
Introduction

EE599-001 & EE699-010, Spring 2026

Hank Dietz

http://aggregate.org/hankd/

http://aggregate.org/hankd

Course Overview

• You’ll be learning about quantum computing,
which is not yet a fully-developed technology

• This is a computer engineering course
• You have some exposure to digital logic
• You have done conventional programming
• No quantum physics understanding required

Major Topics

• Course overview and introduction. Moore's law. The relationship between parallel and quantum computing.
What is a quantum computer? Why do we care? Quantum computers as attached accelerators.

• Review of classical digital logic gates. Introduction to reversible logic. Ancilla. Logic optimization with and
without fanout.

• Quantum superposition, entanglement, and measurement. Notations and models including the Bloch sphere,
unitary matrix formulations, and wave models. Probability amplitude. The quantum circuit model and quantum
gates.

• Quantum circuits and algorithms, the use of interference. Quantum superiority and RCS (Random Circuit
Sampling). Algorithms including Deutsch-Jozsa, Grover's search, Simon's problem, QFT (Quantum Fourier
Transform), and Shor's factoring algorithm.

• Quantum annealing.

• NISQ (Noisy Intermediate Scale Quantum) computer implementations. Superconducting, trapped ion,
photonics, spins, etc. Qubit implementations. Qubit layout and operation scheduling issues. Error correction.

• Quantum-inspired methods. Randomized and probabilistic algorithms. Alternative representations for
entangled superpositions: PBP (Parallel Bit Pattern computing, developed here at UK).

• The architecture of a computer system with an attached quantum coprocessor.

• Quantum programming above the Qubit level.

• Where is quantum going? Cryptography, machine learning, networking and teleportation. Scaling.

Schedule (very tentative!)
Lectures Topic
3 Introduction, parallel and quantum
4 Classical & adiabatic logic (project)
3 Quantum concepts and models
3 Quantum circuits and algorithms (project)
1 Quantum annealing
1 Midterm exam
3 NISQ computer implementations (homework)
4 Quantum-inspired methods (project)
2 Architecture of computer with quantum coprocessor
2 Higher-level quantum programming (homework)
2 Where is quantum going?
2 reserved for schedule slippage
1 Review for final exam

Schedule Notes

• Homeworks/projects will involve some
programming using simulation environments
(probably Verilog, Qiskit, and C++)

• Some topics may be given more or less time
depending on how students are doing

• I will be presenting research at the IS&T
Electronic Imaging conference, so we will not
have regular class meetings 3/3 & 3/5

Grading & Such

• Several homeworks/projects, total 50%
(a little extra on these for grad credit)

• In-person Midterm exam, 20%
• In-person Final exam, 30%

• Material from lectures, canvas, & course URL:
http://aggregate.org/QC

• You are expected to regularly attend class

• I try not to curve much; always in your favor

http://aggregate.org/QC

Me (and why I'm biased)

• Hank Dietz, ECE Professor and
James F. Hardymon Chair in Networking

• Office: 203 Marksbury

• Research in parallel compilers & architectures:
• Built 1st Linux PC cluster supercomputer
• Antlr, AFNs, SWAR, FNNs, MOG, ...
• Various awards & world records for best

price/performance in supercomputing

• Lab: 108/108A Marksbury – I have TOYS!

This cluster was
Finally retired in
Summer 2025!

Am I A Quantum Expert?

• Nope. This is my 1st time teaching this...

• Two main aspects to quantum computing:
• Quantum physics: many A+ folks, I’m C-
• Computer engineering: most D or F, I’m A+

• My background in QC:
• Many conferences, 1st QC publication in 2017
• Built optimizing compilers for QC
• Designed quantum-inspired HW/SW
• Committee member for several QC PhDs

What Is This Course About?

• Using quantum phenomena in clever ways.

• Solving computational problems faster.†

• Using fewer resources while doing that.

† Especially problems that supercomputers can’t feasibly solve.

How Computers Get Faster:
Moore’s Law

• 1965 prediction
• Not about chip speed
• Circuit complexity 2X

every 18-24 months

• Speedup is mostly about
parallel processing

Parallel Processing

• Break program into N pieces that can execute
simultaneously
– Scalable: bigger N, more speedup
– Modular hardware
– Can be fault tolerant using redundancy

• This scales up forever, right?

