Introduction

EE599-001 & EE699-010, Spring 2026
Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Course Overview

You'll be learning about quantum computing,
which is not yet a fully-developed technology

This is a computer engineering course

* You have some exposure to digital logic

* You have done conventional programming

* No quantum physics understanding required

Major Topics

Course overview and introduction. Moore's law. The relationship between parallel and quantum computing.
What is a quantum computer? Why do we care? Quantum computers as attached accelerators.

Review of classical digital logic gates. Introduction to reversible logic. Ancilla. Logic optimization with and
without fanout.

Quantum superposition, entanglement, and measurement. Notations and models including the Bloch sphere,
unitary matrix formulations, and wave models. Probability amplitude. The quantum circuit model and quantum
gates.

Quantum circuits and algorithms, the use of interference. Quantum superiority and RCS (Random Circuit
Sampling). Algorithms including Deutsch-Jozsa, Grover's search, Simon's problem, QFT (Quantum Fourier
Transform), and Shor's factoring algorithm.

Quantum annealing.

NISQ (Noisy Intermediate Scale Quantum) computer implementations. Superconducting, trapped ion,
photonics, spins, etc. Qubit implementations. Qubit layout and operation scheduling issues. Error correction.

Quantum-inspired methods. Randomized and probabilistic algorithms. Alternative representations for
entangled superpositions: PBP (Parallel Bit Pattern computing, developed here at UK).

The architecture of a computer system with an attached quantum coprocessor.
Quantum programming above the Qubit level.

Where is quantum going? Cryptography, machine learning, networking and teleportation. Scaling.

Schedule (very tentative!)

Lectures Topic

Introduction, parallel and quantum

Classical & adiabatic logic (project)

Quantum concepts and models

Quantum circuits and algorithms (project)
Quantum annealing

Midterm exam

NISQ computer implementations (homework)
Quantum-inspired methods (project)
Architecture of computer with quantum coprocessor
Higher-level quantum programming (homework)
Where is quantum going?

reserved for schedule slippage

Review for final exam

= NN DNMNDNDN WERE =W WD W

Schedule Notes

* Homeworks/projects will involve some
programming using simulation environments
(probably Verilog, Qiskit, and C++)

* Some topics may be given more or less time
depending on how students are doing

* | will be presenting research at the IS&T
Electronic Imaging conference, so we will not
have regular class meetings 3/3 & 3/5

Grading & Such

Several homeworks/projects, total 50%
(a little extra on these for grad credit)
In-person Midterm exam, 20%
In-person Final exam, 30%

Material from lectures, canvas, & course URL:
http://aggregate.org/QC

You are expected to regularly attend class

| try not to curve much; always in your favor

http://aggregate.org/QC

Me (and why I'm biased)

Hank Dietz, ECE Professor and
James F. Hardymon Chair in Networking

Office: 203 Marksbury

Research in parallel compilers & architectures:

* Built 1%t Linux PC cluster supercomputer

* Antlr, AFNs, SWAR, FNNs, MOG, ...

* Various awards & world records for best
price/performance in supercomputing

Lab: 108/108A Marksbury - | have TOYS!

ﬁcdlegc of
Engineering -
\\\

Am | A Quantum Expert?

* Nope. This is my 1%t time teaching this...

* Two main aspects to quantum computing:
* Quantum physics: many A+ folks, I'm C-
* Computer engineering: most D or F, I'm A+

* My background in QC:
* Many conferences, 1°* QC publication in 2017
* Built optimizing compilers for QC
* Designed quantum-inspired HW/SW
* Committee member for several QC PhDs

What Is This Course About?

* Using quantum phenomena in clever ways.
* Solving computational problems faster.f

* Using fewer resources while doing that.

t Especially problems that supercomputers can’t feasibly solve.

How Computers Get Faster:
Moore’s Law

* 1965 prediction
* Not about chip speed
* Circuit complexity 2X
every 18-24 months

O=MNUWAOOINDOYWO—=-=NWLOOD
T T T T rrTTTTT Ty

* Speedup is mostly about
parallel processing

LOG, OF THE NUMBER OF
COMPONENTS PER INTEGRATED FUNCTION

Parallel Processing

* Break program into N pieces that can execute

simultaneously
— Scalable: bigger N, more speedup

— Modular hardware
— Can be fault tolerant using redundancy

* This scales up forever, right?

