i; int j;
 // sum curve height at each interval
 for (i=iproc; i<intervals; i+=nproc) {
  plural double x = (i + 0.5) * width;
  dsum += 4.0 / (1.0 + x * x);
 }
 // tree summation of dsum from all PEs
 for (j=nproc/2; j>0; j>>=1) dsum += router[iproc+j].dsum;
 sum = proc[0].dsum;
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}



π in CUDA (final sum in Host)
#include <stdio.h>
#include <cuda.h> // CUDA support
#define INTERVALS 1000000
#define BLOCKS 4 // number of thread blocks (little SIMDs)
#define THREADS 192 // number of threads per block (virtual PEs per little SIMD)

// Kernel that executes on the CUDA device (the GPU)
__global__ void summer(float *sum, int intervals, float width, int nproc) {
 float x; int i, iproc = blockIdx.x*blockDim.x+threadIdx.x; // iproc is global PE number
 for (i=iproc; i<intervals; i+=nproc) {
  x = (i+0.5)*width; sum[iproc] += 4.0/(1.0+x*x); // sum[iproc] is sum computed by PE iproc
 }
}

// Main routine that executes on the Host
int main(void) {
 dim3 dimGrid(BLOCKS,1,1); dimBlock(THREADS,1,1); // Grid and Block dimensions
 float pi = 0, width = 1.0/INTERVALS;
 size_t size = BLOCKS*THREADS*sizeof(float); // array memory size in bytes
 float *sumDev, *sumHost = (float *)malloc(size); // allocate array on Host
 cudaMalloc((void **) &sumDev, size); cudaMemset(sumDev, 0, size); // allocate & zero array on GPU
 summer <<<dimGrid, dimBlock>>> (sumDev, INTERVALS, width, THREADS*BLOCKS); // run GPU kernel
 cudaMemcpy(sumHost, sumDev, size, cudaMemcpyDeviceToHost); // copy sum array from GPU to Host
 for(int i=0; i<THREADS*BLOCKS; ++i) pi += sumHost[i]; // sum partial sums in Host (sequential!)
 pi *= width; // multiply by width to get area
 printf("Pi is roughly %f\n",pi);
 free(sumHost); cudaFree(sumDev); // free data structures (would happen at exit anyway)
 return(0);
}



Shared Memory MIMD (Multiple I, Multiple D)

• E.g.: SGI Origin, Multi-Core processors

• Each PE runs a process or thread

• Coherent memory doesn’t easily scale...



π in C using PThread Library
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
volatile double pi = 0.0; // approximation to pi (shared)
pthread_mutex_t pi_lock; // lock for unique access to pi
volatile double intervals; // how many intervals?
#define NPROC 8

void *process(void *arg) {
 double localsum = 0, width = 1.0 / intervals;
 int i, iproc = *((int *) arg);
 for (i=iproc; i<intervals; i+=NPROC) { // partial summation on this PE
  double x = (i + 0.5) * width; localsum += 4.0 / (1.0 + x * x);
 }
 pthread_mutex_lock(&pi_lock); // wait to have unique access to pi
 pi += localsum; // I’m the only PE here now!
 pthread_mutex_unlock(&pi_lock); // we are done with pi
 return(0);
}

int main(int argc, char **argv) {
 pthread_t thread[NPROC]; void * retval; int ip[NPROC];
 intervals = atoi(argv[1]);
 pthread_mutex_init(&pi_lock, NULL); // initialize the lock on pi to unlocked
 for (int i=0; i<NPROC; ++i) ip[i] = i; // initialize iproc values for threads
 for (int i=0; i<NPROC; ++i) pthread_create(&thread[i], NULL, process, &ip[i])); // make threads
 for (int i=0; i<NPROC; ++i) pthread_join(thread[i], &retval);  // join (collapse) threads
 pi *= width; // everybody joined, so multiply by width to get area
 printf("Pi is roughly %f\n", pi);
 return(0);
}



π in C using OMP Directives

#include <stdlib.h>
#include <stdio.h>
#include <omp.h> // OMP support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 // sum curve height at each interval
#pragma omp parallel for reduction(+: sum) schedule(static)
 for (i=0; i<intervals; ++i) {
  double x = (i + 0.5) * width;
  sum += 4.0 / (1.0 + x * x);
 }
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}



Message-Passing MIMD & Clusters

• E.g.: ASCI Red, Beowulf, KLAT2, KASY0 ...
• Each PE runs a process or thread

• Coherent memory doesn’t easily scale...