Moore’s Law is still sort-of OK…
(using tricks like multichip modules)

Kentucky ASYmmetric Zero supercomputer
Built July 16, 2003; 1st Teraflop/s system in KY
Cost $39K, 25kW + 5 Ton air conditioner

https://aggregate.org/KASY0/buildmovie.html
https://aggregate.org/KASY0/wiremovie.html

El Capitan supercomputer:
11,039,616 cores, 2.821 Exaflop/s
Cost approx. $600M, 29.7 MW power

SI Terminology of Scale

1000^1 kilo k 1000^-1 milli m
1000^2 mega M 1000^-2 micro u
1000^3 giga G 1000^-3 nano n
1000^4 tera T 1000^-4 pico p
1000^5 peta P 1000^-5 femto f
1000^6 exa E

• 1000^x vs. 1024^x ; e.g., giga vs. giba
• 1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
• Hertz (Hz) is frequency (vs. period)
• A flop is a floating-point op like add or multiply

The Bad News

• Moore’s Law is slowing

• Power/transistor ▼
slower than
transistors/chip ▲

• Individual ops not
getting much faster

Power & Heat

• Chips can have dark silicon, special-purpose
function units normally unpowered, but…

• Remember my machine room? It has 170kW
and 30 Tons of air conditioning, but there are
individual racks it couldn’t power & cool!

• Colossus, xAI’s Memphis, TN supercomputer,
in April 2025 had 422MW gas turbine power!

• Exotic water cooling systems dominated SC25!

Amdahl’s Law

• In the best case, as parallelism width N→∞,
runtime should go to 0, right?

• If 1/K of the program’s work cannot be run in
parallel, the best possible speedup is only K

If a program spends 10% of its time sequentially
reading a input file, you can't get more than a 10X
speedup by parallelizing just the other 90%!
You need to parallelize everything possible.

Flavors of Parallel Processing

• Bit-parallel within a word
• Pipelined
• Superscalar, VLIW, EPIC
• SWAR (SIMD Within A Register), Vector
• SMP (Symmetric MultiProcessor; multi-core)
• GPU (Graphics Processing Unit)
• Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed

Flavors of Parallel Processing

• Bit-parallel within a word
• Pipelined
• Superscalar, VLIW, EPIC
• SWAR (SIMD Within A Register), Vector
• SMP (Symmetric MultiProcessor; multi-core)
• GPU (Graphics Processing Unit)
⇒ Quantum
• Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed

Bit-parallel within a word

• Used by most computers (even Z3, ENIAC)

• Each machine has a word size

• Each operation produced a word result, with
many bit-level operations happening in parallel;
e.g., A&B simultaneously A0&B0, A1&B1, ...

Word-Level Parallelism

• Consider adding 4-bit integers:

c = a + b

Vector parallelism across words

• Used by Cray 1, many others from the 1970s

• Applies same operation to all vector elements:
A[0..N-1] = B[0..N-1] + C[0..N-1]

• A SIMD (Single Instruction, Multiple Data)
model, but often implemented as a pipeline

Vector Pipeline Processing

• Consider the previous example:
A[0..N-1] = B[0..N-1] + C[0..N-1]

• Suppose addition takes 3 clock cycles:

Stage 0 Stage 1 Stage 2
Cycle 0: B[0]+C[0]

Cycle 1: B[1]+C[1] B[0]+C[0]

Cycle 2: B[2]+C[2] B[1]+C[1] A[0]=B[0]+C[0]

Cycle 3: B[3]+C[3] B[2]+C[2] A[1]=B[1]+C[1]

Cycle 4: B[4]+C[4] B[3]+C[3] A[2]=B[2]+C[2]

Modern Pipeline Processing

• Consider another example:
add a,b; sub c,d; mul e,a; xor f,a

• 3-stage pipe (with bubble):

Stage 0 Stage 1 Stage 2
Cycle 0: add a,b

Cycle 1: sub c,d add a,b

Cycle 2: mul e,a sub c,d a = add a,b

Cycle 3: mul e,a nop c = sub c,d

Cycle 4: xor f,a mul e,a nop

Where Is The Circuitry?

IF: Instruction Fetch EX: Execute WB: Write Back
ID: Instruction Decode MEM: Memory Access

Where Is The Circuitry?

SIMD parallel across PEs (processing elements)

• E.g.: Thinking Machines, MasPar

• Each PE either applies same operation or
is disabled for that operation

• 1980s examples were bit-serial, but parallel
across massive number of PEs (e.g., 64K)

Generic SIMD Architecture

• Control Unit
conventional processor…

• Processing Elements
ALUs + local data

• PE Data Memory
Optional; coherent?