Moore’s Law is still sort-of OK...
(using tricks like multichip modules)

Moore’s Law: The number of transistors on microchips doubles every two years [SHRVEE

Moore's law describes the empirical regularity that the number of transistors on integrated circuits doubles approximately every two years in Data
This advancement is important for other aspects of technological progress in computing - such as processing speed or the price of computers.

Transistor count
50,000,000,000 ST

10,000,000,000 .
5,000,000,000 -

1,000,000,000 - g RS ore + GPU
; th N\ ,.0’ @, oie A7 (0L ARMéA
500,000,000 N LS ’

100,000,000 enfm4 A 5y 3 ‘« :
50,000,000 1N

10,000,000 . . *
; $ o
5,000,000 O PeNtium

1,000,000 “ ® %0
500,000 ehne i@ *

Motorc 0209
100,000 . h 9 v N »>
50,000 i e)

10,000 116 1000...._zicg 280, VSR8 ¢ ¢ w
5,000

1,000

O b A% Ab A © D ok b D D kDD PP DO D DD DD
ORI S S A SR S S LR LI LRGN SRS L P IR o
S N N N N M N U S 7 PTp

Data source: Wikipedia (Year in which the microchip was first introduced

against the world's largest problems 1e authors Hannah Ritchie and Max Rose

10 EFop/s
1 EFop/s
100 PFlop/s
10 PFlop/s
1 PFlop/s

100 TFop/s

Performance

10 THop/s

1 TFop/s
100 GFlop/s
10 GFop/s
1 GHop/s

100 MFlop/s

Projected Performance Development

“ A
g

LW

‘ AAA pmum B

P Ve, i'"-—

1990 1995 2000 2005 2010 2015 2020 2025

Lists
® Sum A i1 = #500

e')/ U)J (Jé‘yjbjb

Kentucky ASYmmetric Zero supercomputer
Built July 16, 2003; 1 Teraflop/s system in KY
Cost $39K, 25kW + 5 Ton air conditioner

https://aggregate.org/KASY0/buildmovie.html
https://aggregate.org/KASY0/wiremovie.html

1| -

W Lawrence Lw 3
go 1l Labo ;‘?N
ENERGY
Az NISA

Eunnnrm;

0, 1, o ADVAN HSIHUUIIIONECON PUTING

El Capitan supercomputer: L
11,039,616 cores, 2.821 Exaflop/s
Cost approx. $600M, 29.7 MW power

S| Terminology of Scale

1000~1 kilo k 1000A-1 milli m
1000A2 mega M 1000A-2 micro u
100023 giga G 1000A-3 nano n
100004 tera T 1000~-4 pico p
1000A5 peta P 1000A-5 femto f
100006 exa E

1000~x vs. 10244x ; e.g., giga vs. giba

1 Byte (B) is 8-10 bits (b), 4 bits in a Nybble
Hertz (Hz) is frequency (vs. period)

A flop is a floating-point op like add or multiply

The Bad News

* Moore’s Law is slowing

42 Years of Microprocessor Trend Data

Transistors
(thousands)

* Power/transistor ¥
slower than

10 | .
. . Frequency (MHz)

transistors/chip A
102 | 1 (Watts)
1 Number of
10 “| Logical Cores

| | 0 - -
* Individual op "’
n IVI ua O S nOt 1970 1980 1990 2000 2010 2020

Year

|
Original data up to the year 2010 collected and plotted by M. Horowitz, F. Labonte, O. Shacham, K. Olukotun, L. Hammond, and C. Batten
New plot and data collected for 2010-2017 by K. Rupp

Power & Heat
Chips can have dark silicon, special-purpose
function units normally unpowered, but...

Remember my machine room? It has 170kW
and 30 Tons of air conditioning, but there are
individual racks it couldn’t power & cool!

Colossus, xAl's Memphis, TN supercomputer,
in April 2025 had 422MW gas turbine power!

Exotic water cooling systems dominated SC25!

CP Cluster

Wodular 4 MW o

Amdahl’s Law

* |n the best case, as parallelism width N - o,
runtime should go to 0, right?

* |If 1/K of the program’s work cannot be run in
parallel, the best possible speedup is only K

If a program spends 10% of its time sequentially
reading a input file, you can't get more than a 10X
speedup by parallelizing just the other 90%!

You need to parallelize everything possible.

