
GENERAL-PURPOSE SIMD WITHIN A REGISTER:PARALLEL PROCESSINGONCONSUMER MICROPROCESSORS
A ThesisSubmitted to the FaultyofPurdue UniversitybyRandall James Fisher

In Partial Ful�llment of theRequirements for the DegreeofDotor of Philosophy
May 2003

- ii -

In memoryof my father, Robert, who sparked and supported my interests in many things, andmy grandmother, Ethel, who helped me �nd beauty in the world around me.I miss you both very muh.For Shelbi and Bobby, and the rest of my family and friends

- iii -
ACKNOWLEDGMENTSI would like to thank my ommittee: My adviser, Hank Dietz, for his guidane andfor keeping things interesting; his o-hair, Leah Jamieson, for stepping in when shereally had more than enough things to worry about; and Ed Delp and Zhiyuan Li fortheir patiene and support. I would also like to thank the ECE graduate oordinator,Daniel Elliott, for the same.I would also like to thank several people for their assistane in this researh andpreparation of this dissertation. Tim Mattox always provided a willing soundingboard, as did my other olleagues, Soohong Kim, Gayathri Krishnamurthy, RayHoare, Ekehi Nwokah, Will Cohen, and Rik Kennell (I apologize if I have misspelledanyone's name). Rik was also helpful during the preparation of this doument. MattGolden was espeially helpful with bureaurati matters, as was Andy Hughes withformatting and proedural issues.Dondi Bogusky deserves speial reognition for allowing me to talk him intoputting Linux on the G4 system in his oÆe so that I ould use it. My sister-in-law, Rhonda, also deserves redit for her help with Internet aess and for providinga�eine over the summer.I would espeially like to thank Ed Bos, without whose help I would not have madeit through my undergraduate years, and Tom DeMarse, who kept me sane during myyears at Purdue. Of ourse, it was his fault that I ame here to begin with. I wouldalso like to thank all the other friends I have made at Mihigan State and Purduefor, well, for being my friends.Finally, I would like to thank my mother, Merrill, and my brother, John, for theirlove and support throughout my ollege areer and life.

- iv -
TABLE OF CONTENTS PageLIST OF TABLES : viiiLIST OF FIGURES : xNOMENCLATURE : xiABSTRACT : xii1 Introdution : 11.1 Motivation : 11.1.1 A Brief Introdution to Proessing Models : : : : : : : : : : : 11.1.2 Multimedia Extensions : 61.1.3 My Thesis : 81.2 Related Work : 91.2.1 Software-only Methods : 101.2.2 Non-ompiler Tools : 121.2.3 Libraries : 131.2.4 Compiler Support for SWAR : : : : : : : : : : : : : : : : : : : 141.2.5 Summary : 251.3 Sope of Work : 271.4 Thesis Organization : 272 Analysis of Current Multimedia Extension Sets : : : : : : : : : : : : : : : 292.1 Tables of Multimedia Extension Support for SWAR : : : : : : : : : : 422.1.1 Soures and Arhitetural Features : : : : : : : : : : : : : : : 442.1.2 Arithmeti Instrutions : 452.1.3 Shift and Rotate Instrutions : : : : : : : : : : : : : : : : : : 672.1.4 Bitwise-Logial and Bit-Redution Instrutions : : : : : : : : 702.1.5 Conditionals : 73

- v - Page2.1.6 Data Movement, Repliation, and Type Conversion Operations 882.1.7 Data Extration, Insertion, and Permutation Operations : : : 902.1.8 Interleaving Operations : 962.1.9 Catenating, Paking, and Unpaking Operations : : : : : : : : 1012.1.10 Memory Aess Instrutions : : : : : : : : : : : : : : : : : : : 1052.1.11 Cahe Management Instrutions : : : : : : : : : : : : : : : : : 1142.2 Summary of Multimedia Extension Setson General-Purpose Miroproessors : : : : : : : : : : : : : : : : : : 1202.2.1 MVI : 1202.2.2 PA-RISC MAX-1 : 1232.2.3 PA-RISC MAX-2 : 1262.2.4 MIPS-V : 1282.2.5 MDMX : 1292.2.6 AltiVe : 1312.2.7 VIS : 1342.2.8 MMX : 1362.2.9 3DNow! : 1372.2.10 Enhaned 3DNow! and MMX : : : : : : : : : : : : : : : : : : 1382.2.11 3DNow! Professional : 1392.2.12 Extended MMX : 1402.2.13 SSE : 1412.2.14 SSE2 : 1422.3 Other SWAR arhitetures : 1423 De�nition of a General-PurposeSWAR Programming Model : 1473.1 Relationship to Previous Arhitetures : : : : : : : : : : : : : : : : : 1493.2 Relationship to Previous Programming Models : : : : : : : : : : : : : 1513.3 The General-Purpose SWAR Proessing Model : : : : : : : : : : : : : 1663.3.1 Classi�ation : 167

- vi - Page3.3.2 Data Representation : 1673.3.3 Parallel Operations : 1753.4 Properties of a Well-Designed High-Level Language for SWAR : : : : 1913.5 Development of the Model : 1924 Proof-Of-Conept Implementations of the Model : : : : : : : : : : : : : : : 1954.1 Prototype Libraries for SWAR Proessing : : : : : : : : : : : : : : : 1954.1.1 libMMX : 1954.1.2 SWARlib : 1964.2 The SWARC Vetor Language : 1994.2.1 Type System : 2004.2.2 Control Construts and Statements : : : : : : : : : : : : : : : 2034.2.3 Operators : 2054.2.4 An Example Funtion : 2084.3 The S Compiler : 2094.3.1 Organization : 2094.3.2 The Front End : 2104.3.3 The Bak End : 2114.4 Implementation of Compiler Optimizations For SWAR : : : : : : : : 2154.4.1 Promotion Of Field Sizes : 2154.4.2 Vetor Algebrai Simpli�ation and Bitwise Value Traking : : 2164.4.3 Spaer Value Traking and Simpli�ation of Spaer Manipulation2184.5 Comparison with Conurrent Work : : : : : : : : : : : : : : : : : : : 2205 Evaluation of General-Purpose SWAR Model and Implementations : : : : 2255.1 An Integer Expression Validation Program : : : : : : : : : : : : : : : 2255.2 An Integer Benhmark | Subpixel Rendering : : : : : : : : : : : : : 2275.3 An Integer Emulation Benhmark | Gene Mathing : : : : : : : : : 2285.3.1 Analysis of Results on AltiVe Target : : : : : : : : : : : : : : 2305.3.2 Analysis of Results on MMX Target : : : : : : : : : : : : : : : 233

- vii - Page5.3.3 Analysis of Results on 3DNow! Target : : : : : : : : : : : : : 2345.3.4 Analysis of Results on IA32 Target : : : : : : : : : : : : : : : 2355.4 A Floating-Point Benhmark | Linpak : : : : : : : : : : : : : : : : 2356 Conlusion : 2396.1 Future Researh : 242LIST OF REFERENCES : 244A Historial Perspetive : 261B Supported SWAR Extensionsin Commodity CPUs : 337C SWAR Instrution Mnemonis : 341D S Internal Pseudo-Operations : 385E The Integer Expression Validation Program : : : : : : : : : : : : : : : : : 389F The DNA Example Benhmark : 393G Numerial Results for DNA Benhmark : 405G.1 Results on AltiVe Target : 405G.2 Results for MMX Target : 406G.3 Results for 3DNow! Target : 409G.4 Results for IA32 Target : 409H Linpak Performane : 417H.1 Results for 3DNow! : 417H.2 Results for AltiVe : 420VITA : 422

- viii -
LIST OF TABLESTable Page2.1 Comparison of Multimedia Instrution Set Extensions : : : : : : : : : : : 462.2 SWAR Addition Operations : 502.3 SWAR Subtration Operations : 542.4 Maximum and Minimum Operations : 582.5 Multipliation Operations : 622.6 Combined Arithmeti Operations : 652.7 Division and Advaned Arithmeti Operations : : : : : : : : : : : : : : : 682.8 Shift and Rotate Operations : 712.9 Polymorphi Operations : 742.10 Condition Testing Operations : 792.11 Conditional Flow Control Operations : 832.12 Conditional Data Manipulation Operations : : : : : : : : : : : : : : : : : 862.13 Data Movement, Repliation, and Type Conversion Operations : : : : : 912.14 Data Extration, Insertion, and Permutation Operations : : : : : : : : : 972.15 Interleaving Operations : 1022.16 Catenating, Paking, and Unpaking Operations : : : : : : : : : : : : : : 1062.17 Memory Aess Operations : 1152.18 Cahe Management Operations : 119B.1 Supported SWAR Extensions in Commodity CPUs : : : : : : : : : : : : 338C.1 Comparison of Multimedia Instrution Set Extensions : : : : : : : : : : : 342C.2 SWAR Addition Operations : 343C.3 SWAR Subtration Operations : 346C.4 Maximum and Minimum Operations : 348C.5 Multipliation Operations : 349

- ix -Table PageC.6 Combined Arithmeti Operations : 352C.7 Division and Advaned Arithmeti Operations : : : : : : : : : : : : : : : 354C.8 Shift and Rotate Operations : 355C.9 Polymorphi Operations : 357C.10 Condition Testing Operations : 359C.11 Conditional Flow Control Operations : 364C.12 Conditional Data Manipulation Operations : : : : : : : : : : : : : : : : : 366C.13 Data Movement, Repliation, and Type Conversion Operations : : : : : 368C.14 Data Extration, Insertion, and Permutation Operations : : : : : : : : : 371C.15 Interleaving Operations : 374C.16 Catenating, Paking, and Unpaking Operations : : : : : : : : : : : : : : 377C.17 Memory Aess Operations : 380C.18 Cahe Management Operations : 383D.1 S Internal Pseudo-operations : 386G.1 AltiVe Trial Runs : 407G.2 MMX Trial Runs : 410G.3 3DNow! Trial Runs : 412G.4 IA32 Trial Runs : 415H.1 Results for rolled C ode : 418H.2 Results for SWARC ode : 419H.3 Results for rolled C ode : 420H.4 Results for SWARC ode : 421

- x -
LIST OF FIGURESFigure Page4.1 IR tree for SWAR SAXPY : 2114.2 Fragmentation of a Vetor Addition : 212

- xi -
NOMENCLATUREfxb A partitioned entity with f �elds of b bits eahfxbs A partitioned entity with f signed �elds of b bits eahfxbu A partitioned entity with f unsigned �elds of b bits eahfxbf A partitioned entity with f oating point �elds of b bits eahPart Indiates a partitioned operandSalar Indiates a partitioned operand with idential �eld valuesElement Indiates one �eld of a partitioned operandSingle Indiates a partitionable register taken as a single unpartitionedvalueImmed Indiates an immediate operand enoded in the instrution itselfA Indiates that the result will be added to the aumulatorA Init Indiates that the result will be stored in the aumulatorA Di� Indiates that the di�erene will be added to the aumulatorA Sub Indiates that the result will be subtrated from the aumulator

- xii -
ABSTRACTFisher, Randall James. Ph.D., Purdue University, May, 2003. General-Purpose SIMDWithin A Register: Parallel Proessing On Consumer Miroproessors. MajorProfessors: Henry G. Dietz and Leah H. Jamieson.Reent extensions to miroproessor instrution sets are intended to speed-upmultimedia algorithms by allowing SIMD parallel proessing over multiple data �eldswithin eah proessor register. These extensions, while e�etively supporting hand-oding of some multimedia tasks, do not diretly support a high-level parallel pro-gramming model. Unfortunately, the extensions vary widely aross di�erent proessorfamilies, making portability diÆult to ahieve. Even within one set of extensions,eah operation is supported only for ertain �eld widths, and the widths supportedare di�erent for di�erent operations. This thesis will de�ne a general-purpose SWAR(SIMD Within A Register) programming model. This model will be implementedfor multiple target arhitetures: initially as ompatible libraries, then as optimizingompilers aepting a simple high-level parallel language. The new SWAR librariesand ompiler tehnology should enable a muh wider range of appliations to ahievespeed-up through SIMD exeution using COTS miroproessors.

- 1 -
1. INTRODUCTION1.1 MotivationModern ommodity miroproessors employ a limited form of parallel proessingin order to speed up multimedia algorithms. While these modi�ed arhitetures aresimilar to ertain traditional parallel proessing models, they have unique and variedonstraints on how they an be used. Traditional models of parallel proessing arebased on more powerful arhitetures and thus do not aount for these onstraints.To better reet the apabilities and limitations of these new arhitetures, and tobridge the gaps between them, a new abstrat model is required. We all this newproessing model SWAR (SIMD Within A Register).1.1.1 A Brief Introdution to Proessing ModelsTo understand why previous abstrat models are not suÆient, we need to havean understanding of these models and their purposes. Flynn's lassi�ation of pro-essing systems [1℄ is useful in this endeavor, and we will use it to help denote thevarious proessing models in this disussion. While we will often treat them as be-ing interhangeable, omputer arhitetures and the languages used to program themmay atually be based on di�erent proessing models. In this disussion, we will dif-ferentiate between arhitetural and programming models as neessary. Also, thesemodels are presented in an order that is not neessarily hronologial, but shouldhighlight their salient properties.Sequential proessors exeute a single instrution on a single set of salar operandsat any given time. To reet this fat, Flynn named this proessing model SISD(Single Instrution stream, Single Data stream). This model is the basis for most

- 2 -omputers inluding the �rst miroproessor systems. While SISD systems are suf-�ient for many of the omputing problems we enounter on a daily basis, they aretoo slow to be used to solve very large problems in a reasonable amount of time. Adesire to improve upon this situation led to the development of new arhitetures andproessing models.Pipelined proessors are SISD mahines in whih eah instrution is exeuted in asingle proessing unit with multiple stages. The proessor is set up like an assemblyline with eah stage performing one part of the total work needed to omplete theinstrution. An instrution an oupy only one stage of the pipeline at any giventime, leaving the remaining stages available to other instrutions. Thus, multipleinstrutions from an instrution stream an be in the pipeline simultaneously.In mathematis, a vetor is a single-dimensional, multi-element objet. Vetorprogramming models help programmers express operations on vetors more oniselythan do salar models. Many of these operations are applied to eah of the vetor'selements independently or umulatively. For example, adding two vetors is equiv-alent to adding their elements in a pairwise manner. Vetor programming modelsallow suh operations to be expressed as a single operation on a vetor rather thanas a series of salar operations on the vetor's elements.Vetor proessors were developed to minimize the osts assoiated with perform-ing vetor operations. They apitalize on the fat that most vetor operations arerepeated over many elements. For these operations, some of the pipeline exeutionstages need only be performed one for the entire vetor. Thus, vetor proessorsredue exeution time by removing redundany in the exeution of idential element-wise operations.The simplest vetor proessors exeute repetitive vetor operations by sequentiallyrunning the vetor elements through an ALU whih performs an idential operation oneah element. Pipelined vetor proessors allow multiple ALUs to be hained togetherto form an exeution pipeline similar to that of a pipelined SISD proessor. This

- 3 -inreases the performane of the proessor by allowing multiple vetor operations tonot only share ontrol stages but also to overlap in time.While these vetor proessors an ahieve signi�ant speedup, they fail to fullyexploit the available parallelism of vetor ode. This is beause they perform eahoperation on only one set of orresponding elements at a time. Thus, in some sense,they are atually just improved SISD mahines. To obtain better performane, pro-essing models were developed in whih work is performed on multiple parts of aproblem simultaneously (i.e. in parallel). This is known as parallel proessing.These new proessing models were more losely mathed to the large, sienti�problems whih high-performane systems were intended to address than were thesalar models upon whih sequential and simple vetor proessors were based. Theseproblems inluded the modeling of physial phenomena suh as weather and nulearreations and the analysis of observed data suh as satellite photographs.In these problems, physial environments or entities are represented by large datasets. For example, eah datum may represent the value of some physial property atone of thousands of points within an environment at some given time. At eah point,the predited future value of this property is a funtion of its urrent value and itsvalue at eah of the neighboring points in multiple diretions. Thus, solving theseproblems typially requires not only large amounts of omputational power but alsotimely aess to both loal and neighboring point data.Parallel proessors are systems whih are based on parallel proessing models.These systems onsist of multiple proessing units whih operate on multiple instru-tion streams simultaneously. Typially, these proessing units are onneted to forman array via one or more ommuniations networks. These interonnetion networks,whih are sometimes referred to simply as the interonnet, allow point data to bepassed between neighboring proessing units in one or more dimensions. Thus, thesesystems were designed to be appropriate targets for large-sale sienti� problems.There are two major forms of parallelism whih these systems exploit. Controlparallelism refers to the separation of a problem into multiple independent setions

- 4 -whih an be exeuted simultaneously. Data parallelism refers to problems with aregular nature in whih the same series of operations must be applied to multiplesets of data. Di�erent proessing models and arhitetures were developed to exploitthese di�ering forms of parallelism.MIMD (Multiple Instrution stream, Multiple Data stream) is a parallel proess-ing model that was developed as a means of exploiting ontrol parallelism in largeproblems. The omputational nodes of a MIMD proessor eah exeute a series ofinstrutions whih may di�er from that of the other nodes. This allows eah node toexeute an independent setion of the problem.MIMD proessors an simultaneously run multiple unrelated setions of ode ormultiple opies of idential ode. This allows various programming models to be usedto program these systems. For example, the MIMD programming model is basedon the assumption that the problem is divided into piees that may need to besynhronized oasionally, but are otherwise ompletely independent. The SPMDprogramming model (Single Program, Multiple Data) is similar, but is based on theassumption that the independent piees are idential.While MIMD proessing is quite versatile, there is a ost assoiated with thisexibility due to the repliation of both omputational and ontrol hardware. Thismakes MIMD relatively expensive. Other proessing models were developed as ameans of avoiding this ost while still bene�tting from some form of parallelism.One suh model was SIMD (Single Instrution stream, Multiple Data stream),whih was developed as a relatively inexpensive means of exploiting data parallelism.This is done by applying eah operation simultaneously to as many data points aspossible. Thus, a single instrution stream is exeuted on multiple data streams.SIMD systems an be divided into vetor-based and array-based systems. VetorSIMD proessors, also alled vetor parallel proessors, are single-dimensional SIMDproessors designed to operate on vetor data objets. SIMD array proessors areSIMD arhitetures whose PEs are onneted in shapes of two or more dimensions.

- 5 -Vetor SIMD proessors exeute repetitive vetor element operations in a simul-taneous fashion. With these proessors, data is loaded into a set of vetor registerswhih hold some �xed number of elements. Operations are then performed on someor all of these elements simultaneously. This allows the proessor to take advantageof the data parallelism inherent in vetor proessing to ahieve higher performanethan non-parallel vetor proessors.While vetor proessors shorten the time required to solve ertain lasses of prob-lems, they are not well-adapted to solving large multi-dimensional problems eÆiently.Array proessors are better suited to these problems beause they allow arrays to beproessed with their oordinate systems intat. That is, these proessors allow datafrom neighboring points in spae to be stored in neighboring proessing units.A typial SIMD system has a single ontrol unit, usually abbreviated CU, and anarray of multiple proessing units whih are often alled proessing elements (PEs).The CU is responsible for reading a single stream of instrutions from memory, de-oding these instrutions into ontrol signals, and issuing the ontrol signals to thePE array. Eah PE exeutes the operation de�ned by the ontrol signals on its owndata stream. This data stream may be from a shared memory, but is usually from amemory whih the PE holds privately.Using a single ontroller makes SIMD systems inexpensive ompared to the moregeneral MIMD arhitetures in whih the ontrol unit is repliated for eah of thePEs. Yet, for data parallel problems, SIMD retains the bene�ts of parallel proessingassoiated with MIMD, thus giving it a higher performane to ost ratio.One drawbak of SIMD programming models is that they are severely limitedwhen ompared to MIMD models beause every proessor must exeute exatly thesame instrution simultaneously. This limits them to SPMD-style programs whihare exeuted with every instrution synhronized.This also makes the handling of high-level language ontrol onstruts, suh as ifstatements, diÆult. Typial SIMD systems have speial hardware to turn PEs onand o� (or equivalently, to blok the side-e�ets of exeution) depending on the loal

- 6 -onditions of the PE. If this hardware is not present, the exeuted program must bemodi�ed to nullify the e�ets of ode that should not have been exeuted.1.1.2 Multimedia ExtensionsSeveral programming and mahine models have been developed to improve per-formane over traditional SISD omputers. These were well-developed by the 1990swhen manufaturers of ommodity SISD miroproessors began experimenting withnon-SISD arhitetures for multimedia proessing.Early work in this area foused on enhaning proessors with on-hip graphialhardware. This was typially in the form of a handful of instrutions for speedingommon graphis operations. This inluded operations suh as interpolating theposition of non-end points on a line when only the endpoints were known and testingfor the visibility of objets to determine if they should be drawn on the sreen. Thesee�orts were very limited, and not intended for general-purpose omputing. However,they used methods that were later employed in implementingmore general multimediaextensions.In the 1990s, several manufaturers of ommodity miroproessors began expand-ing their instrution set arhitetures with multimedia extensions. These were in-tended to speedup data parallel algorithms used in graphial and audio proessingwhile keeping the amount of arhitetural modi�ation required to implement themat a minimum. Of the proessing models mentioned, the losest math to these goalswas the vetor parallel subset of SIMD. Thus, the designers of these multimediaextensions implemented them as sets of SIMD-like instrutions.When exeuted, these instrutions are performed on multiple streams of dataresiding in a single CPU register. Thus, these extended arhitetures implement aform of SIMD proessing. However, they di�er from previous SIMD arhiteturesbeause they have only one entral proessing unit (CPU) whose operation has been

- 7 -altered to at like a CU with a set of PEs, rather than an atual set of PEs driven bya single, separate ontrol unit.This means that the entire set of PEs shares the CPU's single data path. Dataan only be moved in and out of the PEs in the equivalent of blok form from a singleshared memory. Thus, a memory aess moves a blok of onseutive bits between aset of neighboring PEs and a single word in memory. This restrition is a signi�antlimitation ompared with typial SIMD arhitetures, whih ould load data fromindependent addresses or from private memories.Data ommuniation is also signi�antly di�erent beause there is often no equiv-alent to the ommuniations networks employed in typial SIMD systems. OftenSHIFT and ROTATE instrutions are the only means available to move data betweenthese pseudo-PEs. One ommuniation type used in later SIMD arhitetures is avetor-indexed ommuniation. This allows eah PE to aess data stored by someother PE, independent of the ations of the remaining PEs. Few multimedia arhi-tetures an perform suh a generalized ommuniation.While not exatly SIMD, these SIMD-like extensions serve their intended purposeby allowing assembly language programmers to apture some of the potential speedupdue to the data parallel nature of the targeted algorithms. Unfortunately, few ofthese extensions were designed with the intention of developing a omplete proessingmodel.Usually, the registers and ontrol logi used to implement these extensions neededto be enhaned to allow SIMD-like proessing. This required onsiderable investmentin the redesign and modi�ation of the existing arhiteture. To minimize this in-vestment while maximizing its pereived bene�ts, eah of the extension sets has beentargeted to support the multimedia algorithms that are believed to be most oftenused on its host platform. Thus, these extensions have limited funtionality and tendto support only those data types and sizes whih are normally used in multimedia.Beause of the variation in the arhitetures and the algorithms whih are typiallyrun on them, the instrutions and data sizes supported often di�er substantially

- 8 -between extension sets. Even within a single extension set, an instrution may existto perform a partiular operation on one size of data, but not on another size. Thiswas intentionally done, based on the assumption that some operations are performedoften on ertain types of multimedia data, but rarely on others.These variations and limitations are the primary problem with multimedia ex-tensions, and limit their usefulness substantially. As a result, these extensions aresuÆient for hand-oding arhiteture-spei�, SIMD-parallel, multimedia operationsat the assembly level, but are less useful beyond this sope. Variations between exten-sion sets make ode portability diÆult, and the lak of onsistent support for di�eringdata sizes often fores format onversions between suessive parallel operations. Fi-nally, these extensions simply do not support ertain data sizes and operations whihmay be useful to appliations programmers in the future.1.1.3 My ThesisI believe that the set of appliations whih an bene�t from these extensions isunknown and not limited to multimedia algorithms and data types. Also, that itis likely that multimedia extensions will ontinue to evolve, with some growing intomore general systems and others dying out. Thus, not only will programmers needto be able to port ode from one arhiteture to another, they will also want theirode to take advantage of future apabilities without having to be rewritten for eahnew arhiteture.Current programming models are either target-spei�, based diretly on sometarget's multimedia extensions, or based on programming models whih do not maththe apabilities of these arhitetures. These models are also unneessarily limitedto urrently ommon data types and sizes. This ultimately limits their usefulnessto those types of appliations whih we are able to foresee in the near future, andalso prevents programmers from expressing algorithms whih are best suited to non-standard data preisions. To move beyond the urrent situation, a general-purpose

- 9 -programming model for the form of SIMD proessing desribed above should bedeveloped.This form of parallelism, in whih a single CPU register holds multiple data itemsthat are operated on in a SIMD manner, is referred to as \miroparallelism" byAlpern, Carter, and Gatlin [2℄, and belongs to a lass of operation known as \sub-wordproessing." We will reserve the former term for any form of parallelism performedwithin a single register, inluding onepts suh as single-register VLIW, and thelatter term to mean any form of proessing data whih resides in less than a fullmahine word (e.g. byte operations on a 32-bit mahine).Thus, we shall onsider the SIMD form of parallelism that this thesis addresses tobe a subset of both miroparallelism and sub-word proessing. We refer to this formof proessing as SWAR (SIMD Within A Register) [3℄.While the limitations of multimedia extensions make it diÆult to develop a on-sistent, portable, general-purpose SWAR programming model, they are not fatal. Infat, a generalized programming model an be developed whih an target standardproessor families with no SWAR-like extensions whatsoever.It is my goal in this researh to reate a SWAR proessing model whih extendsbeyond the limits of urrent models, and to lay the groundwork for ontinued devel-opment of this form of parallel proessing.1.2 Related WorkWhen this work was �rst proposed in 1997 [4℄, we were unaware of any othergroups pursuing a high-level approah to general-purpose SWAR proessing. Knownsupport for SWAR proessing was limited to assembly-level programming tools andhigh-level multimedia libraries. Sine then, the situation has hanged with variousgroups now performing related work.While some of this work is similar to that presented in this thesis, to our knowledgethere are still no other groups whih take as broad an approah to SWAR proessing

- 10 -as the one presented here. In this setion, we disuss related work in the ontext ofthe pursuit of a general-purpose SWAR proessing model.These e�orts an be separated into four primary types: software-only methodsfor SWAR proessing, non-ompiler tools whih assist the programmer in the use ofmultimedia instrutions, pre-written libraries whih make use of multimedia instru-tions, and ompiler support for SWAR proessing. Some of this support was disussedin [5℄. That work is updated and expanded here.1.2.1 Software-only MethodsIn his Dotoral Dissertation to the Royal Melbourne Institute of Tehnology [6℄,Mark Spieth presented the Single Proessor Single Instrution Multiple Data proess-ing model. This model is similar to that of SWAR, but is limited in several ways.The primary goal of the researh was to \explore the feasibility of the software onlysolution to the parallel implementation of arithmeti operations in single proessors."This was a less ambitious goal than that proposed here whih inludes the use ofSWAR hardware, expansion of the model to arbitrary data sizes, and the developmentof a fully portable programming model and related ompiler tehnology.The work by Spieth is a more omplete theoretial treatment of the subset of theSWAR work dealing with the proessing of paked standard integer data using soft-ware tehniques on unenhaned hardware, primarily as it relates to image proessing.In his thesis, Spieth explored various representations of numeri information andprovided a mathematial framework of paked number representations. The primarymethod explored was aliasing, in whih the sign bit of eah register data �eld isoneptually extended into the upper �elds of the register and ombined with thedata in those �elds. This auses the lower �eld data to a�et the bit patterns storedin the upper �elds. An unaliasing step is required to extrat individual �eld datafrom the register.

- 11 -Algorithms were provided for performing the operations Spieth onsidered to bevalid for SPSIMD proessing. These inlude addition, subtration, onstant multipli-ation and division, bit shifts, Boolean (i.e. bitwise logial), and onditionals withinwhih are inluded minimum, maximum, and absolute value operations. This is alimited set ompared to that of the SWAR model.These algorithms were evaluated mathematially to determine the e�ets of alias-ing on their operation and performane. It was found that aliasing plaes limits on thedomains of the operands of these operations. Calulations of the theoretial speedupof these algorithms were also provided. These appear to be ompared to software im-plementations of the same operation on unpaked data rather than against possiblehardware implementations.Spieth also examined the removal of the restritions of the SPSIMD paradigm.These are the restrition of operation domains to prevent overow from ourringand the restrition of result preisions to those of the soure operands. Removal ofthe �rst restrition would allow the operand domain to enompass a larger range ofvalues. Removal of the seond restrition would allow intermediate alulations toinrease in preision.In the disussion of this examination, Spieth desribed split word proessing wherepaked data is \split" into multiple paked words whih eah ontain a subset of thepaked data. This inludes tehniques that were disussed early in 1997 by ProfessorDietz [3℄ and whih are used extensively within the S ompiler disussed later inthis thesis. One of these tehniques is the virtual spaer tehnique for implementingarithmeti operations that may overow. Another is the general method of temporar-ily promoting paked data to a greater intermediate preision, performing operationsat this preision, then repaking the data into its original preision.Spieth found that removing the restritions of the SPSIMD model using split wordproessing was e�etive, but subjet to overhead, memory interfae speed, and theset of assumptions one ould make about the operands.

- 12 -Tests of the e�etiveness of the SPSIMD model were performed on several hand-oded image proessing algorithms. This was done by omparing the results obtainedusing the SPSIMD version with those obtained for rolled and unrolled looped, sequen-tial implementations as baselines. This was done on �ve di�erent mahines, runningfour di�erent operating systems, and ompiled with GCC or Borland C using theirfull set of optimizations.Spieth also briey disussed other riteria for evaluating SPSIMD proessing in-luding ost, onveniene, and suitability. He spei�ally mentioned that he believedthat the development of ompiler extensions would improve the situation by providingpaked data strutures and parallel operations. This is one of the goals of my workand is beyond the sope of Spieth's.A performane omparison of the methods used by Spieth versus those used inthe ompiler implementation desribed in this researh would be an interesting futurework. Also, Spieth's work should be further explored for possible alternative ompilerimplementations of SWAR operations whih are not supported by hardware.1.2.2 Non-ompiler ToolsThe lowest level of support for the use of multimedia extensions inludes toolssuh as pro�lers and debuggers. Neither of these is in the realm of a programmingmodel and an safely be ignored, but we will briey mention some examples to onveya sense of their utility.The VTune optimization pakage from Intel [7℄ provides programmers with per-formane tuning tools whih analyze soure ode and o�er advie for using Intel'smultimedia extensions to improve it. This would typially be used in an ad homanner with programmers performing a oding yle of writing ode, pro�ling, thenrewriting the ode to try to get better performane. For some time, this was the onlysigni�ant means of support provided by Intel for its multimedia extensions.

- 13 -NuMega Tehnologies' SoftICE for Windows 95 and SoftICE for Windows NT [8℄are debuggers whih allow the disassembly of MMX instrutions. These allow theprogrammer to use any available method of generating ode whih ontains multime-dia instrutions, then debug or pro�le the resulting assembly ode. It is likely thatmost multimedia-aware C/C++ ompilation pakages now inlude a debugger and/orintegrated disassembler.1.2.3 LibrariesPre-written libraries provide a high-level interfae to a target's multimedia in-strutions. These libraries are usually both appliation- and target- spei�, andperform ommon high-level operations whih are omprised of multiple hardware in-strutions. They provide a means for appliations programmers to exploit a target'smultimedia extensions without being onerned with the details of the arhiteture;however, they typially do not address the issues of generality or portability.Several appliation-spei� libraries have been developed for MMX, inluding sig-nal proessing [9℄, image proessing [10℄, speeh reognition [11℄, and speeh to textlibraries[12℄. A set of \Performane Libraries", to whih the above libraries may be-long, are inluded with Intel's Fortran and C++ ompilers. These libraries are notintended to provide a general-purpose programming model, and support only spei�data sizes.Apple has adapted its ore math libraries to make use of Motorola's AltiVe [13℄extensions. They plan to rewrite their other libraries for this purpose in the future.Sun Mirosystems provides a C library alled \mediaLib" [14℄ for the VIS ex-tension set. mediaLib an be freely downloaded in binary form for ertain platformsafter a required liensing and non-dislosure agreement [15℄ is eletronially aepted.Doumentation for mediaLib is freely downloadable, and indiates that mediaLib isa high-level library whih o�ers support for basi 8-, 16-, and 32-bit operations, aswell as advaned funtions suh as FFTs.

- 14 -The libSIMD projet [16℄ is an attempt to de�ne a portable math library for\ommonly-used algorithms" aross SIMD-enhaned and unenhaned arhitetures.The goal is to support \trigonometri, omplex number, quaternion and FFT oper-ations" on salar, vetor, and matrix objets. Funtions are expeted to be imple-mented using inline assembly ode to aess multimedia instrutions and C ode forportability to unenhaned arhitetures.While plans for libSIMD are broad, its funtionality is urrently limited, onsistingprimarily of oating-point operations. Vetors and matries appear to be limited tosingle fragment or sub-fragment lengths. The funtion listings in the doumentationrefer to 2-vetors, 3-vetors, and 4-vetors, while matrix funtions operate on 2x2,3x3, and 4x4 matries.libSIMD funtion arguments are objets in memory and results are stored tomemory. Unless the ompiler is able to perform optimizations aross these proedures,possibly via inlining, then the memory aess overhead will be too great to ahievesigni�ant speedup. Our deision to onentrate on a ompiler rather than a generallibrary was partially due to this fat.The primary bene�t of the libSIMD library would be portability of ode betweenvarious multimedia-enhaned and unenhaned targets. However, this aspet seemsto be insuÆiently developed at this time as libSIMD is urrently targeted only toAMD's 3DNow! extension set. This should hange in the future as the author targetsother multimedia extensions.1.2.4 Compiler Support for SWARCurrent ompiler support for SWAR proessing onsists primarily of various meth-ods for exploiting multimedia extensions. This support falls into �ve major ategories:� Inline assembly and ompiler intrinsis. This type of support gives the pro-grammer low-level aess to the instrutions in the target's multimedia exten-sion set. This allows the programmer to use multimedia instrutions, but with

- 15 -a minimum of ompiler support. Programmers must maintain type and parti-tioning information themselves and hoose the orret intrinsi to use based onthis knowledge. In some ases, the ompiler is able to optimize the resultinglow-level ode.� Classes or types whih represent a fragment. Compiler support of this type isalso limited to low-level aess, but type and partitioning information is trakedfor the programmer via the type or lass system of the soure language. Thisinformation may be used by the ompiler to ensure that the orret assemblyinstrution is exeuted based on the partitioning of the fragment operands.� Automati vetorization of loops. This type of support provides an abstratmodel whih hides the use of extended instrutions. With this type of support,well-known tehniques are used to parallelize loops in existing ode. The pri-mary disadvantage is that loops must onform to ertain forms for the ompilerto reognize that they are parallelizable.� Automati vetorization of basi bloks. This type of support also provides anabstrat model whih hides the use of extended instrutions. Here, ode in abasi blok is ombined into operations on fragments. This is a more generalapproah than vetorization of loops beause the ode does not have to be inloop form to be vetorized. The primary disadvantage is the amount of workand spae required to ombine the ode into vetor operations.� Languages with �rst-lass vetor objets. This type of support also provides anabstrat model whih hides the use of extended instrutions. Here, the strutureand semantis of the language indiate whih operations an be automatiallyparallelized. This is more restritive than automati parallelization of basibloks, but provides a onise method for desribing vetor operations.We will now look at eah of these ategories in turn, and desribe some of the relatedwork whih has been, or is being, onduted along these lines.