• GPUs nest this structure
within each PE+REGS

Generic GPU Architecture

• Graphics Processing Unit
attached to a Host computer

• Processing Elements
have 2D PE numbering

• Virtualized PEs behave
like vector pipelines

• If PEx.y for all y are
disabled, CUx can skip

Generic SIMD Programming

• A program has two parts:
• Sequential (singular) part run on CU or Host
• Parallel (plural) part run on PEs

• Parallel code says what happens to an
element, hardware applies that to all elements
on PEs that are not disabled

• SIMD: inter-PE communication is cheap
GPU: inter-CUx communication is expensive,
but lower fanout allows a higher clock speed

Sample Algorithm: Compute π
• Area of a circle is rπ 2, so r=1 area is π
• Area under y=4/(1+x2) over x=0..1 is also π

π in C as an integral
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 // sum curve height at each interval
 for (i=0; i<intervals; ++i) {
 double x = (i + 0.5) * width;
 sum += 4.0 / (1.0 + x * x);
 }
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}

π in MPL (MasPar’s SIMD C)

#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 plural double dsum = 0;
 plural int i;
 // sum curve height at each interval
 for (i=iproc; i<intervals; i+=nproc) {
 plural double x = (i + 0.5) * width;
 dsum += 4.0 / (1.0 + x * x);
 }
 sum = reduceAddd(dsum); // tree summation of dsum from all PEs
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}

π in MPL (MasPar’s SIMD C)
#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 plural double dsum = 0;
 plural int i; int j;
 // sum curve height at each interval
 for (i=iproc; i<intervals; i+=nproc) {
 plural double x = (i + 0.5) * width;
 dsum += 4.0 / (1.0 + x * x);
 }
 // tree summation of dsum from all PEs
 for (j=nproc/2; j>0; j>>=1) dsum += router[iproc+j].dsum;
 sum = proc[0].dsum;
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}

π in CUDA (final sum in Host)
#include <stdio.h>
#include <cuda.h> // CUDA support
#define INTERVALS 1000000
#define BLOCKS 4 // number of thread blocks (little SIMDs)
#define THREADS 192 // number of threads per block (virtual PEs per little SIMD)

// Kernel that executes on the CUDA device (the GPU)
__global__ void summer(float *sum, int intervals, float width, int nproc) {
 float x; int i, iproc = blockIdx.x*blockDim.x+threadIdx.x; // iproc is global PE number
 for (i=iproc; i<intervals; i+=nproc) {
 x = (i+0.5)*width; sum[iproc] += 4.0/(1.0+x*x); // sum[iproc] is sum computed by PE iproc
 }
}

// Main routine that executes on the Host
int main(void) {
 dim3 dimGrid(BLOCKS,1,1); dimBlock(THREADS,1,1); // Grid and Block dimensions
 float pi = 0, width = 1.0/INTERVALS;
 size_t size = BLOCKS*THREADS*sizeof(float); // array memory size in bytes
 float *sumDev, *sumHost = (float *)malloc(size); // allocate array on Host
 cudaMalloc((void **) &sumDev, size); cudaMemset(sumDev, 0, size); // allocate & zero array on GPU
 summer <<<dimGrid, dimBlock>>> (sumDev, INTERVALS, width, THREADS*BLOCKS); // run GPU kernel
 cudaMemcpy(sumHost, sumDev, size, cudaMemcpyDeviceToHost); // copy sum array from GPU to Host
 for(int i=0; i<THREADS*BLOCKS; ++i) pi += sumHost[i]; // sum partial sums in Host (sequential!)
 pi *= width; // multiply by width to get area
 printf("Pi is roughly %f\n",pi);
 free(sumHost); cudaFree(sumDev); // free data structures (would happen at exit anyway)
 return(0);
}

Shared Memory MIMD (Multiple I, Multiple D)

• E.g.: SGI Origin, Multi-Core processors

• Each PE runs a process or thread

• Coherent memory doesn’t easily scale...

π in C using PThread Library
#include <stdlib.h>
#include <stdio.h>
#include <pthread.h>
volatile double pi = 0.0; // approximation to pi (shared)
pthread_mutex_t pi_lock; // lock for unique access to pi
volatile double intervals; // how many intervals?
#define NPROC 8

void *process(void *arg) {
 double localsum = 0, width = 1.0 / intervals;
 int i, iproc = *((int *) arg);
 for (i=iproc; i<intervals; i+=NPROC) { // partial summation on this PE
 double x = (i + 0.5) * width; localsum += 4.0 / (1.0 + x * x);
 }
 pthread_mutex_lock(&pi_lock); // wait to have unique access to pi
 pi += localsum; // I’m the only PE here now!
 pthread_mutex_unlock(&pi_lock); // we are done with pi
 return(0);
}

int main(int argc, char **argv) {
 pthread_t thread[NPROC]; void * retval; int ip[NPROC];
 intervals = atoi(argv[1]);
 pthread_mutex_init(&pi_lock, NULL); // initialize the lock on pi to unlocked
 for (int i=0; i<NPROC; ++i) ip[i] = i; // initialize iproc values for threads
 for (int i=0; i<NPROC; ++i) pthread_create(&thread[i], NULL, process, &ip[i])); // make threads
 for (int i=0; i<NPROC; ++i) pthread_join(thread[i], &retval); // join (collapse) threads
 pi *= width; // everybody joined, so multiply by width to get area
 printf("Pi is roughly %f\n", pi);
 return(0);
}