Flavors of Parallel Processing

* Bit-parallel within a word

* Pipelined

* Superscalar, VLIW, EPIC

* SWAR (SIMD Within A Register), Vector
 SMP (Symmetric MultiProcessor; multi-core)
* GPU (Graphics Processing Unit)

* (Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed

Flavors of Parallel Processing

Bit-parallel within a word

Pipelined

Superscalar, VLIW, EPIC

SWAR (SIMD Within A Register), Vector
SMP (Symmetric MultiProcessor; multi-core)
GPU (Graphics Processing Unit)

= Quantum

* (Clusters, Farms, Grids, and Clouds

Automatic; Semi-Auto; Explicitly Programmed

Bit-parallel within a word

* Used by most computers (even Z3, ENIAC)
* Each machine has a word size

* Each operation produced a word result, with
many bit-level operations happening in parallel;
e.g., A&B simultaneously p,&B,, A, &B., ...

Word-Level Parallelism

* Consider adding 4-bit integers:

c =a -+ b

Vector parallelism across words

* Used by Cray 1, many others from the 1970s

* Applies same operation to all vector elements:
A[0..N-1] = B[O0..N-1] + C[0..N-1]

* A SIMD (Single Instruction, Multiple Data)
model, but often implemented as a pipeline

Vector Pipeline Processing

* Consider the previous example:

A[0..N-1] =

B[O..N-1] + C[O..N-1]

* Suppose addition takes 3 clock cycles:

Stage 2

Cycle 0:
Cycle 1:
Cycle 2:
Cycle 3:
Cycle 4:

Stage O

B

W O 0O W

[0]+C[O]
[1]+C[1]
[2]+C[2]
[3]+C[3]
[4]+C[4]

Stage 1

B[O]+C[O]
B[1]+C[1]
B[2]+C[2]

B[3]+C[3]

A[O]
Al

A[2]

=B[0]
=B[1]

=B[2]

+C[O]
+C[1]
+C[2]

Modern Pipeline Processing

* Consider another example:
add a,b; sub ¢,d; mul e,a; xor f,a

* 3-stage pipe (with bubble):

Stage O Stage 1 Stage 2
Cycle 0: add a,b

Cycle 1: sub c,d add a,b
Cycle 2. mul e,a sub c¢,d a = add a,b
Cycle 3 mul e,a nop c = sub c,d

Cycle 4: xor f,a mul e,a nop

ID:

Where Is The Circuitry?

PC (o>

Read
address

Instruction
3

Instruction
memory

Instruction Fetch
Instruction Decode MEM: Memory Access

RegDst
Branch

| .

Add ALU

result
>@>

MemRead

Instruction [31—26] MemtoReg

ALUOpD

MemWrite

ALUSrc

RegWrite

Instruction [25—21]

register 1 Reaq

EBF__

Instruction [20—16] Read data 1
) register 2
He
Write Read
Instruction [15—11] register data2

Write
data Registers

g

Instruction [15-0] 16 Sign- 32
extend

Instruction [5—0]

|

EX: EXxecute

Write Back

Where Is The Circuitry?

