Logic

EE599-001 & EE699-010, Spring 2026
Hank Dietz

http://aggregate.org/hankd/

q:gz University of
Kentucky

http://aggregate.org/hankd

Quantum is Programmed
at the (Qu)Bit/Gate Level

* Gate-level optimization is critical
* Very few qubits
* Very limited gate sequence depth
* Additional constraints on gates

* Quantum gates
* Different; optimization is harder
* Some quantum gates don’t have
conventional analogs (e.g., VNOT);
we’ll start with the ones that do

Digital Logic & Optimization

* Conventional gates
* Basic gate types, fanout
* Logic optimization

* Adiabatic/Reversible logic
* Gate types and mechanisms
* No fanout; ancilla
* Logic optimization

* A little Verilog project...

Conventional Gates: NOT

* NOT (A7), 'A, ~A

Al Q
0| 1 >Qi
110

Conventional Gates: AND

* AND (A,B), A&B, A*B, AB

-

RrRLrOOYD
R oOoOrRrOW
R O OO

Conventional Gates: OR

* OR(A,B),A|B, A+B

-

R rOOYD
RroRrow
R R R OO

Logic Optimization

* Sum of Products form
* OR over ANDs, with NOTs
* Rule-based simplifier here:
https://www.boolean-algebra.com/

* Karnaugh maps
* Quine-McClusky:

https://www.mathematik.uni-marburg.de/~thormae/lectures/til/code/qmc/

* Espresso (in Python EDA):

https://pyeda.readthedocs.io/en/latest/211lm.html

* Don’t actually optimize for 2-input gates...

https://www.boolean-algebra.com/
https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
https://pyeda.readthedocs.io/en/latest/2llm.html

We’'ll Be Using Verilog...

IEEE 1364-2005
My slides about Verilog

https://aggregate.org/CPE380/slidesS26verilog.pdf

Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/

lcarus Verilog
https://en.wikipedia.org/wiki/Icarus Verilog

My CGl interface to Icarus Verilog
https://aggregate.org/cgi-bin/iver.cgi

https://aggregate.org/CPE380/slidesS26verilog.pdf
http://www.asic-world.com/verilog/
https://en.wikipedia.org/wiki/Icarus_Verilog
https://aggregate.org/cgi-bin/iver.cgi

We’'ll Be Using Verilog...

IEEE 1364-2005

Verilog HDL by Samir Palnitkar,
ISBN-978-0132599702

Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/

lcarus Verilog
https://en.wikipedia.org/wiki/Icarus Verilog

My CGl interface to Icarus Verilog
https://aggregate.org/cgi-bin/iver.cgi

http://www.asic-world.com/verilog/
https://en.wikipedia.org/wiki/Icarus_Verilog
https://aggregate.org/cgi-bin/iver.cgi

We’'ll Be Using Verilog...

We will use Verilog to implement a gate-level
circuit design & test it

Test will be exhaustive, using an oracle

Let’s run through what that looks like with a
simple example from CPE380:
a ripple carry adder

First fixed size, then parametric...

A 1-Bit Half Adder (HA)

// Half Adder

module ha(sum, cout, a, b);
output sum, cout;

input a, b;

assign sum = a N Db; // sum
assign cout = a & b; // cout
endmodu le

A 1-Bit Half Adder (HA)

// Half Adder

module ha(sum, cout, a, b);
output sum, cout,

input a, b;

xor(sum, a, b); // sum
and(cout, a, b); // cout
endmodu le

A 1-Bit Full Adder (FA)

// Full Adder

module fa(sum, cout, a, b, cin);
output sum, cout;

input a, b, cin;

wire aorb, gen, prop;

xor(sum, a, b, cin); // sum
and(gen, a, b); // generate
or(aorb, a, b); // propagate
and(prop, aorb, cin);

or(cout, gen, prop); // cout

endmodu le

A 1-Bit Full Adder (FA)

“define CSWAP(C,A,B) {A,B}=(C?{B,A}:{A,B})

// Full Adder
module cswapfa(sum, cout, ain, bin, cin);
input ain, bin, cin;
output reg sum, cout; // total 5 registers
reg a, b, g;
always @ (*) begin
sum = 0; cout = cin; a = ain; b = bin; g = 1;
"CSWAP(a, sum, g);
"CSWAP(b, sum, g);
"CSWAP(cout, sum, g);
"CSWAP(sum, cout, g);
"CSWAP(b, cout, g);
end
endmodule

A 1-Bit Full Adder (FA)

“define CSWAP(C,A,B) {A,B}=(C?{B,A}:{A,B})

// CSWAP Full Adder
module cswapfa(sum, cout, a, b, cin);
input ain, bin, cin;
output reg sum, cout; // total 3 writable registers
reg g,
always @ (*) begin
sum = 0; cout = cin; g = 1;
"CSWAP(a, sum, g);
"CSWAP(b, sum, g);
"CSWAP(cout, sum, g);
"CSWAP(sum, cout, g);
"CSWAP(b, cout, g);
end
endmodule