π in C using PVM Library
#include <stdlib.h>
#include <stdio.h>
#include <pvm3.h> // Parallel Virtual Machine library
#define NPROC 4 // set number of PE processes

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 int tids[NPROC]; tids[0] = pvm_mytid(); // enroll in PVM
 int iproc = pvm_joingroup(“pi”); // join a group
 if (iproc == 0) { // first PE process in group creates the rest
  pvm_spawn(“pvm_pi”, &argv[1], 0, NULL, NPROC-1, &tids[1]);
 }
 pvm_barrier(“pi”, NPROC); // ensure all PEs exist
 for (i=iproc; i<intervals; i+=NPROC) {
  double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
 }
 // tree reducton of sum from all PEs
 pvm_reduce(PvmSum, &sum, 1, PVM_DOUBLE, 4, “pi”, 0);
 sum *= width;
 if (iproc == 0) printf("Pi is roughly %f\n", sum); // only PE0 prints
 // check all PEs are here, leave group, and exit PVM
 pvm_barrier(“pi”, NPROC); pvm_lvgroup(“pi”); pvm_exit();
 return(0);
}



π in C using AFAPI Library
#include <stdlib.h>
#include <stdio.h>
#include "afapi.h" // Aggregate Function API

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 if (p_init()) exit(1); // check in with AF network hardware
 for (i=IPROC; i<intervals; i+=NPROC) {
  double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
 }
 sum = p_reduceAdd64f(sum); // AF network sums from all PEs
 sum *= width;
 if (IPROC == CPROC) { // only AFAPI console PE prints
  printf("Pi is roughly %f\n", sum);
 }
 p_exit(); // check out with AF network hardware
 return(0);
}



π in C using MPI Messages
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0, lsum = 0;
 int nproc, iproc; MPI_Status s;
 if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1); // check in
 MPI_Comm_size(MPI_COMM_WORLD, &nproc); // how many PEs?
 MPI_Comm_rank(MPI_COMM_WORLD, &iproc); // who am I?
 for (i=iproc; i<intervals; i+=nproc) {
  double x = (i + 0.5) * width; lsum += 4.0 / (1.0 + x * x);
 }
 lsum *= width;
 if (iproc != 0) {
  MPI_Send(&lsum, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD); // send to PE0
 } else {
  sum = lsum;
  for (i=1; i<nproc; ++i) { // add lsum from each of PE1..PEnproc
   MPI_Recv(&lsum, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &s);
   sum += lsum;
  }
  printf("Pi is roughly %f\n", sum);
 }
 MPI_Finalize(); return(0); // check out and exit
}



π in C using MPI Collectives
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0, lsum = 0;
 int nproc, iproc; MPI_Status s;
 if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1); // check in
 MPI_Comm_size(MPI_COMM_WORLD, &nproc); // how many PEs?
 MPI_Comm_rank(MPI_COMM_WORLD, &iproc); // who am I?
 for (i=iproc; i<intervals; i+=nproc) {
  double x = (i + 0.5) * width; lsum += 4.0 / (1.0 + x * x);
 }
 lsum *= width;
 // collectively tree reduce lsum values into a single sum by adding
 MPI_Reduce(&lsum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 if (iproc == 0) {
  printf("Pi is roughly %f\n", sum);
 }
 MPI_Finalize(); return(0); // check out and exit
}



What is a Quantum Computer?



Is this a Quantum Computer?