£ Testbench options
can run #f Fumning stater

e e ek < s Color key: initialization

27 Squash instrection fetched ve a mispredicted bromch

i 8 e 1 e 0 squashed ID blocked EX MEM

size of a register number 17 Are we Blocked by a dependence on £ or rt?
registar comnt 17 Klso hasdles all faruar -
Parvisfnid] uire BX deps, EX dept, MEN deps, MEM dept, WO deps, WD dept, canfuds, canfudt, dep, blocksd;
i R debugging
Sinptiries AL evees assion 10 -.d; S E s 1=
assign 10 me:
iy £ Bepam (IF 1F 88 = 1O)
“define 07 [31:26] /¢ opeade Field assign EX dept = [IF ir “RT — 10 ral;
define kS [25:21] /¢ s Tield Tovion PN deps = (17 Ly a8 = o
“geTine KT 120:16] /¢ 1T Tiels (1F ir
“dgefine R [35:21] /¢ vd Field Tiaign v iy e rd
define B L1:81 /7 inscdiate/oftact fucld Tssion v dept = (IF I “NT = re 14 R ———
‘define SWMT [18:6] /7 shift aseo assign canfuis = B needs G& ((EX deps o6 IMenhead) || [INEX deps) i (MEM deps || WB depsihi; atvays @igetedge cIkl 1f [rusning) begin
‘Getine FUMCT [5:8] 44 Tunction code (opcade extemsion) werln smfeds = 10 week &6 CIEY vt &% 1Pt || (116 dupk) 6 000 dhpt || 0 i1 It [EX Beakead) v - BIEX alu = 2]; else v - EX alu;
N e mssign ks = PR deys 7w 2 llBl it (EX MewWrite} m|EX alu == 2] <= EX t;
begin & K Inowned, e Taaiim k= (EX dept 7 s) (MEM dcpt 7 4 1 W
. = 1 RIeL; end asa40m ey - 1{ID needs i (X e 1| e v.uwummll Vo=
L5, P Kes RRSeS) RNTTS A RO-DT A STSH; K FURCTeRU; end D needt G (EX Sept || MER dept || WD dept))); e e EX rd)
77 WLt Dperation 15 or 38,40, wsaign blocked = ldep 44 (110 needs S |confute) || {18 perdt 56 Tcanbudclh): B Bad = EX Bad;
PP p— end
‘ho® /¢ DF Tield for all RTYPE instructions
‘gefine BB 6'MBA /4 DP Tield
“define ADBID G'hES /7 DF Field
define SLTID 6'hBb 7/ P Field
‘define MBI G'hBc /¢ D Field
define ORI 6'hed 7/ DP Field #7 10 Instruction Decode stag
ser XORI c‘n:: "o :Je:ll -l_' umm clk) if [n-u-ny & 110 Bad) Begin £ Waset
“define Lut G'RET /7 DP firld it
“define LW &'h23 7y 08 Ficld al:ﬂ‘:mm €Uk} if [reset) begin
R E ‘hab // DR Field
define ADBU 6'h2L // FUNCT Tield . target <= B
“define SUBU 6'hZ3 /¢ FUNCT Field not writing ot
define AN 6'h24 # FUNCT field 10 Meshesd <= 81 // not resding Co=Bi ID rd<B: I Memad<B; ID ALBOp<=B; ID Mewbiite<d; ID Bad<=;
‘define OR 6'RZS /7 FUNCT field o ALUD <= 8, EX rde-; EX Mestaade=s] EX Memritecs; EX Badce
Oefine XOR 6'h2B // FUMCT Tield 1B MemTite <= B; /4 MO STOFiNG Vosti PER Faembs PN Baeebs
“gefine SLTU 6'h2b /4 FUNCT field 1 prd = b
end else begin

coden, defauls to Lt #¢ Brute force decode of instruction
o case (mnsum L

won 4°sma1
HLUADO 4’1 case u.mm_ FINCT)

Pealtesded; ALGp="ALUADD; Hesritet;
-~ ALUSUD;

define ALULUT 4'b1SoB
deTine ALWXDR 4'DILLL

i ALUSKem0;
Heahead-8; MII»— ALUDR,© PersTicet; ALUSTC-O;

7 Gemeric aulti-cycle processer
module processor (halt, reset, clki;

ALNOp= ALUSUR; Mewtirite=s; Bad=0; =nd
i 10§ ALIMA| L i Bad=0; end
Bad=0; end
Badke; end o, 1F IF ir KT, TF ir 9, TF IF ir
Bad=8; end
Bad=0; end
Bag-0; end
" vad0; end
Perfead=0: Membirite=1: Bad=0: end
default: hpn- RegDst=8; Branch=d; Nerfiead=8; ALUOp='ALDOR; Mesbrite=s; Bad=1; end
endcase
5= u..mm 7 s rltqlush-n sl
= {canfudt 7 fwdt : rlsquashed "RT1):
a3) 1.- - |(ll(!lll‘l'!ﬂ|]l]} Squashed "I
target < IF pc + [1an[28:0], 2'608); Tt i e
squath <= {Bramch & (5 = £)); I (ID Badh $display(*ID ille wctio
Ips ==y L 5 10 it r d ro=x1d memR i M e b", 10 0 1 rc, I8 rd, ID MeaR D ALUD Merm: i
met o 1 wetin
I src e (ALUSFC 7 dm : t r 10 Fa - X slu, EX T, BX rd, EX \d, EX Memrite)
1 19’ heiie 7 [..,m 7 squashed “RD : squashed ‘AT) : 48 if ot writing : SR
18 Meste 15 beg
10 ALUop <= ALWOD: F (e) diplay (-7 afndind xad rdad, B slu, BX t, RE v, M rd)
10 Penwrice <~ memrite: Lse Sdisplay|-ne i re N v, KER rd]
. y
b MEM Td ("W u it L MER W)
end "
o
17 Ex: Execute stage
aluays @iposrdge cik) it (rusning) begin
HID ll'lil.rl case (ID ALMDp) n
n anch, Merfiead, MemWrite, ALUSrc, Reghrite, Bad, ID Meafead, T0 Mewbrite, I0 Had: ALUAND: s = '
ALoR: atu -
ALDADD: alu = -
ALvsi: alu = :
TALUSLT: alu =
rry smash ALDR: atu = seessor PE(hal 0
default: alu -
1 BX registers micase \itial begin
Teq EX Permead, EX memrite, EX Bad: o cukpeL <l
reg ‘woRD alu, EX alu, EX T! X alu o= alu 2 e <k - B
reg ‘REG EX rd; EX t == ID T3 8
B rd WALIE 11 uTIE) G4 1
* ﬂB‘ I’FDEIEI\' 10 Menfead: # CLED K
ren EX Merkirite <= b merrite; 2" cLroEL clk