π in C using OMP Directives

#include <stdlib.h>
#include <stdio.h>
#include <omp.h> // OMP support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 // sum curve height at each interval
#pragma omp parallel for reduction(+: sum) schedule(static)
 for (i=0; i<intervals; ++i) {
 double x = (i + 0.5) * width;
 sum += 4.0 / (1.0 + x * x);
 }
 sum *= width; // multiply by width to get area
 printf("Pi is roughly %f\n", sum);
 return(0);
}

Message-Passing MIMD & Clusters

• E.g.: ASCI Red, Beowulf, KLAT2, KASY0 ...
• Each PE runs a process or thread

• Coherent memory doesn’t easily scale...

π in C using PVM Library
#include <stdlib.h>
#include <stdio.h>
#include <pvm3.h> // Parallel Virtual Machine library
#define NPROC 4 // set number of PE processes

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 int tids[NPROC]; tids[0] = pvm_mytid(); // enroll in PVM
 int iproc = pvm_joingroup(“pi”); // join a group
 if (iproc == 0) { // first PE process in group creates the rest
 pvm_spawn(“pvm_pi”, &argv[1], 0, NULL, NPROC-1, &tids[1]);
 }
 pvm_barrier(“pi”, NPROC); // ensure all PEs exist
 for (i=iproc; i<intervals; i+=NPROC) {
 double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
 }
 // tree reducton of sum from all PEs
 pvm_reduce(PvmSum, &sum, 1, PVM_DOUBLE, 4, “pi”, 0);
 sum *= width;
 if (iproc == 0) printf("Pi is roughly %f\n", sum); // only PE0 prints
 // check all PEs are here, leave group, and exit PVM
 pvm_barrier(“pi”, NPROC); pvm_lvgroup(“pi”); pvm_exit();
 return(0);
}

π in C using AFAPI Library
#include <stdlib.h>
#include <stdio.h>
#include "afapi.h" // Aggregate Function API

int main(int argc, char **argv) {
 int intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0;
 if (p_init()) exit(1); // check in with AF network hardware
 for (i=IPROC; i<intervals; i+=NPROC) {
 double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
 }
 sum = p_reduceAdd64f(sum); // AF network sums from all PEs
 sum *= width;
 if (IPROC == CPROC) { // only AFAPI console PE prints
 printf("Pi is roughly %f\n", sum);
 }
 p_exit(); // check out with AF network hardware
 return(0);
}

π in C using MPI Messages
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0, lsum = 0;
 int nproc, iproc; MPI_Status s;
 if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1); // check in
 MPI_Comm_size(MPI_COMM_WORLD, &nproc); // how many PEs?
 MPI_Comm_rank(MPI_COMM_WORLD, &iproc); // who am I?
 for (i=iproc; i<intervals; i+=nproc) {
 double x = (i + 0.5) * width; lsum += 4.0 / (1.0 + x * x);
 }
 lsum *= width;
 if (iproc != 0) {
 MPI_Send(&lsum, 1, MPI_DOUBLE, 0, 0, MPI_COMM_WORLD); // send to PE0
 } else {
 sum = lsum;
 for (i=1; i<nproc; ++i) { // add lsum from each of PE1..PEnproc
 MPI_Recv(&lsum, 1, MPI_DOUBLE, MPI_ANY_SOURCE, MPI_ANY_TAG, MPI_COMM_WORLD, &s);
 sum += lsum;
 }
 printf("Pi is roughly %f\n", sum);
 }
 MPI_Finalize(); return(0); // check out and exit
}

π in C using MPI Collectives
#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {
 int i, intervals = atoi(argv[1]);
 double width = 1.0 / intervals, sum = 0, lsum = 0;
 int nproc, iproc; MPI_Status s;
 if (MPI_Init(&argc, &argv) != MPI_SUCCESS) exit(1); // check in
 MPI_Comm_size(MPI_COMM_WORLD, &nproc); // how many PEs?
 MPI_Comm_rank(MPI_COMM_WORLD, &iproc); // who am I?
 for (i=iproc; i<intervals; i+=nproc) {
 double x = (i + 0.5) * width; lsum += 4.0 / (1.0 + x * x);
 }
 lsum *= width;
 // collectively tree reduce lsum values into a single sum by adding
 MPI_Reduce(&lsum, &sum, 1, MPI_DOUBLE, MPI_SUM, 0, MPI_COMM_WORLD);
 if (iproc == 0) {
 printf("Pi is roughly %f\n", sum);
 }
 MPI_Finalize(); return(0); // check out and exit
}

What is a Quantum Computer?

