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Quantum is Programmed
at the (Qu)Bit/Gate Level

* Gate-level optimization is critical
* Very few qubits
* Very limited gate sequence depth
* Additional constraints on gates

* Quantum gates
* Different; optimization is harder
* Some quantum gates don’t have
conventional analogs (e.g., VNOT);
we’ll start with the ones that do



Digital Logic & Optimization

* Conventional gates
* Basic gate types, fanout
* Logic optimization

* Adiabatic/Reversible logic
* Gate types and mechanisms
* No fanout; ancilla
* Logic optimization

* A little Verilog project...



Conventional Gates: NOT

* NOT (A7), 'A, ~A
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Conventional Gates: AND

* AND (A,B), A&B, A*B, AB
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Conventional Gates: OR

* OR(A,B),A|B, A+B
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Logic Optimization

* Sum of Products form
* OR over ANDs, with NOTs
* Rule-based simplifier here:
https://www.boolean-algebra.com/

* Karnaugh maps
* Quine-McClusky:

https://www.mathematik.uni-marburg.de/~thormae/lectures/til/code/qmc/

* Espresso (in Python EDA):

https://pyeda.readthedocs.io/en/latest/211lm.html

* Don’t actually optimize for 2-input gates...


https://www.boolean-algebra.com/
https://www.mathematik.uni-marburg.de/~thormae/lectures/ti1/code/qmc/
https://pyeda.readthedocs.io/en/latest/2llm.html

We’'ll Be Using Verilog...

IEEE 1364-2005
My slides about Verilog

https://aggregate.org/CPE380/slidesS26verilog.pdf

Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/

lcarus Verilog
https://en.wikipedia.org/wiki/Icarus Verilog

My CGl interface to Icarus Verilog
https://aggregate.org/cgi-bin/iver.cgi


https://aggregate.org/CPE380/slidesS26verilog.pdf
http://www.asic-world.com/verilog/
https://en.wikipedia.org/wiki/Icarus_Verilog
https://aggregate.org/cgi-bin/iver.cgi

We’'ll Be Using Verilog...

IEEE 1364-2005

Verilog HDL by Samir Palnitkar,
ISBN-978-0132599702

Various Verilog materials online, e.g.:
http://www.asic-world.com/verilog/

lcarus Verilog
https://en.wikipedia.org/wiki/Icarus Verilog

My CGl interface to Icarus Verilog
https://aggregate.org/cgi-bin/iver.cgi


http://www.asic-world.com/verilog/
https://en.wikipedia.org/wiki/Icarus_Verilog
https://aggregate.org/cgi-bin/iver.cgi

We’'ll Be Using Verilog...

We will use Verilog to implement a gate-level
circuit design & test it

Test will be exhaustive, using an oracle

Let’s run through what that looks like with a
simple example from CPE380:
a ripple carry adder

First fixed size, then parametric...



A 1-Bit Half Adder (HA)

// Half Adder

module ha(sum, cout, a, b);
output sum, cout;

input a, b;

assign sum = a N Db; // sum
assign cout = a & b; // cout
endmodu le



A 1-Bit Half Adder (HA)

// Half Adder

module ha(sum, cout, a, b);
output sum, cout,

input a, b;

xor(sum, a, b); // sum
and(cout, a, b); // cout
endmodu le



A 1-Bit Full Adder (FA)

// Full Adder

module fa(sum, cout, a, b, cin);
output sum, cout;

input a, b, cin;

wire aorb, gen, prop;

xor(sum, a, b, cin); // sum
and(gen, a, b); // generate
or(aorb, a, b); // propagate
and(prop, aorb, cin);

or(cout, gen, prop); // cout

endmodu le



A 1-Bit Full Adder (FA)

“define CSWAP(C,A,B) {A,B}=(C?{B,A}:{A,B})

// Full Adder
module cswapfa(sum, cout, ain, bin, cin);
input ain, bin, cin;
output reg sum, cout; // total 5 registers
reg a, b, g;
always @ (*) begin
sum = 0; cout = cin; a = ain; b = bin; g = 1;
"CSWAP(a, sum, g);
"CSWAP(b, sum, g);
"CSWAP(cout, sum, g);
"CSWAP(sum, cout, g);
"CSWAP(b, cout, g);
end
endmodule



A 1-Bit Full Adder (FA)

“define CSWAP(C,A,B) {A,B}=(C?{B,A}:{A,B})