reg v, e v X Bad <= 10 Bad -
rey REG MEM rd; ena ’

2 n-?" 1=
|5

SIMD parallel across PEs (processing elements)

* E.g.: Thinking Machines, MasPar

* Each PE either applies same operation or
is disabled for that operation

* 1980s examples were bit-serial, but parallel
across massive number of PEs (e.g., 64K)

Generic SIMD Architecture

Control Unit CuU 1+D MEM
conventional processor...

Processing Elements
ALUs + local data " a A

PE Data Memory
Optional; coherent?

REGSO0 REGS1 REGSn-1

GPUs nest this structure PE D MEM
within each PE+REGS

Generic GPU Architecture

Graphics Processing Unit
attached to a Host computer

CuU

| MEM

Processing Elements ‘

- SIMDO :

have 2D PE numbering

Virtualized PEs behave
like vector pipelines

If PEx.y for all y are
disabled, CUx can skip

1

|||||||

RRRRRRRRR

LOCAL1D

LGLOBALDJ

Generic SIMD Programming

* A program has two parts:
* Sequential (singular) part run on CU or Host
* Parallel (plural) part run on PEs

* Parallel code says what happens to an
element, hardware applies that to all elements
on PEs that are not disabled

* SIMD: inter-PE communication is cheap
GPU: inter-CUx communication is expensive,
but lower fanout allows a higher clock speed

Sample Algorithm: Compute Tt

* Area of a circle is 1tr?, so r=1 area is Tt
* Area under y=4/(1+x?) over x=0..1 is also 1t

_ 4
Y=1 7 for x€[0,1]

1t in C as an integral

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) ({
int i, intervals = atoi(argv[l]);
double width = 1.0 / intervals, sum = 0;
// sum curve height at each interval
for (i=0; i<interwvals; ++i) {
double x = (i + 0.5) * width;
sum += 4.0 / (1.0 + x * x);

}
sum *= width; // multiply by width to get area

printf ("Pi is roughly %£f\n", sum);
return (0) ;

}

1t in MPL (MasPar’s SIMD C)

#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {

int intervals = atoi(argv[l]) ;

double width = 1.0 / intervals, sum = 0;
plural double dsum = O;

plural int i;
// sum curve height at each interval

for (i=iproc; i<intervals; i+=nproc) {
plural double x = (i + 0.5) * width;
dsum += 4.0 / (1.0 + x * x);

}

sum = reduceAddd (dsum); // tree summation of dsum from all PEs
sum *= width; // multiply by width to get area

printf ("Pi is roughly %£f\n", sum);

return (0) ;

1t in MPL (MasPar’s SIMD C)

#include <mpl.h> // MPL support defines nproc, etc.

int main(int argc, char **argv) {

int intervals = atoi(argv[l])

double width = 1.0 / intervals, sum = 0;
plural double dsum = O;

plural int i; int j;

// sum curve height at each interval

for (i=iproc; i<intervals; i+=nproc) {

plural double x = (i + 0.5) * width;

dsum += 4.0 / (1.0 + x * x);

}

// tree summation of dsum from all PEs

for (j=nproc/2; j>0; j>>=1) dsum += router[iproc+j].dsum;
sum = proc[0] .dsum;

sum *= width; // multiply by width to get area
printf ("Pi is roughly %£f\n", sum);

return (0) ;

1t in CUDA (final sum in Host)

#include <stdio.h>

#include <cuda.h> // CUDA support

#define INTERVALS 1000000

#define BLOCKS 4 // number of thread blocks (little SIMDs)

#define THREADS 192 // number of threads per block (virtual PEs per little SIMD)

// Kernel that executes on the CUDA device (the GPU)