- 16 -Inline Assembly and Compiler IntrinsisInline assembly is low-level ode for the target mahine whih is inserted intohigh-level language soure ode. This ode is typially emitted diretly into theassembly ode generated by the high-level language ompiler. This lets programmersuse assembly language instrutions of whose existene the ompiler is unaware. Inmany ases this is the only form of support that the ompiler provides for the use ofextended instrution sets.Compiler intrinsis are built-in funtions whih provide a funtion-all-like high-level interfae to the target's mahine instrutions. Generally, these are trivial toimplement and are usually just preproessor maros whih hide inlined assembly odewhih is used to exeute a single instrution. These intrinsis are intended to provideaess to instrutions that the programmer would not otherwise be able to use, butgenerally do not provide funtionality beyond the limits of the extended instrutionset.Inline assembly and ompiler intrinsis operate at too low a level to be onsid-ered for a portable general-purpose SWAR proessing model. However, this is oftenthe starting point for other forms of support, so we will briey survey some of theommerial ompilers whih support the use of multimedia instrutions via intrinsisand/or maros.Both Intel's Fortran [17℄ and C++ [18℄ ompilers supply a set of intrinsis fortheir MMX, SSE, and SSE2 instrution sets. These intrinsis provide a means ofdesribing the appliation of these instrutions to objets in memory. The ompileris then responsible for register alloation and optimization of the resulting ode.Mirosoft's Visual C++ version 5.0 ompiler [19℄ also provides inline assemblysupport for MMX instrutions as well the ability to disassemble ode ontainingthese instrutions.Metrowerks' CodeWarrior [20, 21℄ ompiler provides inline assembly support forboth MMX and AMD's 3DNow! instrutions. This is one of several ompilers of

- 17 -this produt line whih are targeted to di�erent arhitetures. At least one version,CodeWarrior for Ma OS Professional Edition [22℄, supports AltiVe, although it isn'tlear how.Q Software Solutions LCC-Win32 ompiler [23℄ also provides intrinsi support forMMX and 3DNow!. This ompiler is an extension of the l ompiler reated byFraser and Hanson for their text on ompiler design [24℄.The VetorCfPCg [25℄ C/C++ ompiler by odeplay, Ltd., provides inline as-sembly support and intrinsis for the MMX, 3DNow!, and SSE extension sets. Thisompiler is intended primarily for the development of graphis-intensive games.Green Hills Software makes an optimizing C/C++ ompiler [26℄ whih supportsMotorola's AltiVe via a set of high-level intrinsis.The VIS Software Developer's Kit (VSDK) [27℄ inludes a set of maros for usingSun's VIS extensions. VSDK an be freely downloaded in binary form for ertainplatforms after a required liensing and non-dislosure agreement [28℄ is eletroniallyaepted. The doumentation for VSDK is part of the liensed pakage.Aording to [29℄, C ompilers whih provide aess via maros for Hewlett-Pakard's MAX-2 extensions, Sun's VIS extensions, and the multimedia instrutionsof the MiroUnity and and Philips' Trimedia arhitetures have been available sinethe mid-1990's. The authors had suggested that a set of industry standard marosbe developed. To the best of my knowledge, this has never been done.Classes or Types whih Represent a FragmentA vetor fragment is the amount of parallel data than an reside in a singlemultimedia-enhaned register. Coneptually, long vetors of data an be broken intomultiple smaller vetors whih �t into a register. It is these small vetors that werefer to as a fragment.Objet-oriented lasses or simple type de�nitions whih represent a fragment anprovide a �rst-lass feel to these objets and the operations on them. To do this, lass

- 18 -de�nitions inlude funtions whih overload ommon operators with parallel versionsof the operation. Conversely, the use of non-lass type de�nitions generally requires amodi�ation to both the high-level language and the assoiated ompiler to supportparallel operations on these objets.Several ompilers support the use of multimedia extensions via lass or type def-initions. Usually, these fragment-based models are built on top of a set of intrinsisand support only the operations and partitionings native to the target's multimediaextension set. The following is a brief survey of a few of the ompilers that providethis form of support.The Intel C++ ompiler inludes lass libraries for operating on MMX, SSE, andSSE2 fragments.Free Pasal [30, 31℄ inludes prede�ned array types for MMX and 3DNow!, andextends Pasal through what are essentially ompiler diretives to allow some �rst-lass operations on these types.Oxford Miro Devies' C ompiler for its A236 Parallel Video DSP hip [32℄, whihhas instrutions similar to MMX, provides prede�ned strut types for desribingfragments. Arithmeti and omparison operations on these types are performed on asingle fragment of data.Motorola has developed an extension of the C programming language whih in-ludes a new \vetor" type to represent a single AltiVe fragment. This extension isnot intended to be portable to other arhitetures, and requires a modi�ed versionof the GNU C ompiler [33℄, GCC, whih generates AltiVe instrutions to performoperations on these \vetor" objets.Green Hills Software's optimizing C/C++ ompiler [26℄ also supports AltiVe viaMotorola's \vetor" extensions.

- 19 -Automati Vetorization of LoopsUnder strit onditions, and usually with hints from the programmer, some om-pilers are able to vetorize simple data-parallel loops. This support is in the earlystages and is limited in the data types and operations that an our in the body of theloop, although more advane tehniques are under development. This developmentan be expeted to follow that of Fortran loop manipulation and vetorization.Intel's Fortran and C++ ompilers provide automati loop vetorization targetingthe MMX, SSE [34℄, and SSE2 extension sets.Metrowerks' CodeWarrior ompiler provides vetorization for Intel's MMX andalso for AMD's 3DNow! extensions [20℄. Metrowerks is now owned by Motorola, so onewould expet that support for Motorola's AltiVe extensions would be forthoming.Aording to [13℄ this support is urrently under development.Green Hills Software's [26℄ C/C++ ompiler supports AltiVe via automati ve-torization of loops.Codeplay's VetorCfPCg C/C++ ompiler performs automati vetorization forMMX, 3DNow!, Enhaned 3DNow!, SSE, and SSE2 targets [35℄. A separate versionof this ompiler targets the vetor units of the Sony PlayStation2 [25℄.The Portland Group's Workstation ompilers for Fortran 77 [36℄, Fortran 90, C,and C++ [37℄ use a ommon ore whih supports automati vetorization of loopsfor SSE-based targets.Veridian Systems VAST/Parallel restruturing Fortran and C/C++ preproes-sors [38℄ perform automati loop vetorization and reordering as a front-end to anative ompiler. Currently, these preproessors only target the AltiVe multimediaextension set.The VAST preproessors have a long history, dating bak to the mid-1980s whenthe Vetor and Array Syntax Translator by Pai� Sierra Researh Corporation wasused to vetorize Fortran 200 ode for the CDC Cyber 205 [39℄.

- 20 -The VAST-F/AltiVe Fortran Preproessor [40℄ \replaes vetorized Fortran loopswith alls to VAST-generated C funtions ontaining vetor instrutions." The VAST-C/AltiVe C Preproessor [41℄ \automatially replaes loops in C programs with inlinevetor extensions (as de�ned by Motorola)."These preproessors generate C ode in a manner similar to that of the SSWARC ompiler disussed later in this work, but depend on Motorola's modi�edversion of the GNU C ompiler disussed previously.Aording to [13℄, Absoft is also working on automati vetorization of loops forApple's Veloity Engine implementation of AltiVe. Their Pro Fortran ompilersfor Ma O/S 9 [42℄ and PPC/Linux [43℄, however, support AltiVe via preompiledFortran 90/95 intrinsis and optimized benhmark and appliation-spei� libraries.Automati vetorization is only supported for the PPC/Linux version, and seems tobe supported via Veridian's VAST-F/Vetor preproessors.The VSUIF projet at the University of Toronto [44℄ was onduted in the mid-to-late 1990's to add support for vetor miroproessors to the SUIF ompiler [45℄.The goal of this projet was to provide a high-level language programming model forusing these arhitetures.This ompiler vetorizes loop-oriented, high-level language ode into assemblyode for the target arhiteture. The original target was the Torrent arhiteture [46,47℄ whih was then under development at the University of California at Berkeley. Thedesigners planned to target Sun's UltraSPARC with VIS afterward, and a separateresearh e�ort was underway to reate a SPARC ode generator for SUIF [48℄. Thiswas intended to provide the bak-end for VIS targets.At the time [44℄ was written, DeVries and Lee had ahieved some suess vetoriz-ing moderately omplex ode. They were still working on the handling of breaks anda method of lassifying funtions to determine if they would a�et the vetorizabilityof loops when alled. This work was to be validated using the UCB Torrent simulatorbefore work to target the UltraSPARC was to begin.

- 21 -We are unaware of the ultimate disposition of this work, although DeVries' Mas-ter's thesis is based on its implementation and performane [49℄. While this projetwas intended to provide high-level support for vetor proessing, inluding SWAR tar-gets, it takes the loop vetorization approah and does not treat vetors as �rst-lassobjets.Automati Vetorization of Basi BloksA more general approah to automati vetorization is to searh basi bloks forode whih an be parallelized via the use of multimedia extensions. This allows notonly loops to be vetorized, but also unrelated salar ode. This approah is also moregeneral than parallelizing ode based on �rst-lass vetor objets, beause the state-ments whih are automatially ombined into vetor fragments are not neessarilyrelated.Thus, this method is able to exploit a larger amount of parallelism than any otherdisussed. However, as with loop-vetorizing ompilers, a ompiler whih vetorizesbasi bloks is plaed in the position of having to detet parallelism whih is not ex-pliitly desribed in the high-level language. This omplex task requires a signi�antamount of time and spae, more so than any other method of parallelization disussedhere.There are two groups known to be performing researh in this area. The �rst is atthe Massahusetts Institute of Tehnology's Laboratory for Computer Siene. Theother is at the University of Dortmund.Work at MIT's Laboratory for Computer Siene enters around what they termSuperword Level Parallelism (SLP) [50℄. This is de�ned as \short SIMD parallelismin whih the operands and results of SIMD operations are paked in a storage loa-tion" [51℄.The goal is to vetorize high-level sequential ode throughout a basi blok by de-teting sets of single-valued isomorphi statements (statements whih have the same

- 22 -expression struture) and olleting them into a series of vetor fragment operations.This \SLP algorithm" is proposed as an alternative to the vetorization of loopedode. In fat, the SLP ompiler unrolls loops in order to generate isomorphi sequen-tial ode that an be parallelized in this manner. The SLP detetion algorithm isdesribed in [51℄ and elaborated on in [52℄.A later report [53℄ presents a simpli�ed alternative to the SLP vetorizing algo-rithm; however, this algorithm exploits only a subset of the parallelism that the SLPdetetion algorithm an. Results presented in this report were based on the per-entage of dynami instrutions eliminated from sequential benhmarks. These werealulated for the 128-bit AltiVe arhiteture and for larger hypothetial arhite-tures via SUIF. Apparently, no atual timing information was gathered.This projet is based on the vetorization of pre-existing sequential ode whihmay be marked-up with ompiler hints to indiate the presene of hard-to-detetparallelism. As suh, it does not onform to the SWAR vetor programming model.However, it is probably a good omplement to the SWAR model in that it seeks to �ndparallelizable expressions whih are more general than SWAR vetors. Coneptually,one ould fragment vetor and array ode, and apply the SLP detetion algorithm toextrat parallelism from the remaining salar ode.Work at the University of Dortmund enters around \ode seletion" for mediaand embedded proessors. The goal of this work is similar to that of the MIT group.A ompiler tehnique introdued in [54℄ and briey desribed in [55℄ uses a data-ow graph (DFG) as an arhiteture-independent intermediate representation of ahigh-level language (i.e. C) soure. This DFG is then walked using a pattern-mathingalgorithm whih pre-assigns instrutions to the parts of the tree. Branhes whih anbe overed by a single one of the target's SWAR instrutions are traked. Whenthe entire graph is overed, instrutions are atually assigned with the use of SWARinstrutions maximized.The authors seem to be unaware of similar work performed in the parallel proess-ing area. In [54℄ it is laimed that \SIMD instrutions are so far not really exploited

- 23 -by ompilers for media proessors. Taking advantage of suh instrutions is only pos-sible, if proessor-spei� assembly routines or ompiler intrinsis are used, resultingin low portability of software." This is despite the fat that the S ompiler for thetarget-independent SWARC language was freely available for about two years beforethese papers were published and ontemporary ompilers suh as Metrowerks' Code-Warrior [20℄ were apable of performing automati vetorization of simple C languageloops for multimedia-based targets.Languages with First-Class Vetor ObjetsLanguages whih provide �rst-lass vetor objets allow multi-fragment objets tobe de�ned and operated on as a single entity. This has several bene�ts. First, it allowsthe programmer to express vetor operations in a more onise manner than inlineassembly, fragment-based types and lasses, or automatially vetorized salar ode.Seond, it allows portability between arhitetures by hiding their di�erenes, suhas supported partitionings and register sizes, from the programmer. Third, it allowsthe ompiler to deal with issues suh as ode optimization rather than parallelismdetetion.Existing ompilers for languages whih support �rst-lass vetor and array ob-jets, suh as Fortran 90, have been targeted to arhitetures whih have multimediaextensions, but it is not lear that any of these onvert �rst-lass vetor or arrayoperations into multimedia instrutions. For example, the literature for the VeridianSystems VAST-F/AltiVe Fortran preproessor [40℄ never mentions any suh supportalthough loop vetorization is disussed.We are aware of only one other researh e�ort whih spei�ally takes this ap-proah to supporting SWAR arhitetures. This is the Vetor Pasal projet at theUniversity of Glasgow. Vetor Pasal [56℄ is an extension of the Pasal language tosupport �rst-lass operations on vetor and array objets targeted to multimedia-enhaned arhitetures.

- 24 -In Vetor Pasal, unary and binary operations an be performed on ompletearrays or their subsetions. Certain higher-level funtions, suh as sqrt, abs, andsin, are intrinsi to the language and an also operate on these objets.Binary operations inlude modular and saturated addition and subtration, othermodular arithmeti operations suh as multipliation, division, and exponentiation,and various other types of operations suh as omparisons, shifts, and logials. Theseoperations assume an implied identity value if one is not given. This applies tooperations on set expressions as well as numeri ones. For example, the Vetor Pasalexpression /a is equivalent in meaning to the expression 1/a for any value a.For eah of the binary operators there is an assoiated redution operator. Thisapplies the binary operation along the last dimension of its operand. These redutionsredue the rank of the operand by one with the exeption of the salar ase in whihthey have no e�et.Objets of di�erent rank an be operated on in mixed expressions with the re-strition that, exept for redutions, eah variable in the expression must have rankless than or equal to that of the lvalue to whih the expression's value will be as-signed. Operands whih have lower rank are repliated to math the rank of thelvalue. Operands of higher rank must be redued in rank via one or more redutionoperations.User-de�ned funtions whih operate on a salar objet are automatially ex-tended to apply to an array objet of the same type in an element-wise manner. Thismehanism allows the programmer to write funtions that operate on both salars andarrays of various sizes without having to parameterize the dimensions of its formalparameters.One important aspet of SIMD programming that appears to be missing fromVetor Pasal is the proper handling of parallel objets in the language's ontrolonstruts. No mention is made onerning if, or how, onditional onstruts suhas if statements and loops are handled when their onditional expressions are non-

- 25 -salar. This is a signi�ant issue whih should be addressed in the design of a high-level SIMD language.The Vetor Pasal ompiler uses the ILCG [57℄ ode generation system in whih atarget desription language is used to denote the spei�s of the target arhiteture.The initial targets were the Intel 486 and Pentium with MMX. Currently VetorPasal targets the \Intel 486, Pentium with MMX, and P3 and also the AMDK6." [56℄It should be noted that these are all IA32-based arhitetures.1.2.5 SummarySoftware-only methods, suh as Spieth's, annot ompete with those whih takeadvantage of available SIMD instrution set extensions and an thus be rejeted inmost ases. These methods do, however, provide a level of portability between targetswhih annot urrently be obtained using multimedia extension sets only.Low-level, high-performane libraries are losely related to their target arhite-tures. These are often written to be inlined by a ompiler and an thus be easilyoptimized. However, they do not provide portability between arhitetures and arethus insuÆient for our model.High-level libraries tend to be appliation-spei�, intended to perform partiularalgorithms or operations for well-known problems. While typially having reason-ably portable interfaes, these libraries are not intended for use in general-purposealgorithms and are usually too speialized for our purposes.As a general rule, high-performane in library ode omes at the prie of non-portability. Thus, it is diÆult, but not impossible, to develop a portable, high-performane, general-purpose library. Developing suh a library would entail makinga trade-o� between these two ompeting fators.Inline assembly and ompiler intrinsis are diretly related to their assoiatedarhitetures, and thus operate at too low a level to be onsidered for a portablegeneral-purpose programming model. However, they an be useful for ode genera-

- 26 -tion as they tend to ease the integration of unsupported hardware instrutions intopreexisting ompilers.Classes and types whih represent a word-sized fragment of vetor data also op-erate at too low a level to be onsidered for a general-purpose programming model.These are diretly related to their assoiated hardware arhitetures, enoding thesize of their registers, and often only provide aess to the available hardware instru-tions. Thus, they generally do not present a portable programming model. This isnot to say that lasses and new types annot provide a portable level of abstration,only that urrent systems tend not to use these methods to their best advantage.Compilers whih perform automati vetorization of salar loops and basi blokstend to be overly limited in their urrent apabilities. Most of the urrent set ofvetorizing ompilers are only apable of vetorizing simple loops that would be moresuintly expressed as �rst-lass vetor operations. More omplex loops, those thatannot be expressed as vetor operations, are typially too omplex for these ompilersto handle.As urrent ompiler writers learn more about, or reinvent, the work done in thehigh performane omputing ommunity over the last few deades, these ompilerswill beome better at generating vetorized ode from salar soures. However, weshould be developing programming models that make it easier to express omplexoperations, not high-performane ompilers whih optimize soure ode based on thewrong arhitetural model.As part of the development of a new general-purpose SWAR programming model,the subjet of this thesis, we have hosen to design a language with �rst-lass vetorobjets beause we believe this o�ers the best opportunity for performane gains overa large range of appliations and target arhitetures.Unlike any of the related work, this language allows both the preision of thedata and the number of elements to di�er from those supported by the hardware. Italso provides a full, portable set of vetor operations whih are independent of theextended instrutions available on any partiular target. This language, SWARC,

- 27 -will be disussed later in this work, and is, to the best of my knowledge, the onlylanguage whih adheres to this generalized model.1.3 Sope of WorkIn this thesis, a new abstrat model of parallel omputation is developed whihbetter reets the apabilities and limitations of modern SWAR arhitetures thando urrent omputational models. An example language based on this model is pre-sented, as is a ompiler for this language whih uses various tehniques to optimizeode for these arhitetures. Performane metris are also developed and employedto evaluate these implementations. This work should provide a starting point forfuture researh and the development of pratial programming languages for SWARproessing.1.4 Thesis OrganizationThis thesis is organized as follows. Chapter 2 is a study of the multimedia exten-sion sets available in ommodity general-purpose miroproessors. Chapter 3 presentsthe general-purpose SWAR proessing model. Chapter 4 desribes the SWARC lan-guage whih is based on the SWAR proessing model and a proof-of-onept imple-mentation of a SWARC ompiler alled S. Chapter 5 presents various evaluationsof the de�ned SWAR model, the SWARC language, and the S ompiler.

- 28 -

- 29 -
2. ANALYSIS OF CURRENT MULTIMEDIAEXTENSION SETSA new abstrat model of parallel omputation is needed whih will better reet theapabilities and limitations of modern SWAR arhitetures than do urrent ompu-tational models. In order to develop a new model whih adequately aounts for theapabilities and limitations of urrent SWAR arhitetures, it is neessary to have anunderstanding of the range of funtionality whih they support.These arhitetures were reated when ommerial developers of miroproessorsredesigned them to improve their performane on multimedia appliations. Thiswas done by extending their standard instrution sets with new sets of \multimediainstrutions" whih operate in a SIMD manner on parallel setions of their systemdata paths.Eah extension set was tailored to support the algorithms and appliations whihits designers believed to be most important to their lientele. Early extensions tendedto be limited to instrutions whih perform operations that are frequently used in theirpartiular target appliations, and were not intended to present a omplete parallelprogramming model to their users. Thus they failed to provide suÆient support fora viable SWAR proessing model.Beause of the variation in their appliations, the extensions meant to supportthem varied widely. However, some of these appliations di�er only in sope or quality,with the underlying algorithms being equivalent. Consequently, while eah extensionset is unique, its funtionality may have aspets whih are similar or equivalent tothose of other extensions.Later extensions are more omplete, often inluding improvements whih addressproblems with their anestors' designs. Thus, a type of evolution is in play whih

- 30 -may ultimately lead to relatively stable and omplete sets of multimedia instrutions.Unfortunately, urrent extension sets still have limitations.The range of support provided by these extensions still varies widely. The sope ofthese extensions also di�ers, with some inluding a large number of SWAR operations,while others inlude only a few. Support is still limited to data of standard sizes, andis still not onsistent aross these sizes. Also, instrutions neessary for proper SIMDoperation are often laking or limited.The primary goal of this phase of researh was to determine the apabilities andlimitations of the multimedia extension families whih are available on urrent COTS(ommodity, o�-the-shelf) proessors [4℄. This analysis will be used as a basis forthe design and implementation of the general-purpose SWAR programming modelundertaken in later phases of the researh. This is neessary to ensure that thedeveloped model fairly reets the ommon apabilities of urrent arhitetures.This analysis should also be useful when deiding how an arhiteture's enhane-ments will be used within an implementation of the generalized model, and shouldfoster insight into the possibility of ode optimization based on a target arhiteture'senhaned features.Data olletion and organization was arried out over the last few years by myself.The data is derived primarily from programming manuals pertaining to the variousextension sets and their related arhitetures. Other soures of information inludedjournal artiles and promotional literature, but manuals were used whenever possibleas they are generally the most reliable soures.An early survey of multimedia extensions was presented by Kelley and Posti� in[58℄. That paper also disusses issues related to the iruit implementation of multi-media extensions. A limited table of multimedia extensions was presented by Dubeyin [59℄. This was apparently developed at about the time of my thesis proposal [4℄,but I was unaware of it until reently. Unless noted, neither of these was used as asoure of information for the following analysis.

- 31 -In this setion, several urrent extension sets are briey introdued, along withsome older ones whih have interesting features. In the following setion, a set oftables is presented whih desribe the SWAR instrutions available to programmersusing these extension sets.The multimedia extension sets analyzed in this hapter are: Digital EquipmentCorporation's Motion Video Instrutions (MVI) [60℄; Hewlett-Pakard Company'sPA-RISC 1.1 Multimedia Aeleration Extensions (MAX-1) [61℄, and PA-RISC 2.0Multimedia Aeleration Extensions (MAX-2) [62, 63℄; Silion Graphis MIPS-V [64℄and MIPS Digital Media Extension (MDMX) [65, 66℄; Motorola, Inorporated's Al-tiVe [67, 68℄; Sun Mirosystems, Inorporated's Visual Instrution Set (VIS) [69, 70℄;Intel Corporation's [71, 72℄ MMX, whih is also implemented by Advaned Miro De-vies, Inorporated [73℄ and Cyrix Corporation [74℄; AMD's 3DNow! [75℄, Enhaned3DNow! (E3DNow!) [76℄, and 3DNow! Professional (3DNow!Pro); Cyrix's ExtendedMMX (EMMX) [77℄; and Intel's Streaming SIMD Extensions (SSE) [78℄ and Stream-ing SIMD Extensions 2 (SSE2) [78℄.MVIThe Motion Video Instrutions (MVI) were originally developed by Digital Equip-ment Corporation for their Alpha miroproessor arhiteture in about 1996. Thiswas \motivated by the desire to perform high quality software motion video enodingusing the prevalent ISO/ITU video ompression standards." [79℄.MVI was learly not an attempt to develop a high-level SWAR programmingmodel, and is in fat more losely related to the graphial extensions inluded in theIntel i860 or Motorola 88110 proessors than to other extensions studied.MVI onsists of a minimal set of instrutions that perform graphial operationssuh as alulating pixel di�erenes and �nding the larger or smaller of two values.These instrutions operate on data residing in the Alpha's standard 64-bit integer

- 32 -register set. This makes the standard integer instrutions available to the SWARprogrammer.Digital was bought by Compaq Computer Corporation, whih was subsequentlybought-out by Hewlett-Pakard. The Alpha arhiteture and the MVI extensionshave been passed along as well.PA-RISC MAX-1.0The original version of Hewlett Pakard's Multimedia Aeleration eXtensions(MAX-1.0) were intended to aelerate the deompression of video data for real-timedisplay without resorting to speial-purpose hardware.The basi design proess was desribed by hief arhitet Ruby Lee as \...�nd-ing the most frequent operations, breaking them down into simple primitives, andaelerating their exeution." [61℄ This proess resulted in a small set of general-purpose instrutions whih performed basi arithmeti operations, and allowed theseextensions to be used for purposes beyond those for whih they were designed.MAX-1.0 was originally implemented on the 32-bit PA-RISC 1.1 arhiteture PA-7100LC [80, 61℄ whih was introdued in 1994. Primitive arithmeti and shift-and-arithmeti operations were performed by the 7100LC's two integer ALUs on the16-bit subwords of the proessor's 32-bit integer registers. This allowed two MAXinstrutions to be exeuted with every lok yle at peak speed.MAX-1.0 was superseded by the MAX-2.0 extension set with the introdution ofthe PA-RISC 2.0 arhiteture. In eah of the tables, these are ombined under theMAX heading unless there are instrutions whih are only in MAX-2.0. In this ase,the there is a olumn for eah of the two versions, and those listed in MAX-1.0 areavailable in both.

- 33 -PA-RISC MAX-2.0As with MAX-1.0, Hewlett-Pakard Company's MAX-2.0 extensions [62℄ were de-signed to aelerate multimedia proessing without using speial-purpose hardware.MAX-2.0 was developed with the goal of introduing \instrutions that provide sig-ni�ant performane improvement with insigni�ant impat on the area, yle-time,and design time of the PA-RISC proessor." [81℄ A good desription of the thoughtsof the HP designers an be found on page 1-6 of [82℄.MAX-2 was �rst implemented on the 64-bit PA-8000 miroproessor [83, 84℄ in1995 and is onsidered to be an integral part of the PA-RISC 2.0 arhiteture [82℄. It isa superset of MAX-1 whih it extends to support 64-bit arhitetures and instrutionsfor ontrolling data alignment and layout. These inlude simple parallel shifts, \mix"instrutions whih interleave the �elds of two operands, and an instrution whihpermutes the �elds of a register. These instrutions were hosen to signi�antlyaelerate media proessing while still being useful for general-purpose proessing [63℄.MAX-2 uses the integer general registers, integer ALUs, and shift merge units(SMUs) of the PA-8000. The two integer ALUs are similar to those of the 7100LC.The two SMUs perform basi parallel shifting operations, the merging funtions whihinterleave two operands, and the generalized permute operation. This allows upto four MAX-2 instrutions to be exeuted simultaneously. The integer pathwayswere hosen to minimize the amount of modi�ation required and allow the use ofpreexisting integer instrutions suh as extrations.MAX-2 is urrently available in PA-RISC 2.0-based servers suh as HP's rp8400series. With Hewlett-Pakard's aquisitions of Compaq and Digital, and the reentmove toward support for Intel-based systems, the future of the PA-RISC arhiteture,and thus MAX, is in question. It remains to be seen if they will ontinue to besupported.

- 34 -MIPS-V Paired-SingleThe MIPS-V instrution set adds support for partitioned operations on pairs ofsingle-preision oating-point data to the MIPS-IV instrution set. Pages 7-10 of [66℄ontain an overview of these extensions, and detailed desriptions of the instrutionsare provided in [64℄.This extension set was intended to support appliations related to graphis andsignal proessing, suh as \3D [si℄ geometry proessing, oil and gas, and manufa-turing appliations." [85℄ It does this via a reasonable set of oating-point arithmetiinstrutions, a rih set of onditional tests, and data alignment and layout operations.This makes the MIPS-V \paired-single" extensions useful for a variety of appliations.MIPS-V was announed in 1996 [86℄, and was to be introdued with the H1 gen-eration of proessors following the R12000. These were sheduled for prodution inthe �rst half of 1999 [85℄. At some point, MIPS hanged its fous to the develop-ment of proessor ores for appliation spei� markets, and the arhitetures werereorganized. It is not lear to me if MIPS-V was ever atually implemented as a stand-alone entity. The urrent MIPS64 arhiteture is MIPS-V ompatible; however, thepaired-single extensions are an optional feature [87℄.MDMXThe MIPS Digital Media Extension (MDMX) was announed at the same timeas the MIPS-V paired-single extensions [86℄. It was intended to provide support for\video, audio, and graphis pixel proessing by introduing vetors of small integers."Pages 11-19 of [66℄ ontain an overview of these extensions and detailed desriptionsof the instrutions are provided in [65℄. MDMX is one of several \Appliation Spei�Extensions" to the MIPS-V arhiteture. Its presene implies availability of the MIPS-V paired-single extensions.In regards to general-purpose parallel proessing, a paragraph from the MIPSDigital Media Extension de�nition [65℄ is telling:

- 35 -The MIPS MDMX is not intended for general purpose omputing. Soft-ware support for the MDMX is via shared libraries (DSOs) and assemblylanguage only. Compiler support is neither implied nor planned.One of the unique features of MDMX is a 192-bit \aumulator", whih is pri-marily used as the target for repetitive appliations of umulative instrutions. It isdivided into �elds whih are three times as wide as the data being operated on. Forexample, for a data size of 16-bits the aumulator onsists of four �elds of 48-bitseah.Another of MDMX's strengths lies in the variation it allows for the seond sourevetor of its instrutions. Almost all MDMX instrutions allow this soure to be apartitioned register, an immediate value, or a salar whih the instrution repliates.This allows a single immediate or �eld value to be \broadast" to eah of the �elds,and also allows mixed operations between partitioned values and salars. Thus, thisfeature makes MDMX quite versatile.As with the MIPS-V paired-single extensions, MDMX was to be implemented inthe H1 generation of MIPS proessors [85℄. However, it is not lear to me that MDMXever was atually implemented, although similar instrutions exist in the MIPS-64 [87℄and MIPS-3D [88℄ arhitetures. Its unique qualities make MDMX worth studyingin any ase.MIPS-3DThe MIPS-3D graphis extension to the MIPS64 arhiteture was introduedsometime around the year 2000. It is an appliation-spei� extension \intended for64-bit onsumer appliations that need three-dimensional graphis but require mini-mal implementation osts for low-power or System-on-Chip (SOC) solutions." [88℄ Asan extension, MIPS-3D is implemented as an optional ore that an be inorporatedinto an appliation-spei� proessor design.

- 36 -MIPS-3D uses the MIPS64 oating-point unit and operates on \paired-single"oating-point data. It onsists of 13 instrutions for absolute value alulation, ad-vaned arithmeti operations suh as reiproal approximation, redutions, data on-version, and aggregate onditionals.Having only learned of this extension reently, I have deided not to disuss it toany signi�ant depth at this time. However, by adding support for redutions andaggregate onditionals, it address two of the primary de�ienies in urrent SWARextensions.AltiVeMotorola Inorporated's AltiVe [68℄ extension to the PowerPC arhiteture wasdeveloped in the late 1990s and inorporated into the MPC7400 proessor [89℄ in 1999.It was developed to support high-performane omputing and high-bandwidth net-working appliations suh as array proessing, Internet routers, and video proessingsystems [67℄.AltiVe inludes integer and oating-point SWAR instrutions. These are exe-uted by a speial-purpose vetor proessing unit whih operates on data stored ina set of 32 128-bit vetor registers. Its ompleteness and ability to operate on bothinteger and oating-point data make AltiVe one of the better designed extension setsfrom a parallel proessing stand-point.The PowerPC arhiteture was jointly developed by Motorola, Apple ComputerInorporated and International Business Mahines Corporation. However, Motorolahas been the primary developer of AltiVe, with Apple a major onsumer, and IBMdelining to partiipate in the e�ort. AltiVe is a well-de�ned, general-purpose set ofextensions whih is likely to have ontinued use in high-performane and embeddedsystems in the future.

- 37 -VISSun's VIS [70, 69, 90℄ instrution set was intended to support networked appli-ations suh as video onferening, data enryption, and ollaborative software andalso sienti� appliations suh as systems modeling and image proessing.VIS is best suited to handling 16- and 32-bit data, with some support for 8-bit pixel data. The instrutions inluded tend to be speial-purpose and limited inthe data preisions supported. For example, a fairly large set of multipliations isavailable, but these are all mixed-preision operations that operate on 8- and 16-bitoperands. By ontrast, there is no support for the addition or subtration of 8-bitdata at all.One of the design goals for VIS was allow good data ow between memory and theoating-point registers. This is supported with a reasonable set of loads and storesinluding blok aesses and masked stores. These improve throughput and supportSIMD proessing. This may be VIS's greatest strength.VIS was implemented in 1995 with the 64-bit, �rst-generation V9 arhitetureUltraSPARC-I proessor TrGrNo:95. The UltraSPARC-I had a single pair of fully-pipelined graphis add and multiply units. VIS was subsequently implemented in theUltraSPARC-II, a seond-generation V9 proessor with two oating-point/graphisunits [91℄.A somewhat extended version, referred to as VIS 2.0 is available in urrent pro-essors suh as the UltraSPARC III Cu [92℄. The version disussed in this thesis isnow alled VIS 1.0.MMXThe MMX extension set, was designed by Intel Corporation and introdued in1996 in later Pentium (Pentium with MMX) proessors [93, 71℄. MMX was loned byAdvaned Miro Devies, Inorporated [73℄, Cyrix Corporation [74℄, and others suhas Rise Tehnology Company [94℄.

- 38 -It was originally \...designed to enhane performane of advaned media and om-muniation appliations" [72℄ while retaining \full ompatibility with existing oper-ating systems and software." [93℄ An overview of the MMX extensions is providedin [72℄, and detailed desriptions of the instrutions are available in [95℄. A shortsummary, inluding yle ounts, is available in [93℄.MMX operates on integer data stored in the CPU's oating-point (FP) registers.These annot be used for oating-point operations while MMX is in use. Also, the IA-32's standard integer instrutions annot be used on the data stored in these registers.In this sense, MMX is less useful than extensions whih operate on their standardinteger registers.The MMX extensions provide a fairly wide range of support for a high-level par-allel programming model; however, they are limited to 8-, 16-, and 32- bit SWARoperations whih are not implemented onsistently aross these �eld sizes. There arealso no redution operations nor minimum or maximum instrutions whih ould beused for emulating unsupported saturation arithmeti operations. Despite these lim-itations, MMX is one of the more omplete sets of SWAR extensions and has beomea permanent feature of Intel IA-32 arhiteture proessors with a large number ofother extensions built on top of it.SSEIntel's Streaming SIMD Extensions (SSE) [78℄ serve two purposes. First, they�ll in some of the missing piees of MMX. Seond, they add a set of 32-bit oating-point SWAR instrutions whih operate on a new set of eight 128-bit registers. Withthese extensions, the Intel arhiteture is divided into three setions: the basi IA32arhiteture, the integer SWAR MMX, and the oating-point SWAR SSE.SSE is very omplete, but laks 64-bit support and leaves the Intel IA-32 arhite-ture with two di�erent SWAR register sets for di�erent types of data. In this respet

- 39 -AltiVe is better, and has more registers to work with. However, SSE has bettermemory handling and the ability to move data between registers.SSE was introdued with the Pentium III arhiteture in 1999 and ontinues tobe part of the IA-32 arhiteture.SSE2Intel's Streaming SIMD Extensions 2 (SSE2) is a set of integer instrutions primar-ily intended to provide MMX equivalent funtionality to data stored in the 128-bitSSE register set. SSE2 also inludes 64-bit oating-point extensions to SSE andvarious integer extensions to MMX. These are intended to �ll-in gaps in the earlierextension sets to make them more omplete.Combined, SSE and SSE2 form the most powerful set of SWAR extensions ur-rently available. They allow both integer and oating-point data to be stored andoperated on in the same register set. This, and their omprehensive support fordata of standard preision, plaes the SSE/SSE2 pair on par with Motorola's AltiVeextensions.SSE2 was implemented with Intel's Pentium 4 (previously ode-named Willamette[96℄), and is now a permanent feature of the IA-32 arhitetural line. The future ofSSE2 depends on whether this 32-bit line of proessors remains viable given Intel'sdevelopment of the IA-64 arhiteture and on the extent to whih its funtionality isinorporated into this newer arhiteture.3DNow!AMD's 3DNow! [75℄ expands the MMX instrution set by �lling in some of itsgaps and by inluding a set of 32-bit oating-point instrutions. This was intended tosupport \oating-point-intensive and multimedia appliations", and was expeted toimprove frame rates for high-resolution graphis, modeling of physial environments,three-dimensional imaging, and video and audio playbak quality.