// CSWAP Full Adder
module cswapfa(sum, cout, a, b, cin);
input ain, bin, cin;
output reg sum, cout; // total 3 writable registers
reg g,
always @ (*) begin
sum = 0; cout = cin; g = 1;
"CSWAP(a, sum, g);
"CSWAP(b, sum, g);
"CSWAP(cout, sum, g);
"CSWAP(sum, cout, g);
"CSWAP(b, cout, g);
end
endmodule



An 8-Bit Ripple Carry Adder

// Ripple carry addition, 8-bit
module add8(sum, cout, a, b, cin);
output [7:0] sum;

output cout;

input [7:0] a, b;

input cin;

wire [6:0] lcout;

fa faO@(sum[O], lcout[O0], a[0], b[O], cin),

fal(sum[1], lcout[1], a[1], b[1], lcout[0]),
fa2(sum[2], Llcout[2], a[2], b[2], Llcout[1]),
fa3(sum[3], Llcout[3], a[3], b[3], Llcout[2]),
fad(sum[4], Llcout[4], a[4], b[4], Llcout[3]),
fa5(sum[5], Llcout[5], a[5], b[5], Llcout[4]),
fa6(sum[6], Llcout[6], a[6], b[6], Llcout[5]),
fa7(sum[7], cout, a[7], b[7], Llcout[6]);

endmodu le



Let’s Test It: testbench

module testbench;
reg [7:0] a, b, refsum; wire [7:0] sum;
reg cin, refcout; wire cout; integer tested=0, wrong=0;

add8 uut(sum, cout, a, b, cin); // unlit under test

initial begin a=0; repeat (256) begin b=0;
repeat (256) begin cin=0; repeat (2) #1 begin
{refcout, refsum} = a + b + cin; // oracle
tested=tested+1;
if ((refcout !'= cout) || (refsum != sum)) begin
$display("Wrong: %d+%d+%d 1is {%d,%d}, but got {%d,%d}",
a, b, cin, refcout, refsum, cout, sum);
wrong=wrong+1;
end cin=1; end b = b + 1; end a = a + 1; end
$display("%d cases tested, %d wrong", tested, wrong);
end endmodule



Let’s Really Test It...

Can run it here:
http://aggregate.org/EE380/aluripple8.html

Notice that this is an exhaustive test

— All 131,072 cases are tried (28x 28x 2)

— Exhaustive testing quickly becomes less
feasible as number of input bits grows


http://aggregate.org/EE380/aluripple8.html

A Parametric Ripple Adder

// Ripple carry addition, BITS-bit

module add(sum, cout, a, b, cin);

parameter BITS=8;

output [BITS-1:0] sum;

output cout;

input [BITS-1:0] a, b;

input cin;

wire [BITS:0] c; // temporary (local) wires

genvar 1;
generate for (i=0; i<BITS; i=i+1) begin:fas
// full adders named fas[i].myfa
fa myfa(sum[i], c[i+1], a[i], b[i], c[i]);
end endgenerate

assign c[0]
assign cout
endmodule

cin; // first carry in
c[BITS]; // last carry out



Let’s Test That One Too...

* Canrun it here:
http://aggregate.org/EE380/alurippleBITS.html

* Notice that the entire Verilog program is just
one line longer than the 8-bit-only version

* This version essentially generates the exact
same gates; there’s no hardware cost to
being parametric


http://aggregate.org/EE380/alurippleBITS.html

All 16 Functions of 2 Inputs

0000
0001
0010
0011
0100
0101
0110
0111

0
A&B
A&!'B

B&!'A

A~B, A'=B
A|B

1000
1001
1010
1011
1100
1101
1110
1111

* Enumerating values in order of {B,A}:

' (A|B)
' (A*B) ,
'B
A|'B, A>=B
1A

B|'A, B>=A
! (A&B)

1



Conventional Gates: XOR

* XOR(A,B),A"B, A!=B, A+B, odd parity
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Conventional Gates: NAND

* NAND (A, B) is NOT (AND (A,B) )

Two-input TTL NAND gate
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* Note TTL Totem Pole output



Conventional Gates: NOR

* NOR(A,B) is NOT (OR (A,B) )
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Constructing XOR
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BDD Analysis/Optimization

a&b alb a”b

 BDD (Binary Decision Diagram) is commonly
used for proofs and logic optimization

* Biddy is a library for BDD optimization
https://aggregate.org/cgi-bin/biddy.cgi


https://aggregate.org/cgi-bin/biddy.cgi

BDD Gate is ITE (If-Then-Else)