Is this a Quantum Computer?

Yup!

Google
Sycamore



Is this a Quantum Computer?



Is this a Quantum Computer?

Yup!

SpinQ
Gemini
Mini
~$8K



Is this a Quantum Computer?



Is this a Quantum Computer?

Nope!

It is from the
2020 TV mini
series DEVS



Is this a Quantum Computer?



Yup!

It is a
D-Wave
2000Q

Is this a Quantum Computer?



Is this a Quantum Computer?



Is this a Quantum Computer?

Not quite.

1/2-scale
model of
Fujitsu



Is this a Quantum Computer?



Is this a Quantum Computer?

Yup.

A photonic
qubit using
polarization



Is this a Quantum Computer?



Is this a Quantum Computer?

Yup!

IBM Q



Is this 3 Quantum Computers?



Is this 3 Quantum Computers?

Not quite.

80% scale
model of
IBM Quantum
System Two



Is this a Quantum Computer?



Is this a Quantum Computer?

Nope!

BLUEFORS
This is a
dummy; they
make cooling,
not computers



Is this a Quantum Computer?



Is this a Quantum Computer?

Not quantum;
quantum-inspired.

KREQC is
Kentucky’s
Rotationally
Emulated
Quantum
Computer




What is a Quantum Computer?

• Operates on Qubits rather than bits
• A bit can be either 0 or 1
• A qubit can be 0, 1, or a Probability Density

Function over {0,1}
• A gate-level op on a qubit alters the PDF

• What is a probability density function?
• Encodes probability of 0 or 1
• Not probability because it has more than 1D

• A qubit is really a wave.  Isn’t everything?  ;-)



What is a Quantum Computer?

• Two or more qubits can be Entangled
• Entangled things have their waves aligned
• This implies E entangled qubits can hold

a PDF over all 2E possible E-bit values
• Entangled things are coupled, creating what

Einstein called Spooky action at a distance

• Measuring a qubit’s value always gives 0 or 1,
and makes that qubit’s value what you read:
measurement collapses superposition… or
does it? Maybe you just get entangled too?  ;-)

https://www.youtube.com/watch?v=068rdc75mHM


What is a Quantum Computer?

• We think everything in the Universe operates on
quantum mechanics, so there are lots of ways
to implement qubits and operations on them

• The catch is that it is very difficult to keep qubits
from interacting with other stuff
• Noise corrupts/collapses superposition
• Performing an operation is injecting noise

• Only thermodynamically reversible ops are
viable, and which depends on mechanism used



What is a Quantum Computer?

• Sequential code could work if we had enough
qubits, etc., but we don’t

• Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

• No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

• Need a somewhat different algorithm...



π in a Quantum Computer?

• Sequential code could work if we had enough
qubits, etc., but we don’t

• Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

• No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

• Need a somewhat different algorithm...



π in C using int sampling
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) {
 int i, j, intervals = atoi(argv[1]);
 int w = intervals * intervals, sum = 0;
 for (i=0; i<intervals; ++i) {
  int h = w / (intervals + ((i*i) / intervals));
  for (j=0; j<intervals; ++j) {
   if (h > j) ++sum;
  }
 }
 printf("Pi is roughly %f\n", (4.0 * sum) / w);
 return(0);
}



π in PBP, pint sampling
#include “pbp.h” // PBP classes and support

int main(int argc, char **argv) {
 int bits = atoi(argv[1]); // number of pbits
 pint intervals(1 << bits); // intervals in pbits
 pint w(1 << (2 * bits)); // int scaling factor
 pint x = pint(0).Had(bits); // all x values
 pint y = pint(0).Had(bits,bits); // all y values
 pint h = w / (((x * x) >> bits) + intervals);
 pint r = (h > y); // r is 1 where below curve
 // count 1s; quantum would sample probability
 double pi = (4.0 * r.Pop()) / (1 << REWAYS);
 printf("Pi is roughly %f\n", pi);
 return(0);
}
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