- 40 -3DNow! uses the same registers as MMX. This allows mixed-mode expressions tobe evaluated easily. It also allows the MMX polymorphi operations to be applied tooating-point data for masking or extration purposes.3DNow! adds basi arithmeti, omparison, and maximum/minimum operationsfor oating-point data, as well as more advaned mathematial operations suh asreiproals and square roots. It also inludes instrutions for onverting betweeninteger and oating-point formats and instrutions for ahe prefething.3DNow! was �rst implemented on the K6-2 proessor in 1998, a two-pipelineproessor with separate MMX ALU units, but shared 3DNow! resoures. It hassubsequently been implemented on the K6-III and urrent Athlon proessors.Enhaned 3DNow!AMD's Athlon extensions to 3DNow! and MMX [76℄, whih we will refer to asEnhaned 3DNow! or E3DNow!, was intended to provide better support for DVD-quality audio and video streaming and digital signal proessing than did these earlierextension sets.E3DNow! �lls gaps in the MMX and 3DNow! extension sets. It extends 3DNow!with a few instrutions for oating-point aumulation, type onversion, and double-word swaps. It extends MMX with a large set of instrutions. These perform variousarithmeti operations, ahe-bypassing stores for streaming purposes, and store syn-hronization, word layout manipulation, and advaned prefething operations.E3DNow! was �rst implemented on the Athlon proessor [97℄ in 1999 and ontinuesto be implemented on urrent AMD arhitetures.3DNow! ProfessionalAMD's 3DNow! Professional [98℄ was designed primarily to synhronize AMD'smultimedia extensions with Intel's SSE, and thus ease ode migration between these

- 41 -ompeting arhitetures. As with AMD's other multimedia extensions, 3DNow! Pro-fessional is implemented on the MMX registers and data path.The use of the Athlon's MMX register set means that, unlike the Intel IA32 arhi-teture, the AMD arhiteture does not require support for the same set of operationsto be implemented for two separate register sets. All of the SWAR instrutions addedto the AMD arhiteture are available for use with its single enhaned register set.On the other hand, the AMD arhiteture does not have the potential for par-allelism that the Intel arhiteture has with its separate MMX and SSE data pathsand register sets. Thus, while it may be more diÆult to program the Intel arhite-ture for optimal performane, the potential pay-o� may be higher, depending on thenumber of pipelines available.3DNow! Professional was to be implemented in ertain Palomino-ore Athlon pro-essors starting in 2001. These inluded the desktop Athlon MP, but apparently notearlier mobile Athlon 4 proessors (or at least, not the one in my notebook om-puter). 3DNow! Professional is urrently implemented in Thoroughbred-ore AthlonXP proessors [99℄ released starting in the �rst half of 2002. 3DNow! Professional anbe expeted to be inluded in Athlon MP and XP line proessors for the foreseeablefuture.Extended MMXCyrix's Extended MMX (EMMX) [77℄ was intended to extend the MMX exten-sion set in two ways. First, it extended MMX's funtionality by inluding arithmetiinstrutions suh as average, magnitude, and multiply high in order to make it moregenerally useful. Seond, it added exibility by inluding \implied destination" in-strutions.Implied destination instrutions target a register whose use is not expliitly in-diated in the instrution, but rather implied by the use of its sequentially pairedregister. Eah pair onsists of the registers whose numbers di�er in only the least

- 42 -signi�ant bit position. E�etively, these instrutions are three register instrutionsrather than the IA32 standard of two. This allows the instrution to avoid overwritingone of its soures.Aording to [77℄, EMMX was implemented on the MII proessor. The GXm wasalso intended to support EMMX aording to a preliminary version of the Cyrix CPUDetetion Guide [100℄. Unfortunately, EMMX was phased out at about the time ofCyrix's aquisition by National Semiondutor Corporation.In 1999, Cyrix was sold to VIA Tehnologies, Inorporated. The Cyrix MII islisted as a urrent VIA produt [101℄; however, it apparently has been supplantedby the VIA C3, a 1GHz proessor whih supports MMX and 3DNow! [102℄. Thisproessor was formerly known as the VIA Cyrix MIII [103℄.2.1 Tables of Multimedia Extension Support for SWARThe following tables ontain information about the extension sets studied. Thisinformation was gathered from various soures, but was primarily taken from spei-�ations in arhitetural and programming manuals.In general, the desription and tabulation of eah extension set inludes onlythose instrutions that are part of that extension set and not those that are partof the underlying arhiteture or extension sets. For example, instrutions that areinluded in MMX are not listed as being part of SSE, although in urrent arhiteturessupport for SSE implies support for MMX.Exeptions have been made for extensions whih operate on data that resides inthe general register set of the underlying arhiteture. In this ase, existing instru-tions that may be useful for SWAR proessing have been inluded. Spei�ally, thedesriptions for DEC's MVI and HP's MAX-1 and MAX-2 extensions inlude stan-dard integer instrutions whih an be usefully applied to partitioned data stored inthe integer registers on whih these extensions operate.

- 43 -For this analysis, the instrutions have been ategorized into groups whih performrelated types of operations. These inlude arithmeti instrutions, shifts and rota-tions, bitwise-logial and bitwise-redution instrutions, various types of onditionalinstrutions and instrutions whih support ontrol ow, data movement, repliation,and type onversion instrutions, various types of data layout instrutions, memoryaesses, and ahe management instrutions.Some explanation of the notational onventions used within the tables is requiredbefore the tables themselves are presented. These onventions are intended to allowthe data in these tables to be desribed onisely. Periods have been left o� from theabbreviations used in order to minimize the amount of spae used.In the row headings of the tables, the abbreviation \Part" indiates a partitionedoperand, \Salar" indiates a partitioned operand with idential �eld values, \Ele-ment" indiates one �eld of a partitioned operand, \Single" indiates a partitionableregister taken as a single unpartitioned value, and \Immed" indiates an immediateoperand ontained in the instrution itself.Also in the row headings, the abbreviation \A" denotes the use of a separateaumulator, with \A Init" indiating that the operation will lear the aumulator�rst. \A" by itself indiates that the result of the operation will be added tothe value in the aumulator. \A Di�" indiates that the operation will �nd thedi�erenes between the operands, then add these di�erenes to the aumulator. Thenotation \A Sub" indiates that the result of the operation will be subtrated fromthe aumulator.Within the body of the tables, the notation \NxB" indiates an operand or resultpartitioned into N �elds of B-bit integers whih may be signed or unsigned. A trailing\u" indiates that the �eld data is treated as unsigned, and a trailing \s" indiatesthat it is treated as signed.Where suh an entry is listed by itself or in a omma-separated list of values,it indiates that a form of the operation where both the operands and result havethe listed partitioning is supported by the extension set. Where an entry ontains

- 44 -an arrow, the notation shows the form of the operands separated by an operator,followed by the arrow and then the form of the result.The �rst table ontains arhitetural information about representative CPUs whihimplement these extensions. The remaining tables desribe the forms of the instru-tions ontained in eah set. In most ases, separate entries have been made for eahinstrution. These tables are keyed to the similarly numbered tables in Appendix Cwhih list the orresponding instrution mnemoni for eah entry.2.1.1 Soures and Arhitetural FeaturesTable 2.1 lists the primary soures of information and the arhitetural parametersof a representative proessor for eah of the enhaned arhitetures.For eah extension set, the primary soure of information ontained in this andthe following tables is indiated in the row labeled \Primary Soure". Data for eahextension set was taken from the listed primary soure unless otherwise noted.The rows labeled \# R/W MM Registers" indiate the number of read/writeregisters available for use by the orresponding multimedia extension set. Thoselabeled \# R/O MM Registers" indiate the number of read-only registers availablefor use. Some arhitetures reserve register 0 for use as a fast means of obtaining aonstant zero value and do not allow this register to be written to.The rows labeled \# Bits/MM Register" indiate the total number of bits thatan be stored in a single register used by the orresponding extension set. Thisultimately limits the amount of SWAR parallelism that an be obtained within asingle multimedia pipeline.The next row indiates whih of the orresponding arhiteture's register setsare used by the multimedia extension set. Multimedia extensions usually operate ondata in modi�ed existing proessor registers, but some use register sets that have beenadded expressly for use by the resident extension set. Those that are implementedusing existing registers have the advantage of being able to make use of existing

- 45 -instrutions, while those that are implemented using dediated register sets typiallyhave fewer restritions on their individual use.In some ases, multiple sets of registers are used, depending on the spei� in-strution applied. For example, SSE inludes instrutions that operate on data in theSSE-spei� register set, and also instrutions that operate on the MMX-spei� set.Note that only DEC's MVI and HP's MAX extensions are applied to their respetivegeneral integer register sets.The next row indiates the maximum number of memory operands that may beaessed by instrutions that are not spei�ally intended for memory aess purposes.Note that the extensions based on the Intel IA32 arhiteture allow memory operandsfor most instrutions while those based on RISC arhitetures do not. Beause of this,we will not di�erentiate between register and memory operands when disussing IntelIA32-based extension sets unless neessary. Also note that any partiular instrutionmay use a di�erent number of memory operands than the maximum.The row marked \Maximum Soure Operands" indiates the maximum number ofsoure operands that may be used by an instrution in the orresponding extensionset. This is generally inherited from the underlying arhiteture. Any partiularinstrution may have a di�erent number of soure operands than the maximum.The next row indiates whether or not one of the soure operands will be over-written by the result of a typial instrution in the extension set. If reused, theseoperands will have to be opied before the overwriting instrution is applied. Ar-hitetures whih allow non-soure destinations help the programmer to avoid thisproblem as long as there are available registers.2.1.2 Arithmeti InstrutionsTables 2.2 through 2.7 show groups of arithmeti SWAR operations inludingaddition, subtration, minimum, maximum, multipliation, ombined operations, di-vision, and more advaned arithmeti operations. Eah table is desribed in turn.

- 46 -
Table 2.1Comparison of Multimedia Instrution Set ExtensionsArhitetural Feature DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVePrimary Soure [60℄ [61℄ [82℄ [64℄ [65℄ [104℄# R/W MM Registers 31 31 31 32 32 / 11 32# R/O MM Registers 12 12 12 0 01 0# Bits/ MM register 64 32 643 64 64 / 1921 128Whih registers? Integer Integer Integer Float Float or AltiVe VetorAumulator1Maximum MemoryOperands4 0 0 0 0 01 0Maximum SoureOperands5 2 2 2 3 3 3Soure Overwrittenas Destination? No No No No No NoArhitetural Feature Sun Intel Intel IntelVIS MMX SSE SSE2Primary Soure [90℄ [95℄ [95℄ [95℄# R/W MM Registers 32 86 8 8# R/O MM Registers 0 06 0 0# Bits/ MM register 64 646 128 128Whih registers? Float Float6 SSE-spei� SSE-spei�or Float or FloatMaximum MemoryOperands4 0 1 1 1Maximum SoureOperands5 2 2 2 2Soure Overwrittenas Destination? No Yes Yes YesArhitetural Feature AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMX[75℄ [76℄ [98℄ [77℄# R/W MM Registers 8 8 8 8# R/O MM Registers 0 0 0 0# Bits/ MM register 64 64 64 64Whih registers? Float Float Float FloatMaximum MemoryOperands4 1 1 1 1Maximum SoureOperands5 2 2 2 2Soure Overwrittenas Destination? Yes Yes Yes No for implied1From [66℄.2Reads as 0.3From [61℄.4Does not inlude load and store instrutions.5Does not inlude unique destination operand.6From [105℄.

- 47 -Addition OperationsTable 2.2 ontains information on the various forms of addition available in thestudied extension sets. These inlude modular and saturations addition, high-wordresults, and various redutions.Modular addition, also known as wrap-around addition, is \normal" omputeraddition in whih the stored result is the low n bits of the atual result, where n isthe size of the spae in whih the result is to be stored. This is equivalent to takingthe atual result modulo the maximum value storable in the available spae. Eahextension set inludes some form of modular addition exept for MVI, whih doesnot, and the extensions to MMX, whih use the MMX instrutions for this purpose.Most extension sets only allow the modular addition of two partitioned registers;although, as already indiated, those based on the Intel IA32 arhiteture also allow amemory loation to be used as an operand. SSE, 3DNow!Pro, and SSE2 also ontaininstrutions whih modularly add together only the lowest element from eah of twooperands. By ontrast, MDMX only allows modular addition to the aumulator |all other addition is saturated.Beause of its ubiquity and familiarity, modular addition should be inluded inany general-purpose SWAR programming model.Saturation addition is a form of omputer addition in whih the result is set tothe maximum storable value of the same sign when an overow ours. This formof addition is used primarily for multimedia appliations in whih the data valuerepresents some physial parameter whose value should not wrap with inrementalhanges. For example, the volume level on an audio mixer should not suddenly dropto 0 when the user attempts to inrease the volume above the maximum.Again, most of the families support some form of saturation addition, but MVI,MIPS-V, VIS, E3DNow!, and SSE do not. On those arhitetures whih do notsupport them, these operations an be often be emulated. One possibly method is

- 48 -to use a larger-preision addition, then limit the result to the values representable inthe lower-preision form.Saturation arithmeti is seldom used for numeri omputation, but the saturationform of result is often more attuned to the needs of a numeri programmer thanone might realize, and may be used more often in the future. Beause it is reason-ably available and an be relatively easily emulated on most arhitetures, saturationarithmeti should be inluded in any general-purpose SWAR programming model.An NxB \modular addition high" (also known as \addition arry-out") zero-extends the arry bits that would result from a partitioned addition of the NxBaddends and stores them in an NxB result. Only AltiVe has this operation, andthus it is not a good hoie for inlusion in a portable model; however, it is useful foremulating other operations suh as saturation addition.\Saturation redue-add with an element" (Sat. RedAdd with El.) performs asaturation addition of all of the �elds of one partitioned register and the low �eld ofa seond partitioned register. That is it performs a redution addition on the �rstpartitioned register and also adds in the low �eld of the seond. The result is storedin the low �eld of a third partitioned register whose other �elds are zeroed.Only AltiVe inludes this operation. This is unfortunate beause it an be usedto optimize the implementation of redutions, whih our fairly frequently in SIMDalgorithms and are often ostly to emulate. Beause of this, and despite the lak ofsupport for redutions by other extension families, redutions should be inluded ina generalized SWAR model to failitate traditional SIMD proessing.\Saturation partial redue-add with even elements" (Sat. Part. RedAdd w/Even)performs a saturation addition on the N/2 sets of two neighboring �elds of one parti-tioned register and the even element of the orresponding set of elements of a seondpartitioned register. The result is then stored in the even element of the orrespondingset of elements of a third partitioned register whose odd elements are zeroed.\Saturation partial redue-add with a partitioned value" (Sat. Part. RedAddw/Part) performs a saturation addition on the N/2 (or N/4) sets of two (or four)

- 49 -neighboring �elds of one partitioned register and with the orresponding element ina seond partitioned register. The result is then stored in the orresponding elementof a third partitioned register.The previous two instrutions are only inluded in AltiVe, and are a bit tooesoteri for general-purpose work. They are most likely to be used, if at all, asoptimizations in the implementation of other operations.\Saturation redue-add and pak" (Sat. RedAdd and Pak) performs separatesaturated redution additions on the elements of eah of the soures, then paks thesums into a partitioned result. This instrution is only inluded in 3DNow!, andwould be most useful for optimizing the implementation of redution operations.\Saturation redue-add/subtrat and pak" (Sat. RedAdd/Sub and Pak) per-forms a saturated redution addition on the elements of one of the soures and a re-dution subtration on the elements of a seond soure, then paks the di�erenes intoa partitioned result. These two instrutions are only inluded in Enhaned 3DNow!,but may be useful for implementing redution operations, depending on how they arede�ned in the programming model.Subtration OperationsTable 2.3 ontains information of the various forms of subtration available in thestudied extension sets. These inlude modular and saturation subtration, high-wordresults, and sums and redued sums of absolute di�erenes.As with addition, modular subtration is \normal" omputer subtration, in whihthe stored result is the atual result modulo the maximum value storable in theregister. Eah of the extension families inlude some form of modular subtrationexept for MVI and the extensions to MMX, whih again use the MMX instrutions.For eah family, the supported forms orrespond to the supported forms of modularaddition.

- 50 -
Table 2.2SWAR Addition OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular Addition1Part/Part - - - 16x8,2x16 4x16 8x16,2x32f2;3 4x32Immd/Part - - - - - -Part/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sSalar/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sElement/Element - - - - - -Saturation AdditionPart/Part - 2x16s, 4x16s, - 8x8u,4x16s 16x8s,16x8u,2x16u+2x16s 4x16u+4x16s 8x16s,8x16u,!2x16u !4x16u 4x32s,4x32u,4x32f4Salar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Modular Add. HighPart/Part - - - - - 4x32uSat. RedAdd w/El. - - - - - 4x32s+low 1x32s!low 1x32sSat. Part. RedAdd - - - - - 4x32sw/EvenSat. Part. RedAdd 16x8s+4x32s!4x32s,w/Part - - - - - 16x8u+4x32u!4x32u,8x16s+4x32s!4x32sSat. RedAdd - - - - - -and PakSat. RedAdd/Sub - - - - - -and Pak1Modular signed and unsigned addition are equivalent.2Calulated to in�nite preision, then rounded aording to urrent rounding mode in FCSR.3Generates exeption on overow or underow.4Rounds to nearest.

- 51 -
Table 2.2 ont'd.SWAR Addition OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Addition1Part/Part 8x8, 16x82x16,4x16, 4x16, 8x161x32,2x32 2x32 4x32f2 4x322x64,2x64fImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Element/Element - - low 1x32f2 low 1x64fSaturation AdditionPart/Part - 8x8s,8x8u, - 16x8s,16x8u,4x16s,4x16u 8x16s,8x16uSalar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd - - - -and PakSat. RedAdd/Sub - - - -and Pak1Modular signed and unsigned addition are equivalent.2Generates exeption on overow or underow.

- 52 -
Table 2.2 ont'd.SWAR Addition OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Addition1Part/Part - - -2x32fImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Element/Element - - low 1x32f -Saturation AdditionPart/Part - - 4x16s22x32fSalar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAddw/Part - - - -Sat. RedAdd 2-2x32f! - - -and Pak 2x32fSat. RedAdd/Sub - 2-2x32f! - -and Pak 2x32f1Modular signed and unsigned addition are equivalent.2Stores result to implied destination register.

- 53 -Beause of its ubiquity and utility, and beause it is the omplement of modu-lar addition, modular subtration should be inluded in any general-purpose SWARprogramming model.As with modular subtration, eah family supports the forms of saturation sub-tration whih orrespond to the supported forms of saturation addition. For om-pleteness, and for the same reasons that saturation addition should be inluded, sat-uration subtration should be inluded in any general-purpose SWAR programmingmodel.An NxB \subtration high" (also known as \subtration arry-out") zero-extendsthe omplement of the arry bits that would result from a subtration of the NxBoperands and stores them into an NxB result. As with the addition high, only AltiVeinludes this operation. Thus, it is not an operation that should be required in ageneral-purpose model.\Saturation redue-subtrat and pak" (Sat. RedSub and Pak) performs separatesaturated redution subtrations on the elements of eah of the soures, then paksthe subresults into a partitioned result.\Redue-add of absolute di�erenes" (RedAdd of Abs. Di�s) takes the parallelabsolute di�erenes of the operands, then performs a redution addition on thesesubresults. This operation is supported by several of the extension families, and isused primarily for �nding pixel di�erenes in graphis appliations.Extended MMX inludes an instrution whih performs a \sum of absolute dif-ferenes and saturation aumulate" (Sum of Abs. Di�s; Sat A.) operation whihis similar to the above operation but aumulates with an operand in memory ratherthan performing a redution. These instrutions are probably too appliation-spei�to be inluded in a general-purpose SWAR programming model, but may be usefulfor optimization purposes.

- 54 -

Table 2.3SWAR Subtration OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular Subtration1Part/Part - - - 16x8,2x16 4x16 8x16,2x32f2;3 4x32Part/Part w/A Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sSalar/Part w/A Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A Di� - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sElement/Element - - - - - -Saturation SubtrationPart/Part - 2x16s, 2x16s, - 8x8u,4x16s 16x8s,16x8u,2x16u-2x16s 2x16u-2x16s 8x16s,8x16u,!2x16u !2x16u 4x32s,4x32u,4x32f4Salar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Subtration HighPart/Part - - - - - 4x32uSat. RedSub - - - - - -and PakRedAdd of Abs. Di�s 8x8u!1x64u - - - - -Sum Abs Di�s; Sat A. - - - - - -1Modular signed and unsigned subtration are equivalent.2Calulated to in�nite preision, then rounded aording to urrent rounding mode in FCSR.3Generates exeption on overow or underow.4Rounds to nearest.

- 55 -

Table 2.3 ont'd.SWAR Subtration OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Subtration1Part/Part 8x8, 16x8,2x16,4x16, 4x16, 8x16,1x32,2x32 2x32 4x32f2 4x32,1x64,2x64,2x64fPart/Part w/A Di� - - - -(w/ or w/o Init)Salar/Part w/A Di� - - - -(w/ or w/o Init)Immd/Part w/A Di� - - - -(w/ or w/o Init)Element/Element - - low 1x32f2 low 1x64fSaturation SubtrationPart/Part - 8x8s,8x8u, - 16x8s,16x8u,4x16s,4x16u 8x16s,8x16uSalar/Part - - - -Immd/Part - - - -Subtration HighPart/Part - - - -Sat. RedSub - - - -and PakRedAdd of Abs. Di�s 8x8u!1x64 - 8x8u!1x16u3 16x8u!2x16u4Sum Abs Di�s; Sat A. - - -1Modular signed and unsigned subtration are equivalent.2Generates exeption on overow or underow.3Upper 3x16 is zeroed. There is no possibility of overow.4Eah 64-bit quadword is redued to a 16 bit sum. The remaining �elds are zeroed.

- 56 -

Table 2.3 ont'd.SWAR Subtration OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular Subtration1Part/Part - - -2x32fPart/Part w/A Di� - - - -(w/ or w/o Init)Salar/Part w/A Di� - - - -(w/ or w/o Init)Immd/Part w/A Di� - - - -(w/ or w/o Init)Element/Element - - low 1x32f -Saturation SubtrationPart/Part - - 4x16s22x32fSalar/Part - - - -Immd/Part - - - -Subtration HighPart/Part - - - -Sat. RedSub - 2-2x32f! - -and Pak 2x32fRedAdd of Abs. Di�s - 8x8!1x16u3 ;4 - -Sum Abs Di�s; Sat A. - - - 8x8u51Modular signed and unsigned subtration are equivalent.2Stores result to implied destination register.3Upper 3x16 is zeroed. There is no possibility of overow.4I was not able to on�rm the (un)signedness of this.5One operand must be memory. Result is stored in implied register.

- 57 -Maximum and Minimum OperationsTable 2.4 ontains information on the various forms of maximum and minimumoperations and operations pertaining to the sign or magnitude of the �eld data whihare inluded in the studied extension sets.Most of the families have some form of omplementary maximum and minimuminstrutions. These are both ubiquitous and basi enough to be inluded in a general-purpose model. They are normally used to obtain the larger or smaller value of theorresponding elements from two partitioned operands. However, they an also beused in the emulation of unsupported saturation operations to limit result values tothe required storable range.Extended MMX inludes a partitioned binary \magnitude" instrution whih,for eah pair of orresponding elements, stores the value with the larger absolutemagnitude without hanging its sign. However, EMMX is the only family whihinludes suh an instrution; and it is unlear if any urrent CPU implements theEMMX extensions. Thus, this type of operation probably should not be inluded ina general-purpose model at this time.MIPS-V inludes \absolute value" and \negate" instrutions for operating onsingle-preision oating-point data. While absolute value would be a useful instru-tion to inlude in a programming model, none of the families support it for integerdata. Thus, it also should probably not be inluded in a general-purpose model atthis time. In ontrast, negation is easily emulated on almost all arhitetures, so itprobably should be inluded.Enhaned 3DNow!, 3DNow!Pro, SSE, and SSE2 eah inlude a instrutions to gen-erate a zero-extended bitmasks from the sign bits of the �elds of a partitioned register.These instrutions are not partiularly useful exept for implementing onditional op-erations. Beause of this, they should not be inluded as individual operations in ageneral-purpose programming model, but may be useful in the implementation ofothers.

- 58 -Table 2.4Maximum and Minimum OperationsOperation Types DEC HP SGI SGI Motorola Sun IntelMVI MAX MIPS-V MDMX AltiVe VIS MMXMaximumPart/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -4x16s,4x16u 4x16s 8x16s,8x16u,4x32s,4x32u,4x32f1Salar/Part - - - 8x8u, - - -4x16sImmd/Part 8x8s,8x8u, - - 8x8u, - - -4x16s,4x16u 4x16sElement/Element - - - - - - -MinimumPart/Part 8x8s,8x8u, - - 8x8u, 16x8s,16x8u, - -4x16s,4x16u 4x16s 8x16s,8x16u,4x32s,4x32u,4x32f1Salar/Part - - - 8x8u, - - -4x16sImmd/Part 8x8s,8x8u, - - 8x8u, - - -4x16s,4x16u 4x16sElement/Element - - - - - - -Magnitude Part/Part - - - - - - -Abs. Value Part/Part - - 2x32f - - - -Negate Part/Part - - 2x32f - - - -Generate Sign Mask - - - - - - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMaximumPart/Part 8x8u, 16x8u, 8x8u, -4x16s, 8x16s, 4x16s4x32f 2x32f 2x32f2x64fSalar/Part - - - - - -Immd/Part - - - - - -Element/Element low 1x32f - - low 1x32f -low 1x64fMinimumPart/Part 8x8u, 16x8u, 8x8u, -4x16s, 8x16s, 4x16s4x32f 2x32f 2x32f2x64fSalar/Part - - - - - -Immd/Part - - - - - -Element/Element low 1x32f - - low 1x32f -low 1x64fMagnitude Part/Part - - - - - 4x16sAbs. Value Part/Part - - - - - -Negate Part/Part - - - - - -Generate Sign Mask 8x8s!1x32, 16x8s!1x32, - 8x8s!1x32 -4x32f!1x32 2x32f!1x322x64f!1x321+0.0 > -0.0, and max(NaN, anything) = QNaN.

- 59 -Multipliation OperationsTable 2.5 ontains information on the various forms of multipliation instrutionsavailable in the studied extensions. These inlude modular and saturated multipli-ation, multipliations produing the upper word of their results, multipliation bysign bits, and averages.MDMX, AltiVe, VIS, and MMX eah inlude some form of modular integermultipliation. MDMX's multiplies eah generate a result in the aumulator, whihis large enough to maintain the full preision of the result. On the other arhiteturesmultiplies only operate on some of the soure �elds or store only part of eah resultin a spae that is smaller than that neessary to hold the entire result.Integer multipliations supported by AltiVe operate on the even or odd �elds oftheir soure registers and reate a result with �elds that have twie the preision oftheir soure �elds. SSE2 has a set of similar instrutions whih operate on the even�elds of their operands, but these are limited to unsigned data. VIS inludes severaltypes, with results of various forms, eah of whih multiplies an 8-bit partitionedregister by a 16-bit register. MMX and SSE2 inlude 16-bit versions whih generatethe lower 16-bits of their results.Some of these instrutions an be used to perform multipliations on data whihis of smaller preision than that supported. They an also be used to perform partialmultipliations of larger-preision data. Thus, the multipliation of unsupported datapreisions an usually be emulated, but not always easily or inexpensively.MIPS-V, SSE, and 3DNow!Pro eah inlude partitioned 32-bit modular oating-point multiplies, while SSE2 inludes a 64-bit version. SSE and 3DNow!Pro alsoinlude an instrution whih multiplies the low elements of a register whih is parti-tioned into 32-bit oats. Again, SSE2 inludes a 64-bit version.Beause multipliations often our in numeri proessing, they should be inludedin a general-purpose programming model. Multiplies are fairly easy to emulate if someform is available, and an be emulated by a shift-add sequene otherwise. The VIS

- 60 -forms are rather esoteri, having been designed to be used primarily through a setof intrinsis. Thus, they would not be good models for operations inluded within ageneral-purpose programming model. However, they an be used to support suh amodel with some are.The \multiply high" instrution stores the upper part of the result of a modularmultipliation. It is used to omplement multipliation instrutions in whih thestored value is the lower part of the full result. In eah ase, the stored part of theresult resides in the same number of bits as the soure data. Thus, there is no hangeof partitioning when using this type of instrution. These instrutions are useful foremulating saturation multipliation, but are probably not useful enough on their ownto make visible as part of a high-level programming model.MDMX inludes a few forms of saturated integer multipliation, while 3DNow! in-ludes a saturating 32-bit oating-point multiply. Saturation multipliation is gener-ally used for multimedia algorithms, but not for numeri omputation. The extensionfamilies whih inlude multiplies usually support either modular multipliation formsor saturating forms, but not both.Integer saturation multipliation often an be emulated with other operations.However, oating-point saturation multipliation may be impossible to emulate onsome targets, and modular oating-point multipliation may be impossible or ex-pensive to emulate if the target only supports saturation multipliation. For thesereasons, one may argue either way on the point of whether or not saturation multi-pliation should be inluded in a general-purpose model.It is only on overow that saturation operations di�er from the orrespondingmodular operation, so one might argue that it should be aeptable to ignore theproblem. However, the purpose of saturation math is to guarantee that the resultdoes not overow; thus, it should always work properly.For the sake of ompleteness, both modular and saturation operation should beinluded, for both integer and oating-point data, but without any guarantee that thetarget an support both forms. This is similar to how oating-point multipliation

- 61 -is handled by the C programming language, in whih there is no guarantee of theorretness of the result on overow.\Multiply by sign" is supported only by MDMX. This instrution multiplies animmediate value, a single-valued partitioned operand, or a partitioned value by thesign bits of the orresponding �elds of a partitioned register. If a �eld in this registeris 0, the orresponding result will also be 0. Beause it is a speial-purpose instrutionwhih is only supported by one target, it should not be inluded as part of a portableprogramming model.Some form of average instrution is supported by most of the extension families.This operation is ommonly used in image and video proessing but may be less usefulin a general-purpose environment. Beause of this, it is also arguable as to whetheror not an averaging operation should be inluded in a general-purpose SWAR model,although it is relatively easy to emulate and widely supported.Combined Arithmeti OperationsSeveral of the extension families ontain instrutions whih are ombinations ofmultipliations and other operations. These instrutions are intended for use in im-plementing spei� algorithms suh as FFTs. Few are implemented by more thanone family, and none should be used as the basis for operations in a general-purposeprogramming model. For this reason, these instrutions are not disussed in detail;however, an entry in table 2.6 is provided whih may be useful for optimization pur-poses.Division and Advaned Arithmeti OperationsTable 2.7 lists arithmeti instrutions useful for performing division and moreomplex arithmeti operations suh as square roots and exponentials.

- 62 -Table 2.5Multipliation OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular Multipliation 1Part/Part - - - 2x32f2;3 - odd 16x8s!8x16s,odd 16x8u!8x16u,even 16x8s!8x16s,even 16x8u!8x16u,odd 8x16s!4x32s,odd 8x16u!4x32u,even 8x16s!4x32s,even 8x16u!4x32uImmd/Part - - - - - -Part/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sSalar/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sPart/Part w/A Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sSalar/Part w/A Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sImmd/Part w/A Sub - - - - 2-8x8u!8x24s, -(w/ or w/o Init) 2-4x16s!4x48sPart/Element - - - - - -Element/Element - - - - - -Modular Mul. HighPt/Pt Store in Enh. - - - - - -Pt/Pt Store in Implied - - - - - -Pt/Pt A. w/Implied - - - - - -Sat. MultipliationPart/Part - - - - 8x8u,4x16s -Salar/Part - - - - 8x8u,4x16s -Immd/Part - - - - 8x8u,4x16s -Mult. by Sign (-,0,+)Part/Part - - - - 4x16s -Salar/Part - - - - 4x16s -Immd/Part - - - - 4x16s -Average - - - - 16x8s,16x8u,42x16u5 4x16u5 8x16s,8x16u,4x32s,4x32u1AltiVe byte numbering is the reverse of the �eld numbering used in this doument.2Generates exeption on overow or underow.3Calulated to in�nite preision, then rounded aording to urrent rounding mode in FCSR.4Eah of these performs (sum+1)/2.5Round to odd : NewLSB <- sum(bit1) j sum(bit0). Sum before shift.

- 63 -Table 2.5 ont'd.Multipliation OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular Multipliation 1Part/Part (4x8u)x(4x16s) 4x16 8x16,!4x24s!4x16s2,(odd 8x8s)x(4x16s)!4x24s!4x16s3,(even 8x8u)x(4x16s)!4x24s!4x32s4!4x16s3,(odd 4x8s)x(2x16s)!2x24s!2x32s5, even 2x32u!1x64u,(even 4x8u)x(2x16s) even 4x32u!2x64u,!2x24s!2x32s4 4x32f 2x64fImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Part/Part w/A Sub - - - -(w/ or w/o Init)Salar/Part w/A Sub - - - -(w/ or w/o Init)Immd/Part w/A Sub - - - -(w/ or w/o Init)Part/Element (4x8u)x(upper 2x16s) - - -!4x24s!4x16s2,(4x8u)x(lower 2x16s)!4x24s!4x16s2Element/Element - - low 1x32f low 1x64fModular Mul. HighPt/Pt Store in Enh. - 4x16s 4x16u 8x16u,8x16sPt/Pt Store in Implied - - - -Pt/Pt A. w/Implied - - - -Sat. MultipliationPart/Part - - - -Salar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -Salar/Part - - - -Immd/Part - - - -Average - - 8x8u6 , 16x8u,4x16u6 8x16u1Calulated to in�nite preision, then rounded aording to urrent rounding mode in FCSR.2Most signi�ant 16 bits of 24 are stored after rounding to nearest value.3Rounds to nearest by adding 1/2 of lowest inluded position, then trunating lower bits.4Sign-extended.5Left-shifted logial by 8 bits.6Performs (sum+1)/2.

- 64 -Table 2.5 ont'd.Multipliation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular MultipliationPart/Part - - -
2x32fImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Part/Part w/A Sub - - - -(w/ or w/o Init)Salar/Part w/A Sub - - - -(w/ or w/o Init)Immd/Part w/A Sub - - - -(w/ or w/o Init)Part/Element - - - -Element/Element - - low 1x32f -Modular Mul. HighPt/Pt Store in Enh. 4x16s1 4x16u - 4x16s2Pt/Pt Store in Implied - - - 4x16s2Pt/Pt A. w/Implied - - - 4x16s2Sat. MultipliationPart/Part 2x32f - - -Salar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -Salar/Part - - - -Immd/Part - - - -Average 8x8u3 8x8u3, - 8x8u or4x16u3 8x841Rounds to nearest, then trunates low 16 bits.2Adds 0x4000 (bit 14) to produt, then takes bits 30-15 as result.3Performs (sum+1)/2.4M2 versions prior to v1.3 perform 8x8; after v1.3 perform 8x8u. Both perform sum/2.

- 65 -
Table 2.6Combined Arithmeti OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeMultiply, then Add - - - - -Neighboring FieldsMultiply/Mod. Add - - 2x32f1 - 4x32f2,2-8x16!8x32+38x16!8x16Negated - - 2x32f1 - -Multiply/Mod. AddMultiply/Sat. Add - - - - 2-8x16s!8x32s!8x17s4+8x16s5!8x16sMultiply(w/Rnd)/Sat. Add - - - - 2-8x16s!8x32s!8x18s6+8x16s7+(8x18s)"1"!8x16sMultiply/Mod. Subtrat - - 2-2x32f!2x32f - -{2x32f!2x32f1Negated - - 2-2x32f!2x32f - 4x32f8Multiply/Mod. Subtrat {2x32f!2x32f1Multiply, then Modular - - - - 2-16x8u!16x16uAdd Neighbor w/Part +4x32u!4x32u,2-8x16s!8x32s+4x32s!4x32s,2-8x16u!8x32u+4x32u!4x32u,(16x8s)x(16x8u)!16x16s+4x32s!4x32sMultiply, then Saturate - - - - 2-8x16s!8x32sAdd Neighbor w/Part +4x32s!4x32s,2-8x16u!8x32u+4x32u!4x32u1Partitioned multiply of two operands, followed by partitioned addition with a third operand. Sum(or di�erene) alulated to in�nite preision, then rounded aording to FCSR mode.2Partitioned multiply of two operands, followed by partitioned addition with a third operand, thenrounded to nearest.38x16 modular add. The lower half of eah 32-bit �eld is disarded.4High 17 bits of �eld.5Sign-extended to 17 bits.6High 18 bits of �eld.7Sign-extended to 17 bits, then shifted left logially to 18 bits.8Partitioned multiply of two operands, followed by partitioned subtrat of third operand, negated,then rounded to nearest.

- 66 -

Table 2.6 ont'd.Combined Arithmeti OperationsOperation Types Sun Intel Intel Intel AMD CyrixVIS MMX SSE SSE2 3DNow! (All families) EMMXMultiply, then Add - 2-(4x16s) - 2-(8x16s) - -Neighboring Fields !4x32s !8x32s!2x32s !4x32sMultiply/Mod. Add - - - - - -Negated - - - - - -Multiply/Mod. AddMultiply/Sat. Add - - - - - -Multiply(w/Rnd)/Sat. Add - - - - - -Multiply/Mod. Subtrat - - - - - -Negated - - - - - -Multiply/Mod. SubtratMultiply, then Modular - - - - - -Add Neighbor w/Part
Multiply, then Saturate - - - - - -Add Neighbor w/Part

- 67 -SSE and 3DNow!Pro inlude 32-bit oating-point divide and square root instru-tions whih operate on two partitioned registers or on the low elements of two parti-tioned registers. SSE2 provides the same funtionality for 64-bit elements.AltiVe, SSE, and 3DNow!Pro eah inlude instrutions whih approximate 32-bit partitioned oating-point reiproals and reiproal square roots. SSE, 3DNow!,and 3DNow!Pro also support low element forms of these instrutions, although the3DNow! versions are implemented as a series of three instrutions rather than justone.AltiVe also inludes a set of instrutions whih perform partitioned 32-bit oating-point base-2 logarithmi (log2x) and exponential (2x) approximations.Beause eah of these instrutions is supported by a few targets at most, theyshould not be inorporated into a portable programming model. One may hoose tomake an exeption for division beause it is the inverse of multipliation. While it anbe an expensive operation for targets whih do not support it, division an usually beserialized without too muh of a penalty ompared to its typially long lok ount.2.1.3 Shift and Rotate InstrutionsTable 2.8 lists forms of shift and rotate instrutions whih are available in theextension sets studied. These inlude logial and arithmeti shifts, shift-and-add andshift-and-subtrat instrutions, and simple rotations.Logial shifts are a basi operation that should be inluded in any general-purposeprogramming model whih allows bit manipulation. MDMX and AltiVe inludeinteger shifts by partitioned and repliated salar values. Using partitioned registerssimpli�es the use of general expressions as shift ounts by allowing eah element tobe shifted by a di�erent amount. Using a repliated salar shift ount requires thatthe same ount be used for eah, although it an be a dynami value.AltiVe also inludes full-register shifts in whih the ount is stored as a singlevalue in a vetor register. The Alpha arhiteture's full-width integer shifts an also

- 68 -
Table 2.7Division and Advaned Arithmeti OperationsOperation Types DEC HP SGI SGI Motorola Sun IntelMVI MAX MIPS-V MDMX AltiVe VIS MMXDividePart/Part - - - - - - -Element/Element - - - - - - -Square RootPart/Part - - - - - - -Element/Element - - - - - - -Reiproal Approx.Part - - - - 4x32f - -Element - - - - - - -Reip. Sq. Rt. Approx.Part - - - - 4x32f - -Element - - - - - - -Log2(x) Approx.Part - - - - 4x32f - -2x Approx.Part - - - - 4x32f - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXDividePart/Part 4x32f - - 2x32f -2x64fElement/Element low 1x32f - - low 1x32f -low 1x64fSquare RootPart/Part 4x32f - - 2x32f -2x64fElement/Element low 1x32f - - low 1x32f -low 1x64fReiproal Approx.Part 4x32f - - - 2x32f -Element low 1x32f - low 1x32f1 - low 1x32f -Reip. Sq. Rt. Approx.Part 4x32f - - - 2x32f -Element low 1x32f - low 1x32f1 - low 1x32f -Log2(x) Approx.Part - - - - - -2x Approx.Part - - - - - -1Performed using three instrutions: the �rst is aurate to 14 bits, the seond is an intermediatestep, and the third is aurate to 24 bits.