An 8-Bit Ripple Carry Adder

// Ripple carry addition, 8-bit
module add8(sum, cout, a, b, cin);
output [7:0] sum;

output cout;

input [7:0] a, b;

input cin;

wire [6:0] lcout;

fa faO@(sum[O], lcout[O0], a[0], b[O], cin),

fal(sum[1], lcout[1], a[1], b[1], lcout[0]),
fa2(sum[2], Llcout[2], a[2], b[2], Llcout[1]),
fa3(sum[3], Llcout[3], a[3], b[3], Llcout[2]),
fad(sum[4], Llcout[4], a[4], b[4], Llcout[3]),
fa5(sum[5], Llcout[5], a[5], b[5], Llcout[4]),
fa6(sum[6], Llcout[6], a[6], b[6], Llcout[5]),
fa7(sum[7], cout, a[7], b[7], Llcout[6]);

endmodu le

Let’s Test It: testbench

module testbench;
reg [7:0] a, b, refsum; wire [7:0] sum;
reg cin, refcout; wire cout; integer tested=0, wrong=0;

add8 uut(sum, cout, a, b, cin); // unlit under test

initial begin a=0; repeat (256) begin b=0;
repeat (256) begin cin=0; repeat (2) #1 begin
{refcout, refsum} = a + b + cin; // oracle
tested=tested+1;
if ((refcout !'= cout) || (refsum != sum)) begin
$display("Wrong: %d+%d+%d 1is {%d,%d}, but got {%d,%d}",
a, b, cin, refcout, refsum, cout, sum);
wrong=wrong+1;
end cin=1; end b = b + 1; end a = a + 1; end
$display("%d cases tested, %d wrong", tested, wrong);
end endmodule

Let’s Really Test It...

Can run it here:
http://aggregate.org/EE380/aluripple8.html

Notice that this is an exhaustive test

— All 131,072 cases are tried (28x 28x 2)

— Exhaustive testing quickly becomes less
feasible as number of input bits grows

http://aggregate.org/EE380/aluripple8.html

A Parametric Ripple Adder

// Ripple carry addition, BITS-bit

module add(sum, cout, a, b, cin);

parameter BITS=8;

output [BITS-1:0] sum;

output cout;

input [BITS-1:0] a, b;

input cin;

wire [BITS:0] c; // temporary (local) wires

genvar 1;
generate for (i=0; i<BITS; i=i+1) begin:fas
// full adders named fas[i].myfa
fa myfa(sum[i], c[i+1], a[i], b[i], c[i]);
end endgenerate

assign c[0]
assign cout
endmodule

cin; // first carry in
c[BITS]; // last carry out

Let’s Test That One Too...

* Canrun it here:
http://aggregate.org/EE380/alurippleBITS.html

* Notice that the entire Verilog program is just
one line longer than the 8-bit-only version

* This version essentially generates the exact
same gates; there’s no hardware cost to
being parametric

http://aggregate.org/EE380/alurippleBITS.html

All 16 Functions of 2 Inputs

0000
0001
0010
0011
0100
0101
0110
0111

0
A&B
A&!'B

B&!'A

A~B, A'=B
A|B

1000
1001
1010
1011
1100
1101
1110
1111

* Enumerating values in order of {B,A}:

' (A|B)
' (A*B) ,
'B
A|'B, A>=B
1A

B|'A, B>=A
! (A&B)

1

Conventional Gates: XOR

* XOR(A,B),A"B, A!=B, A+B, odd parity

B -

RrRrOODY
R oOoORrRrOW
OREFR OO

Conventional Gates: NAND

* NAND (A, B) is NOT (AND (A,B))

Two-input TTL NAND gate

R R OO Y
RroRrow
O R RO

* Note TTL Totem Pole output

Conventional Gates: NOR

* NOR(A,B) is NOT (OR (A,B))

T

RrRLrOOYD
R oOoOrRrOW
cNeolNelNTNO

Constructing XOR
o B
3%%>D
A DN
- oo

BDD Analysis/Optimization

a&b alb a”b

 BDD (Binary Decision Diagram) is commonly
used for proofs and logic optimization

* Biddy is a library for BDD optimization
https://aggregate.org/cgi-bin/biddy.cgi

https://aggregate.org/cgi-bin/biddy.cgi

BDD Gate is ITE (If-Then-Else)

* ITE(S,B,A) iSMUX(S,A,B),(S?B:A)

Sel

[3]0)

— Qut

Int

R R R ROOOOMWM
PR RPOORKRERFROOYD
R OROKFRORROW
R ORORRFEROO

Conventional Gates: ITE

* ITE(S,B,2) is a universal gate:

NOT (A) (A?0:1)
AND (A, B) (A?B:0)
OR (A,B) (A?1:B)

XOR (A, B) (A? (B?0:1) :B)

* Also used as BDD (Binary Decision Diagram)

BitC Language & Compiler

 BitCis a C dialect created for KY Architecture

Nanocontrollers: KITE (KY If-Then-Else)
https://aggregate.org/KYARCH/

* bitcc is the BitC compiler generating ITEs
https://aggregate.org/cgi-bin/bitcc.cgi

https://aggregate.org/KYARCH/
https://aggregate.org/cgi-bin/bitcc.cgi

A BitC Example

State 0

r9 r7 ré ro 5] rl

Costorra 3\ Comso> | Coaoreor | Costoron

S — L/

733?9-?7:?5{)'7' :_”7117(5?7_07:?_}'/' -f?=§§-) '_'Jr-_é?('i?sﬁjﬁ-]-“:"
l l <
15=73 75(_;?71__65} 665_8?67_6}
l e
r4=72 ~ 69(9768:65)
r3=69

* int:4 a; int:2 b, c¢; a=b*c;
e [r0]=0, [r1]=1, [r5:r2]=a, [r7:r6]=b, [r9:r8]=b
https://aggregate.org/cgi-bin/bitcc.cgi

https://aggregate.org/cgi-bin/bitcc.cgi

ITEs in Verilog

* Verilog has the ?: operator

* We want to sequence gates, so we’ll use
regs and assignments in an always

e Make a SITE macro: Store ITE

* Our example multiplies 3-bit numbers
* int:3 a,b,c; a=b*c;
https://aggregate.org/cgi-bin/bitcc.cgi
* Here’s the Verilog code:
https://aggregate.org/QC/sitemul .html

https://aggregate.org/cgi-bin/bitcc.cgi
https://aggregate.org/QC/sitemul.html

Adiabatic Logic

* Thermodynamically reversible gates

Fredkin & Toffoli, 1978: used caps+inductors
Hall 1992 & Merkle 1992: 15t reversible comb.
Younis & Knight, 1993: 1% reversible FSM
Group at MIT, 1995-1999: Pendulum, etc.
More in Flordia, Notre Dame, UK, etc.:
Spring 2019 CPE480 AXA:
https://aggregate.org/EE480/axa.html

* (Gates can operate forward or reverse...
can even build instruction set to do that

https://aggregate.org/EE480/axa.html

Reversible Instructions

* Have inverses...
 XOR (but NOT AND, ORY!)
* Rotates (but NOT Shifts!)
* Add, Subtract
* Exchange (but NOT Store or Load!)
* Jumps that note where they came from (land)

 AA=B is reversible, but AA=A is NOT

* Using only such ops, code can execute forward
or backward

Energy Recovery

* Power supply is phased (i.e., a clock)

Fanout==1

Send energy forward, then recover it:
think sending +1, then recovering -1

Can do this with fairly ordinary gates,

if you don’t care about running in reverse
Awkward to scale up

Symmetric Outputs

* Every signal takes two lines
* Fanout ==
* Qutput logic 0is {0,1}, logic 1 is {1,0}
* A lot of extra wires...
* Can be applied to conventional gates if you
don’t need to run in reverse

Billiard-Ball Conservancy

* Number of 1’s input == 1’s output
* Fanout ==
* Requires special gates, e.g., CSWAP,
Conditional SWAP, aka Fredkin
(which is also known as a Fredkin gate)
* Easily reversible execution

CSWAP (Fredkin) Gate

* CSWAP(S,A,B) IS {(S?B:A), (S?A:B)}

Out0
— Outil

IRXR

SET o)
In0

m
OO r-H O-HOOHH

<
OO0 0O - -HO-HOH

MO -HO-HOHOH
KOO -HHOOHH

NOOO0OO - «H

CSWAPs in Verilog

* Verilog modeling of CSWAP

* Sequence of gate operations

* Make and use a CSWAP macro:
"define CSWAP(S,A,B) {A,B}=(S?{B,A}:{A,B})

* No assignments outside the macro except
initialization, no repeated operands

 Goal: same function, minimum ancilla with
unit fanout (sequential reuse is OK)

* Here is a 1-bit Full Adder using CSWAP:
https://aggregate.org/QC/cswapfa.html

https://aggregate.org/QC/cswapfa.html

How To Copy A Value?

* copy=0;
notcopy=1;
"CSWAP (S, copy,notcopy) ;

Note that this also makes complement...
but copy and notcopy are essentially ancilla

Your Project

Start with the SITE code:
https://aggregate.org/QC/sitemul .html

That code uses a big array of bits and creates
a new bit for each result... CSWAP doesn’t

Rewrite module mul so it uses only CSWAP

* Use as few CSWAP as possible
* Use as few ancilla as possible

https://aggregate.org/QC/sitemul.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