Is this a Quantum Computer?

Is this a Quantum Computer?

Yup!

Google
Sycamore

Is this a Quantum Computer?

Is this a Quantum Computer?

Yup!

SpinQ
Gemini
Mini
~$8K

Is this a Quantum Computer?

Is this a Quantum Computer?

Nope!

It is from the
2020 TV mini
series DEVS

Is this a Quantum Computer?

Yup!

It is a
D-Wave
2000Q

Is this a Quantum Computer?

Is this a Quantum Computer?

Is this a Quantum Computer?

Not quite.

1/2-scale
model of
Fujitsu

Is this a Quantum Computer?

Is this a Quantum Computer?

Yup.

A photonic
qubit using
polarization

Is this a Quantum Computer?

Is this a Quantum Computer?

Yup!

IBM Q

Is this 3 Quantum Computers?

Is this 3 Quantum Computers?

Not quite.

80% scale
model of
IBM Quantum
System Two

Is this a Quantum Computer?

Is this a Quantum Computer?

Nope!

BLUEFORS
This is a
dummy; they
make cooling,
not computers

Is this a Quantum Computer?

Is this a Quantum Computer?

Not quantum;
quantum-inspired.

KREQC is
Kentucky’s
Rotationally
Emulated
Quantum
Computer

What is a Quantum Computer?

• Operates on Qubits rather than bits
• A bit can be either 0 or 1
• A qubit can be 0, 1, or a Probability Density

Function over {0,1}
• A gate-level op on a qubit alters the PDF

• What is a probability density function?
• Encodes probability of 0 or 1
• Not probability because it has more than 1D

• A qubit is really a wave. Isn’t everything? ;-)

What is a Quantum Computer?

• Two or more qubits can be Entangled
• Entangled things have their waves aligned
• This implies E entangled qubits can hold

a PDF over all 2E possible E-bit values
• Entangled things are coupled, creating what

Einstein called Spooky action at a distance

• Measuring a qubit’s value always gives 0 or 1,
and makes that qubit’s value what you read:
measurement collapses superposition… or
does it? Maybe you just get entangled too? ;-)

https://www.youtube.com/watch?v=068rdc75mHM

What is a Quantum Computer?

• We think everything in the Universe operates on
quantum mechanics, so there are lots of ways
to implement qubits and operations on them

• The catch is that it is very difficult to keep qubits
from interacting with other stuff
• Noise corrupts/collapses superposition
• Performing an operation is injecting noise

• Only thermodynamically reversible ops are
viable, and which depends on mechanism used

What is a Quantum Computer?

• Sequential code could work if we had enough
qubits, etc., but we don’t

• Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

• No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

• Need a somewhat different algorithm...

π in a Quantum Computer?

• Sequential code could work if we had enough
qubits, etc., but we don’t

• Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

• No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

• Need a somewhat different algorithm...

π in C using int sampling
#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) {
 int i, j, intervals = atoi(argv[1]);
 int w = intervals * intervals, sum = 0;
 for (i=0; i<intervals; ++i) {
 int h = w / (intervals + ((i*i) / intervals));
 for (j=0; j<intervals; ++j) {
 if (h > j) ++sum;
 }
 }
 printf("Pi is roughly %f\n", (4.0 * sum) / w);
 return(0);
}

π in PBP, pint sampling
#include “pbp.h” // PBP classes and support

int main(int argc, char **argv) {
 int bits = atoi(argv[1]); // number of pbits
 pint intervals(1 << bits); // intervals in pbits
 pint w(1 << (2 * bits)); // int scaling factor
 pint x = pint(0).Had(bits); // all x values
 pint y = pint(0).Had(bits,bits); // all y values
 pint h = w / (((x * x) >> bits) + intervals);
 pint r = (h > y); // r is 1 where below curve
 // count 1s; quantum would sample probability
 double pi = (4.0 * r.Pop()) / (1 << REWAYS);
 printf("Pi is roughly %f\n", pi);
 return(0);
}

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