- 69 -be used by MVI in this manner, as long as one onsiders the register to be partitionedinto a single �eld. Full-register logial shifts an be used to emulate partitioned shifts,and are very important for the emulation of many other unsupported operations.MMX and SSE2 go one step further by inluding shifts by a single-valued registerwhih operate on a partitioned operand. This eliminates the need to emulate thesepartiular instrutions with a series of full-register shifts.MVI, MAX-2, MDMX, MMX, and SSE2 also inlude shifts by immediates. Theseare useful for implementing ommon operations suh as multipliation by a onstant.However, they have limited usefulness in an environment where the shift ount willoften be an expression rather than a stati onstant. These shifts are still quite usefulas they an be used internally by a ompiler to emulate unsupported operations.Arithmeti right shifts are typially supported in the same forms as logial rightshifts or in a subset of these forms. For example, in MDMX 8-bit data is onsideredto be unsigned pixels, so signed (i.e. arithmeti) shifts are not inluded for use withthis �eld size. These instrutions are basi to many numeri algorithms and shouldbe inluded in a general-purpose model both for their utility and for the sake ofompleteness.MVI also inludes full-register \shift-and-add" and \shift-and-subtrat" instru-tions whih are intended for use in emulating multipliation and division for theseRISC systems. These instrutions are not as useful in a SWAR environment be-ause the arithmeti parts of these operations are not partitioned. HP's MAX-1inludes partitioned \shift-and-saturation-add" instrutions whih are limited to 16-bit operands. These instrutions are more general than simple shifts, and an be usedwherever simple shifts an be. However, shift-and-add and shift-and-subtrat are notoperations that should be inluded in a general-purpose model beause of their lakof portability.Only AltiVe inludes a \rotate" instrution, whih is partitioned and indexed bya partitioned register. Even though only one target supports rotations, they are fairlyeasy to implement using shifts, so they ould be inluded in a general-purpose model.

- 70 -One should note that in a model whih allows multi-word lengthed vetors, a rotationwould atually onsist of a series of shift instrutions, with some masking, rather thanbeing omprised of rotate instrutions. Thus, rotate instrutions are atually onlyuseful in ertain speial ases.2.1.4 Bitwise-Logial and Bit-Redution InstrutionsBitwise-logial operations are extremely important for SWAR proessing. Theseoperations make enable masking for onditional onstruts possible, as well as ve-tor element aesses and the masking of non-data bits. By de�nition, all one-bitpartitioned operations are bitwise operations. Also, many operations whih are un-supported for some �eld size an be emulated by using bitwise operations.We refer to these operations as being polymorphi beause they perform exatlythe same funtion regardless of the partitioning or signedness of their operands [106℄.That is, they an assume the form of any partitioning of the data.Polymorphis an form the basi building bloks for more advaned operations.Basi digital logi gates perform bitwise-logial operations. These, in turn, formthe basis of more omplex digital logi inluding the proessors whose attributes aredisussed in this hapter. Similarly, omplex SWAR operations an be implementedas series of polymorphis. Beause of their simple utility, these operations should beinluded in any general-purpose programming model.Many of these operations are atually ombinations of others, and thus not all ofthem need be supported. However, it is important that a working set from whihneessary operations an be derived is supported. For example, MMX inludes theinstrutions AND, ANDN, OR, and XOR, but not a simple one's omplement oper-ation. This basi operation, whih is used to generate PE enable masks for if-elseonditional exeution, must be derived from the available polymorphi instrutions.MMX's ANDN, whih omplements one of its arguments then ANDs it with the other,

- 71 -
Table 2.8Shift and Rotate OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISShift Left Logial1Part by Part - - - - 8x8, 16x8, -4x16 8x16,4x32Part by Salar - - - - 8x8, -4x16 1x128 by 16x82Part by Single 1x64 - - - - -1x1283Part by Immd 1x64 - 4x16 - 8x8, - -4x16Shift Right Logial4Part by Part - - - - 8x8u, 16x8u, -4x16u 8x16u,4x32uPart by Salar - - - - 8x8u, - -4x16uPart by Single 1x64u - - - - 1x1283 -Part by Immd 1x64u - 4x16u - 8x8u, - -4x16uShift Right Arithmeti4Part by Part - - - - 4x16s 16x8, -8x16,4x32Part by Salar - - - - 4x16s - -Part by Single 1x64s - - - - - -Part by Immd 1x64s - 4x16s - 4x16s - -Shift Left and Addby 1 bit - - - - - - -by 2 bits 1x64u - - - - - -by 3 bits 1x64u - - - - - -Shift Left and Sat. Add5by 1,2, or 3 bits - 2x16s - - - - -Shift Left and Subtrat6by 2 bits 1x64u - - - - - -by 3 bits 1x64u - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - 2x16s - - - - -Rotate7Part by Part - - - - - 16x8, -8x16,4x321Shift left logial and shift left arithmeti are equivalent.2Shift ount is salar value mod 8.3Shifted by number of bytes enoded in bits 6 through 3 (121-124 in AltiVe notation) of the single.4Shift right logial is indiated as being unsigned. Shift right arithmeti is indiated as being signed.5Shifts are signed saturated, then signed saturating addition is performed.6Shifts the minuend then subtrats the unshifted subtrahend from it.7Rotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.

- 72 -
Table 2.8 ont'd.Shift and Rotate OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXShift Left Logial1Part by Part - - - - - - -Part by Salar - - - - - - -Part by Single 4x16, - 8x16, - - - -2x32, 4x32,1x64 2x64Part by Immd 4x16, - 8x16, - - - -2x32, 4x32,1x64 2x64,1x1282Shift Right Logial3Part by Part - - - - - - -Part by Salar - - - - - - -Part by Single 4x16u, - 8x16u, - - - -2x32u, 4x32u,1x64u 2x64uPart by Immd 4x16u, - 8x16u, - - - -2x32u, 4x32u,1x64u 2x64u,1x128u2Shift Right Arithmeti3Part by Part - - - - - - -Part by Salar - - - - - - -Part by Single 4x16s, - 8x16s, - - - -2x32s 4x32sPart by Immd 4x16s, - 8x16s, - - - -2x32s 4x32sShift Left and Addby 1 bit - - - - - - -by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Left and Sat. Add4by 1,2, or 3 bits - - - - - - -Shift Left and Subtrat5by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Right and Addby 1,2, or 3 bits - - - - - - -Rotate6Part by Part - - - - - - -1Shift left logial and shift left arithmeti are equivalent.2Shifted by number of bytes enoded in 8-bit unsigned immediate.3Shift right logial is indiated as being unsigned. Shift right arithmeti is indiated as being signed.4Shifts are signed saturated, then signed saturating addition is performed.5Shifts the minuend then subtrats the unshifted subtrahend from it.6Rotating left by x bits is equivalent to rotating right by B-x bits in an NxB register.

- 73 -an be used to do just that by ANDing the omplement of the enable mask with all'1's. This generates the enable mask for the else body from that for the if body.All of the families inlude a working set of these instrutions or reuse those oftheir base family or underlying arhiteture. For example, AMD's 3DNow! reusesthe MMX polymorphi instrutions, while MVI uses those of the underlying Alphaarhiteture.A general-purpose model need only inlude a working set of polymorphis. What-ever set is hosen should be easy to emulate on any given target using the availableinstrutions. Beause of this, a small, limited set should be hosen. For example, oneould hoose to inorporate in the model only those operations supported by the Cprogramming language: AND, OR, XOR, and one's omplement.Certain instrutions perform what are essentially redution operations on the in-dividual bits of an operand. We will refer to these as bit-redution operations. Theseinlude instrutions whih produe a ount of the '1' bits or leading or trailing '0' bitsin their operands. These an be used to gather information about the aggregate stateof the data elements stored in a partitioned register. Note that only DEC's MVI hasthese instrutions and these are atually part of the underlying Alpha arhiteture.Table 2.9 lists the polymorphi and bitwise-redution operations supported byeah of the extension families studied.2.1.5 ConditionalsSupported onditional instrutions fall into three basi ategories: those whihgenerate result masks or ondition odes, those whih modify the ow of ontrol, andthose whih manipulate data.Result masks inlude bitmasks and �eldmasks. A bitmask ontains one bit per �eldindiating if the ondition is true or false for that �eld. These are usually stored ina general-purpose integer register. A �eldmask is a partitioned value in whih all thebits of eah �eld are set if the ondition is true, or leared if the ondition is false, for

- 74 -
Table 2.9Polymorphi OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISANDPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -ANDN (AB or AB)2Part/Part 1x64 1x321 1x641 - - 1x128 1x32,1x64Part/Imm 1x64 - - - - - -NAND (AB)Part/Part - - - - - - 1x32,1x64Part/Imm - - - - - - -ORPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -ORN (A+ B or A+B)2Part/Part 1x64 - - - - - 1x32,1x64Part/Imm 1x64 - - - - - -NORPart/Part - - - - 8x8,4x16 1x128 1x32,1x64Part/Imm - - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -XORPart/Part 1x64 1x321 1x641 - 8x8,4x16 1x128 1x32,1x64Part/Imm 1x64 - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -XORN (A� B)Part/Part 1x64 - - - - - -Part/Imm 1x64 - - - - - -NXOR (A�B)Part/Part - - - - - - 1x32,1x64Part/Imm - - - - - - -Population 1x64 - - - - - -Leading 0 bits 1x64 - - - - - -Trailing 0 bits 1x64 - - - - - -1Also nulli�es the next instrution on ondition.2Not simultaneously.

- 75 -
Table 2.9 ont'd.Polymorphi OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXANDPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/Salar - - - - - - -ANDN (AB or AB)1Part/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -NAND (AB)Part/Part - - - - - - -Part/Imm - - - - - - -ORPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/Salar - - - - - - -ORN (A+B or A+ B)1Part/Part - - - - - - -Part/Imm - - - - - - -NORPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -XORPart/Part 1x64 4x32f 1x128,2x64f - - 2x32f -Part/Imm - - - - - - -Part/Salar - - - - - - -XORN (A� B)Part/Part - - - - - - -Part/Imm - - - - - - -NXOR (A�B)Part/Part - - - - - - -Part/Imm - - - - - - -Population - - - - - - -Leading 0 bits - - - - - - -Trailing 0 bits - - - - - - -1Not simultaneously.

- 76 -the orresponding �eld(s) of the operand(s). Fieldmasks are normally stored in thesame register set as their operands and are intended for use as SIMD enable masks.Beause of the nature of SWAR proessing, enable masking must be used to limitthe e�ets of onditionally exeuted ode to those register �elds for whih the on-dition holds. Though some partitioned instrutions an use bitmasks and onditionodes diretly; generally, they must be onverted to �eldmasks for use in enablemasking.Condition odes represent the status or relationship of the operand(s) of a on-ditional operation. There may be one set per register �eld, in whih ase eah setrepresents the ondition of the orresponding �eld(s) of the operand(s), or one setper register, in whih ase they represent the aggregate ondition of the �elds in theregister. Control odes are usually implemented as a bitmask whih is stored in a\ontrol register".Control ow modi�ation inludes onditional instrution nulli�ation and branh-es. Instrution nulli�ation skips the instrution whih follows the test or bloks anye�ets it might have. This instrution is usually a jump whih is used to skip thefollowing setion of ode. Similarly, branhing instrutions may jump if the onditionis true or ontinue to the next instrution if not.Beause the e�ets of a nullifying or branhing instrution annot be separatedon a per-�eld basis, the usefulness of these instrutions is limited to aggregate tests,suh as ANYs or ALLs, or to situations when the �eld tests an be serialized.Data manipulation inludes onditional moves, lears, and loads. Normally, theseinstrutions are used to onditionally generate partiular values or to selet data fromone of two exeution paths. Again, the usefulness of these instrutions is generallylimited to aggregate or serialized tests.

- 77 -Condition Testing OperationsTable 2.10 lists SWAR instrutions whih test onditions and generate masks orondition odes as a result. It also inludes ertain instrutions whih manipulatedata based on the values of these objets.Eah of the families exept HP's MAX has a set of instrutions whih onditionallyset a �eldmask or a bitmask, or are extensions of families whih do. The basi om-parison tests inlude \equality", \inequality", \greater than", \less than", \greaterthan or equal", and \less than or equal". Generally, an arhiteture supports a subsetof these tests whih allows the others to be emulated. This holds true for the studiedextension families. Thus, a general-purpose programming model should not exludeany of these basi tests.SSE, SSE2, and 3DNow!Pro inlude tests for heking if IEEE-ompliant oating-point data an be ordered (i.e. that it does not onsist of NANs). NANs (not anumbers) are bit patterns that do not represent valid oating-point values. Compar-isons whih operate on oating-point numbers may allow for one or both operandsto be NANs. In this ase, the operands may not be omparable, and are said tobe unordered. If both operands are valid numbers, they are said to be ordered ororderable.These extension families also inlude oating-point \not less nor equal" and \notless than" tests whih aount for unorderedness, while MIPS-V inludes these anda large set of variations on the basi tests for oating-point data. These tests areeither ombinations of the basi tests, or tests for situations whih should not ouror should be hidden from the programmer. Thus, these tests should be internal orused as optimizations; they should not be a visible part of a high-level programmingmodel.AltiVe inludes a \ompare bounds" instrution whih tests if the magnitude ofone operand is less or equal to the magnitude of the other. This is equivalent toomparing the absolute values of two operands, and is essentially a ombination of

- 78 -simpler tests. Eah of the AltiVe tests also have a form in whih the CR6 �eld ofthe proessor's ondition register is modi�ed if the ondition holds for all or none ofthe �elds. This allows aggregate tests to be performed on partitioned register data.SSE also inludes instrutions whih ompare two oating-point �elds and setthe proessor's ondition odes aordingly. These are most likely to be used inonjuntion with the underlying IA32 instrutions for ontrol ow. Beause they donot set a �eld or bitmask, they are less useful for SWAR enable masking.Conditional Flow Control OperationsTable 2.11 lists instrutions whih an modify the ow of a program based onsome ondition. This may be done by branhing or nullifying subsequent instrutionswhih would normally ause hange in ow.MVI and MAX eah ontain onditional branh instrutions whih an be used astests for ontrol strutures that must be able to handle parallel data. For example,a \while" loop exeutes as long as the onditional expression is non-zero. One wayto onvert this onstrut for use with SWAR data is to modify the test to be true aslong as the expression is true for any �eld. This is equivalent to performing an ANYtest on the partitioned onditional expression before entering the loop body, whih isexeuted under an enable mask of the �elds for whih the ondition holds. Conditionalbranh instrutions make it easier to implement this type of parallel onstrut.MAX inludes a set of instrutions whih perform a logial or arithmeti operationthen nullify the next instrution if an aggregate ondition holds. These are typiallyused with a subsequent unonditional jump whih is nulli�ed, and therefore not taken,if the ondition holds. This allows a setion of ode to be exeuted only if theaggregate ondition holds.Full-width (i.e. 1xN) branh or null-next instrutions are not generally usefulfor parallel onditionals beause they annot take a di�erent ation for eah �eld.It may be possible to onstrut a jump table to handle eah ombination of �eld

- 79 -
Table 2.10Condition Testing OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeForms of Result Bitmask - FP CC Bits FP CC Bits Field Mask orAll/None BitsEquality1Part/Part - 8x8, 16x8,1x64 4x16 8x16,2x32f 4x32,4x32fPart/Imm 1x64 - - 8x8,4x16 -Part/Salar - - - 8x8,4x16 -El/El - - - - -Inequality1Part/Part - - - -2x32fPart/Imm - - - - -Part/Salar - - - - -El/El - - - - -Greater ThanPart/Part - - - 16x8s,16x8u,8x16s,8x16u,2x32f 4x32s,4x32u,4x32fEl/El - - - - -Less ThanPart/Part - - 8x8u, -4x16s2x32fPart/Imm - - - 8x8u,4x16s -Part/Salar - - - 8x8u,4x16s -El/El - - - - -Greater or EqualPart/Part 8x8u - 2x32f - 4x32fPart/Imm 8x8u - - - -Part/Salar - - - - -Less or EqualPart/Part - - 8x8u, -4x16s2x32fPart/Imm - - - 8x8u,4x16s -Part/Salar - - - 8x8u,4x16s -El/El - - - - -Not Less nor EqualPart/Part - - 2x32f - -Element/Element - - - - -Not Less ThanPart/Part - - 2x32f - -Element/Element - - - - -1Compare for (in)equality signed and unsigned are equivalent.

- 80 -
Table 2.10 ont'd.Condition Testing OperationsOperation Types Sun Intel Intel Intel AMD AMD AMD CyrixVIS MMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Bitmask1 Field Field Field Field - Field -Mask Mask Mask Mask MaskEquality2Part/Part 8x8, 16x8, - -4x16, 4x16, 8x16,2x32 2x32 4x32f 4x32, 2x32f 2x32f2x64fPart/Imm - - - - - - - -Part/Salar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Inequality2Part/Part 4x16, - - - -2x32 4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/Salar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Greater Than 3Part/Part 8x8s, - 16x8, - - -4x16, 4x16s, 8x16,2x32 2x32s 4x32 2x32fEl/El - - - - - - - -Less ThanPart/Part - - - - -4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/Salar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Greater or EqualPart/Part - - - - 2x32f - - -Part/Imm - - - - - - - -Part/Salar - - - - - - - -Less or Equal 3Part/Part - - - -4x16,2x32 4x32f 2x64f 2x32fPart/Imm - - - - - - - -Part/Salar - - - - - - - -El/El - - 1x32f 1x64f - - 1x32f -Not Less nor EqualPart/Part - - 4x32f 2x64f - - 2x32f -Element/Element - - 1x32f 1x64f - - 1x32f -Not Less ThanPart/Part - - 4x32f 2x64f - - 2x32f -Element/Element - - 1x32f 1x64f - - 1x32f -1Bitmask stored in an integer register.2Compare for (in)equality signed and unsigned are equivalent.3I was never able to on�rm (un)signedness of these, but assume signed as per �xed point format.

- 81 -
Table 2.10 ont'd.Condition Testing OperationsOperation Types DEC HP SGI SGI Motorola SunMVI MAX MIPS-V MDMX AltiVe VISForms of Result Bitmask - FP CC FP CC Field Mask or Bitmask1Bits Bits All/None BitsNot (Greater or Equal) Pt/Pt - - 2x32f - - -Greater or Less Than Pt/Pt - - 2x32f - - -Not (Greater or Less) Pt/Pt - - 2x32f - - -Not Greater Than Pt/Pt - - 2x32f - - -Greater, Less, or Equal Pt/Pt - - 2x32f - - -Not (Gr., Less, or Eq.) Pt/Pt - - 2x32f - - -OrderedPart/Part - - 2x32f - - -Element/Element - - - - - -UnorderedPart/Part - - 2x32f - - -Element/Element - - - - - -Unordered or Equal Pt/Pt - - 2x32f - - -Signaling Equal Pt/Pt - - 2x32f - - -Signaling Not Equal Pt/Pt - - 2x32f - - -Ordered or Greater Than Pt/Pt - - 2x32f - - -Unordered or Greater Pt/Pt - - 2x32f - - -Ord. or Greater or Eq. Pt/Pt - - 2x32f - - -Unord. or Grtr. or Eq. Pt/Pt - - 2x32f - - -Ordered or Less Than Pt/Pt - - 2x32f - - -Unordered or Less Than Pt/Pt - - 2x32f - - -Ordered or Less or Eq. Pt/Pt - - 2x32f - - -Unord. or Less or Eq. Pt/Pt - - 2x32f - - -Ord. or Greater or Less Pt/Pt - - 2x32f - - -Compare Bounds2Pt/Pt - - - - 4x32f -Set Cond. CodesOrdered El/El - - - - - -Unord. El/El - - - - - -1Bitmask stored in an integer register. This an be used for masked stores.2Clears bit 0 of result �eld if vA <= vB, and lears bit 1 if vA >=-(vB). In either ase, the remainingbits are leared.

- 82 -
Table 2.10 ont'd.Condition Testing OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Field Field Field Field - Field -Mask Mask Mask Mask MaskNot (Greater or Equal) Pt/Pt - - - - - - -Greater or Less Than Pt/Pt - - - - - - -Not (Greater or Less) Pt/Pt - - - - - - -Not Greater Than Pt/Pt - - - - - - -Greater, Less, or Equal Pt/Pt - - - - - - -Not (Gr., Less, or Eq.) Pt/Pt - - - - - - -OrderedPart/Part - 4x32f 2x64f - - 2x32f -Element/Element - 1x32f 1x64f - - 1x32f -UnorderedPart/Part - 4x32f 2x64f - - 2x32f -Element/Element - 1x32f 1x64f - - 1x32f -Unordered or Equal Pt/Pt - - - - - - -Signaling Equal Pt/Pt - - - - - - -Signaling Not Equal Pt/Pt - - - - - - -Ordered or Greater Than Pt/Pt - - - - - - -Unordered or Greater Pt/Pt - - - - - - -Ord. or Greater or Eq. Pt/Pt - - - - - - -Unord. or Grtr. or Eq. Pt/Pt - - - - - - -Ordered or Less Than Pt/Pt - - - - - - -Unordered or Less Than Pt/Pt - - - - - - -Ordered or Less or Eq. Pt/Pt - - - - - - -Unord. or Less or Eq. Pt/Pt - - - - - - -Ord. or Greater or Less Pt/Pt - - - - - - -Compare Bounds1Pt/Pt - - - - - - -Set Cond. CodesOrdered El/El - 1x32f 1x64f - - 1x32f -Unord. El/El - 1x32f 1x64f - - 1x32f -1Clears bit 0 of result �eld if vA <= vB, and lears bit 1 if vA >=-(vB). In either ase, the remainingbits are leared.

- 83 -Table 2.11Conditional Flow Control OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISBranh On...None True 1x64 - - - - - -Any True 1x64 - - - - - -All Equal (Part/Part) - 1x32 1x64 - - - -All Equal (Part/Immed) - 1x32 1x64 - - - -All Inequal (Part/Part) - 1x32 1x64 - - - -All Inequal (Part/Immed) - 1x32 1x64 - - - -Operate and Null Next On...AND/Any True? - 1x32 1x64 - - - -AND/None True? - 1x32 1x64 - - - -ANDN/Any True? - 1x32 1x64 - - - -ANDN/None True? - 1x32 1x64 - - - -OR/Any True? - 1x32 1x64 - - - -OR/None True? - 1x32 1x64 - - - -XOR/Any True? - 1x32 1x64 - - - -XOR/None True? - 1x32 1x64 - - - -XOR/Any False? - 2x32 - - - -2x16 4x164x8 8x8XOR/None False? - 2x32 - - - -2x16 4x164x8 8x8Add Complement/Any False? - 2x32 - - - -(A+B) 2x16 4x164x8 8x8Add Complement/None False? - 2x32 - - - -(A+B) 2x16 4x164x8 8x8result, but this would be an O(2N)-sized table for an NxB partitioning. For thisreason, these instrutions are not inluded in table 2.11. Full-width branhes or null-next instrutions based on onditions that are equivalent to a redution of the �eldonditions (suh as an unpartitioned equality test whih is equivalent to a partitionedALL-equal test) are useful, and are inluded in the table.Conditional Data Manipulation OperationsTable 2.12 lists instrutions whih manipulate data based the results of someonditional test. These inlude instrutions whih move data or lear or load registerswhen some ondition is met. They also inlude instrutions whih selet a set of valuesfrom a set of operands depending on some ondition.

- 84 -

Table 2.11 ont'd.Conditional Flow Control OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXBranh On...None True - - - - - - -Any True - - - - - - -All Equal (Part/Part) - - - - - - -All Equal (Part/Immed) - - - - - - -Any Inequal (Part/Part) - - - - - - -Any Inequal (Part/Immed) - - - - - - -Operate and Null Next On...AND/Any True? - - - - - - -AND/None True? - - - - - - -ANDN/Any True? - - - - - - -ANDN/None True? - - - - - - -OR/Any True? - - - - - - -OR/None True? - - - - - - -XOR/Any True? - - - - - - -XOR/None True? - - - - - - -XOR/Any False? - - - - - - -XOR/None False? - - - - - - -Add Complement/Any False? - - - - - - -(A+ B)Add Complement/None False? - - - - - - -(A+ B)

- 85 -MVI inludes instrutions whih will move a register or load an immediate valuebased on the equivalent of an ANY or NONE test. It also inludes instrutions thatonditionally zero (lear) the �elds of an 8x8 partitioned register based on the valueof a bitmask, whih is usually generated by one of the MVI testing instrutions.HP's MAX inludes instrutions whih lear a register to generate a \false" value,then perform a omparison for equality or inequality, and onditionally nullify thefollowing instrution based on the result. The possibly nulli�ed instrution is usuallyused to load an immediate value whih represents \true" into the leared register.These instrutions an be used to implement or optimize aggregate tests for SIMD-style loops and onditionals.Extended MMX inludes instrutions whih load the �elds of a register based onthe value of the orresponding �elds of a partitioned register. These an be used toimplement or optimize ertain onditional or trinary operations.The MIPS-V extension family inludes instrutions whih move the �elds of aregister based on the value of the orresponding ontrol ode bit. These also an beused to implement or optimize ertain onditional or trinary operations.Full-width (i.e. 1xN) onditional move instrutions are not generally useful forparallel onditionals beause they annot take a di�erent ation for eah �eld. Forthis reason, these instrutions are not inluded in table 2.12. Full-width onditionalmoves based on onditions that are equivalent to a redution of the �eld onditionsare inluded in the table.MDMX and AltiVe inlude partitioned \pik" or \selet" instrutions whih se-let between one of two operands for eah �eld based on the truth of the orrespondingbit in a bitmask. In MDMX this bitmask is in an integer register and in AltiVe thisbitmask is in a third vetor register. These instrutions are useful for implementingtrinary operators or for seleting between the results of two onditional instrutionstreams. The hoie of a 128x1 selet for AltiVe is very good as it allows it to beused polymorphially.

- 86 -
Table 2.12Conditional Data Manipulation OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISMove Reg/Imm On...None True 1x64 - - - - - -Any True 1x64 - - - - - -Zero Masked Bytes 8x8bm - - - - - -Zero UnMasked Bytes 8x8bm - - - - - -Clear Reg & Null Next/AllPart/Part - 1x32 1x64 - - - -Part/Imm - 1x32 1x64 - - - -Part/Salar - - - - - - -Clear Reg & Null Next/Not AllPart/Part - 1x32 1x64 - - - -Part/Imm - 1x32 1x64 - - - -Part/Salar - - - - - - -Load Reg. On...Zero - - - - - - -Non-Zero - - - - - - -Negative - - - - - - -Non-Negative - - - - - - -Move Reg. On...CC bit TRUE - - - 2x32f - - -CC bit FALSE - - - 2x32f - - -Pik True 1 2Part/Part - - - - 8x8,4x16 128x1 -Part/Imm - - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -Pik False 1 2Part/Part - - - - 8x8,4x16 128x1 -Part/Imm - - - - 8x8,4x16 - -Part/Salar - - - - 8x8,4x16 - -1Chooses destination �eld from soure vs or vt based on value of ondition ode bit orrespondingto that �eld.2Chooses destination bit from soure vetor A or B based on value of orresponding bit in sourevetor C. This is more general, but possibly harder to generate than MDMX ondition ode bits.

- 87 -

Table 2.12 ont'd.Conditional Data Manipulation OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMove Reg/Imm On...None True - - - - - - -Any True - - - - - - -Zero Masked Bytes - - - - - - -Zero UnMasked Bytes - - - - - - -Clear Reg & Null Next/AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Clear Reg & Null Next/Not AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Load Reg. On...Zero - - - - - - 8x8Non-Zero - - - - - - 8x8Negative - - - - - - 8x8sNon-Negative - - - - - - 8x8sMove Reg. On...CC bit TRUE - - - - - - -CC bit FALSE - - - - - - -Pik TruePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Pik FalsePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -

- 88 -2.1.6 Data Movement, Repliation, and Type Conversion OperationsTable 2.13 lists the instrutions available in eah of the extension families forsupporting data movement, repliation, and type onversion operations.MMX inludes instrutions to move data between its enhaned (i.e. partition-able) registers and also between these and the underlying IA32 arhiteture's general-purpose integer registers. SSE inludes instrutions to move unaltered data betweenthe SSE registers, but not between the MMX and SSE registers. SSE2 inludesinstrutions to orret this problem, and also inludes instrutions to move data be-tween the SSE registers and the integer register set, and to allow data to be movedin various ways between the SSE registers.Suh instrutions are not neessary in DEC's MVI or HP's MAX extensions be-ause these extensions use the general-purpose registers of the underlying arhiteture.For example, MAX-2 has an instrution for moving a full-width (64-bit) objet be-tween the general registers that is atually part of the PA-RISC 2.0 instrution setarhiteture.Neither MDMX nor AltiVe inlude instrutions whih are used solely for movingdata between their enhaned registers or between these and their general registers.Similarly, MVI does not inlude instrutions used solely for moving data within itsgeneral register set. Moving data between registers within the same register set anusually be emulated. For example, in AltiVe, a register an be bitwise-ORed withitself and the result stored in the target register. However, writing data betweendi�erent register sets usually annot be emulated. In these ases, data must bemoved via the arhiteture's memory subsystem.This is the ase for AltiVe. Unfortunately, memory addresses for AltiVe areheld in the PowerPC's general-purpose integer registers. This auses some addressingforms to be very expensive to exeute. For example, when an array or vetor elementis indexed using vetor indexing, the index must be moved from a vetor register tomemory, then from memory to an integer register where it an be used in an indexed

- 89 -load. This triples the number of memory aesses required for eah vetor indexedelement aess.MIPS-V inludes an instrution for moving data between registers in \pakedsingle" (2x32f) format, and another to reate this format by paking two single-preision values, taken from two oating-point registers, into a single oating-pointregister.VIS inludes instrutions for moving either 32 or 64 bits of data between itsenhaned registers. It also has a set of omplementary instrutions whih allow themoved data to be stored in omplemented form. This e�etively performs a one'somplement operation on the data.While MDMX does not inlude instrutions for moving partitioned data betweenits enhaned registers, it does inlude multiple instrutions for moving data betweenthe oating-point registers and the aumulator. These are not useful as part of aportable model, as none of the other extension families has a separate aumulator.However, they would be neessary for using the aumulator to operate on oating-point data if inluded in suh a model.AltiVe has a set of \splat" instrutions whih repliate either a �eld of the soureregister or an immediate value into all of the �elds of the target register. This is theonly instrution in any of the families whih performs an atual repliation, althoughMDMX and SSE eah inlude instrutions whih e�etively repliate one operand. Ageneral-purpose model should inlude the �eld repliation to onvert salar data topartitioned data for mixed-mode operations.MDMX also inludes instrutions for saling data within the aumulator. Theseinstrutions shift eah �eld of the aumulator right by the number of bits spei�ed bya seondary soure, round these values to an integer value by trunation or roundingupward or downward with half values, then saturate these values to �t in the �elds ofthe destination register. The seondary soure may be a partitioned register, a salar,or an immediate value. These instrutions may be useful for implementing varioustype onversions.

- 90 -AltiVe, 3DNow!, E3DNow!, and SSE inlude instrutions to onvert data in theirenhaned registers between integer and oating-point type. The SSE onversionsatually move data between the SSE registers and the MMX or IA32 register sets, si-multaneously making the onversion. AltiVe also inludes instrutions whih roundoating-point data to integer-valued oating-point data. SSE2 inludes instrutionsfor onverting between oating-point formats within the SSE registers. These instru-tions may be used for visible type asting by a programmer or for internal operationsby a ompiler.2.1.7 Data Extration, Insertion, and Permutation OperationsTable 2.14 lists the instrutions available within eah of the extension families forsupporting �eld extration, insertion, and permutation operations.In general, insertions take a bit or byte �eld from a soure and plae it in aontiguous setion of the destination. Extrations typially take data from a setionof the soure, align it with the least signi�ant bit of the destination, and zero- orsign- extend it to �ll that destination. These instrutions ould be used in a vetorproessing model to implement vetor element aesses.Enhaned 3DNow!, SSE, and SSE2 eah inlude instrutions to allow a �eld tobe extrated from an enhaned register to an integer register. The omplementaryinstrutions whih allow a �eld to be inserted from an integer register or from memorywithout altering the remaining �elds are likewise inluded. SSE also inludes aninstrution whih takes the low �eld of a 4x32f operand from an SSE register ormemory and inserts it into the low �eld of a seond SSE register. 3DNow!Pro hasan instrution that performs the same operation on a 2x32f operand, while SSE2 hasone for 64-bit operands.MVI, AltiVe, and VIS inlude \byte shift right and extrat" instrutions whihshift the soure data right by n bytes, then lear the upper �elds to leave the data in

- 91 -Table 2.13Data Movement, Repliation, and Type Conversion OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISMove Reg.!Enh. Reg. N/A N/A N/A - - - -Move Enh. Reg.!Reg. N/A N/A N/A - - - -Move Enh. Reg. - - - 1x32,!Enh. Reg. 1x321 1x641 1x642x32fMove Comp. Enh. Reg. - - - - - - 1x32,!Enh. Reg. 1x64Pak Singles to Part - - - 2-32f!2x32f - - -Modular Move A!RegLow Third of A. - - - - 3x64!8x8u, - -3x64!4x16sMiddle Third of A. - - - - 3x64!8x8u, - -3x64!4x16sHigh Third of A. - - - - 3x64!8x8u, - -3x64!4x16sMove Regs. to Low A. - - - - 2-8x8u!3x642, - -2-4x16s!3x64Move Reg. to High A. - - - - 8x8u!3x64, - -4x16s!3x64Repliate Field - - - - - 16x8, -(Element/Part)3 8x16,4x32Repliate Sign-Extended - - - - - 16x8, -Immediate to Part4 8x16,4x32Shift Rt, Rnd, & Sat Atoward 0 - - - - 8x8u, - -4x16s,4x16uto nearest away from 0 - - - - 8x8u, - -4x16s,4x16uto nearest toward even - - - - 8x8u, - -4x16s,4x16uConvert int. to t. - - - - - 4x32u!4x32f5 -4x32s!4x32f5Convert t. to int. - - - - - 4x32f!4x32u6 -4x32f!4x32s6Round t. value to int.to nearest - - - - - 4x32f -toward zero - - - - - 4x32f -toward +in�nity - - - - - 4x32f -toward -in�nity - - - - - 4x32f -1Also branhes if ondition is met.2Moves soure register Vt to low third, soure register Vs to middle third, and a set of�elds onsisting of the sign bits of the �elds of Vs to the upper third.3Field seleted is indiated by unsigned immediate.4Sign-extends 5-bit immediate to size of �elds, then repliates.5Converts to nearest, then divides by 2uimm5, where uimm5 is a 5-bit unsigned immediate.6Shifts left by a 5-bit unsigned immediate, onverts and rounds toward zero, then saturates.

- 92 -Table 2.13 ont'd.Data Movement, Repliation, and Type Conversion OperationsOperation Types Intel Intel IntelMMX SSE SSE2Move Reg!Enh. Reg. 1x32u!1x64u1 - 1x32u!1x128u1Move Enh. Reg!Reg. 1x64!1x322 - 1x128!1x322Move Enh. Reg!Enh. Reg. 1x64 low 2x64!low 2x64,low 2x64!1x64,1x64!low 2x643,1x128 (un)aligned,4x32f (un)aligned 2x64f (un)alignedMove Comp. Enh. Reg. - - -!Enh. Reg.Pak Singles to Part - - -Modular Move A!RegLow Third of A. - - -Middle Third of A. - - -High Third of A. - - -Move Regs. to Low A. - - -Move Reg. to High A. - - -Repliate Field - - -Repliate Sign-Extended - - -Immediate to Part4Shift Rt, Rnd, & Sat Atoward 0 - - -to nearest away from 0 - - -to nearest toward even - - -Convert int. to t. - 2x32s!low 2x32f5, 2x32s!low 2x64f6,1x32s!low 1x32f7 1x32s!low 1x64f7,4x32s!4x32f,low 2x32s!2x64fConvert t. to int. - low 2x32f!2x328 ;9, 2x64f!2x328 ;9,2x64f!low 2x3210,low 1x32f!1x3211 ;9 low 1x64f!1x328;9,4x32f!4x32sConvert t. to t. - - 2x64f!low 2x32f10,low 2x32f!2x64f12,low 1x64f!low 1x32f12,low 1x32f!low 1x64f12Round t. value to int.to nearest - - -toward zero - - -toward +in�nity - - -toward -in�nity - - -1Zero-extended.2Trunated.3Upper quadword leared.4Sign-extends 5-bit immediate to size of �elds, then repliates.5Soure is MMX register or memory. Destination is SSE register. High �elds are left unhanged.6Soure is MMX register or memory. Destination is SSE register.7Soure is integer register or memory. Destination is SSE register. High �elds are left unhanged.8Soure is SSE register. Destination is MMX register or memory.9Cvt* uses rounding mode spei�ed in MXCSR. Cvtt* trunates the frational part.10Soure is SSE register or memory. Destination is SSE register with upper half leared.11Soure is SSE register. Destination is integer register or memory.12Soure is SSE register or memory. Destination is SSE register.