__global void summer (float *sum, int intervals, float width, int nproc) {
float x; int i, iproc = blockIdx.x*blockDim.x+threadIdx.x; // iproc is global PE number
for (i=iproc; i<intervals; i+=nproc) {
x = (i+0.5) *width; sum[iproc] += 4.0/ (1.0+x*x); // sum[iproc] is sum computed by PE iproc
}

}

// Main routine that executes on the Host

int main(void) {

dim3 dimGrid (BLOCKS,1,1); dimBlock (THREADS,1,1); // Grid and Block dimensions

float pi = 0, width = 1.0/INTERVALS;

size t size = BLOCKS*THREADS*sizeof (float); // array memory size in bytes

float *sumDev, *sumHost = (float *)malloc(size); // allocate array on Host

cudaMalloc((void **) &sumDev, size); cudaMemset (sumDev, 0, size); // allocate & zero array on GPU
summer <<<dimGrid, dimBlock>>> (sumDev, INTERVALS, width, THREADS*BLOCKS); // run GPU kernel
cudaMemcpy (sumHost, sumDev, size, cudaMemcpyDeviceToHost); // copy sum array from GPU to Host
for (int i=0; i<THREADS*BLOCKS; ++i) pi += sumHost[i]; // sum partial sums in Host (sequential!)
pi *= width; // multiply by width to get area

printf ("Pi is roughly %$f\n",pi);

free (sumHost) ; cudaFree (sumDev); // free data structures (would happen at exit anyway)
return (0) ;

R
. : A wellT e T
——
e
-

Shared Memory MIMD (Multiple |, Multiple D)

* E.g.: SGI Origin, Multi-Core processors
* Each PE runs a process or thread

* Coherent memory doesn’t easily scale...

Rl E e

1t in C using PThread Library

#include <stdlib.h>

#include <stdio.h>

#include <pthread.h>

volatile double pi = 0.0; // approximation to pi (shared)
pthread mutex t pi lock; // lock for unique access to pi
volatile double intervals; // how many intervals?
#define NPROC 8

void *process(void *arg) {
double localsum = 0, width = 1.0 / intervals;
int i, iproc = *((int *) arqg);
for (i=iproc; i<intervals; i+=NPROC) { // partial summation on this PE
double x = (i + 0.5) * width; localsum += 4.0 / (1.0 + x * x);
}
pthread mutex lock(&pi_lock); // wait to have unique access to pi
pi += localsum; // I'm the only PE here now!
pthread mutex unlock(&pi_lock); // we are done with pi
return (0) ;

}

int main(int argc, char **argv) ({

pthread t thread[NPROC]; void * retval; int ip[NPROC];

intervals = atoi(argv[1l]);

pthread mutex init(&pi lock, NULL); // initialize the lock on pi to unlocked

for (int i=0; i<NPROC; ++i) ip[i] = i; // initialize iproc values for threads

for (int i=0; i<NPROC; ++i) pthread create(&thread[i], NULL, process, &ip[i])); // make threads
for (int i=0; i<NPROC; ++i) pthread join(thread[i], &retval); // join (collapse) threads

pi *= width; // everybody joined, so multiply by width to get area

printf ("Pi is roughly %f\n", pi);

return (0) ;

1t In C using OMP Directives

#include <stdlib.h>
#include <stdio.h>
#include <omp.h> // OMP support

int main(int argc, char **argv) {
int i, intervals = atoi(argv[l]):;
double width = 1.0 / intervals, sum = 0;
// sum curve height at each interval
#pragma omp parallel for reduction(+: sum) schedule(static)
for (i=0; i<interwvals; ++i) {
double x = (i + 0.5) * width;
sum += 4.0 / (1.0 + x * x);
}
sum *= width; // multiply by width to get area
printf ("Pi is roughly $%$£f\n", sum);
return (0) ;

}

4

P I B
=07 4

Message-Passing MIMD & Clusters

* E.g.: ASCI Red, Beowulf, KLAT2, KASYO ...
* Each PE runs a process or thread

* Coherent memory doesn’t easily scale...