* ITE(S,B,A) iSMUX(S,A,B),(S?B:A)
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Conventional Gates: ITE

* ITE(S,B,2) is a universal gate:

NOT (A) (A?0:1)
AND (A, B) (A?B:0)
OR (A,B) (A?1:B)

XOR (A, B) (A? (B?0:1) :B)

* Also used as BDD (Binary Decision Diagram)



BitC Language & Compiler

 BitCis a C dialect created for KY Architecture

Nanocontrollers: KITE (KY If-Then-Else)
https://aggregate.org/KYARCH/

* bitcc is the BitC compiler generating ITEs
https://aggregate.org/cgi-bin/bitcc.cgi


https://aggregate.org/KYARCH/
https://aggregate.org/cgi-bin/bitcc.cgi

A BitC Example

State 0
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l l <
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l e
r4=72 ~ 69(9768:65)
r3=69

* int:4 a; int:2 b, c¢; a=b*c;
e [r0]=0, [r1]=1, [r5:r2]=a, [r7:r6]=b, [r9:r8]=b
https://aggregate.org/cgi-bin/bitcc.cgi


https://aggregate.org/cgi-bin/bitcc.cgi

ITEs in Verilog

* Verilog has the ?: operator

* We want to sequence gates, so we’ll use
regs and assignments in an always

e Make a SITE macro: Store ITE

* Our example multiplies 3-bit numbers
* int:3 a,b,c; a=b*c;
https://aggregate.org/cgi-bin/bitcc.cgi
* Here’s the Verilog code:
https://aggregate.org/QC/sitemul .html


https://aggregate.org/cgi-bin/bitcc.cgi
https://aggregate.org/QC/sitemul.html

Adiabatic Logic

* Thermodynamically reversible gates

Fredkin & Toffoli, 1978: used caps+inductors
Hall 1992 & Merkle 1992: 15t reversible comb.
Younis & Knight, 1993: 1% reversible FSM
Group at MIT, 1995-1999: Pendulum, etc.
More in Flordia, Notre Dame, UK, etc.:
Spring 2019 CPE480 AXA:
https://aggregate.org/EE480/axa.html

* (Gates can operate forward or reverse...
can even build instruction set to do that


https://aggregate.org/EE480/axa.html

Reversible Instructions

* Have inverses...
 XOR (but NOT AND, ORY!)
* Rotates (but NOT Shifts!)
* Add, Subtract
* Exchange (but NOT Store or Load!)
* Jumps that note where they came from (land)

 AA=B is reversible, but AA=A is NOT

* Using only such ops, code can execute forward
or backward



Energy Recovery

* Power supply is phased (i.e., a clock)

Fanout==1

Send energy forward, then recover it:
think sending +1, then recovering -1

Can do this with fairly ordinary gates,

if you don’t care about running in reverse
Awkward to scale up



Symmetric Outputs

* Every signal takes two lines
* Fanout ==
* Qutput logic 0is {0,1}, logic 1 is {1,0}
* A lot of extra wires...
* Can be applied to conventional gates if you
don’t need to run in reverse



Billiard-Ball Conservancy

* Number of 1’s input == 1’s output
* Fanout ==
* Requires special gates, e.g., CSWAP,
Conditional SWAP, aka Fredkin
(which is also known as a Fredkin gate)
* Easily reversible execution



CSWAP (Fredkin) Gate

* CSWAP(S,A,B) IS {(S?B:A), (S?A:B)}
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CSWAPs in Verilog

* Verilog modeling of CSWAP

* Sequence of gate operations

* Make and use a CSWAP macro:
"define CSWAP(S,A,B) {A,B}=(S?{B,A}:{A,B})

* No assignments outside the macro except
initialization, no repeated operands

 Goal: same function, minimum ancilla with
unit fanout (sequential reuse is OK)

* Here is a 1-bit Full Adder using CSWAP:
https://aggregate.org/QC/cswapfa.html


https://aggregate.org/QC/cswapfa.html

How To Copy A Value?

* copy=0;
notcopy=1;
"CSWAP (S, copy,notcopy) ;

Note that this also makes complement...
but copy and notcopy are essentially ancilla



Your Project

Start with the SITE code:
https://aggregate.org/QC/sitemul .html

That code uses a big array of bits and creates
a new bit for each result... CSWAP doesn’t

Rewrite module mul so it uses only CSWAP

* Use as few CSWAP as possible
* Use as few ancilla as possible


https://aggregate.org/QC/sitemul.html
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