- 93 -
Table 2.13 ont'd.Data Movement, Repliation, and Type Conversion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXMove Reg!Enh. Reg. - - - -Move Enh. Reg!Reg. - - - -Move Enh. Reg!Enh. Reg. - - -2x32 (un)alignedMove Comp. Enh. Reg. - - - -!Enh. Reg.Pak Singles to Part - - - -Modular Move A!RegLow Third of A. - - - -Middle Third of A. - - - -High Third of A. - - - -Move Regs. to Low A. - - - -Move Reg. to High A. - - - -Repliate Field - - - -Repliate Sign-Extended - - - -Immediate to Part1Shift Rt, Rnd, & Sat Atoward 0 - - - -to nearest away from 0 - - - -to nearest toward even - - - -Convert int. to t. 2x32s!2x32f even 4x16s 2x32s!2x32f, -!2x32f 1x32s!low 1x32fConvert t. to int. 2x32f!2x32s 2x32f 2x32f!2x322 , -!2x32s3 low 1x32f!1x322Convert t. to t. - - - -Round t. value to int.to nearest - - - -toward zero - - - -toward +in�nity - - - -toward -in�nity - - - -1Sign-extends 5-bit immediate to size of �elds, then repliates.2Cvt* uses rounding mode spei�ed in MXCSR. Cvtt* trunates the frational part.3Sign saturated to 16 bits, then sign-extended to 32.

- 94 -zero-extended form. MVI, MIPS-V, and MDMX inlude \byte shift left and extrat"instrutions whih shift the data left before learing the upper �elds.MVI's byte extration instrutions operate on a single soure objet and are well-suited for �eld extration. Those of the other extension families operate on a pair ofsoure objets and are best suited to handling unaligned memory aesses, althoughthey also an be used for �eld extration.MVI also inludes \byte shift and insert" instrutions whih shift the soure dataleft or right by n bytes, then lear all but the byte, word, doubleword, or quadwordstarting at the nth byte and going upwards through the register. The byte ount nmay be stored in a register or may be an immediate value. These instrutions allowthe programmer to selet a set of ontiguous bytes from the right end of the soureand plae them in any set of bytes in the destination with the other bytes leared.MAX inludes \bit shift left and extrat" instrutions whih take up to B bitsfrom the right-hand �eld of an NxB partitioned register, starting at any bit positionand extending to the left, then opy them into the target register, aligned with itsright end. The number of bits opied may be taken from an immediate or stored in ashift amount register (SAR). If the ount is from the SAR, the opied segment is sign-or zero- extended to �ll the target �eld. The left-hand �eld (if N>1) is unde�ned. Ifthe ount is an immediate, it is an unde�ned operation if the opied segment extendsbeyond the end of the soure �eld.MAX also inludes \merge, bit shift right and extrat" instrutions. In these,the rightmost �elds of two NxB soures are onatenated and the resulting value isshifted right. The lower B bits of the 2B-bit onatenation are then extrated. Again,the shift ount an be an immediate value or from the SAR, and the left-hand �eldof the destination register is unde�ned.Complementing these extration instrutions, MAX also ontains \deposit" in-strutions whih perform \bit shift left and insert" operations. In an NxB partitionedoperation, these take up to B bits from the right end of the soure and opy theminto the target register. Writing begins at any of the rightmost B bit positions in the

- 95 -target register and extends to the left. The target register �eld may or may not bezeroed before the opy. Again, the number of bits opied may be from an immediatevalue or the shift ount register. If the ount is from the SAR, the opied segmentis trunated to prevent it from extending beyond the target �eld. If the ount isan immediate, the operation is unde�ned if the opied segment extends beyond thetarget �eld.Any of the above instrutions would be useful in implementing register �eld orvetor element aesses in a general-purpose model. Beause of their wide variety, itis probably best to hide their di�erenes beneath a layer of abstration.Usually, when one inserts a �eld of data into a register, one needs to ensure thatthe surrounding data is not modi�ed. As we have seen, MAX has bit shift andinsert instrutions whih perform this operation on various sizes of data. However,MVI's extrat and insert instrutions always lear the surrounding data. To deal withthis issue, MVI has a set of instrutions whih lear a segment of data in a registerwithout a�eting the surrounding data. The result an then be logially ORed withthe result of an insertion instrution thus inserting the seleted �eld without a�etingthe surrounding data.Two types of segment-learing instrutions are available in the MVI extensions.A \lear segment low" instrution lears the byte, word, doubleword, or quadwordstarting at a given byte (0 to 7, stored in a register or as an immediate), and goingupwards through the register. A \lear segment high" lears the remainder of thebytes in the word, doubleword, or quadword whih would have been hosen by thelear-segment-low given the same arguments and assuming the target of the lear-segment-high was onatenated to the high end of the target of the lear-segment-low.Permutations are typially generalized to perform any of the possible rearrange-ments, with or without repetition, of the �elds of their soure operand(s). There aretwo primary methods in whih the applied permutation an be hosen. One is via animmediate value whih is spei�ed at ompile time. The other is via a variable vetorindex whih may not be known until run time.

- 96 -MAX-2, E3DNow!, SSE, and SSE2 have permute instrutions whih use an im-mediate value to indiate whih �elds of the single soure to opy. SSE2 also hasinstrutions whih permute the lower or upper �elds of a single soure operand basedon an immediate value. SSE, SSE2, and 3DNow!Pro also have permutations whihselet �elds from two operands based on immediate index values. In ontrast, Al-tiVe's permute uses a vetor register to hoose �elds from two other vetor registersto be opied to the destination register.Permutes indexed via an immediate are useful for stati data layout and elementrepliation, but are not useful dynamially. Permutes indexed via a register an beused to implement dynami onstruts. An example is the MPL router[exp1℄.exp2onstrut in whih exp2 is evaluated on the PE whose number is equal to the evaluatedvalue of exp1.In this onstrut, exp1 is an arbitrary expression. The permute operation ouldbe quite useful here, but is muh less so if it annot be indexed by anything but aompile-time onstant. Beause so few of the extension families support any kindof permute at all, and beause only AltiVe supports a variably-indexed permute,onstruts suh as the MPL router should be avoided for now.Operations suh as byte and word swaps are speial ases of permutation. En-haned 3DNow! inludes an instrution to swap the two �elds of a 2x32f partitionedregister. Its operation is overed by E3DNow!'s more general permute instrution.Thus it is unneessary, but may be temporally or spatially less expensive to exeutethan the equivalent permute.2.1.8 Interleaving OperationsTable 2.15 lists the various instrutions whih interleave �elds from two partitionedsoures to form a ombined result. In general, these instrutions ombine only ertain�elds from their soures to form their results.

- 97 -
Table 2.14Data Extration, Insertion, and Permutation OperationsOperation Types DEC HP HP SGI SGIMVI MAX-1 MAX-2 MIPS-V MDMXExtrat Field to Reg. - - - - -Insert Seleted Field - - - - -Insert Low Field - - - - -Byte Shft Rt & ExtratBy Immed. 8x8u!1x[8,16,32,64℄1 - - - -By Register 8x8u!1x[8,16,32,64℄1 - - - -Byte Shft Lt & ExtratBy Immed. 8x8u!1x[16,32,64℄1 - - - 2-8x8u!8x8u,2-4x16s!4x16sBy Register 8x8u!1x[16,32,64℄1 - - 2-8x8u!8x8u,2-4x16s!4x16s2-2x32f!2x32fByte Shft Rt & Insert 1x[16,32,64℄!8x8u1 - - - -into Zeroed RegByte Shft Lt & Insert 1x[8,16,32,64℄!8x8u1 - - - -into Zeroed RegBit Shft Lt & Extrat2 - 1x32s3, right 2x32s3, - -1x32u4 right 2x32u4- 1x64s3,- 1x64u4Merge, Bit Shft Rt - 2-1x32!1x32 2-1x32!1x32, - -& Extrat 2-1x64!1x64Bit Shift Left & Insertinto Zeroed Reg5from Immed - 1x32 1x32, - -1x64from Reg - 1x32 1x32, - -1x64Bit Shift Left & Insertinto Unhanged Reg5from Immed - 1x32 1x32, - -1x64from Reg - 1x32 1x32, - -1x64Clear Segment Low 1,2,4,or 8 bytes - - - -Clear Segment High 2,4, or 8 bytes - - - -PermutePart/Indexed by Part - - - - -Part/Indexed by Imm - - 4x16 - -Swap Fields - - - - -1[...℄ indiates that there are multiple separate instrutions { one for eah of the values listed.2Also nulli�es next instrution if ondition is met.3Sign-extended.4Zero-extended.5Also nulli�es next instrution if ondition is met.

- 98 -Table 2.14 ont'd.Data Extration, Insertion, and Permutation OperationsOperation Types Motorola Sun Intel Intel IntelAltiVe VIS MMX SSE SSE2Extrat Field to Reg. - - - 4x161!1x322 8x163!1x322Insert Seleted Field - - - low 2x164!4x161 low 2x164!8x163Insert Low Field - - - low 4x32f!4x32f low 2x64f!2x64fByte Shft Rt & ExtratBy Immed. 2-16x8!16x8 - - - -By Register 2-8x8!8x8 - - -Byte Shft Lt & ExtratBy Immed. - - - - -By Register - - - - -Byte Shft Rt & Insert - - - - -into Zeroed RegByte Shft Lt & Insert - - - - -into Zeroed RegBit Shft Lt & Extrat5 - - - - -Merge, Bit Shft Rt - - - - -& ExtratBit Shift Left & Insertinto Zeroed Reg6from Immed - - - - -from Reg - - - - -Bit Shift Left & Insertinto Unhanged Reg6from Immed - - - - -from Reg - - - - -Clear Segment Low - - - - -Clear Segment High - - - - -PermutePart/Indexed by Part 2-16x8!16x8 - - - -Part/Indexed by Imm - - - 4x167, low 4x166,high 4x166,4x326,2-4x32f!4x32f6 2-2x64f!2x64f8Swap Fields - - - - -1Field seleted is (unsigned immediate mod 4).2Zero-extended.3Field seleted is (unsigned immediate mod 8).4From integer register5Also nulli�es next instrution if ondition is met.6Also nulli�es next instrution if ondition is met.7Soure �elds seleted by a 4x2 immediate.8Soure �elds seleted by a 2x1 immediate.

- 99 -Table 2.14 ont'd.Data Extration, Insertion, and Permutation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXExtrat Field to Reg. - 4x161!1x322 - -Insert Seleted Field - low 2x163!4x161 - -Insert Low Field - - low 2x32f!2x32f -Byte Shft Rt & ExtratBy Immed. - - - -By Register - - - -Byte Shft Lt & ExtratBy Immed. - - - -By Register - - - -Byte Shft Rt & Insert - - - -into Zeroed RegByte Shft Lt & Insert - - - -into Zeroed RegBit Shft Lt & Extrat4 - - - -Merge, Bit Shft Rt - - - -& ExtratBit Shift Left & Insertinto Zeroed Reg5from Immed - - - -from Reg - - - -Bit Shift Left & Insertinto Unhanged Reg5from Immed - - - -from Reg - - - -Clear Segment Low - - - -Clear Segment High - - - -PermutePart/Indexed by Part - - - -Part/Indexed by Imm - 4x166 -2-4x32f!4x32f6Swap Fields - 2x32f - -1Field seleted is (unsigned immediate mod 4).2Zero-extended.3From integer register4Also nulli�es next instrution if ondition is met.5Also nulli�es next instrution if ondition is met.6Soure �elds seleted by a 4x2 immediate.

- 100 -VIS inludes an instrution whih interleaves the �elds of two (N/2)xB soures toform a single NxB result. This is the only interleave in whih the result ontains allof the �elds of its original operands. These operands are stored as 32-bit \pixel" datain 4x8u format. The interleaved result is stored in a 64-bit oating-point register in\�xed" format.MAX-2 inludes instrutions for interleaving the odd numbered �elds of the twosoure operands into a result value and others for interleaving the even-numbered�elds.Several of the extension families have instrutions whih interleave the upper(higher-numbered) �elds of the two soure operands into a single result and orre-sponding instrutions whih interleave the lower �elds.VIS inludes an interleave instrution that sales (shifts), trunates, and lips(saturates) eah of the �elds of a 2x32 operand to a single byte. This is stored inthe low byte of the orresponding �eld of the result and is zero-extended to obtain a2x32u intermediate value. A seond 2x32 operand is parallel left shifted by one byteto obtain a 2x32u intermediate value in whih the low byte of eah �eld is zeroed.These intermediate values are then merged via a bitwise-OR operation to form an8x8u result.Both MIPS-V and MDMX inlude instrutions to interleave the even �elds of oneoperand with the odd �elds of the seond. In MDMX, the seond operand may bean immediate, a single-valued partitioned register, or a partitioned register. MDMXinludes alternate forms of these instrutions in whih the order of the data �eldsin eah of the operands is reversed before the interleave is performed. MIPS-V alsoinludes an instrution to interleave the odd �elds of the �rst operand with the even�elds of the seond.While interleaves may be useful internally for implementing data layout, type ast,or vetor element aess operations, it is not lear that they should be exposed at theprogramming layer. More importantly, the forms are not universally implemented or

- 101 -onsistent, and it may be diÆult to emulate any partiular form hosen for suh amodel.2.1.9 Catenating, Paking, and Unpaking OperationsTable 2.16 lists the instrutions available for atenating or unpaking SWAR data.These terms are not used onsistently, so we will provide our own de�nitions here.To atenate two partitioned values means to opy a subset of the �elds of oneto the upper half of the result and a subset of the �elds of the other to the lowerhalf while maintaining the relative ordering of these �elds. Note that there is norequirement that the seleted �elds of either soure be ontiguous.To pak a soure operand means to ompat a subset of its �elds from 2B bits(or more generally, from some number of bits greater than B) to B bits, shifting the�elds as neessary, while maintaining their relative ordering.To unpak a soure operand means to expand a subset of its �elds from B bits to2B bits (or more generally, to some number of bits greater than B), shifting the �eldsas neessary, while maintaining their relative ordering.MDMX inludes instrutions whih atenate either the odd �elds or the even�elds of two operands to form a partitioned result of the same layout. Eah of theseallow one of the operands to be an immediate value or repliated salar. AltiVeinludes instrutions to atenate the even �elds of two vetor operands, but nonefor odd �elds. MDMX also inludes instrutions whih atenate either the upper orlower �elds of their operands. Again, one of these may be an immediate or repliatedsalar value. SSE inludes a similar pair of instrutions whih operate on partitionedregister operands.Beause these forms of atenation are not universally implemented, one may wishto exlude atenations from a general-purpose programming model. However, multi-word length vetors would not normally be atenated on a per word basis, but byopying the fragments of one operand after those of the other. Thus, the lak of

- 102 -
Table 2.15Interleaving OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISInterleave (Merge) - - - - - - 2-4x8u!8x8uInterleave odd (left) - - 4x16, - - - -2x32Interleave even (right) - - 4x16, - - - -2x32Interleave upperPart/Part - - - 8x8, 16x8, -4x16 8x16,2x32f 4x32Part/Imm - - - - 8x8, - -4x16Part/Salar - - - - 8x8, - -4x16Part/Zero - - - - 8x8 - -Interleave lowerPart/Part - - - 8x8, 16x8, -4x16 8x16,2x32f 4x32Part/Imm - - - - 8x8, - -4x16Part/Salar - - - - 8x8, - -4x16Part/Zero - - - - 8x8 - -Sale, Trun, Clip & Merge1 - - - - - - 2-2x32!8x8uInterleave even w/oddForward or ReversePart/Part - - - 4x16 - -2x32fPart/Imm - - - - 4x16 - -Part/Salar - - - - 4x16 - -Interleave odd w/evenForward or ReversePart/Part - - - 2x32f - - -Part/Imm - - - - - - -Part/Salar - - - - - - -1Left shifts logially by 8 bits an 8x8u, then takes a 2x32, left shifts it logially by the GSR value,trunates the lower 23 bits of eah �eld to form a 2x24, then unsigned saturates it to a 2x8u whihis then ORed with the 8x8u register.

- 103 -
Table 2.15 ont'd.Interleaving OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXInterleave (Merge) - - - - - - -Interleave odd (left) - - - - - - -Interleave even (right) - - - - - - -Interleave upperPart/Part 8x8, 16x8, - - - -4x16, 8x16,2x32 4x32f 4x32, 2x32f2x64,2x64fPart/Imm - - - - - - -Part/Salar - - - - - - -Part/Zero - - - - - - -Interleave lowerPart/Part 8x8, 16x8, - - - -4x16, 8x16,2x32 4x32f 4x32, 2x32f2x64,2x64fPart/Imm - - - - - - -Part/Salar - - - - - - -Part/Zero - - - - - - -Sale, Trun., Clip & Merge1 - - - - - - -Interleave even w/oddForward and ReversePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Interleave odd w/evenForward and ReversePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -1Left shifts logially by 8 bits an 8x8u, then takes a 2x32, left shifts it logially by the GSR value,trunates the lower 23 bits of eah �eld to form a 2x24, then unsigned saturates it to a 2x8u whihis then ORed with the 8x8u register.

- 104 -universality should not inhibit the designer from inluding vetor atenations in ageneral-purpose model.Only a few types of instrutions meet the above de�nition of a pak. These omein various forms. Some are general-purpose, while others are intended for spei�operations suh as onverting data to proprietary pixel formats. These instrutionsare also probably best used internally, within the implementation of a model, andprobably should not be visible to a high-level programmer.AltiVe and MMX eah inlude instrutions whih pak the �elds of their twooperands to half-size using signed or unsigned saturation. These intermediate valuesare then atenated to form a single partitioned result. SSE2 extends the MMXinstrutions for use on the SSE integer set.AltiVe also inludes an instrution whih onverts data from two partitionedoperands to a pixel format. The pixel data is then onatenated and stored in apartitioned destination register. This proprietary operation should not be made partof a programming model whih is intended to be portable, but may be useful forimplementing type asts or other operations.MVI inludes instrutions whih trunate the �elds of a register to a single byteby disarding the upper bits, then opy the resulting �elds into the low end of theresult register. These instrutions maintain the relative ordering of the �elds and zeroany unused �elds.VIS inludes speial-purpose instrutions for saling and paking graphis data inpixel format. These instrutions logially shift eah �eld left by the sale fator (0to 15 bits) in the UltraSPARC's Graphis Status Register (GSR). These values arethen rounded by trunating the bits lower than an impliit binary point (bits 0-6 fora 16-bit �eld, bits 0-15 for a 32-bit �eld). Finally, they are saturated to �t in the�elds of the result. The GSR an be manipulated with the \rd" and \wr" instrutionsto hange the applied saling fator. The operation performed by this instrution isobviously too speialized for general-purpose proessing.

- 105 -Several instrutions for unpaking or expanding data �elds are also available inthe various extension families. These instrutions are most likely to be useful forimplementing type asts in a general-purpose programming model or for internallyonverting unsupported data types to supported ones for emulation purposes.Both MDMX and AltiVe inlude instrutions whih opy the lower N/2 �elds ofan NxB partitioned register to a destination register, maintaining their relative order,then sign-extend the data to form an N/2xB result. Complementary instrutionswhih unpak the upper �elds of their soures are also available in eah of theseextension families.MVI inludes unpaks whih omplement its \pak low byte" instrutions. Theseopy the data from the lower �elds (bytes) of the soure register to the destinationregister starting with the lowest numbered �eld. Data is zero-extending as needed to�ll the larger �elds of the destination register.Two instrutions are inluded in AltiVe whih omplement its pixel-paking in-strution. These onvert paked pixels bak to an unpaked form. One unpaks thelower �elds of the paked pixel while the other unpaks its upper �elds. These propri-etary operations should not be made part of a programming model whih is intendedto be portable.VIS also inludes an instrution whih unpaks the lower �elds of one NxB operandto a Nx2B result in whih the original B data bits are entered in eah �eld and thesurrounding bits are leared. This instrution is intended to omplement VIS's pixel-paking instrution, but is more generally useful beause it leaves the data intat(although shifted).2.1.10 Memory Aess InstrutionsTable 2.17 lists memory aess instrutions that may be useful for SWAR proess-ing and are available for use by the various extension families. Eah of these familieshas some means of aessing memory. Some inlude new instrutions for loads and

- 106 -
Table 2.16Catenating, Paking, and Unpaking OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeCatenate oddPart/Part - - - 8x8, -4x16Part/Imm - - - 8x8, -4x16Part/Salar - - - 8x8, -4x16Catenate evenPart/Part - - - 8x8, 16x8,4x16 8x16Part/Imm - - - 8x8, -4x16Part/Salar - - - 8x8, -4x16Catenate upperPart/Part - - - 4x16 -Part/Imm - - - 4x16 -Part/Salar - - - 4x16 -Catenate lowerPart/Part - - - 4x16 -Part/Imm - - - 4x16 -Part/Salar - - - 4x16 -Unsigned Saturate, - - - - 2-8x16s!16x8u,2-8x16u!16x8u,Pak, and Catenate 2-4x32s!8x16u,2-4x32u!8x16uSigned Saturate, - - - - 2-8x16s!16x8s,Pak, and Catenate 2-4x32s!8x16sPixel Pak - - - - 2-4x32!8x16and CatenateTrunate & Pak 2x32!8x8 - - - -Low Byte 4x16!8x8Sale, Trunate, - - - - -& ClipUnpak Lower - - - 8x8u!4x16s 16x8s!8x16s,& Sign Extend 8x16s!4x32sUnpak Upper - - - 8x8u!4x16s 16x8s!8x16s,& Sign Extend 8x16s!4x32sUnpak Low Bytes 8x8u!2x32 - - - -& Zero Extend 8x8u!4x16Unpak Lower Pixel - - - - 8x16!16x8Unpak Upper Pixel - - - - 8x16!16x8Zero Expand - - - - -

- 107 -
Table 2.16 ont'd.Catenating, Paking, and Unpaking OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Catenate oddPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate upperPart/Part - - 4x32f -Part/Imm - - - -Part/Salar - - - -Catenate lowerPart/Part - - 4x32f -Part/Imm - - - -Part/Salar - - - -Unsigned Saturate, - 2-4x16s!8x8u - 2-8x16s!16x8uPak, and CatenateSigned Saturate, - 2-4x16s!8x8s, - 2-8x16s!16x8s,Pak, and Catenate 2-2x32s!4x16s 2-4x32s!8x16sPixel Pak - - - -and CatenateTrunate & Pak - - - -Low ByteSale, Trunate, 4x16!4x8u, - - -& Clip 2x32!2x16s1Unpak Lower - - - -& Sign ExtendUnpak Upper - - - -& Sign ExtendUnpak Low Bytes - - - -& Zero ExtendUnpak Lower Pixel - - - -Unpak Upper Pixel - - - -Zero Expand 4x8u!4x16u - - -1Takes a 2x32, left shifts it logially by the GSR value, trunates the lower 16 bits to form a 2x31,then signed saturates it to a 2x16s.

- 108 -
Table 2.16 ont'd.Catenating, Paking, and Unpaking OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXCatenate oddPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate upperPart/Part - - 2x32f -Part/Imm - - - -Part/Salar - - - -Catenate lowerPart/Part - - 2x32f -Part/Imm - - - -Part/Salar - - - -Unsigned Saturate, - - - -Pak, and CatenateSigned Saturate, - - - -Pak, and CatenatePixel Pak - - - -and CatenateTrunate & Pak - - - -Low ByteSale, Trunate, - - - -& ClipUnpak Lower - - - -& Sign ExtendUnpak Upper - - - -& Sign ExtendUnpak Low Bytes - - - -& Zero ExtendUnpak Lower Pixel - - - -Unpak Upper Pixel - - - -Zero Expand - - - -

- 109 -stores, while others use the existing aess instrutions, and still others allow memoryoperands to their instrutions.The alignment of data in memory may have to be aounted for as some arhi-tetures annot perform unaligned aesses while others prevent unaligned aessesby auto-aligning them. An aligned aess is one in whih the address is divisible bythe number of bytes aessed, N. Suh an aess is referred to as being \aligned onan N-byte boundary". An unaligned aess is one in whih the address is not on anN-byte boundary. An auto-aligned aess is one in whih the least signi�ant bits ofthe address are ignored; thus, the e�etive address is aligned on some non-minimalboundary even if the requested address was not.When operating on long vetors of data, one would normally load as muh of thevetor as possible in order to maximize parallelism. In this ase, one would performa load of a word-sized fragment of the vetor. The entire fragment would then beoperated on, then stored with a word-sized store. For long vetors, alignment needonly be an issue when aessing the �rst and last fragments of the vetor.By ontrast, when loading a single element using a word-sized load, the entireenlosing memory fragment is loaded. The fragment may need to be shifted to justifythe proper element within the register. Then, the element must be zero- or sign-extended to �ll the register and lear out the surrounding data.When storing a single �eld value to a partiular vetor element in memory, thevalue must be aligned with the element's position in the orresponding memory frag-ment, then stored without a�eting the surrounding data. This is usually aom-plished by loading the fragment from memory, masking out the old data in the ele-ment's position, shifting the new data to this position in another register, ombiningthese via a bitwise OR, and �nally storing the updated fragment bak to memory.When opying one element from a vetor in memory diretly into another, wewould like to load the element, shift it into position, then store it without a�etingthe surrounding data. In pratie, the element is typially loaded, onverted to a

- 110 -single value by justifying it with the least signi�ant bit (lsb), sign- or zero- extendedto �ll the register, then stored as in the previous paragraph.Element load and store instrutions, whih move a single �eld of data, are onlyuseful if they eliminate some of the above masking or alignment steps. Otherwise, theyare not an improvement over full-sized load or stores exept in speial-ase situations.Any implementation of a portable proessing model will have to be implementedon any of the target systems. Eah extension family has its own set of peuliaritieswith regards to memory aesses. These are usually inherited from the memorysystem of the underlying arhiteture either by neessity or by onvention.MVI uses the memory aess instrutions of the underlying Alpha arhiteture.These inlude a set of 8-, 16-, 32- and 64- bit loads and stores whih require alignedaesses, and 64-bit loads and stores whih do not.The MAX extension sets also use the memory aesses of their underlying ar-hitetures. In eah ase, a set of 8-, 16-, and 32- bit aligned loads and stores areinluded, as are instrutions to store from one to four or one to eight bytes to anunaligned address. The 64-bit MAX-2 also inludes 64-bit aligned loads and stores.MIPS-V inludes 64-bit auto-aligned loads and stores whih are also used by theMDMX family of extensions. The underlying MIPS-IV memory-aess instrutionsare also available to both MIPS-V and MDMX.AltiVe inludes 8-, 16-, and 32- bit aligned element loads and stores. The elementloads load the data into a vetor register in the same relative position that it oupiesin the aligned memory quadword (128-bits) whih ontains it, making the surroundingbits unde�ned. The element stores store the data from a vetor register into thealigned memory quadword (128-bits) whih ontains the address in the same relativeposition that it oupies in the vetor register, without a�eting the surrounding bits.The AltiVe Tehnology Programming Environments Manual [68℄ is inonsistentin its desription of vetor element loads (lvebx, lvehx, lvewx). In table 4-15, they aredesribed as loading the data into the low-order bits of the target vetor register, withthe remaining bits \set to boundedly unde�ned values". In the individual desriptions

- 111 -of these instrutions (whih are usually more aurate), they are desribed as loadingthe data into the same relative position within the target vetor register as its relativeposition in the quadword (128 bits) that it oupies in memory.AltiVe also inludes 128-bit auto-aligning loads and stores and two \load vetorindex" instrutions whih are used for obtaining unaligned data. These instrutionsload a prede�ned onstant vetor value into a register and rotate it left or right byzero to sixteen bytes, depending on the address requested. When the same address isused with a load, it is auto-aligned and returns the aligned fragment that ontains therequested address. The index vetor is then used as the index to a permute instrutionwhih aligns the retrieved fragment. If the requested address was unaligned, thisproess must be repeated for an aess of the next aligned fragment in memory. Theresults are then ombined to form the intended unaligned aess.VIS inludes aligned 8- and 16- bit loads and stores. It also inludes blok loadsand stores whih move an aligned blok of 64 bytes between memory and an alignedset of eight onseutive oating-point registers without altering the ahe. There isalso a variation of the blok store whih fores a ahe ush.MMX inludes an unaligned 32-bit move instrution whih an also be used toload or store 32-bit data between the integer registers and the MMX registers. A64-bit unaligned move is also inluded whih an load or store data between memoryand an MMX register or between two MMX registers. These same instrutions areused by all IA32-based extension families.SSE inludes several memory aess instrutions. One instrution moves 128-bitsof aligned data between memory and an SSE register or between two SSE registers as aset of 32-bit oats. There is also an unaligned version of this instrution. 3DNow!Prohas aligned and unaligned versions of this for the MMX register set, while SSE2 has64-bit aligned and unaligned oating-point versions.Another set of SSE instrutions moves pairs of unaligned 32-bit oating-pointdata between memory and either the upper or lower halves of an SSE register with-out a�eting the surrounding data. In order to maintain ompatibility with SSE,

- 112 -3DNow! Professional must provide similar funtionality, although it isn't lear whatform this would take. SSE2 provides similar instrutions for operating on 64-bitoats.Another SSE instrution moves 32 bits of oat data between memory and the low�eld of an SSE register and also lears the upper �elds. This same instrution anstore data from the low 32-bit �eld of an SSE register to memory without a�etingsurrounding data. 3DNow! Professional ontains an equivalent instrution, whileSSE2 ontains a set for 32-bit integer, 64-bit integer, and 64-bit oating-point data.SSE2 also has a 2x64 integer aligned load and a orresponding unaligned load.It also ontains omplementary stores and a omplementary store whih generates anon-temporal hint.Enhaned 3DNow! and SSE eah inlude a 64-bit store whih is intended to min-imize ahe pollution when storing data from an MMX register. SSE also inludes anon-polluting partitioned 32-bit oating-point store from an SSE register. An MMXregister version of this instrution is available in 3DNow!Pro. SSE2 rounds theseout with a 64-bit oating-point SSE register version and a 32-bit instrution whihstores data from an integer register. Eah of these instrutions generates a ahe-management hint that the data is \non-temporal".One instrution found in Enhaned 3DNow! and SSE loads a seleted 16-bit �eldin an MMX register from memory without a�eting the surrounding �elds. It an alsobe used as an insert instrution whih takes its soure data from an integer register.SSE2 extends this instrution for use with SSE registers.The loading of immediate values is often handled in interesting ways. For example,the MAX family of extensions use the PA-RISC \load o�set" instrutions whih areprimarily intended for alulating and loading indexed addresses for memory aesses.MAX also has available an instrution whih an load a 21-bit immediate, shifted by11 bits, into a 32-bit register. This instrution is intended for address generation,but an also be used to load immediate values for omputation. The MAX-2 versionsign-extends the loaded data to �ll a 64-bit register. VIS inludes instrutions whih

- 113 -an load '0' or '1' bits into all of the bits of a 32- or 64- bit oating-point registerthus supplying a means of loading these ommonly-used values (0 and -1).Various extensions also inlude \masked store" instrutions. These store the �eldsof a partitioned register based on the value of a orresponding bit in a bitmask. VISinludes 8-, 16-, and 32- bit masked store instrutions in whih this bitmask is storedin an integer register, typially generated by a omparison instrution. Enhaned3DNow! and SSE inlude an 8-bit instrution in whih this bitmask onsists of themost signi�ant bits (MSbs) of eah byte of an 8x8 partitioned operand. A bytefrom the soure operand is stored if the MSb of the orresponding byte in the seondoperand is a `1'. SSE2 inludes a version of this for use with the SSE registers.MVI, Enhaned 3DNow!, and SSE eah inlude a store synhronization (storesyn) instrution whih ensures that stores preeding the synhronization point inprogram order omplete before stores whih follow. This is known as weak synhro-nization beause the order of every pair of stores is not neessarily maintained. Thatis, two stores whih are sheduled before the synhronization point may be reordered.Only the order of stores ourring before the synhronization point versus those o-urring after it are enfored.SSE2 also inludes a load synhronization instrution whih ensures that loadswhih preede the synhronization point omplete before loads whih follow it. Fur-thermore, SSE2 inludes a memory synhronization instrution whih ensures that allloads and stores whih preede the synhronization point omplete before any loadsor stores whih follow it. MAX has a similar instrution whih weakly enfores theorder of all memory aesses inluding loads and stores and semaphore, ahe ush,and ahe purge instrutions.Although it isn't really a memory aess instrution, SSE2 also inludes a spin-wait hint instrution that lets the proessor know that the proess is exeuting aspin-lok loop. These loops are typially used to synhronize proesses that are inontention for some shared resoure or to blok a proess until some ondition ismet. The Pentium 4 proessor would normally detet suh a loop and treat it as a

- 114 -\memory order violation" [95℄. This hint is used to suggest to the proessor that itignore the supposed violation.2.1.11 Cahe Management InstrutionsTable 2.18 lists the instrutions available for supporting ahe management. Whilethese are not stritly SWAR operations, intelligent use of the memory subsystem isa neessity on urrent SWAR arhitetures to ahieve speedup. Generally, the pro-grammer should be unaware of these issues, so ahe management should be handledinternally by the ompiler. Cahe management is also rarely portable between arhi-tetures, so these operations should not be made visible by a portable programmingmodel.As a general rule, data prefethes are auto-aligned. That is, when a prefethspei�es a partiular address, the aligned line-sized memory blok is brought intothe ahe. Some older arhitetures allow unaligned prefethes whih bring in thememory blok that starts at the requested address.HP's MAX-2 allows simple prefething to be done using the standard load instru-tions by targeting the read-only general register 0. The blok to be fethed lies atthe auto-aligned value of the requested address. For write aesses, the blok may bemarked dirty upon being fethed. 3DNow! inludes similar instrutions whih feth a32-byte blok, but whose address may or may not be auto-aligned, depending on theunderlying arhiteture.The PA-RISC arhiteture's load and store instrutions also take a \ahe hintompleter" (i.e. an opode extension) whih indiates a suggested ation to takerelating to the ahe. One hint indiates that the data will only be used one (i.e. hasthat it has spatial loality, but not temporal loality). Hene, the data an be loadedinto a bu�er rather than into the ahe, thus preventing the ahe from beomingpolluted by the temporary data.

- 115 -
Table 2.17Memory Aess OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeLoad Aligned1 1x8u!1x64u, 1x8u!1x32u, 1x8u!1x64u, - 1x8,1x16u!1x64u, 1x16u!1x32u, 1x16u!1x64u, 1x16,1x32s!1x64s, 1x32u 1x32u!1x64u, 1x32,1x64, 1x64 1x642 1x1282Load Unaligned1 - - - - -1x64Load Field - - - - - -Load Immediate - 1x21!1x643 1x21!1x643 - - -Load Zeros - - - - - -Load All Ones - - - - - -Load Alignment - - - - - 1x128VetorStore Aligned 1x64!1x8, 1x32!1x8, 1x64!1x8, - 1x8,1x64!1x16, 1x32!1x16, 1x64!1x16, 1x16,1x64!1x32, 1x32 1x64!1x32, 1x32,1x64, 1x64 1x642 1x1282Store Unaligned 1to4x8 1to4x8 - - -1to8x81x64Store Aligned - - - - - -w/Cahe FlushMasked Storeby Bitmask - - - - - -by MSb of Part - - - - - -Store Syn Weak - - - - -Load Syn - - - - - -Memory Syn - Weak - - - -Spin-wait Hint - - - - - -1Unsigned type implies zero-extension. Signed type implies sign-extension.2Auto-aligning.3Data shifted left by 11 bits, then sign extended to left into upper 32 bits.

- 116 -Table 2.17 ont'd.Memory Aess OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Load Aligned1 1x8u!1x64u, -1x16u!1x64u, 4x32f 2x64,2x64f64x8!8-1x64Load Unaligned1 - 1x32u!1x64u 1x32f!low 4x32f2, 1x32!low 4x322,1x64 1x64!low 2x642,1x64!low 2x64f2,2x32f!upper 4x32f3, 1x64f!high 2x64f3,2x32f!lower 4x32f4, 1x64f!low 2x64f4 ,4x32f 1x128,2x64fLoad Field - - 1x16!4x165 1x16!8x166Load Immediate - - - -Load Zeros 1x32, - - -1x64Load All Ones 1x32, - - -1x64Load Alignment - - - -VetorStore Aligned 1x64!1x8,1x64!1x16, 1x3271x648, 2x64,2x648,4x32f,4x32f8 2x64f,2x64f88-1x64!64x8Store Unaligned - low 2x32!1x32 low 4x32f!1x32f, low 4x32!1x32,1x64 low 2x64!1x64,low 2x64f!1x64,upper 4x32f!2x32f, high 2x64f!1x64f,lower 4x32f!2x32f, low 2x64f!1x64f,4x32f 2x64,2x64fStore Aligned 8-1x64!64x8 - - -w/Cahe FlushMasked Storeby Bitmask 8x8, - - -4x16,2x32by MSb of Part - - 8x8 16x8Store Syn - - Weak -Load Syn - - - WeakMemory Syn - - - WeakSpin-wait Hint - - - Yes1Unsigned type implies zero-extension. Signed type implies sign-extension.2High �elds leared.3Low �eld(s) left unhanged.4High �eld(s) left unhanged.5Field seleted is (immediate mod 4).6Field seleted is (immediate mod 8).7Data from integer register is stored with a non-temporal hint.8With Non-temporal hint.