1t in C using PVM Library

#include <stdlib.h>

#include <stdio.h>

#include <pvm3.h> // Parallel Virtual Machine library
#define NPROC 4 // set number of PE processes

int main(int argc, char **argv) ({
int intervals = atoi(argv[l])
double width = 1.0 / intervals, sum = O0;
int tids[NPROC]; tids[0] = pvm mytid(); // enroll in PVM
int iproc = pvm joingroup(“pi”); // join a group
if (iproc == 0) { // first PE process in group creates the rest
pvm_spawn (“pvm pi”, &argv[l], 0, NULL, NPROC-1, &tids[1])
}
pvm barrier(“pi”, NPROC); // ensure all PEs exist
for (i=iproc; i<intervals; i+=NPROC) {
double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
}
// tree reducton of sum from all PEs
pvm_reduce (PvmSum, &sum, 1, PVM DOUBLE, 4, “pi”, 0);
sum *= width;
if (iproc == 0) printf("Pi is roughly %f\n", sum); // only PEO prints
// check all PEs are here, leave group, and exit PVM
pvm _barrier (“pi”, NPROC); pvm lvgroup(“pi”); pvm exit();
return (0) ;

1t in C using AFAPI Library

#include <stdlib.h>
#include <stdio.h>
#include "afapi.h" // Aggregate Function API

int main (int argc, char **argv) {
int intervals = atoi(argv[l]);
double width 1.0 / intervals, sum = 0;
if (p_init()) exit(l); // check in with AF network hardware
for (i=IPROC; i<intervals; i+=NPROC) {
double x = (i + 0.5) * width; sum += 4.0 / (1.0 + x * x);
}
sum = p reduceAdd64f (sum); // AF network sums from all PEs
sum *= width;
if (IPROC == CPROC) { // only AFAPI console PE prints
printf ("Pi is roughly %£f\n", sum);
}
p exit(); // check out with AF network hardware
return (0) ;

1t iIn C using MPI Messages

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {
int i, intervals = atoi(argv[l]);
double width = 1.0 / intervals, sum = 0, lsum = 0;
int nproc, iproc; MPI_ Status s;
if (MPI Init(&argc, &argv) != MPI SUCCESS) exit(l); // check in
MPI Comm size (MPI_COMM WORLD, &nproc); // how many PEs?
MPI Comm rank (MPI_COMM WORLD, é&iproc); // who am I?
for (i=iproc; i<intervals; i+=nproc) {
double x = (i + 0.5) * width; 1lsum += 4.0 / (1.0 + x * x);
}
lsum *= width;
if (iproc '= 0) {
MPI Send(&lsum, 1, MPI DOUBLE, 0, 0, MPI COMM WORLD); // send to PEO
} else {
sum = lsum;
for (i=1l; i<nproc; ++i) { // add lsum from each of PEl..PEnproc
MPI_Recv(&lsum, 1, MPI DOUBLE, MPI_ANY SOURCE, MPI ANY TAG, MPI_COMM WORLD, &s) ;
sum += lsum;
}
printf ("Pi is roughly %£f\n", sum);
}
MPI Finalize(); return(0); // check out and exit

}

1t in C using MPI Collectives

#include <stdlib.h>
#include <stdio.h>
#include <mpi.h> // MPI support

int main(int argc, char **argv) {

}

int i, intervals = atoi(argv[l]);
double width = 1.0 / intervals, sum = 0, lsum = O;
int nproc, iproc; MPI Status s;
if (MPI_Init(&argc, &argv) != MPI SUCCESS) exit(l); // check in
MPI Comm size (MPI_COMM WORLD, é&nproc); // how many PEs?
MPI Comm rank (MPI COMM WORLD, &iproc); // who am I?
for (i=iproc; i<intervals; i+=nproc) {
double x = (i + 0.5) * width; lsum += 4.0 / (1.0 + x * x);
}
lsum *= width;
// collectively tree reduce lsum values into a single sum by adding
MPI Reduce (&lsum, &sum, 1, MPI_DOUBLE, MPI SUM, 0, MPI COMM WORLD) ;
if (iproc == 0) {
printf ("Pi is roughly %f\n", sum);
}
MPI Finalize(); return(0); // check out and exit

What is a Quantum Computer?

Is this a Quantum Computer?

-,

Is this a Quantum Computer?

Yup!

Google
Sycamore

Is this a Quantum Computer?

Is this a Quantum Computer?

- Yup!

SpinQ

Gemini

Mini
~$8K

Is this a Quantum Computer?

Is this a Quantum Computer?

Nope!

It is from the
2020 TV mini
series DEVS

Is this a Quantum Computer?

Is this a Quantum Computer?

p— | e ‘Ar—r‘
Va5l = imE i
& e A Fe - |51«
: U (N il ¥ ﬂ
S 1t
& y [t % iR
y v ; =L !
I =
Ny - Ry
¥ T . 2l e o
i 4k i 1 .
! d ¥ 1
]
I
.

Yup!

Itis a
D-Wave
2000Q

Is this a Quantum Computer?

L

Is this a Quantum Computer?

Not quite.