- 117 -
Table 2.17 ont'd.Memory Aess OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXLoad Aligned - - -2x32fLoad Unaligned - - 1x32f!low 2x32f -1x64!1x32f1x64!1x32f2x32fLoad Field - 1x16!4x161 - -Load Immediate - - - -Load Zeros - - - -Load All Ones - - - -Load Alignment - - - -VetorStore Aligned - -1x642 2x32f,2x32f2Store Unaligned - - -low 2x32f!1x32f,2x32f!1x64,2x32f!1x64,2x32fStore Aligned - - - -w/Cahe FlushMasked Storeby Bitmask - - - -by MSb of Part - 8x8 - -Store Syn - Weak - -Load Syn - - - -Memory Syn - - - -Spin-wait Hint - - - -1Field seleted is (immediate mod 4).2With Non-temporal hint.

- 118 -MVI and AltiVe inlude instrutions whih issue a \prefeth hint" or \store hint"indiating that the data blok should be prefethed beause it probably will be loadedfrom or stored to, respetively. AltiVe also inludes versions of these instrutionswhih hint that the data should not be ahed beause it is expeted to be \transient".That is, that it won't be aessed many times after the load or store is ompleted.MVI has a separate store hint for transient data.The AltiVe prefeth instrutions also assoiate a strided data stream with anidentifying number. This identi�er, whih ranges from in value from 0 to 3, is usedto indiate from whih stream data should be prefethed. Whenever a stream isassoiated with an identi�er, all assoiations it has with other identi�ers are removed.A separate instrution is inluded to disassoiate an identi�er from its assoiatedstream without assoiating it with another. Another instrution disassoiates allidenti�er/stream pairs. These are apparently the only instrutions in any of theextension families whih take non-unit, variable, strided aesses into aount.Enhaned 3DNow! and SSE eah inlude a set of instrutions whih hint that a32-byte blok should be prefethed and also to whih ahe level the data should besent. This allows the programmer to treat the memory system in a more hierarhialmanner than a simple hint would.MVI also inludes an \evit hint" whih indiates that a partiular ahe linewould be a good hoie for removal (evition) from the ahe beause it will not beaessed in the near future. This instrution may initiate a write-bak of the aheline if it is dirty.SSE2 inludes a \ush line" instrution whih auses the spei�ed ahe lineto be ushed to memory, thus leanly freeing it for future use. MAX-1 inludesinstrutions for ushing the data and instrution ahes if they are separate entitiesor the ombined ahe if not. These instrutions write the ushed line bak to memoryif it is dirty.MAX-1 also inludes instrutions whih will ush an entire ahe, writing linesbak if they are dirty. It also inludes an instrution whih \purges" a data ahe

- 119 -Table 2.18Cahe Management OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISPrefeth Data Line - - Yes - - - -Prefeth Data Line for Write - - Yes - - - -Prefeth Hint 512 bytes1 - - - - Yes2 -Prefeth Hint Transient - - - - - Yes2 -Store Hint 512 bytes1 - - - - Yes2 -Store Hint Transient 64 bytes - - - - Yes2 -Disassoiate ID and Stream(s) - - - - - Single or All -Evit Hint Yes - - - - - -Flush Line - Data,Instr. - - - - -Purge Line - Data - - - - -Flush Cahe - Data,Instr. - - - - -Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXPrefeth Data Line - - - 32 bytes3 - - -Prefeth Data Line for Write - - - 32 bytes3 - - -Prefeth Hint - 32 bytes4 - - 32 bytes4 - -Prefeth Hint Transient - - - - - - -Store Hint - - - - - - -Store Hint Transient - - - - - - -Disassoiate ID and Stream(s) - - - - - - -Evit Hint - - - - - - -Flush Line - - Yes - - - -Purge Line - - - - - - -Flush Cahe - - - - - - -1A subset or superset of the requested blok may be moved.2De�nes the data stream by speifying up to 256 units, of size up to 32 bytes, strided by up to 32768bytes. Also assoiates an identi�er number between 0 and 3 with the data stream.3Unaligned on some arhitetures.4Allows hint as to whih ahe level to prefeth to: t0 = all ahe levels; t1 = all ahe levels exept0th; t2 = all ahe levels exept 0th and 1st; nta = non-temporal ahe struture.

line. Depending on the implementation, this instrution may skip the write-bak ofa dirty line when exeuted by a level-0 (i.e. a privileged) instrution.

- 120 -2.2 Summary of Multimedia Extension Setson General-Purpose MiroproessorsIn this setion, the salient features of the studied extension families are reviewed.This should help us to understand the relative strengths and weaknesses of eah toallow for better design in the future.None of these extension families appears to be an attempt to develop a high-level SWAR proessing model. Support is usually limited to 8-, 16-, and 32-bit�eld sizes, and is usually not onsistently available aross these sizes. Instrutionstailored to spei� algorithms are often available; however, instrutions for inter�eldommuniation, onditional parallel exeution, and partial result ombination usuallyare not.The range of support provided by these families varies widely, with some inludinga large number of SWAR operations, while others inlude only a few. There is usuallysome support for basi modular (wrap-around) and saturating arithmeti, data layout,and data repakaging between integer and partitioned storage formats. Basi bitwise,ondition testing, and ommuniation operations are sometimes supported, thoughsome families do so via standard integer operations rather than as part of the extensionfamily.2.2.1 MVIFrom a review of the Alpha Arhiteture Handbook [60℄, it is obvious that thedesigners of MVI had a partiular set of target algorithms in mind when hoosingthe instrutions to inlude, and were not attempting to develop a high-level SWARprogramming model. In fat, the stated goal of Digital Equipment Corporation'sMVI extensions is to \...enable support for graphis and video algorithms".Beause MVI uses the Alpha's integer registers, its standard integer instrutionsare available to the SWAR programmer. This means that the polymorphi, shift,

- 121 -data layout, and memory aess instrutions are diretly usable and are available foremulating partitioned operations.MVI is weak in arithmeti instrutions, having only a pixel error instrution whihperforms an 8x8u!1x64u redue-add of the absolute di�erenes of the orrespondingelements of two soures. Other instrutions must be emulated using the standardinteger arithmeti instrutions.MVI inludes a reasonable set of partitioned maximum and minimum instrutionswhih are useful for emulating saturation operations whih are not diretly supported.MVI does not inlude partitioned multipliation or division operations, so thesemust be emulated using shifts, adds, and subtrats. A standard set of 64-bit integershifts are inluded in the Alpha arhiteture, inluding shift-and-add and shift-and-subtrats. Partitioned shifts are not inluded, but an be emulated using the standardshifts.A reasonable set of polymorphis is supported by the Alpha arhiteture whihmakes it possible to emulate many unsupported instrutions. Also, instrutions whihperform a population ount, a ount of leading 0 bits, and a ount of trailing 0 bitseliminate the need to perform a redution in software to test global onditions suhas ANY or ALL true.MVI is also weak in the number and type of omparison operations it inludes.The only partitioned omparison inluded is an 8x8u greater than or equal test. Thisinstrution generates a bitmask with ones in the bits representing the �elds wherethe ondition is true, and zeroes in the others. The \zap" and \zapnot" instrutionsan then be used to easily mask the set of true or false �elds as needed. This is areasonable solution to providing enable masks for onditionals, but the single testingtype is too restritive to be of muh value.The standard integer equality test an be used as a global test (ALL equal), butis only useful for emulating partitioned tests if they are serialized. The 64-bit \beq"and \bne" instrutions an be used as branh on none- or any- true, respetively,as an the \moveq" and \movne" instrutions. These may be useful for SWAR

- 122 -looping onstruts beause the deision on whether to enter the body is aggregatedaross the �elds of a fragment rather than being separate for eah �eld.MVI ontains several shift instrutions for inserting and extrating �elds from apartitioned register. Also inluded are several instrutions for learing the upper orlower setions of a register. These instrutions are useful for several types of datalayout and rearrangement operations and allow data movement to or from a partiular�eld in a low number of steps.Operations for paking 16- and 32- bit �elds to 8-bit �elds are available, as areoperations for unpaking 8-bit �elds to 16- and 32- bit �elds, but not between 16-and 32- bit �elds. Thus, paking 32-bit �elds to 16-bit �elds requires paking to 8bits, then unpaking to 16 bits.The Alpha arhiteture also inludes a set of load and store instrutions whihallow 8-, 16-, 32-, and 64- bit operations. The loads always write into the leastsigni�ant end of the register and zero- or sign- extend the data into the rest of theregister. This prevents diret loading of a �eld without disturbing the rest of thefragment, but allows �elds to be loaded individually then ORed together to form thepartitioned fragment. Stores always write the least signi�ant end of the register tomemory without disturbing the remainder of the word, thus allowing nearly diret�eld stores. A store synhronization instrution is available to ush urrently pendingstores.A set of ahe prefeth hints are also inluded whih give the programmer someontrol over the operation of the ahe. This ontrol may be useful when operatingon long vetors.MVI is by far the weakest of the stand-alone extensions. Most general-purposeSWAR operations would have to be emulated if only MVI is available.

- 123 -2.2.2 PA-RISC MAX-1MAX-1 arithmeti instrutions inlude 16-bit modular and signed saturating ad-dition and subtration. Unsigned saturating addition and subtration are also sup-ported, but these ombine a signed operand with an unsigned one to form an unsignedsaturated result. This makes pure unsigned saturation arithmeti diÆult, beause itfores the programmer to o�set one operand and perform orretions to the saturationstep.The lak of redution operations makes a fundamental step in task-based SIMDarithmeti algorithms expensive beause it must be emulated. This is normally doneusing shifts and parallel instrutions. These are supported to some extent, so emula-tion is possible for redution operations, but will be expensive.Also laking are instrutions whih result in the upper half of the result of anaddition or subtration. While this is not a problem in itself, these instrutions aresometimes useful for emulating unsupported operations.MAX-1 does not ontain partitioned maximum or minimum operations. This hastwo onsequenes. First, these operations must be emulated if they are inluded ina SWAR programming model. Seond, they annot be used to emulate unsupportedsaturation operations. This ompounds the e�ets of not having pure unsigned satu-ration arithmeti instrutions.Multipliation and division by integer or frational onstants is supported usingshift-and-add instrutions. These perform a left or right shift of one 16-bit operandfollowed by signed saturation addition with the other. Beause they are only intendedto support multipliation and division, these shifts are limited to one-, two-, or three-bit ounts, and are equivalent to performing a multipliation or division by a valueof two, four, or eight.These shift-and-operate instrutions are more general than simple shifts, but theirlimitations make them less useful than they ould be. In general, high-level language

- 124 -shift operations would be onstruted as a series of these instrutions. This mayrequire non-trivial ompiler tehnology to implement.A 16-bit unsigned average instrution whih rounds its result to an odd value isalso available. This is intended to optimize graphis algorithms, suh as smoothing,whih use this ommon operation. It is less useful for arithmeti algorithms.Beause MAX-1 instrutions are performed on the integer register set, the PA-RISC's standard bitwise operations are available for use in SIMD masking and theemulation of more omplex operations. A suÆient working set is provided to allowthe emulation of any required operation.MAX's bitwise instrutions an also be used to test a ondition and nullify thenext instrution in the program. This instrution is usually an unonditional jump.Thus, the onstrut emulates a branh, and is likely to be most useful for tests onthe aggregate ondition of the �elds in a partitioned objet.Partitioned onditional instrutions in MAX-1 are limited to a handful of \unit"tests whih perform an operation suh as XOR or add-with-omplement, then nullthe next instrution if an ANY or ALL test fails. There are no tests whih generatea bitmask or �eldmask that ould be used for SIMD enable masking. This is asigni�ant disadvantage.However, MAX-1 does inlude a fairly rih set of full-register test, branh, load,and null-next instrutions. These are arguably more useful in a SWAR environmentthan the few unit operations whih are inluded beause they test aggregate ondi-tional information. However, as aggregate tests, their useful operation often overlaps.Thus, from the stand-point of SWAR proessing, MAX-1's set of onditional instru-tions is not as rih as is appears to be at �rst glane.The implementation of operations whih mix salar and partitioned data oftenrequires that the salar objet be repliated to form a partitioned objet upon whihthe atual operation is performed. MAX-1 does not provide any means of performingthis repliation step, so it would have to be emulated if mixed expressions are allowedin the high-level programming model.

- 125 -MAX-1 also inludes shift-left-and-extrat instrutions whih allow an arbitrarynumber of bits to be extrated from a partitioned register starting at an arbitrarybit position in the register. This would be used to extrat a �eld of data from withina partitioned register and thus to implement vetor element aesses in a vetorproessing model.MAX-1's bit shift-right-and-extrat instrutions shift the onatenation of two n-bit registers by up to n bits, then extrat the low n bits into the destination register.This is intended to be used for data alignment before or after an unaligned memoryaess, but ould be used for vetor shifts, in whih elements are shifted between�elds.A set of bit-shift-left-and-insert instrutions allow 32 or 64 bits to be extratedfrom a soure register and inserted into an arbitrary bit position in a target register.These an either lear the other �elds of the target register or leave them unhanged.This is useful for altering single �eld values diretly, for extrating partiular �eldvalues based on onditional tests, or for gather and satter operations in whih a longvetor may be ompressed to optimize exeution, then returned to its original state.Other than its shift-right-and-extrat instrutions, MAX-1 is ompletely bereft ofombinatorial operations suh as interleaves and atenations. It also laks paks andunpaks. This makes it hard to perform type onversions or to emulate operationsby onverting data to a supported preision (e.g. using 16-bit additions to implement8-bit additions).A full set of loads and stores is inluded whih allow any multiple of a byte tobe aessed diretly. Although it is intended for onstruting an e�etive address, aload immediate instrution is also available whih allows a 21-bit value to be loaded.Immediates are normally loaded using a \load o�set" instrution whih adds theimmediate to the ontents of a base register. By using register 0, whih alwaysgenerates 0, the immediate an be loaded. An instrution whih stores multiple bytesstarting at an unaligned position is also available. This is useful for optimizing thestoring of long data vetors.

- 126 -MAX-1 inludes a memory aess synhronization instrution. This weakly en-fores the ordering of all memory aesses inluding semaphore touhes and aheushes. MAX-1 also allows many of its instrutions to provide ahe hints, andinludes a set of ahe management instrutions for ushing ahe lines. These al-low separate data and instrution ahes to be handled separately and also allow aprivileged proess, or the operating system, to evit lines belonging to user proesses.While MAX-1 is more omplete than MVI, it is limited in sope. Beause ofthis, a large amount of emulation would be needed to be implement a full SWARprogramming model using MAX-1. Its limitation to 16-bit parallel objets restritsits usefulness for harater stream and standard integer proessing. However, it'sbiggest fault is probably the lak of instrutions that would support the emulation ofoperations on data of unsupported preisions. MAX-1 would be a diÆult, but notimpossible, target for a SWAR arhiteture.2.2.3 PA-RISC MAX-2MAX-2 extends the MAX-1 extension set in two major ways. First, it extendsthe existing MAX-1 instrutions to make use of the 64-bit PA-RISC 2.0 arhiteture.Seond, it adds support for data alignment and rearrangement operations.One of the limitations of MAX-1 was the lak of a set of simple, generalizedshifts. This is resolved in MAX-2 with the addition of shift by immediate instrutionswhih operate on 16-bit partitioned data. These instrutions make the emulation ofunsupported operations easier to implement using MAX-2 than they would be usingMAX-1. They still su�er from the limitation that the index is not variable. This typeof operation is diÆult to emulate using onstant-ount shifts, so there is still roomfor improvement.A generalized permute by immediate instrution allows arbitrary reordering of the�elds of a partitioned register inluding repliations. This instrution addresses one

- 127 -of the problems with MAX-1 by providing a means of onverting salar data into apartitioned form for use in mixed expressions.Other problems addressed by the permute instrution are type onversion and theemulation operations on unsupported data sizes. Permute allows values to be pakedand unpaked, thus making it less ostly to onvert between sizes and to emulaten-bit operations with 2n-bit operations.Permute an also be used to perform a large number of operations whih resembleommuniations. For example, a single �eld value may be repliated suh as in abroadast or eah �eld value may be passed to its neighbor suh as in a nearestneighbor ommuniation operation.Unfortunately, the permute's index vetor is an immediate value. Thus, it must beknown at ompile-time. This limits the usefulness of the permute as a ommuniationoperation to �xed patterns. This is not a problem for type onversions and emulation,whih are de�ned at ompile-time anyway. Thus, MAX-2's permute is still very usefulfor implementing a generalized SWAR model.MAX-2 also has a reasonable set of interleaving \mix" instrutions whih support16- and 32- bit �eld sizes. These are most useful for promoting and demoting datafor emulating operations on unsupported �eld sizes. These an be used to address thedata onversion problem. The operation of these instrutions is atually overed bythe permute. Thus, these instrutions are only useful if they provide a performaneimprovement over using the permute instrution.MAX-2 also extends MAX-1's funtionality by supporting ahe prefething. Thisis aomplished by using the \ldd" or \ldw" instrutions to \load" general register0, whih is atually read-only. The \ldd" instrution indiates a load for read, while\ldw" indiates a load for write.MAX-2 supports a reasonable range of SWAR operations; however, the supported�eld sizes for any given operation are often severely limited. Thus, a large amountof emulation would be required to implement a general-purpose model. While theadditions beyond MAX-1 are not as useful as they ould be, they do address some

- 128 -of the primary problems with MAX-1 and make MAX-2 a usable target for SWARproessing.2.2.4 MIPS-VThe MIPS-V extensions inlude arithmeti instrutions for modular addition, sub-tration, and multipliation. Unary absolute value and negate instrutions are alsoavailable. These instrutions allow basi math operations to be performed on oating-point data.MIPS-V does not inlude saturation operations, nor does it inlude minimum ormaximum operations whih ould be used to emulate saturation operations.Various forms of multiply-add and multiply-subtrat instrutions are also in-luded, but these are not partiularly useful for a generalized SWAR model. Theyare most likely to be used as optimizations for speial situations.No divide or reiproal instrutions are inluded in the MIPS-V extensions. Thus,oating-point division will have to be serialized if it is inluded in the general-purposemodel. MIPS-V also laks the square root, log, and exponential instrutions inludedin some of the other oating-point extension families.MIPS-V's rih set of partitioned onditional tests is by far the largest of any ofthe extension families. These instrutions allow tests for multiple ombinations ofonditions inluding orderedness and unorderedness. These tests set ondition odebits whih represent the result of the test on eah �eld. Conditional move instrutionsmerge eah �eld of the soure into the result based on the values of these bits.The \vt.ps.s" instrution paks two oating-point single values into a 2x32f par-titioned value. This allows two non-onseutive 32-bit values to be easily ombinedinto a partitioned register without involving extra masking steps.The \alnv.ps" instrution extrats either the low or middle 2x32f from the 4x32fonatenation of two 2x32f soures, and is usually used for data alignment. For the

- 129 -purposes of SWAR proessing, it is most useful for performing neighbor ommunia-tions on multi-fragment vetors or aligning unaligned memory aesses.A set of instrutions allow the upper, lower, or a mix of the even and odd �eldsof the two soures to be interleaved. These also may be used to failitate ertainommuniation operations.Auto-aligning instrutions for loading and storing the oating point registers areinluded whih are used by both the MIPS-V ISA and MDMX. These load the aligned64-bit blok whih ontains the given address rather than the 64-bit blok starting atthe address.As a oating-point extension supporting IEEE-ompliant omputing, MIPS-Vdoes fairly well; however, the lak of support for division is disturbing. Supportfor saturation arithmeti is non-existent; thus, a model whih inludes saturationmath will be diÆult to implement on MIPS-V.2.2.5 MDMXData stored in the aumulator is always signed, and operations whih target theaumulator are always modular. Instrutions whih target the aumulator inludeaddition, subtration, and multipliation.Data exists as a \bit array" until one of the partitioned operations is applied,at whih time the data is onverted into 8x8u or 4x16s form. From then on, theSHFL instrution must be used to onvert between 8x8u and 4x16s forms, otherwisethe data beomes unde�ned. Conversion from 4x16s to 8x8u requires data to besaturated with MIN or MAX and rearranged via SHFL.MDMX instrutions whih target the oating-point (FP) registers are always sat-urated, and are performed on either 8-bit unsigned or 16-bit signed data. Theseinlude instrutions for addition, subtration, maximum, minimum, and multiplia-tion. A 16-bit signed multiply by sign instrution is also available; however division,reiproal, square root, log, and exponential are not.

- 130 -A full set of shift instrutions is also inluded, as is a reasonable set of polymor-phis, both of whih operate on the data in the FP registers.A suÆient set of onditional tests is inluded for most SWAR operations. Theseinstrutions set the oating-point ondition ode bits based on the result of the testin eah �eld. The \pik" instrutions an then use these bit values to selet whih oftwo soures they will opy their �eld results from.Another interesting feature of MDMX is that ondition odes are used and anbe read or written in subsets. Most of the extension families avoid using onditionodes, presumably to avoid their \side-e�et" status.Several instrutions are inluded for moving data between the aumulator andthe FP registers and for paking the data in the aumulator into the more ompatforms used in the FP registers.A set of instrutions whih perform a byte-shift-left-and-extrat operation on theonatenation of two soure registers are inluded. These are most useful for multi-fragment ommuniation operations suh as �eld shifts or rotates, and for aligningunaligned data aesses.MDMX inludes a solid set of ombining operations for use with the FP regis-ters. Interleave upper, lower, and even-with-odd instrutions are inluded, as areseveral forms of onatenation. These instrutions are most useful for promoting anddemoting data for emulation.MDMX also inludes instrutions for sign-extending 8-bit values to 16-bit values.These instrutions an save several when promoting 8-bit data to 16-bit data. Beauseof the relative ompleteness of the MDMX 8-bit instrution set, these instrutions arenot as important to SWAR proessing using MDMX as they would be to extensionfamilies for whih more 8-bit operations must be emulated.Beause MDMX is limited to 8-bit unsigned and 16-bit signed data, a signi�antamount of emulation would be neessary to implement a general-purpose model whihinludes 8-bit signed or 16-bit unsigned operations. This is not fatal, and MDMX'sversatility and range of operations make it a reasonable target for SWAR operations.

- 131 -2.2.6 AltiVeArithmeti operations onsist of modular and saturation addition and subtrationon 8-, 16-, and 32- bit integer data, and saturation addition and subtration on 32-bitoating-point data. A 32-bit unsigned addition high is also inluded whih an beused to emulate 64-bit unsigned additions. The orresponding subtrat high is alsoinluded.A 32-bit signed redue-add-with-element an be used to quikly perform multi-word redutions. Partial redue-add instrutions, whih redue subsetions of a reg-ister into a partial result are also inluded.Modular multipliations on 8- and 16- bit data multiply either the even or odd�elds of the soures, yielding a result with doubled �eld widths. This allows satu-ration multipliation to be easily emulated. An interesting set of multiply-add andmultiply-subtrat instrutions are available, but these are somewhat esoteri, andwould probably only be used for optimizations.Maximum and minimum instrutions operating on signed and unsigned integersand oats are inluded, as are a full set of integer averages.A single-preision oating-point reiproal approximation instrution an be usedto perform oating-point division. Floating-point reiproal square root, log basetwo, and exponential approximations are available, but also are likely only to be usedfor optimization.Partitioned shifts and rotates inlude 8-, 16-, and 32- bit logial and arithmetioperations, but 128-bit shifts must be performed in multiple steps by shifting bybytes, then by bits within the bytes. Full-width shifts are often used in emulation,and the lak of these is a potential problem. However, a set of polymorphis suÆientto perform enable masking and emulation is inluded.Conditionals inlude a full set of integer equality and greater than tests and a32-bit oating-point greater than or equal test as well. These yield a �eld maskwhih sets all the bits in eah �eld of the result to either '0's or '1's depending upon

- 132 -the result of the test. Suh a mask is immediately usable for enable masking in aSWAR environment. This form of result is probably the best single hoie possiblefor partitioned tests.Pik true and false instrutions are also inluded whih an be used to performtrinary operations easily. A 32-bit ompare bounds instrution indiates the rela-tionship of two oating-point operands, but is likely to be used only in speial asesituations.AltiVe inludes �eld repliation for 8-, 16-, and 32- bit �elds. This is most usefulfor onverting single-valued data to vetor form { an operation whih ours often inSIMD ode. This an also be used to optimize the repliation of other-sized �elds aswell. Field seletion is via an immediate value, whih limits the usefulness of theseinstrutions to non-variable �eld indexing and internal emulation. Taking the �eldnumber from a register would allow variably-indexed �elds to be seleted for replia-tion; however, this funtionality is provided by a generalized permute instrution andwould thus be redundant.Repliation of a 5-bit immediate, sign-extended to the �eld size, is also inluded.These an be used to load small magnitude onstants in one step or larger onstantsin two for the supported �eld sizes. They an also be used to load onstants intosmaller �elds in multiple steps.Instrutions for onverting data between integer and oating-point type are alsoinluded, as is an instrution for rounding oats to an integer oating-point value.These instrutions are useful for type onversion and asting.The \vsldoi" instrution allows a 16-byte sequene to be extrated from the on-atenation of two 16-byte values. It is intended for alignment purposes, but an beused for vetor shifts or ommuniation operations.AltiVe's \vperm" instrution performs a general permutation on two soure regis-ters to form a single result, indexed via a third register. This allows it to be used bothstatially for data layout and type onversions, or dynamially to support variably-

- 133 -indexed element aesses or data ommuniations suh as a router operation inMPL [107℄.AltiVe inludes several forms of interleaves and unpaks inluding saturatingforms whih an be used for type onversion and to emulate unsupported saturationoperations. The \unpak-and-sign-extend" instrutions allow signed data to be on-verted to larger preisions easily. This would be an expensive operation otherwise,and is one whih ours often when emulating saturation operations. The pak andunpak pixel operations are less useful and unlikely to be used by a general-purposeompiler.AltiVe also inludes instrutions to load or store aligned vetor elements and toload or store 128-bit bloks. These operate without hanging the relative position ofthe element in the enlosing 128-bit blok. Unfortunately, the loads are not as usefulas they ould be. When loading a single element, it needs to be aligned, thus requir-ing a shift operation. Also, the AltiVe loads leave the surrounding bits unde�ned,thus requiring a masking operation to lear them. When loading an element into apreviously loaded fragment, we would like the surrounding elements to be unhanged,but AltiVe doesn't guarantee this, so again we must perform masking to insert theelement properly. AltiVe's element stores are more useful in that they don't lobbersurrounding data. This allows element stores without performing masking; however,if the data to be stored is single-valued, alignment is still required.One problem with AltiVe is that data annot be moved diretly between thevetor and general-purpose integer registers. Thus, array indies generated in thevetor registers must be moved via memory to the integer registers for use in a loador store instrution.The load-vetor-for-shift instrutions load a vetor value whih an be used as asthe index for a permute operation to extrat a 16-byte sequene from the onate-nation of two 16-byte fragments. This an be used to implement vetor shifts androtates, but is intended for the alignment of unaligned memory aesses.

- 134 -AltiVe also inludes instrutions to provide hints about whether data should orshould not be prefethed for loads or stores. These de�ne a data stream whih anontain up to 256 units of up to 32 bytes eah, strided by up to 32768 bytes. Thisallows hints about data stored in various memory layouts to be easily indiated.AltiVe is a rather omplete set of extensions. As a general rule, support is broadand available for eah of the standard data sizes below 64 bits. Support for 64-bitdata is, however, laking.Overall, AltiVe is a very good target for a general-purpose SWAR model, but thelak of 64-bit operations in a 128-bit environment leaves a large gap. Also, the lakof simple data moves between register sets and the mediore memory aess systemmake generalized addressing diÆult.2.2.7 VISA reasonable set of modular arithmeti instrutions is inluded for 16- and 32- bitoperations. Addition and subtration instrutions are inluded, as is a redue-add ofthe absolute di�erenes of 8-bit �eld values.A large number of multiply instrutions are inluded, eah of whih multipliesfour 8-bit values with one to four 16-bit signed values. These typially produe a24-bit intermediate value whih is then onverted to the format of the �nal result.Few of these will be generated by a general-purpose ompiler exept as a speial aseoptimization.Minimum and maximum operations are not supported by VIS, nor are divide,reiproal, square root, logarithmi, or exponential instrutions. The lak of supportfor saturation arithmeti or for maximum and minimum operations will make theemulation of saturation operations diÆult for anyone attempting to implement them.A large set of polymorphis is also inluded in the VIS extensions and an be usedto failitate the emulation of unsupported operations.

- 135 -Several omparison operations are available whih operate on 16- and 32- bitpartitioned data. These set a bitmask in an integer register, whih an then be usedby a masked store instrution.VIS inludes an \faligndata" instrution whih performs a \byte shift right andextrat" operation. It also inludes \fpak32", \fpak16", and \fpak�x" instrutionswhih perform \sale, trunate, and lip" or \sale, trunate, lip, and merge" oper-ations and were intended to be used to onvert between VIS' pixel and �xed-pointformats. They are the only forms of shift instrution inluded in VIS. Unfortunately,these forms are not partiularly useful for emulating those operations whih are notsupported by VIS. The lak of simple bitwise shifts severely limits emulation possi-bilities.An interleave instrution allows two 4x8u partitioned registers to be merged intoa single 8x8u, and an be used for �eld size promotion, as an an unsigned expandinstrution whih zero-extends the �elds.VIS inludes 8- and 16- bit loads and stores, and blok loads and stores whihmove 64 bytes of data between memory and eight of the 64-bit oating-point registers.Instrutions are also inluded whih lear or set all the bits in a register.Masked store operations in whih the �elds to be stored are indexed via an integerbitmask are available to limit the e�ets of a store to a spei� set of �elds. These anbe used to implement SIMD enable masking for high-level onditional ode. Whilethe masked store is a good idea, it would be better if it was indexed by a �eld maskinstead of a bit mask. This would allow better integration with SIMD masking ode.Despite Sun's laim to the ontrary, VIS seems to be designed for spei� al-gorithms rather than for a general-purpose model. The seletion of esoteri instru-tions over simple or generalized instrutions makes supporting a truly general-purposemodel more diÆult than is neessary.

- 136 -2.2.8 MMXThe MMX extension family, originally from Intel Corporation [93, 71℄, and lonedby Advaned Miro Devies, Inorporated [73℄, Cyrix Corporation [74℄, and otherssuh as Rise Tehnology Company [94℄, was originally \...designed to enhane per-formane of advaned media and ommuniation appliations" [72℄ while retaining\full ompatibility with existing operating systems and software." [93℄ An overviewof the MMX family is provided in [72℄, and detailed desriptions of the instrutionsare available in [95℄. A short summary, inluding yle ounts, is available in [93℄.The MMX extensions provide a fairly wide range of support for a high-level par-allel programming model; however, they are limited to 8-, 16-, and 32- bit SWARoperations whih are not implemented onsistently aross these �eld sizes.MMX operates on data stored in the oating-point (FP) registers. These registersannot be used for oating-point operations while MMX is in use, and the standardinteger instrutions annot be used on the data stored in these registers. In this sense,MMX is less useful than the families whih partition their standard integer registers.The supported arithmeti instrutions inlude a reasonably omplete set of modu-lar and saturated addition and subtration instrutions, 16-bit modular multiply andsigned multiply high instrutions.A multiply-add instrution is useful for ertain algorithms, but is only likely to beused as a speial-ase optimization by a SWAR-based ompiler.Maximum and minimum instrutions, whih are useful for emulating saturationoperations, are not inluded in the MMX instrution set. This means that emulationof saturation operations is expensive using only MMX. Divide and reiproal areexluded, as are square root, log, and exponential instrutions.Shifts on 16-, 32-, and 64- bit �elds are inluded, and are suÆient for most SWARneeds. A solid set of polymorphis is also inluded. These make it possible to emulatemany SWAR operations whih are not supported diretly by MMX instrutions.

- 137 -Partitioned omparison instrutions return a �eld mask whih is immediately us-able for enable masking in a SWAR environment.A full set of interleave upper, interleave lower, and atenate even instrutionssupport data promotion and demotion for the emulation of unsupported SWAR op-erations.Memory aess instrutions inlude the \movq" and \movd" instrutions whihare apable of moving data both between oating-point (FP) registers and betweenthese and memory. Also, most MMX instrutions allow one of the soures to be inmemory, thus eliminating the need for a separate move in ertain ases.Despite its limitations, MMX is one of the more omplete families of SWARextensions. However there are enough gaps that Intel felt the need to address themas part of the SSE extensions (see setion 2.2.13).2.2.9 3DNow!3DNow! [75℄ inludes 32-bit saturated oating-point addition, subtration, andmultipliation, and a saturating 32-bit oating-point redue-add-and-pak whih willsubstantially redue the number of instrutions neessary to perform a vetor redu-tion on oating-point data.Floating-point maximum and minimum instrutions are also inluded, as are in-strutions to approximate the reiproal and reiproal square root of a oating-pointelement. While the last of these is most likely to be used only in optimizations, thereiproal an be used to emulate divides whih are not diretly supported otherwise.Floating-point omparisons result in �eld masks as in MMX, whih, beause theyuse the same register set, an be used to mask integer or oating-point vetors.Instrutions are inluded for onverting between 32-bit signed integer and oating-point data, whih allow type onversion and asting to be performed easily.A limited set of ahe management instrutions are also inluded for prefethinga 32-bit data line and marking it dirty (written to) when useful.

- 138 -Beause 3DNow! is an extension of MMX, MMX's shifts, polymorphis, loads,and stores an all be used with 3DNow!. To make MMX more omplete, 3DNow! alsoinludes a 16-bit signed modular multiply high and an 8-bit unsigned average instru-tion.In summary, 3DNow! is a good �rst step toward adding oating-point SWARapabilities to MMX and improving its overage. There is still room for improvementwhih is addressed by the Athlon extensions to 3DNow! (see setion 2.2.10).2.2.10 Enhaned 3DNow! and MMXA 32-bit oating-point redue-subtrat-and-pak performs a subtration on theelements of two registers, then paks the results. This is the omplementary operationto 3DNow!'s redue-add-and-pak. Another oating-point instrution performs anaddition on one register, a subtration on another, and then paks these results intothe destination. Depending on how a redue-subtrat is de�ned in the programmingmodel, one or the other of these instrutions ould be used to implement the operation.The \psadbw" instrution performs a redue-add on the di�erenes of two 8x8integer values to form a 16-bit unsigned result. This an be used to optimize redutionode whih an be expensive without suh support.E3DNow! also inludes 8-bit unsigned and 16-bit signed integer maximum andminimum instrutions. These an also be used to emulate 8-bit signed and 16-bitunsigned maximum and minimum operations and saturation operations using largerdata sizes.The \pmovmskp" instrution is used to generate a bit mask onsisting of the signbits of the 8-bit elements of a partitioned register. This would be more useful if itould be used in diret onjuntion with the \maskmovq" instrution whih performsa masked store of the bytes with a set sign bit. However, the bitmask forms do notmath; thus, pmovmskp is not partiularly useful.

- 139 -Enhaned 3DNow! also inludes a 16-bit unsigned multiply high, and 8- and 16-bit unsigned average instrutions whih �ll in missing parts of the MMX integerinstrution set.Instrutions to onvert between 16-bit signed integers and 32-bit oating-pointelements are inluded to omplement the onversions between 32-bit data types in-luded in 3DNow!.A 16-bit �eld extration operation an be used to quikly aess vetor elementswhih start on a 16-bit boundary, but is not as useful for others, as it would requireas many instrutions as a mask and align operation using full-width operations. Theorresponding 16-bit insert instrution is also inluded. These instrutions an beused to move data between the integer and MMX register sets, and the insert analso move data from memory into an MMX register.A 16-bit permute, indexed via an immediate, an be useful for emulation anddata promotion, but is not as useful as a permute indexed via another register. Aninstrution for swapping 32-bit oating-point �elds is also inluded. It an also beused to swap the upper and lower halves of the register when it holds integer data,but its operation an also be performed with a permute, so it is atually redundant.A ahe-bypassing store is inluded, as is a store synhronization instrution whihenfores the order of stores whih our before the synhronization point versus thosethat our afterward.Enhaned 3DNow! �lls in many of the gaps in MMX and 3DNow! and inludesinstrutions whih will failitate the implementation of a general-purpose model onthe Athlon arhiteture. With these extensions the Athlon has beome a matureSWAR arhiteture.2.2.11 3DNow! ProfessionalAMD introdued the 3DNow! Professional [98℄ extensions to the Athlon instru-tion set in order to bring its various multimedia extensions to par with Intel's Stream-

- 140 -ing SIMD (SSE) extensions (see setion 2.2.13). This set of 52 instrutions inludesthose found in SSE whih are not found in MMX, 3DNow!, or Enhaned 3DNow!.2.2.12 Extended MMXCyrix's Extended MMX (EMMX) [77℄ has two purposes. First, it extends theMMX extension set by a few instrutions. Seond, it adds exibility by inluding in-strutions whih target a register whose use is not expliitly indiated in the instru-tion, but rather implied by the use of its sequentially paired register whose numberdi�ers only in the least signi�ant bit. E�etively, these instrutions are three registerinstrutions rather than the IA32 standard of two, and allow the instrution to avoidoverwriting one of its soures.16-bit signed saturation addition and subtration are inluded, both of whihrepeat the funtionality of an existing instrution, but target an implied register.Similarly, a set of 16-bit signed multiply high instrutions allow the result to bestored or aumulated with an implied register.One addition to MMX is an 8-bit unsigned saturating sum of absolute di�erenesinstrution whih aumulates with the partitioned value in the implied register.Another addition is a 16-bit signed magnitude instrution in whih eah element ofthe result is the element with the larger absolute value of the orresponding elementsof the soures. Neither of these is likely to be used as anything but an optimizationby a general-purpose ompiler.An 8-bit average is also inluded, whih performs a signed operation for CPUsprior to version 1.3, and unsigned for versions after 1.3.A set of 8-bit partitioned onditional loads is also inluded whih load eah �eldbased on the value of the orresponding �eld of a test register.To the best of my knowledge, EMMX has not been implemented on any publily-available CPU, although aording to a preliminary version of the Cyrix CPU Dete-tion Guide [100℄, the GXm was intended to support EMMX.

- 141 -The implied register onept is interesting, but it is unlikely that EMMX will beimplemented (if it hasn't already been) beause it has been overtaken by the moreadvaned extensions from AMD and Intel.2.2.13 SSEExtensions to MMX inlude an 8-bit unsigned redue-sum of absolute di�erenes,8-bit unsigned and 16-bit signed maximum and minimum operations, and an instru-tion to generate a bit mask of the sign bits of an 8x8 partitioned register. A 16-bitunsigned modular multiply high is also inluded, as are 8- and 16- bit unsigned aver-ages.Instrutions to insert or extrat 16-bit �elds into or out of an MMX register areinluded. These are the equivalent of the E3DNow! instrutions of the same name.Similarly, a 16-bit permutation operation is inluded and su�ers the same limitationsas its E3DNow! ounterpart.The \pinsrw" instrution an be used to load a seleted 16-bit �eld into an MMXregister. The \movntq" instrution an be used to store the ontents of an MMXregister while minimizing ahe pollution, and the \maskmovq" instrution performsan 8-bit masked store based on the sign bits of the register �elds. A store synhroniza-tion instrution ensures the ordering of stores ourring before the synhronizationpoint versus those that our afterward.The oating-point extensions in SSE inlude partitioned and low element formsof basi modular arithmeti. These inlude addition, subtration, multipliation,maximum, and minimum instrutions. They also inlude division and square root,and reiproal and reiproal square root approximations.A basi set of polymorphis is also inluded whih would be useful for emulation,but a lak of shifts tends to limit any suh hopes.Several partitioned and single element forms of onditional operations are inludedwhih result in a �eld mask usable for SIMD enable masking. These test basi on-

- 142 -ditions and also the orderedness (validity) of oating-point data. Instrutions to setthe ondition odes based on the value of the low element are also inluded.32-bit interleaves and onatenates operate on the SSE registers and allow forhanges in data layout, type promotion, and vetor shifts. A permutation instrutionwhih is indexed via an immediate is also inluded. It an be used internally by aompiler, but is not as useful as a vetor-indexed permute would be.Instrutions to load or store SSE registers either in their entirety or by subsetionare available, as are instrutions to move data between SSE registers or between SSEand MMX registers. Also inluded are instrutions to onvert data between integerand oating-point formats.2.2.14 SSE2SSE2 inludes instrutions for performing basi 64-bit oating-point partitionedand element operations inluding addition, subtration, multipliation, division, max-imum, minimum, and square root.The MMX set of polymorphis are also inluded for use with the SSE registers,as are several forms of omparisons. A relatively large set of type onversions is alsosupported. New moves, shu�es, and unpaks are inluded to make handling 64-bitoating-point data easier.With this set of instrutions, the Pentium 4 arhiteture is a mature SWAR ar-hiteture. Emulation of unsupported operations is reasonably well-supported, andnumerial analysts are able to use SWAR instrutions for 64-bit oating-point om-putation.2.3 Other SWAR arhiteturesThis dissertation fouses on ommodity miroproessors that are likely to be usedas the primary proessor in a desktop omputing system. However, there are several

- 143 -speial-purpose proessors with SWAR arhitetures that I wish to aknowledge atthis time.These arhitetures range from ommuniations proessors to digital signal pro-essors (DSPs), and were not intended for general-purpose omputation. For thisreason, they were not inluded in the earlier analysis although a properly designedSWAR model should be appliable.This setion ontains a brief survey of these speial-purpose SWAR arhitetures.MiroUnity MediaProessorThe MediaProessor [108℄ by MiroUnity Systems Engineering, Inorporated isa 128-bit \broadband proessor" whih was designed to \ommuniate and proessdigital video, audio, data, and radio frequeny signals at broadband rates...."The MediaProessor supports \SIGD" (Single Instrution on Groups of Data)parallelism \over data types of all sizes." This is done by dividing its 128-bit data pathinto 64-, 32-, 16-, 8-, 4-, 2-, and 1-bit setions. Integer operations an be performedon any of these data sizes. Single- and double-preision oating point operations arealso supported. In terms of supported �eld sizes, this makes the MediaProessor themost exible of any of the arhitetures disussed.Analog Devies ADSP-2116x SHARCAnalog Devies' ADSP-2116x Super Harvard ARChiteture (SHARC) [109, 110℄family of proessors are 32-bit system-on-a-hip digital signal proessors used primar-ily for embedded appliations.These proessors have two proessing elements whih an be used in SIMD mode.Eah of these onsists of an ALU, a shifter, and a multiplier, and operates on its ownset of registers. When operated in SIMD mode, the seond proessor is driven by thesame instrution stream as the �rst, otherwise it is idle.

- 144 -Data an be operated on in 16-bit oating-point format, 32-bit �xed or oating-point format, or 40-bit extended oating-point format. A wide range of relativelypowerful instrutions are supported as is saturation arithmeti.Analog Devies ADSP-TS101S TigerSHARCAnalog Devies ADSP-TS101S TigerSHARC DSP [111℄ is the �rst of a new line ofembedded proessors derived from the SHARC family. This new family is intended foruse in teleommuniations systems and multiproessor signal-proessing appliations.The TigerSHARC's omputational bloks have two SIMD-driven 64-bit proessingelements similar to those of the SHARC family. The proessor an read and exeuteup to four instrutions at a time in a VLIW manner using a 128-bit memory bus.Supported data types inlude 8-, 16-, and 32-bit �xed-point and oating-point formatsand an extended 40-bit oating-point format.Equator Tehnologies MAP-CAEquator Tehnologies, Inorporated's MAP-CA Broadband Signal Proessor [112℄is a VLIW arhiteture with proessing units whih an operate in a SWAR manneron 8-, 16-, 32-, and 64-bit data objets.The MAP-CA is intended to support \broadband multimedia appliations" as anembedded system in \infrastruture and end-point produts." These inlude produtssuh as set-top systems, video surveillane systems, and opiers. Another importantappliation is real-time software-based data ompression and deompression.3DSP UniPHY3DSP Corporation's UniPHY (Universal Physial Layer Signal Proessor) [113℄ isan embedded DSP with SWAR-like SIMD operation intended for broadband network-ing and signal proessing. The UniPHY proessor has a set of twelve SIMD exeution

- 145 -units whih operate on 8-, 16-, and 32-bit data objets. These are onneted to a32-word, 32-bit register �le and an be exeuted in parallel using a set of \expansioninstrutions".Philips TriMedia CPU64Philips Researh's TriMedia CPU64 proessor [114℄ is intended for use in appli-ations supporting onnetivity between onsumer eletroni devies suh as videoreorders and personal omputing systems. The CPU64 is a VLIW proessor whihsupports SWAR-like proessing in eah of its funtion units. These operations anbe performed on 8-, 16-, and 32-bit data objets in a 64-bit data spae.Texas Instruments TMS3208x FamilyTexas Instruments's TMS320 [115℄ family of DSPs are MIMD proessors designedfor video and image proessing as well as teleommuniations. These proessors havebetween two and four 32-bit parallel proessing elements, eah of whih an performSWAR \multiple-byte arithmeti" on 8- or 16-bit data.Texas Instruments MVPTexas Instruments' Multimedia Video Proessor (MVP) [116℄ is a digital signaland graphis proessor based on the TMS320 and TMS340 proessor families. Itwas intended to support appliations suh as image generation and proessing, dataompression for network transmission, and integrated multimedia-based omputingenvironments.The MVP onsists of between one and eight proessing elements whih an operatein MIMD fashion. Eah of these is a 32-bit proessor apable of performing arithmetiSWAR operations on 8- and 16-bit data. These were intended to support digitalsignal, pixel, integer, and �xed-point proessing.

- 146 -

- 147 -
3. DEFINITION OF A GENERAL-PURPOSESWAR PROGRAMMING MODELHaving studied and rejeted previously-de�ned programming models, we turn to thetask of developing a new publi-domain, high-level model to allow general-purposeprogrammers to more fully exploit the data parallelism of their appliations whentargeting urrent COTS SWAR proessors.A well-designed model should be familiar, yet should more losely reet theapabilities of urrent SWAR arhitetures than do urrent programming models.It should expand upon these apabilities when this an be done reasonably whilepromoting ode portability between these and other arhitetures. It should also avoidthe imposition of arbitrary limits whih would prelude its future appliation. Suha model should remain viable beyond the lifetimes of urrent SWAR arhitetures.The most salient aspet of these arhitetures is their vetor SIMD nature. Thishas several impliations for the design of a programming model inluding the expres-sion of data parallelism and the exeution of multiple ontrol paths. A large numberof programming languages have been developed in the past for use with SIMD andvetor systems. The study of these languages presented in appendix A was under-taken to determine how these issues were addressed in these earlier languages. Wewill use and build upon these ideas during the development of the new model.To be viable, this new programming model must allow the programmer to ahievehis or her goals eÆiently. It should allow the programmer to express data parallelismin a manner whih is natural. It should also allow the programmer to use familiarprogramming methods whih have been logially extended for SIMD-style proessing.Thus, this model should be based on older, more established models, but must beonsistent with the operation of urrent SWAR arhitetures.

- 148 -SWAR proessors are not as versatile as traditional SIMD array proessors. Be-ause of this, the programming models developed for these earlier systems promotethe use of features and apabilities whih are not available on urrent SWAR systems.Care must be taken to limit the new model to those failities whih have a SWARounterpart and to avoid those whih do not. The study of previous arhiteturespresented in appendix A was undertaken to determine the similarities and di�erenesbetween urrent SWAR systems and earlier vetor and SIMD arhitetures.One of the purposes of a general-purpose programming model is to provide ameans for expressing the use of ommonly available funtionality. If the model doesnot provide the expressiveness needed by programmers, then they will be fored touse a di�erent model. Toward this end, the model should inorporate and allow theuse of features whih are ommon to a majority of its intended targets.While the model should allow expressiveness, it should not inorporate esoterioperations whih annot be easily onstruted of more ommon ones. To be portable,every part of the model must be implemented for every target. Any operation inludedas part of the model will have to be emulated on all targets that do not support it asa hardware operation. Highly speialized operations are likely to require emulationon multiple targets and will be orrespondingly diÆult to port. Thus, they shouldbe avoided.Having said that, the model should not be limited to the apabilities of the leastpowerful arhiteture. It must be omplete enough to allow a programmer to desribethe algorithms to be employed, and should be self-onsistent so that a programmermay have a reasonable expetation that its funtionality is not arbitrarily limited.These properties should hold even if the support provided by some target arhitetureis laking.Thus, in de�ning this new model, a balane must be struk between promotingode portability by rejeting esoteri apabilities and providing funtionality that isreasonably omplete and exploitative of the advaned apabilities of various targets.

- 149 -To address these issues, and as a �rst step in developing a new SWAR model, Ianalyzed various multimedia extensions. The purpose was to �nd the range of sup-port for SWAR proessing de�ned by eah extension, to identify ommonly supportedoperations, and to determine whih advaned features may be useful in the imple-mentation of the �nal model. This analysis was presented in the previous hapterand now provides a basis for the design of a new SWAR programming model.3.1 Relationship to Previous ArhiteturesMultimedia extensions perform parallel operations on identially-typed data storedin a single proessor register. Eah instrution auses an idential operation to besimultaneously applied to eah piee of data in the register. Thus, this new lass ofarhiteture is a limited form of SIMD in whih data parallel omputation is imple-mented within a single proessor. We refer to this lass of arhiteture as \SIMDWithin A Register" (SWAR) to highlight the fat that SIMD-like proessing is per-formed on sets of data stored in individual proessor registers.The parallel data exploited by these extensions is stored in �elds whih are laid-out linearly aross individual CPU registers. Generally, no provision is made forarranging these �elds in other geometries. Thus, the natural layout for data on thesesystems is one-dimensional vetors rather than multi-dimensional arrays. Beausethe instrutions performed by these proessors treat their registers as linear arrays,they are vetor proessors. Thus, the most natural model for an arhiteture whihinorporates multimedia extensions is a vetor parallel SIMD model.This is in ontrast to SIMD array proessors suh as Westinghouse's SOLOMONprototypes [117, 118℄, the University of Illinois' ILLIAC IV [119℄, the ICL DAP [120,121℄, and the Goodyear MPP [122, 123℄. These systems were designed to operate onmulti-dimensional arrays for appliations suh as image proessing and the simulationof proesses in physial environments. They had interonnetion networks that ouldperform regular ommuniations operations in multiple diretions. These allowed

- 150 -them to take the form of the data objets on whih they operated. Thus, they werewell-suited to an array proessing model while SWAR arhitetures are not.Later SIMD array proessors had more advaned interonnetion networks. TheIBM GF11 [124, 125, 126℄ had a set of 576 pipelined PEs that were fully onneted viaa non-bloking Bene�s network [127℄. The Thinking Mahines' CM-1 [128, 129, 130℄and CM-2 [131, 130℄ had multiple networks inluding a paket-swithed hyperuberouter network whih allowed any two PEs to ommuniate diretly. The MasPar MP-1 [132, 133, 134℄ and MP-2, whih were developed slightly later, had similar networksand also an \X-net" whih ould perform a large number of regular ommuniationspatterns. These networks are beyond the apabilities of all but the most advaned ofthe urrent SWAR arhitetures.SWAR arhitetures are a ross between purely pipelined SIMD proessors suhas the CRAY-1 [135℄ and SIMD parallel vetor proessors suh as the CDC Cyber205 [136, 126℄ or NEC SX-2 [137, 138℄. The modern miroproessors upon whihSWAR arhitetures are based are pipelined proessors whih overlap multiple in-strutions in stages. SWAR instrutions are also overlapped in this manner; however,they perform in SIMD mode when exeuted. Thus, SWAR proessors are similar topipelined vetor proessors whih have multiple idential funtional units.Several histori vetor proessors fall into this last ategory. For example, the TI-ASC [139℄ ould support up to four idential vetor pipelines whih ould be operatedin a SIMD manner [140℄. The NEC SX-2, Fujitsu VP200 [141℄ and VP2600 [142, 141℄,and Hitahi S810/20 [141℄ and S820/80 [143℄ are all examples of this ategory ofarhiteture.The CDC STAR-100 [144, 125℄ was also losely related. It was a pipelined vetorproessor with SWAR apabilities. Eah of its two vetor pipelines ould proessone 64-bit operation or two simultaneous 32-bit operations. Speial logi insertedbetween the two halves of the 64-bit datapath broke the arry hains between them.This e�etively separated the datapath into two independent parts whih performed

- 151 -idential operations. This method of partitioning the proessor is essentially the samemethod used in modern SWAR arhitetures.Speial-purpose single-IC SIMD proessors suh as the NCR GAPP [145, 146, 147℄and BLITZEN from the Miroeletronis Researh Center of North Carolina [148℄ arealso related to SWAR arhitetures. They are also single-hip proessors, but are moreadvaned in the sense that they are array proessors. Future COTS SWAR proessorsare likely to be single-hip array proessors suh as these with bit-slie or word-sliefeatures similar to those of the MPP [122, 123℄ or the ILLIAC IV [119℄.3.2 Relationship to Previous Programming ModelsAs a SIMD model, we would expet the new model to be similar to the program-ming models developed for previous SIMD arhitetures. Thus, if possible, oneptstraditionally assoiated with SIMD proessing should be inorporated into the SWARmodel. In this setion, some of the various programming models and languages usedfor parallel proessing are disussed.Most early programming languages suh as FORTRAN and Algol were based onsalar programming models. Operations in these languages applied to single-valuedobjets and not to multi-valued objets suh as vetors and arrays. As SIMD arhi-tetures were developed, parallel languages were derived from these salar languages.Later programming models treated vetors and arrays as single entities ratherthan a olletion of salar data. These models more losely aptured the essene ofvetor and array proessing. Other models were also developed whih treated moreomplex, irregular olletions of data as single entities. Eah of these types of modelswill be disussed in turn.Salar ModelsSo-alled \vetorizing" ompilers analyze ode written in a salar soure languageto �nd operations and funtions whih an be parallelized. These are then translated

- 152 -into vetor- or array-based parallel ode for the target arhiteture. Thus, the pro-gramming model is a salar one, but the target arhiteture is based on a vetor orarray model.There have been a number of vetorizing ompilers developed over the years for usewith standard salar languages suh as Fortran and, more reently, C. The NX Fortranompiler [149℄ was a fully vetorizing ompiler for Fortran 66. Other vetorizingompilers for salar languages inlude Cray's CFT, Fujitsu's Fortran 77, IBM's VSFortran, Alliant FX/8 Fortran, NEC SX Fortran, and Intel's C/C++.With the goal of developing a model that losely mathes the intended targetarhitetures in mind, we will rejet salar programming models as being inonsistentwith urrent ommodity SWAR arhitetures, whih are vetor-based.
Modi�ed Salar ModelsSome programming languages use salar models whih have been modi�ed tooperate on all elements of a vetor or array simultaneously. Operations are denotedas indexed vetor or array element operations whih are similar or idential to salarelemental operations. In some ases, speial forms of indexing are used to indiatethat the operation should be applied onurrently to multiple elements. In other ases,high-level language onstruts are used to selet indies and embody statements thatoperate on the elements indexed.Generally, these mehanisms denote what should be �rst-lass vetor or array op-erations as a set of salar operations. Thus, they allow parallelism while maintaininga salar model. Some of these mehanisms allow exible aess to subsets of an ob-jet's elements and an be useful even in a vetor or array model. Beause of this,we will disuss a number of them briey.

- 153 -Wildard IndexingILLIAC IV FORTRAN [150℄ used wildard indexing to indiate that a partiulardimension of an array was to take on all possible values. This was denoted using asyntax that mathed a salar array element aess, but with an asterisk as the indexfor the parallelized dimension.CFD [151, 152℄ used an extended form of wildard indexing whih allowed rota-tions to be de�ned by adding or subtrating an o�set from the wildard.Wildard indexing presents vetor and array operations as a olletion of salaroperations over the mathing elements of the parallelized objet. This should beunneessary in a vetor model, as this would represent an operation applied to theentire vetor. That is, it would indiate a �rst-lass vetor operation whih shouldbe expressed more suintly in a vetor model.Control Vetor IndexingParallel onditionals in ILLIAC IV FORTRAN were handled using ontrol vetorindexing. This allows a vetor to be used as an index whose values indiate whetheror not an operation should be applied to the orresponding element of the indexedmulti-valued objet.Control vetors must be generated by some onditional means, so their fun-tionality an be impliitly performed by onditional language onstruts suh as aparallelized if statement. Thus, they should be unneessary.Index SetsIndex sets are used to speify whih elements within a parallel objet that anoperation would be applied to. They are essentially lists of indies and/or ranges ofindies whih should be inluded. Thus, they de�ne a subspae of the parallel objetto whih they are applied.

- 154 -Atus [153℄ employed a form of index sets whih were treated as �rst-lass objetsthat ould be operated on to form more omplex sets of indies.Index sets are useful as notational devies, but are probably unneessary as �rst-lass objets beause their funtionality, like that of ontrol vetors, an be performedby onditional language onstruts and parallel variables.Vetor IndexingSome languages allow vetor objets to be used as indies to vetor or arrayaesses. These have a notation similar to salar array element aesses, but used avetor name as the index. This is sometimes referred to as vetor subsripting. Atuswas also one of the �rst languages to allow vetor subsripting.Vetor indexing is a useful onept, but requires a level of data movement un-available on most SWAR arhitetures. They an be used to represent a permutationof the data in a parallel objet, an operation that is only well-supported on highly-onneted arhitetures suh as the Connetion Mahine or the MP-1.Extent of ParallelismAtus introdued the onept of an extent of parallelism. This was the parallelismwidth applied to a vetor or array objet along a partiular axis. It was intended tobe independent of the size of the target arhiteture.The maximum extent of parallelism and the axis along whih it ould be appliedwere spei�ed when an objet was delared. When the objet was aessed in anexpression, the extent of parallelism used for that aess was spei�ed using an indexnotation. This ould be smaller than the delared maximum, to allow tailoring to thetarget arhiteture, but had to run along the same axis.To simplify the expression of a series of statements whih use the same extent ofparallelism, Atus introdued the within onstrut. This spei�ed an default extentof parallelism to be used by all statements within its body, and was similar to Pasal's

- 155 -with onstrut. The default was indiated within the body by a sharp symbol (#)used as an index.The extent of parallelism, like index sets, is most useful as a notational deviewhih allows a subspae of a parallel objet to be spei�ed for operation.Triplet NotationTriplets were a onise notation that de�ned the �rst and last elements of a vetoror array to be aessed in parallel along a partiular dimension and, optionally, thestride between them. This allowed parallel operations on regularly-spaed salarelements to be spei�ed without the use of looping onstruts.Triplets are most useful for non-unit stride aesses. Beause urrent SWARarhitetures are not partiularly well-suited to this type of aess, triplets wouldtend to promote ineÆient use of the target arhiteture.Aording to [154℄, triplets were introdued in VECTRAN [155℄ and BSP For-tran [156℄. Various forms of triplet notation have been used in later languages, in-luding Fortran 90 [157℄ and High Performane Fortran (HPF) [158℄The DO FOR ALL ConstrutIVTRAN [159℄ introdued a DO FOR ALL onstrut whih was used to indiate thatertain array element assignments and intrinsi funtion alls within its body ouldbe exeuted in parallel. The elements operated on ould be limited to a subarrayusing an index set notation whih allowed a subrange of indies along eah axis to beseleted.DO FOR ALL should be unneessary in �rst-lass vetor and array models beauseit simply denotes the parallel appliation of an operation or funtion to a subset ofthe objet's elements hosen a priori or via a onditional test. This an be done usingparallelized standard ondition onstruts.

- 156 -The where/otherwise ConstrutVECTRAN introdued a onditional where/otherwise onstrut whih is similarto a parallelized if/else. This onstrut applied impliit enable masking to arrayelement assignments in its salar bodies. The where setion was enabled only for thoseelements whih passed the test, while the otherwise setion applied the oppositeenable mask within its body.This onstrut appears in later languages in various forms. For example, Fortran90's WHERE and ELSEWHERE statements have bodies whih onsist of �rst-lass arrayassignments that are onformable to, and masked by, the onstrut's test expression.In this form, the where onstrut is useful for vetor- and array-based models.The identify StatementVECTRAN also had an identify statement whih allowed irregularly-shapedsubarrays to be aliased (i.e. named) for later parallel operations. This separated theseletion of a subset of elements from the use of this seletion in parallel assignments.This is essentially equivalent to storing the result of a parallel onditional test ina variable for later use, and is thus unneessary in a language whih supports thisfuntionality.The FORALL ConstrutCM Fortran [160, 131℄ inluded a FORALL statement [161℄ whih was essentiallyequivalent to a FOR loop in whih the iterations were known to be parallelizable. Toensure this, the body of a FORALL was restrited to single array element or setionassignment.The FORALL was equivalent to VECTRAN's identify, exept that it ombined theseparate aliasing and assignment statements into a single onstrut. It also allowed

- 157 -subspae seletion by value or position. FORALL is notationally onvenient, but shouldbe unneessary if parallelized standard onditional onstruts are available.Parallelized Conditional ConstrutsMany salar-based languages provide parallelized versions of their standard on-ditional onstruts. For example, Atus had parallel if, while, for, and ase on-struts whih embodied salar element aess statements.These onstruts require that the onditional test be evaluated for eah PE, ele-ment, or individual index, and that the orret set of statements be exeuted for eahone, depending on whether or not it passed the test.Beause they are more general than many of the subspae seletion mehanismsdisussed above, these onstruts an be used to emulate or replae them. This sug-gests that it may be a better strategy to use parallelized onditional onstruts ratherthan to use less general seletion mehanisms. This translates to vetor and arraymodels as well as salar models, and is a ommon method for handling onditionalexeution in eah ase.Array ModelsThe most ommonly used non-salar models in parallel proessing are multi-dimensional array models. Some of these treat arrays as �rst-lass objets, meaningthat they an be operated on as a single aggregate objet rather than as a set ofsalar elements via looping or parallelizing onstruts. Other models treat arrays aspseudo-�rst-lass objets via modi�ed intrinsi funtions or operator overloading.Current SWAR arhitetures are vetor parallel proessors and are thus not par-tiularly good at array proessing. In partiular, they lak the memory aess andommuniations mehanisms neessary to arry out array proessing eÆiently. Thus,an array model is not the best hoie for supporting these arhitetures. However,

- 158 -it is instrutive to look at languages based on array models to see how they haveinorporated parallel operations on aggregate data.First-lass ArraysTruly �rst-lass operation on arrays are written using array names as operandswithout the need for indexing or speial language onstruts. Operations desribedin this manner are applied to the aggregate objet as a single transation and maytherefore be parallelized. Normally, unary operations are applied to eah element ofthe operand while binary operations are applied in an element-wise manner to a pairof onformable operands.A fair number of languages are based on �rst-lass array models. Several of thesewhih are disussed below.The �rst signi�ant programming language to inorporate vetors and arrays as�rst-lass objets was APL [162℄. It had a mathematially-oriented notation in whihalgorithms where essentially desriptions of expressions to be evaluated. APL allowedvetor and array operations to be desribed in a high-level, portable manner. Itintrodued a large number of intrinsi funtions whih ould be performed on salars,vetors, and arrays, inluding redutions and sans. Many of its features have beenabsorbed by later parallel languages.GLYPNIR [163℄ was an early SIMD language for programming the ILLIAC IV. Itwas based on ALGOL 60 [164, 165℄, an early salar language whose primary ontribu-tions were blok struture, dynamially-alloated variables, and reursion. GLYPNIRintrodued separate CU and PE data types. These were essentially storage lass spei-�ers whih indiated where the data should be stored, and thus exposed the separateontrol and parallel units of the ILLIAC IV.GLYPNIR's PE variables were �rst-lass parallel objets. They were stored andoperated on in parallel aross the entire PE array. These variables represented asword of data residing at the same address on eah of the PEs. PE variables ould

- 159 -also be used to index a vetor of swords. This allowed a slie of data residing atvarious address on the set of PEs to be aessed.GLYPNIR also introdued parallelized onditional onstruts inluding IF, ELSE,FOR, DO, WHILE, and FOR ALL. These used impliit PE masking to limit operations tothose PEs for whih the ondition held.NX Fortran [149℄ was a version of Fortran 66 with �rst-lass vetors and arrays.It allowed array assignments if the shape of the data to be assigned onformed to theshape of the destination objet. It also allowed promotion of salars to multi-valuedobjets via repliation. The NX Fortran ompiler was a fully vetorizing ompiler forFortran 66, and ould thus parallelize salar ode as well as array ode.C* was a parallel language for the Thinking Mahine's Connetion Mahines.It evolved through three models of parallelism, eah of whih was based on multi-dimensional arrays.The original version of C* [166℄ had mono and poly storage lasses whih weresimilar to GLYPNIR's CU and PE data types. A poly objet was one whih wasalloated on eah of the PEs in the Connetion Mahine's three-dimensional PEarray. Operations performed on these objets were parallelized.C* allowed the standard C assignment operators to be used as unary redutions.These operated under the \as if serial" rule, whih required that their results beequivalent to exeuting the elemental operations in some undetermined order.A subset of PEs ould be seleted for proessing based on the onept of the ativeset of PEs. All parallel operations were performed on the urrent ative set of PEs.This set ould be expliitly seleted using a seletion statement or impliitly set viaonditional onstruts.The format of the seletion statement was [seletor℄.statement. The seletorould be a proessor variable, an array of proessors, an indexed value represent-ing a onseutive series of proessors, or a list of any of the above. This allowedany subset of proessors to be hosen at any time to exeute a statement, and thusprovided a great deal of exibility.

- 160 -An ative set ould also be seleted using standard C onditional onstruts. Theif, else, and while onstruts performed their tests on the urrent ative set, andredued that set during the exeution of their bodies by eliminating the PEs forwhih the ondition did not hold. These onstruts ould be nested and operatedunder the \rule of loal support". This required that the body was exeuted only ifthe ondition held for at least one ative PE.C* also introdued the notion of a loal proessor and provided for inter-proessorommuniation. The this keyword represented a pointer to data stored on the loalproessor. It ould be indexed to indiate a di�erent proessor in a linear ordering ofthe PEs. For example, this[i℄!x represented the variable x on the PE i steps fromthe loal PE. This provided an expliit means of linear ommuniation between PEswhih allowed the loal PE to aess data on others.The seond version of C*, desribed in [167℄ and [168℄, was based on a C++ lass-like onstrut alled a domain. A domain de�ned both a data struture and a setof funtions whih ould operate on it. An array of domain instanes represented a�rst-lass parallel. Exeution of a member funtion aused parallel exeution overthe instanes of the domain.Choosing a set of ative PEs was now done by exeuting one of the memberfuntions of a given domain. Syntatially, this was similar to the seletion operatorin the original C*, exept that the seletor was now a domain name and the statementapplied was now a member funtion. This funtion was exeuted by a PE if, and onlyif, it ontained an instane of the domain.The third version of C* [169, 131℄ was developed based on �rst-lass shapes.Shapes are n-dimensional arrays of various sizes. They ould be independently de-sribed and assoiated with objets as neessary. A default urrent shape ould beset using a with statement. In general, objets had to be of the urrent shape inorder to be operated on in parallel.Conditional seletion was de�ned in terms of an ative set of data positions in theurrent shape. This was set by the language's onditional onstruts. A VECTRAN-

- 161 -like where statement limited the ative position set to those for whih a onditionaltest held. A related else lause ould be used to limit the ative position set to thosefor whih the ondition failed. C* also provided an everywhere statement to allowall positions to be made ative during a single statement.Other hanges inluded the replaement of this with poord whih indiatedthe loal PE's index along a given axis in the urrent shape, the onept of \leftindexing" whih allowed assignment to objets residing on other (non-loal) PEs,and the addition of a Boolean data type.Fortran 90 [157℄ allows �rst-lass arrays whih an be operated on in an element-wise fashion. It also allows mixed expressions on onformable objets, and treatssalars as being able to assume any shape. It inorporates many of the parallelismmehanisms disussed above suh as triplet notation and WHERE onstruts.MPL [107, 170, 171℄, the MasPar Programming Language, was another SIMDvariant of C whih treated arrays as �rst-lass objets. It had a plural type modi�erwhih indiated that an objet was multi-valued with its elements spread aross theMasPar arhiteture's three-dimensional PE array. Operations on these objets wereparallelized.MPL supported inter-PE ommuniation in a manner whih exposed the target'sarhiteture. This was done using a set of three new onstruts: pro, router, andxnet. These allowed the programmer to speify an expression to be evaluated onanother PE with the results ommuniated over one of the target's interonnetionnetworks.Pseudo-First-Class ArraysLanguages whih do not have �rst-lass arrays may handle them in a mannerwhih hides this fat and allows them to appear to be �rst-lass objets. For example,arrays an be treated as �rst-lass objets if they are manipulated using funtionsrather than operators. This allows the array to be passed to, and returned from,

- 162 -funtions as a single objet and appear as a single entity in expressions whih allthese funtions.Some languages have intrinsi funtions whih are a required part of the language.Parallel languages are sometimes formed by using modi�ed intrinsi funtions toextend salar languages for parallel operation. These funtions perform element-wiseor redutive operations on vetor or array objets without requiring the de�nition ofnew language operators or the modi�ation of existing ones. This makes it possibleto treat non-�rst lass vetor and array objets as �rst-lass objets.Several vetor and array languages have used this method of parallelization. NXFortran provided intrinsis for generating �rst-lass vetors and arrays. Vetor LRL-TRAN [172℄ inluded the redution intrinsis Q8SUM and Q8PROD and the seletionintrinsis Q8MASK and Q8MERGE. Fortran 90 added the MAXVAL, MINVAL, and COUNTredution intrinsis, and CM Fortran added the DIAGONAL and REPLICATE intrinsisfor array formation.Some languages allow their intrinsi funtions to be overloaded with user-de�nedfuntions. As with operator overloading, this an be used to hide parallelizationperformed by the ompiler, and thus give the appearane of parallel operation on�rst-lass objets. For example, C* allowed funtion overloading based on the shapeof a funtion's arguments.Another ommon method of providing pseudo-�rst-lass operation is to allow op-erator overloading. When an overloaded operator is used in an expression, a user-de�ned funtion is performed on the operands. As with a modi�ed intrinsi, thisfuntion may hide parallelizing salar onstruts or salar operations whih an beparallelized by the ompiler. This gives the appearane that the language supports�rst-lass parallel operation without it atually doing so. Fortran 90 is one languagewhih allows a limited amount of both operator and intrinsi funtion overloading.

- 163 -Vetor ModelsSingle-dimensional, non-salar vetor models are less ommonly used in parallelproessing than are multi-dimensional array models. This is beause most parallelarhitetures are based on two- or three-dimensional arrays of proessors and thusare better served by multi-dimensional array models.Vetor arhitetures are less ommon, and are typially programmed via the ve-torization of salar ode or the emulation of array ode. That is, they are usuallyprogrammed using a salar or array model. However, true vetor models are moreonsistent with the operation of urrent ommodity SWAR arhitetures than aresalar or array models. For this reason, the SWAR model desribed in this thesis isa vetor model.The number of pure, �rst-lass vetor languages is signi�antly smaller than thenumber of array languages. Below, a few vetor languages whih have some interestingfeatures are briey disussed.Vetor LRLTRAN [172, 154℄ was a language whih supported �rst-lass vetors ofREAL, INTEGER, or BIT data. It allowed vetors to be used in mixed expressions withextension performed as needed to make vetor operands of di�ering lengths math.This was done by appending elements of the identity value for the given operation tothe shorter vetor. On assignment, salars were repliated to math the shape of thedestination objet.Vetor LRLTRAN also allowed vetors to be passed to, or returned from, fun-tions. This was done using vetor desriptors, whih were used to hold the addressand length of vetors. These were visible objets whih ould be modi�ed duringexeution, and thus allowed vetors to be dynamially reshaped under user ontrol.Vetor LRLTRAN had several methods for seleting vetor elements to be oper-ated on. First, it had a exible indexing system in whih vetor expressions ouldbe used and ranges of indies inluded or exluded from the set. Alternatively, itallowed BIT vetors to be used as ontrol vetors. It also allowed subvetors to be

- 164 -aliased using dynami equivalening then used as �rst-lass objets in a manner sim-ilar to VECTRAN's identify statement. A set of intrinsi funtions were inludedto perform redutions and seletion on vetor objets.C[℄ (C brakets) [173℄ is a vetor extension of ANSI C. Vetors are �rst-lassobjets with a delarable �xed stride between elements in memory. Higher-degreeobjets an be delared, but are treated as vetors of vetors. As with Vetor LRL-TRAN, vetors an be operated on, passed to funtions, and used as return values.Pointer arithmeti has a onsistent interpretation in C[℄, with element and subar-ray aesses taking the delared stride into aount. The standard C operators wereparallelized. The C* maximum and minimum operators are also available, as are newoperators for population ount (?), leading zero ount (%), and word reversal (�).Unary redution operators are also available, and are denoted by enlosing the or-responding C operator in a braket pair. For example, redutive addition is denotedby the operator [+℄.C[℄ allows vetors of bit �elds to be assigned values via a gather operation on aninteger vetor of �xed stride. However, the language is primarily intended to supportdata of standard preisions, and does not treat bit �elds as �rst-lass objets.AJL (Anar Jhaveri's Language) [174℄ was a vetor alulator language whih pro-vided basi arithmeti operations and intrinsi trigonometri funtions. These ouldoperate on both salar (mono) and vetor (poly) objets in a �rst-lass manner. How-ever, it was not intended to be a general-purpose programming language.Prede�ned onstants were available inluding pi, e, and the number of elementsin a vetor (#). AJL also inluded vetor assignment from a list of elemental values,generation of linearly ranging vetors, and vetor shifts, shu�es, and inverse shu�es.Operations were limited to vetors of equal lengths, and only standard preisionelements were supported.