1/2-scale
model of
Fujitsu

Is this a Quantum Computer?

€ > ¢ aa

2 https//www.youtube.com/watch?v=tHfGucHtLqo S0 S £ =5 Q@
83 [Projectors [E-mount [LargeFormat [T Everything @ Meetings sidemenu [All Bookmarks
%) YouTube Search Q 8 + Create

LN~}

—~]

Is this a Quantum Computer?

Yup.

A photonic
qubit using
polarization

Is this a Quantum Computer?

Is this a Quantum Computer?

Yup!

IBM Q

Is this 3 Quantum Computers?

Is this 3 Quantum Computers?

Not quite.

80% scale
model of

IBM Quantum
System Two

Is this a Quantum Computer?

Is this a Quantum Computer?

,a,:w:?' =
o

EEEEEEEE

Nope!

BLUEFORS
This is a

dummy; they
make cooling, |}
not computers |

Is this a Quantum Computer?

Is this a Quantum Computer?

Not quantum;
gquantum-inspired.

KREQC is
Ml Kentucky’s
’ -.ﬂ[Rotationally
ole Emulated
QQ o I Quantum
Q@CQ I Computer

elelolol

What is a Quantum Computer?

* Operates on Qubits rather than bits
* A bit can be either 0 or 1
* A qubit can be 0, 1, or a Probability Density
Function over {0,1}
* A gate-level op on a qubit alters the PDF

 What is a probability density function?
* Encodes probability of 0 or 1
* Not probability because it has more than 1D

* A qubitis really a wave. Isn’t everything? ;-)

What is a Quantum Computer?

* Two or more qubits can be Entangled
* Entangled things have their waves aligned
* This implies E entangled qubits can hold
a PDF over all 2E possible E-bit values
* Entangled things are coupled, creating what
Einstein called Spooky action at a distance

* Measuring a qubit’s value always gives 0 or 1,
and makes that qubit’s value what you read:
measurement collapses superposition... or
does it? Maybe you just get entangled too? :-)

https://www.youtube.com/watch?v=068rdc75mHM

What is a Quantum Computer?

* We think everything in the Universe operates on
gquantum mechanics, so there are lots of ways
to implement qubits and operations on them

* The catch is that it is very difficult to keep qubits
from interacting with other stuff
* Noise corrupts/collapses superposition
* Performing an operation is injecting noise

* Only thermodynamically reversible ops are
viable, and which depends on mechanism used

What is a Quantum Computer?

Sequential code could work if we had enough
qubits, etc., but we don’t

Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

Need a somewhat different algorithm...

1T In a Quantum Computer?

Sequential code could work if we had enough
qubits, etc., but we don’t

Using superposed values to simulate vectors
could compute the local sums, but then how do
we sum across all of them?

No obvious way to do different operations on
individual superposed value components at the
same time, so it doesn’t match the MIMD model

Need a somewhat different algorithm...

1t in C using int sampling

#include <stdlib.h>
#include <stdio.h>

int main(int argc, char **argv) ({
int 1, j, intervals = atoi(argv[l]);
int w = intervals * intervals, sum = 0;
for (i=0; i<interwvals; ++i) {
int h = w / (intervals + ((i*i) / interwvals)) ;
for (j=0; j<intervals; ++3j) {
if (h > j) ++sum;
}
}
printf ("Pi is roughly %f\n", (4.0 * sum) / w);
return (0) ;

}

1t in PBP, pint sampling

#include “pbp.h” // PBP classes and support

int main(int argc, char **argv) ({

int bits = atoi(argv[l]); // number of pbits
pint intervals(l << bits); // intervals in pbits
pint w(l << (2 * bits)); // int scaling factor
pint x = pint(0) .Had(bits); // all x values
pint y = pint(0) .Had(bits,bits); // all y values
pint h =w / (((x * x) >> bits) + intervals);
pint r = (h > y); // r is 1 where below curve

// count ls; quantum would sample probability
double pi = (4.0 * r.Pop()) / (1 << REWAYS) ;
printf ("Pi is roughly $%£f\n", pi);

return (0) ;

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52
	Slide 53
	Slide 54
	Slide 55
	Slide 56
	Slide 57
	Slide 58
	Slide 59
	Slide 60
	Slide 61
	Slide 62
	Slide 63
	Slide 64
	Slide 65
	Slide 66
	Slide 67
	Slide 68
	Slide 69
	Slide 70
	Slide 71
	Slide 72
	Slide 73
	Slide 74
	Slide 75