- 165 -Other ModelsNESL [175℄ is a language in whih parallel data is desribed as reursive sequenes.This allows omplex, irregular, nested data strutures to be desribed and operatedon. Operations performed on a sequene an be performed in parallel aross eah ofits elements or aross a subset determined by a qualifying ondition.The following example from [175℄ shows the syntax of a typial NESL expression:fnegate(a): a in [3, -4, -9, 5℄ | a < 4gThis expression applies the built-in funtion negate() to eah element of the sequene[3, -4, -9, 5℄ whih has a value less than 4.NESL is based on VCODE [176℄, a stak-based vetor language whih allowssegmented vetors. Segment desriptors are used to de�ne the number of elements ineah segment of a vetor. Most vetor operations are applied to their vetor operandsin a segment-wise fashion and element-wise within eah segment. Redutions areapplied to eah segment individually.VCODE is, in turn, based on CVL [177℄, a low-level vetor library for the Clanguage. CVL provides a large number of vetor operations on segmented or unseg-mented vetors of type int, double, or vl bool (whih may take any useful formsuh as hars or bits. Vetors are passed to funtions via handles, whih indiate theposition and layout of the vetor in a dediated vetor storage area.The sequene model is probably too irregular to be a good math for urrentSWAR arhitetures. It is also dissimilar to the majority of languages used for high-performane omputing.An unnamed �ne-grained, parallel version of C developed at NASA's GoddardSpae Flight Center [178℄ was intended to be appliable to targets of various shapes,inluding serial, vetor, and array proessors. Thus, the model took on the shape ofthe target arhiteture. To support bit-slie targets, all variables ould be assigned abit size whih the ompiler would use as a minimum required preision.

- 166 -This language had a parallel storage lass that represented data spread arossthe target's PEs. Parallel objets were �rst-lass and ould be used in expressionsinvolving standard C operations whih were parallelized in an element-wise fashion.The C assignment operators were modi�ed to work with parallel objets, performingelement-wise assignment or redutive assignment as neessary.Interproessor ommuniation was implemented via arithmeti on pointers toparallel objets and treated the target's PEs as a ring. By adding an o�set, n,to suh a pointer, the element on the PE n steps away along the ring ould be a-essed.This language was only partially implemented, and only for the serial Apple Ma-intosh II. It appears to have been abandoned or negleted afterward, as I have beenunable to �nd any other referenes to it.3.3 The General-Purpose SWAR Proessing ModelThe goal of this researh was to develop a general-purpose programming modelfor a lass of arhiteture urrently represented by the extension sets studied in theprevious hapter. Ultimately, a programming model is an abstration whih pro-vides the programmer with a more suitable or portable target than the atual targetarhiteture or arhitetures. Thus, de�ning a programming model is equivalent tohoosing the abstration that is provided to the programmer.In this hapter, I develop a new general-purpose SWAR programming model ina general sense. That is, we will try to delineate what should be part of the modeland what should be exluded while leaving implementation issues, suh as how apartiular operation is desribed, for the next hapter. There, I will disuss some im-plementations of this model. The overall purpose is to provide a onsistent, portable,generalized abstration for this lass of arhiteture.

- 167 -3.3.1 Classi�ationIn trying to develop a new programming model, one must �rst deide if it will beimperative, funtional, or logial. That is, will algorithms be desribed as a seriesof assignments to storage loations, as funtions whih an be treated as �rst-lassobjets, or as a set of logial rules from whih onlusions an be determined? Thisquestion must be answered before one an progress to the details of language design.Traditionally, the majority of languages used for parallel proessing have beenimperative languages whih operate via side-e�et. That is, they allow for the as-signment of values to variables. This is diretly related to the atual storage of datain the sense that a ompiler assigns a value to a partiular variable by storing it inthe orresponding storage loation. Beause most programmers are familiar with thisform of programming, and beause it is well-established, the model whih is developedin this thesis will be an imperative programming model.3.3.2 Data RepresentationHow data is represented in a model determines how the programmer an use it tosolve his or her urrent task. It is espeially important to arefully hoose how paralleldata objets will be represented beause proessing this type of data is the primarygoal for the new model. The type of data allowed in the model is also important. Amodel whih is limited to a single data type, for example 8-bit integers, will probablynot be useful for most programmers. Thus, the allowed types and preisions must behosen thoughtfully.Parallelizable ObjetsAs a form of SIMD arhiteture, SWAR arhitetures exploit data parallelism byapplying an idential instrution to multiple streams of data simultaneously. Thisis sometimes modeled by SIMD languages as an operation on some form of multi-

- 168 -valued data objet. For example, we ould desribe suh an ation as an operationon a single-dimensional vetor of data. This would be a natural hoie for a SWARprogramming model, but is not the only possible hoie.Despite the fat that SWAR arhitetures are vetor parallel, there are severalreasons why we might want to onsider an array model rather than a vetor model.First, many of the large-sale problems faed by the sienti� ommunity require themodeling of physial proesses in the three-dimensional real world. Seond, vetorproessing is really just a subset of array proessing in whih all arrays are one-dimensional. Third, the set of operations performed on mathematial vetors aresimilar to the set of operations performed on arrays. Finally, an array model wouldnot have to be expanded to inorporate arrays one array-based SWAR arhiteturesbeome ommonplae. From these arguments it seems lear that it would be betterto develop an array-based model.While it is true that many appliations are array-based, there are also some thatare vetor-based. More importantly, given that we annot know what appliationswill be developed using this new model, it is best to develop one whih mathes theintended hardware targets as losely as possible. In this ase, a vetor model would�t urrent SWAR arhitetures better than an array or salar model.Another problem is that a strong model tends to enourage the programmer to useits most powerful features. The more these features di�er from the atual hardware,the more diÆult they are to implement. Hene, they are less portable and oftenimplemented inorretly or ineÆiently when they are ported.Given the limitations of urrent SWAR arhitetures, it would probably makemore sense to develop an array-based SWAR proessing model if and when SWARarray proessors beome ommonplae. Single-hip array arhitetures suh as theNCR GAPP and three-dimensional arhitetures based on three-dimensional hiplayouts [179℄ should ome to dominate at some future time. In the meantime, it isprobably wiser to develop a model whih relates more losely to the urrent bath

- 169 -of vetor-based, ommodity SWAR proessors. Thus, the model de�ned here is avetor-based model.Vetor LengthOne we have deided on vetors as the primary parallelizable data objet, we mustnow deide what a vetor is omprised of. The �rst issue is vetor length. For anygiven data preision on any given arhiteture, there is a natural number of elementsthat an �t into a single register. For example, MMX registers are 64-bits long, andthus an aommodate eight 8-bit vetor elements or four 16-bit elements. We referto the set of data in a register as a vetor fragment, and the natural length of thisfragment as the fragment length. Some programming models odify this fragmentlength as the vetor length. For example, it is used as the length of a ve * inAltiVe.org's version of GCC for AltiVe-based proessors [180℄.While this may seem to be a reasonable thing to do, there are two problems withthis approah. First, real-world data rarely �ts this natural mahine width. Seond,it inorporates the spei�s of the urrent arhiteture in the model, thus limitingthe model's usefulness to the urrent arhiteture. We wish to avoid both of theseproblems, and an best do so by making the vetor length variable. Thus, the general-purpose SWAR programming model allows all �nite, positive, integral vetor lengths.Note that vetor length may be limited by external onstraints suh as the physis ofthe target mahine or the limits of the operating system used.Data TypesWe must next deide what type of data the elements of a vetor an onsist of.The type of data whih urrent SWAR arhitetures were designed to handle fallsinto two primary ategories, both of whih allow signed or unsigned data:1. Integer data of various preisions typially representing digitized sampled analogsignals or digital values generated by some multimedia program.

- 170 -2. Single-preision (32-bit) and double-preision (64-bit) oating-point data typi-ally representing the value of some physial property or the plaement and/ororientation of some objet in the three-dimensional real-world.Unfortunately, people onsidering the use of SWAR arhitetures often limit theirview to only ommon multimedia data types and thus overlook other ategories ofdata whih ould be operated on using SWAR tehnology. Two examples are haraterand Boolean data. Eah of these is used extensively in various appliations, but rarelyis either treated as a parallelizable data type.The data types supported by the programming model may di�er from those sup-ported by the target arhiteture if these data types an be emulated or promotedinternally by the ompiler. This requires that the operations de�ned by the model beimplemented using the data types and instrutions supported by the target arhite-ture. Where this an be done, the SWAR model need not be limited to the data typeswhih are diretly supported by the hardware. We an thus onsider other possibledata types and deide to what extent these types should be supported by the newmodel.Integer Data All SWAR arhitetures support parallel integer proessing at somelevel, but usually do so only for standard multimedia data sizes. This is based onthe seemingly reasonable assumption that programmers want to use the data sizesthat are natural for the data they are manipulating and that these types are knownto language designers. For example, people working with graysale pixels want 8-bitobjets and those working with olor pixels want 24- or 32-bit objets.The problem with this assumption is that it eliminates generality from the lan-guage. No one knows what will be the full range of vetor appliations that peoplewill invent. The data they may wish to manipulate may be best desribed using 3-bitor 6-bit objets. If so, the programming model shouldn't prevent the programmerfrom expressing operations in these terms, even if the ompiler is eventually fored

- 171 -to implement them using other data sizes. To exlude data sizes from the model isto eliminate the possibility of exploiting them.Perhaps an analogy is alled for here. Suppose your favorite soft drink is rootbeer. You go to the loal store to purhase a 6-pak and �nd that they don't arryit. Instead, you �nd a ola, whih you deide is lose enough. You hek out, theyuse your shopper's ard to trak what you purhased, and then order more ola. Aweek later, you again go in looking for root beer, but only �nd ola. The proessrepeats a few more times. Now the store has a long history of your purhases of ola.They know that your favorite soft drink is ola. In fat, they know that many of theirustomers' favorite soft drink is ola. Beause of this, they deide never to arry anyother kind of soft drink, and will use your long history of buying ola as evidene ofyour preferene for it.The same thing happens with data types. Beause everyone uses 8-, 16-, 32-,or 64-bit data sizes, why support anything else? If you look at all the C ode everwritten, you'll see that nobody ever uses 2-bit data types. They an't beause therearen't any. This irular reasoning is used as an exuse to avoid providing moregeneral programming models.SWAR operations on data of non-standard preisions suh as this an be performedusing reasonably straight-forward, if not always eÆient, methods of emulation. Weshall see that this is possible on both multimedia-enhaned and unenhaned arhi-tetures. Also, data whih has an unsupported preision usually an be promotedto some supported type by the implementation of the model (i.e. the ompiler orlibrary). Thus, it is often a straight-forward task to emulate operations on this typeof data.Beause we an easily emulate operations on small data sizes by promoting themto larger, supported sizes, it is illogial to have the programming model enfore theuse of only a few data sizes. If we do not adjust programming models to allow formore exibility, we will pay a performane prie when single-hip, bit-slie parallelarhitetures beome widely available.

- 172 -In order to support the widest range of appliations, the general-purpose SWARprogramming model supports integer data of any bit preision. As with vetor length,external onstraints may plae bounds on the preision of data supported, but themodel itself does not. For example, preisions greater than the number of bits in oneof the target's registers may be disallowed by the implementation.Floating-point Data While several SWAR arhitetures support oating-pointproessing, a signi�ant number do not. These arhitetures would require emulationif oating-point proessing is inluded in the model. Suh emulation is usually diÆultto do eÆiently.A oating-point operation is a series of integer operations whih denormalize thedata, then operate on the integer mantissa and exponent separately, and �nally nor-malize the result. These steps an be done on an integer arhiteture, but the numberof steps involved will probably o�set any gains made via parallelization.This should beome less of an issue in the future as more SWAR arhiteturesinorporate oating-point support. For now, a portable SWAR model should notrequire the inorporation of oating-point operations, but should not prevent themeither. That is, support for parallel oating-point operations should be arhiteture-dependent.If it makes sense to allow any preision of integer data, why not allow any preisionfor oating-point data? From a theoretial stand-point, there is no reason not to dothis. Suppose we have real-valued data that is limited in range to a set of values thatan be expressed using a 4-bit mantissa and a 4-bit exponent. Why should we not beable to express this?Again, the problem beomes one of �nding the balane between generalization ofthe model and limiting it to disourage operations whih are unlikely to provide per-formane gains (or worse, likely to ause losses). Current arhitetures are generallylimited to 32-bit parallel oating-point operations, with only SSE2 supporting 64-bitoating-point operations. Any other size of oating-point data will require emulation.

- 173 -The emulation of odd-sized oating-point operations is possible, but is probablyunreasonably ineÆient. On an integer-only arhiteture, it is ineÆient for the samereasons that emulating single- and double-preision oating-point operations are. Forsizes whih do not math a standard integer size, it is even worse. If standard-sizedoating-point operations are supported by hardware, then the possibility exists forusing temporary promotion tehniques. In this ase, the ompiler needs to be able tomanipulate the bit patterns of the oating-point data in order to reate the properform for alulation and extrat the orret bits from the result. Again, this wouldprobably be unreasonably ineÆient and may even require that the data be movedto an integer register �rst.Beause non-standard oating-point types an be unreasonably diÆult and inef-�ient to emulate, and beause it is unlikely that they will beome widely supportedin the near future, there is probably no signi�ant loss in exluding them from a ur-rent SWAR model. Thus, the urrent general-purpose SWAR model will only support32- and 64-bit oating-point data on an arhiteture-dependent basis. Support fornon-standard oating-point types will be left for the future.Charater Data Charater data is often overlooked as a parallelizable data typebeause it is not onsidered numeri. However, haraters are in fat typially storedusing an integer ode. For example, the ASCII [181℄ harater set onsists of 7-bit integer values whih are used for storing and transmitting text. Thus, manyoperations on harater data are in fat integer operations, even if the programmingmodel used does not treat them this way.Consider searhing for a string in a text stream. This is a parallelizable taskthat ould bene�t from SWAR funtionality. In fat, the size of a harater on mostsystems (8-bits) is the same as that of a 256-olor pixel | a data type whih iswell-supported by most multimedia extensions. However, in order for this algorithmto be parallelized, the model must treat the data as having a parallelizable type. Awell-designed SWAR model should do this. Thus, the general-purpose SWAR model

- 174 -treats harater data as a form of integer data with the same attributes with respetto parallelization.Boolean Data Boolean (true/false) data ould also bene�t from SWAR proessing,espeially given that this information an theoretially be represented with one bitper datum. In this ase, bitwise logial operations an be used to perform paralleloperations aross the single-bit �elds of a register. This yields the highest possibleparallelism on a SWAR system and should thus be supported. Similar to the handlingof harater data, these logial types are treated as a form of integer data by thegeneral-purpose SWAR model.Enumerated Data Enumerated data types should also be supported. For example,in a digital logi simulator, we may want to represent four states for eah ontatpoint between gates: high, low, high-Z, and indeterminate. This would require 2-bits per ontat point. This data size does not math any multimedia data type, somultimedia arhitetures do not support it. Consequently, the programming modelsdeveloped for these arhitetures fail to provide any means of expressing data of thisform. This prevents the programmer from obtaining the highest possible performanewhen using enumerated data even if the hardware an diretly support it. A goodSWAR programming model should not impose this type of restrition. Thus, as withharater data, enumerated data is treated as a form of integer data by the general-purpose SWAR model. An implementation may provide for expliit enumerated typessuh as in the C language.Aggregate Data Elements onsisting of aggregate data types suh as C strutsor Pasal reords may also be useful. Data suh as vetors of omplex numbers ouldbe represented in this manner with multiple elements stored in a single register orwith eah element striped aross multiple registers. Other types or representations ofdata suh as ylindrial or spherial oordinates ould also be expressed as vetors ofaggregate data.

- 175 -While this may be useful, it opens up a new set of questions that whih should beavoided for the time being. For example, whih of the two layouts just mentioned,unstriped or striped, would be the better default method of representation? Shouldthe user be able to speify whih to use? If so, should this be via an expliit or impliitindiation in the language? If not, how should the ompiler make this deision?Other questions also arise. For example, how large or omplex a struture shouldthe implementation onsider to be parallelizable? Should the ompiler be responsiblefor determining when to parallelize a vetor of aggregate elements? If so, then aompiler implementing the model beomes signi�antly more omplex than it wouldbe without vetors of aggregates. If not, then some limitation must be built into themodel to free the implementation from making this deision. While these questionsare interesting, they should be avoided at this time to make the work reasonablymanageable.One may also dismiss vetors of aggregate objets for the simple reason that theydo not �t well with the operation of urrent SWAR arhitetures. While some aggre-gate types are equivalent to small arrays of identially-typed data, in general they areomprised of objets of dissimilar types. Suh types di�er from the identially-typedparallel streams whih SWAR instrutions expet. Rather than trying to distinguishbetween these lasses of aggregate elements, we will rejet them altogether.3.3.3 Parallel OperationsThe general-purpose SWAR model treats vetors as �rst-lass objets. Thus, alanguage whih implements the SWAR model should support a fundamental set ofvetor operations in a manner whih is easily expressed and meaningful. This set ofoperations should reet those whih are typially performed on vetors, but mustalso reet the apabilities of urrent SWAR arhitetures. The operations that aresupported by the SWAR model must be hosen to balane these goals. In this setion,I build on the analysis of multimedia extensions from the previous hapter to delineate

- 176 -a set of operations that should be supported by a language whih implements thegeneral-purpose SWAR model.Modular and Saturation OperationOne issue that an be addressed before spei� operations are disussed is that ofmodular versus saturation operation. Reall that modular operations store only thelow bits of the result whih will �t into the destination, throwing any overow bitsaway. The stored result is the alulated result modulated by the maximum storablevalue. Saturation operations handle overow by �xing the result at the most positiveor most negative representable value depending on the diretion of overow.Multimedia operations are often performed on data whih represent digitized sam-ples of analog signals. Instrutions whih operate on this type of data need to do sowithout hanging its meaning. For example, digitized musi may be played througha \mixer" program whih adjusts the relative strength of various data soures. Anattempt to inrement the strength of a signal beyond the highest value should not re-sult in the lowest value. This would ause the signal's strength to drop unexpetedlyand thus unaeptably. It would be better if the signal strength simply stayed at themaximum. Saturation operations were developed for this type of situation.Certain multimedia extensions expet the data to be of this type and thus pro-vide only saturating operations while others assume that the data should be handledmodularly as with traditional omputing. Other extensions use one or the other de-pending on the data size and the operation performed. Thus, there is signi�antvariation between SWAR targets.As a general-purpose model, SWAR should support both types of operations.Exatly how this is done is left to the implementation. For example, the SWARClanguage desribed in the next hapter assoiates saturation or modularity with thetype of the data vetors. The type of operation applied is based on the resolutionof the data types of the operands. Other languages based on the SWAR model

- 177 -ould instead assoiate saturation or modularity with the operations themselves. Forexample, separate operators ould exist for modular addition and saturation addition.This mirrors the atual operation of the hardware.Operations whih, by their nature, never overow have equivalent modular andsaturated forms, and should be inluded for both if for either. For example, unsignedinteger division always results in an integer value whih is smaller in magnitude thanthe dividend. Thus, it never overows, so the modular and saturated ases neverdi�er.Arithmeti OperationsBasi modular and saturation arithmeti funtions should be inluded for all datatypes and preisions with some aveats.The general-purpose SWAR model inludes modular and saturation addition andsubtration for all data types. Binary maximum and minimum are also inludedfor all types. These are non-overowing by nature, so there is no di�erene in theirbehavior under modular or saturation operation. Unary negation is also inluded forall signed forms and an be emulated as subtration from 0 if neessary. Unsignedunary negation is optional.Multipliation is inluded in all ases. One may wish to avoid saturation mul-tipliation whih is sometimes expensive to emulate. However, it should probablybe inluded for the sake of ompleteness, and for this reason it is inluded in thegeneral-purpose SWAR model.Division, whih generally results in a value that is within the bounds of the divi-dend and is thus non-overowing (with the exeption of signed division of the largestnegative number by -1), is inluded in all ases. Modulus (division remainder) isinluded for integer vetor types. Its result is always smaller and of the same sign asthe dividend, and thus never overows. Modulus is nonsensial, and thus exluded,for oating-point types.

- 178 -Binary averaging is supported by most urrent arhitetures and is easily emulatedfor most types. However, in multimedia appliations, averaging usually involves arounding step whih does not follow normal arithmeti rounding rules. For thisreason, averaging is onsidered optional. If it is supported, it should be inluded forall vetor data types and should be learly and onsistently de�ned. Also, beause itsresult always falls between the two operands and thus never overows, both modularand saturated versions should be supported.More advaned operations suh as square roots and exponentials should be avoideddue lak of onsisteny or availability aross arhitetures. These operations are noteasily emulated and would thus be diÆult to port between arhitetures.Redutive Arithmeti OperationsRedutive versions of assoiative arithmeti operations are also inluded in thegeneral-purpose SWAR model. The order and method of redution are dependenton the implementation. This allows reordering of operands and logarithmi or serialimplementation. Redutive versions of non-assoiative operations are not supportedby the model. Thus, redutive addition and multipliation are allowed, but redutivesubtration, division, and modulus are not.Combined Arithmeti OperationsThe ombined arithmeti operations supported by the various extensions are notonsistently implemented aross arhitetures, and should thus be avoided for porta-bility sake. This does not prelude the use of instrutions whih perform these op-erations beause any implementation of the model is free to optimize ode sequeneswhen possible. Suh operations inlude MMX's multiply-add (MADD) instrutionwhih performs a parallel multiply followed by a semi-redutive addition.Certain vetor operations also fall into this ategory. For example, it ould beargued that a vetor dot-produt should be one of the operations de�ned by the

- 179 -model beause it is a ommon operation in vetor mathematis. However, it ouldalso be argued that dot-produt is really a omposition of an elementwise multiplyand a redution addition and is thus redundant. Exatly how this ommon operationis provided for, if at all, should probably be left as a language de�nition deision.A similar question arises for vetor ross produts. These operations generate amulti-dimensional array from two single-dimensional vetors. Beause we would liketo avoid array proessing in the urrent model, we should avoid vetor ross-produtsat this time.Shift and Rotate OperationsSimple shifts inlude logial and arithmeti shifts left and right. These are well-supported aross the various integer extension sets with the exeption of VIS, whihrequires some non-trivial pathwork. For VIS, the aligndata instrution an beused to perform byte-wise shifts while its various pixel paking instrutions an beused to perform bit-wise shifts. Beause simple shifts are widely implemented andfundamental to bit proessing, they are inluded in the general-purpose SWAR model.Rotates are diretly supported only by AltiVe, but they an be emulated withrelative ease using shifts and polymorphis. Thus, the inlusion of rotates in a gen-eralized model are debatable, but probably worthwhile. Both left and right rotatesshould be inluded for symmetry. The general-purpose SWAR model inludes eahof these.Combined operations suh as shift-and-adds are only supported by a few arhite-tures and should be exluded from the general-purpose model as separate operations.Bitwise Logial OperationsBitwise logial (a.k.a. Boolean [182, 183℄) operations are the basi building bloksof all omplex binary omputation [184℄. These operations allow programmers toperform more omplex operations than are diretly supported by the model. Thus,

- 180 -a model whih inludes these operations is both extensible and powerful. Theseoperations should be part of any programming model that inludes the onept of aBoolean type or exposes binary digits to the programmer.A programming model need not support every type of Boolean operation, butshould inlude a working set. This set might not math that of any target arhiteture.For example, a binary NAND operation is suÆient to perform any other Booleanoperation; thus, no other Boolean operation is neessary. However, it is often easierfor the programmer if a larger set of Boolean operators is provided. For example,AND, OR, and NOT are often available and are familiar to most programmers. Thepartiular working set implemented is left as a language-dependent deision.Bit-Redution OperationsRedutive versions of the working set of assoiative bit-wise logial operationsshould also be supported. More omplex bitwise redutions, suh as populationounts, need not be visible to the programmer. Instrutions whih perform theseoperations are sare and are usually diÆult or expensive to emulate. Thus, theyare exluded from the general-purpose SWAR model.Conditional OperationsA reasonable set of onditional operations needs to be supported in order to allowdeisions to be made. Otherwise, the usefulness of the model will be severely limited.As with bitwise logial operations, only a working set needs to be hosen when themodel is implemented as a language. However, to promote self-onsisteny within themodel, a omplete set of onditional operations should be inluded.One issue onerning onditional operations is whether they an appear outsidethe test setions of onditional onstruts. Some languages disallow the use of on-ditional operations anywhere other than in these test setions. However, there arealso languages whih assign numeri values to these onditional expressions and al-

- 181 -low them to be used within arithmeti expressions. To allow as muh exibility aspossible, onditional operations should be assigned some value. Doing so requiresde�nitions for these values. These values are dependent on the implementation of themodel.Another issue is that of \orderedness", whih is probably better referred to as\orderability". Certain bit patterns are not interpretable as valid oating-point num-bers. IEEE standard 754 de�nes these patterns as NaNs (Not-a-Numbers). The valueof a NaN annot be ompared to other values, thus they are said to be \unordered".NaN patterns are not normally generated by a properly written high-level programoperating under well-de�ned irumstanes; however, they may result from improperonversion or interpretation of integer values. Thus, it should not be neessary, norwould it normally be desirable, to expose this aspet of oating-point operation tothe programmer. For these reasons, these tests are exluded from the general-purposeSWAR model.Redutive Conditional OperationsRedutive versions of the working set of onditional operations supported by animplementation of the model may also be supported. For example, a language maysupport a redutive greater-than operation whih is true if the elements of a vetorare ordered and false if they are not. These are somewhat esoteri operations, anddiÆult to emulate, so we may wish to avoid them. However, their inlusion wouldprovide another level of onsisteny. Given this trade-o�, these operations shouldprobably be optional.Logial OperationsLogial operations are used to ombine onditional operations into more omplexexpressions. These enable programmers to reate more omplex tests than simpleonditional operations allow. A working set of these should be inluded in any imple-

- 182 -mentation of the general-purpose SWAR model. As with onditional operations, theresults of logial operations need not be visible to the programmer but allow moreexibility if they are.Redutive Logial OperationsRedutive assoiative logial operations produe a result whih represents theaggregate ondition of the parallel elements. For proper exeution of onditionalonstruts under SIMD semantis, an implementation must internally perform oper-ations of this sort. For example, a parallelized while loop should be exeuted whilethe test ondition holds for any of the parallel elements. This \any" test is essential aredutive logial-OR of the result of applying the onditional operation to the parallelelements.In terms of a programming model, the question is whether the programmer shouldbe provided with mehanisms for performing similar operations. As with non-redutivelogial operations, it is arguable whether the results of these operations should be ex-posed. Again, visibility allows for more exibility. Thus, these operations shouldprobably be expliitly available to the programmer. Therefore, a set of redutivelogial operations whih omplement the hosen set of assoiative logial operationsshould be inluded.Conditional Assignment OperationsConditional assignment is yet another issue. \Pik" instrutions selet one of twopossible results based on the value of an index register. Their operation is similar tothat of the C trinary operator, in whih the result of a onditional test auses onestatement to be exeuted if the result is true and another to be exeuted if the resultis false. In the ase of a pik instrution, the exeuted statements would both beassignments to the same variable. Beause this is atually a shorthand version of a

- 183 -partiular if-else onstrut, it is redundant. Inlusion of suh an operation shouldthus be optional.Data Storage and Movement OperationsImperative languages represent the storage of data using assignment statements.These are operations in whih a value is stored for future proessing to a storageloation designated by a variable. This allows long, omplex expressions to be split upinto smaller ones, thus simplifying the expressions used. It also allows a programmerto reuse ommon subexpressions. These are expressions whih appear in one or moreothers. Thus, the task of oding is made easier by the use of assignments.An imperative vetor model should allow vetor assignment. That is, it shouldallow data to be assigned to a vetor as a aggregate objet. A simple example wouldbe opying one vetor to another. This should be expressed as a single operation,not as a series of operations on the vetors' elements. Thus, the SWAR model allowsvetor assignment.On assignment, data may atually be stored to a memory loation or register.Usually, the di�erene in destinations is hidden from the programmer and registersare used only by the ompiler. Thus, assignment is an abstration whih hides theatual operation performed. As an optimization, instrutions whih perform movesbetween registers may be used internally by a ompiler to implement assignmentswhen an atual memory aess is unneessary. This an inrease performane byallowing stores to be used only when the data must be written to memory.Instrutions for moving data between vetor registers are often used to opy databefore performing an operation whih destroys one of its operands. They are also usedto make a opy that an be handled di�erently from the original. These operationsare usually internal to the ompiler and not exposed to the high-level programmer.However, some languages do allow expliit assignment to \register" variables as ameans of hinting that the data will be used often or does not need to be stored

- 184 -in memory. Although it should be unneessary, exposure of the use of registers isonsidered an implementation-dependent issue.Instrutions for moving data between salar and vetor registers are used to loador store vetor fragments when this annot be done diretly between the vetor reg-isters and memory. They are also used to allow operations to be applied to vetorfragments whih annot be applied to them while they are in the vetor registers.These instrutions would normally be applied internally by the ompiler as part ofa multiple instrution operation. There should be no reason to expose this to theprogrammer.A well-designed vetor model should allow salar to salar assignment to allowvetor elements to be operated on in a reasonable manner and to ease the onstrutionof mixed expressions whih inlude salar subexpressions.Redutive Assignment OperationsA well-designed vetor model should also allow vetor to salar assignment. This isoften the last step in a parallel proessing algorithm in whih data has been distributedto multiple proessors for idential proessing. This separates the task into parallelsubtasks whose results must be later ombined. This ombination step is a redutivestep in whih some funtion of the subresults is performed to obtain the single resultof the overall task.This step should be easily expressed as an assignment of a vetor to a salar.Beause there are various operations that one may wish to perform to obtain thesingle result, a variety of redution operations should be available for use in thislast step. Coneptually, the result of the redutive funtion is stored in a salarstorage loation; thus, this step should be representable as a ombined redutiveassignment operation. Any of the redutive operations inluded in the model shouldbe ombinable with assignment to provide vetor to salar assignment.

- 185 -Repliative Assignment OperationsSalar to vetor assignment should also be supported. This is often one of the�rst steps in a typial parallel proessing algorithm. The initialization of vetors toa single value, suh as zero, is a ommon operation. The salar value is repliatedand assigned to eah of the vetor's element. Expressing this operation as a singlerepliative assignment of the salar value to the vetor objet is a muh more elegantsolution than expressing it as a series or loop of salar assignments to eah of thevetor's elements. Thus, the general-purpose SWAR model allows salar to vetorassignment whih operates in a repliative fashion.Type Conversion OperationsIn a typed language, one may wish to provide for the onversion of data from onetype to another. There are various reasons for this. A data's type usually de�nesits storage format. The primary purpose of type onversion is thus to ensure thatdata has the orret format during proessing. This means that type onversion isequivalent to onverting between data formats. This is neessary to properly evaluatemixed expressions, to ensure that data is stored in the proper format, and to mathfuntion parameter and return value formats.When type onversion is performed internally by the ompiler to support mixedexpressions it is alled type oerion. For example, it is sometimes useful to use datawhih is stored in an integer format in an expression involving oating-point data.The onversion of data from integer to oating-point formats is neessary for this typeof proessing to be performed properly. Most languages have semanti rules whihde�ne when suh onversion takes plae.Type oerion is also performed when an expression has been evaluated to a valueof one format and needs to be stored in a loation whih has a di�erent size oris assumed to hold data of another format. The value must then be onverted to

- 186 -the orret format before being stored. This onversion is typially internal to theompiler, but is known to the programmer via the semantis of the language.Often, onversion an be performed expliitly by the programmer using type-asting operations. These allow the user to perform onversion outside of mixedexpressions and other situations in whih the ompiler would perform impliit on-version. For example, when passing an integer value to a funtion whih expets aoating-point value, it is onvenient to simply perform the onversion without storingthe data to a oating-point variable or onstruting a mixed expression. Type astsallow the programmer to speify suh an ation.As with other operations, the level of support that a model an safely inlude fortype onversion depends on the apabilities of the target arhitetures. The variousextension sets inlude a large number of instrutions whih an be used to onvertdata between various types. Some of these were intended for this purpose, whileothers were not. Some instrutions allow data to be onverted between integer typesof various sizes, while others an be used to onvert between oating-point and integerdata types.Paks and unpaks an be used to onvert between integer types of various prei-sions. As de�ned previously, paking instrutions onvert data to smaller preisions,then pak them into a smaller setion of the register without hanging their relativeorder. This is equivalent to performing a vetor type onversion from one preisionto another. In urrent multimedia extensions, this onversion is aompanied by asaturation operation. This fores eah data element to the representable value nearestits original value.Unpaking instrutions perform the inverse of paking instrutions, onvertingdata to larger preisions using sign- or zero-extension as neessary. As with paks,this is equivalent to performing a vetor type onversion between preisions.Interleaving instrutions also an be used to onvert integer data from a smallerto a larger preision. This is done by �lling a register with zeroes or with �elds whih

- 187 -are �lled with the sign bits of the orresponding �elds of the original register. Theseare then interleaved to form larger �elds of zero- or sign-extended data.Instrutions whih diretly onvert data between oating-point and integer formsare inluded in several extension sets. In implementations of the model whih al-low oating-point data, these instrutions may be used internally to implement typeoerion or expliitly to implement type asts.In order to allow maximum exibility, a general form of type asting should beinluded in the model and type oerion rules should be de�ned to allow for mixed-type and mixed-preision expressions. These rules are implementation-dependent.To handle mixed-dimensional operations whih are applied to a vetor and a salar,it is sometimes useful to onvert the salar operand to a vetor whih \onforms"to the shape of the vetor operand by repliating the salar's value. This allowsomputation to proeed using vetor operands only. This onversion may be doneimpliitly as with type oerion or expliitly as with type asting.Support by the various multimedia extensions for repliation is mixed. OnlyAltiVe has expliit repliation instrutions. A few extensions have a number ofoperations whih an pair a partitioned operand with a salar one. However, most ofthe extensions have little support for repliation or mixed operations. Despite this,as a general rule repliation an be emulated using polymorphis and shifts. Thus,they are reasonably portable, though often ineÆient, and should not be exludedfrom the model. For this reason, salar to vetor onversions via type oerion andasting are allowed by the general-purpose SWAR model. This promotes exibilitywhile simplifying the programming task.Vetor Element Aess OperationsTo provide generality and to ease the handling of boundary onditions and singu-larities, general-purpose vetor programming models should allow vetor elements tobe operated on individually. Where available, extration and insertion instrutions

- 188 -an be used to implement vetor element aesses. These instrutions allow setionsof a partitioned register to be isolated for further proessing or reombined with otherdata.While several multimedia extensions ontain this type of instrution, others donot. On these arhitetures, it is generally possible to emulate basi forms, althoughseveral instrutions may be required to do so. Thus, they should not be exluded. TheSWAR model assumes that vetor elements an be individually aessed, operatedon, and assigned as salar objets.Vetor Generation OperationsOne problem that is not well-addressed by urrent multimedia extensions is thatof ombining single items of data into partitioned form. That is, the reation of avetor from a set of salars. This often takes several steps beause data must bepositioned, masked, then inserted into the destination.This leads to the question of how suh an operation should be expressed by theprogrammer. Spei�ally, should the programmer desribe this as a single operationor as the several operations that are typially used? By using elemental assignment,the programmer an express this as multiple separate operations. However, meha-nisms whih allow vetor generation to be expressed as a single operation would alsobe useful and should be inluded in an implementation of the model.Vetor Catenation OperationsMathematial vetors are not often onatenated, but the atenation of haratervetors (i.e. strings) is a fairly ommon operation. A general-purpose model shouldinlude operations of this type.

- 189 -Linear Interelement Communiations OperationsShifts and rotates an also be used to emulate one-dimensional ommuniationsoperations, treating the register �elds as in a linear array or ring. This is the mostnatural form of \inter-PE" ommuniation for these arhitetures, and one whihlosely represents the use of traditional SIMD interonnets. Thus, inter-�eld shiftsand rotates should be supported if only from a ommuniations stand-point. Speif-ially, linear ommuniation between data �elds is supported by the SWAR modelvia vetor shifts and rotates. These move data linearly and regularly between vetorelements.Non-linear Interelement Communiation OperationsAdvaned ommuniations operations suh as shu�es and permutations requiremore omplex operations than most urrent multimedia extensions support. Beauseof this, these more advaned ommuniations operations will be avoided. We will,however, disuss the apabilities of urrent SWAR arhiteture with respet to om-muniations operations.Interleaving instrutions ombine data in two registers by alternating betweenthem, while swaps exhange data between the �elds of a single register. These in-strutions an be used to implement various forms of inter�eld ommuniation whihexhibit regular aess patterns. Neither interleaves nor swaps are onsistently im-plemented aross multimedia arhitetures. Thus, the partiular ommuniationspatterns exhibited by these arhitetures di�er. Beause of this, ommuniations op-erations with patterns whih require this type of operation should be avoided in theurrent general-purpose model.The atenating instrutions inluded in the various multimedia extension sets om-bine subsets of their operands' elements without hanging their relative order. Thus,these instrutions also perform operations whih resemble various regular ommuni-ation shemes. As with interleaves and swaps, these instrutions are inonsistently

- 190 -implemented so the operations they perform should not be inluded in the urrentmodel.Paks and unpaks an also behave like regular ommuniations operations. Paksgather data from alternate �elds (PEs) of a register and pass it to a ontiguous setof �elds, while unpaks perform the inverse operation. These operations are notimplemented by all multimedia extensions, are inonsistently implemented when theyare, and an be expensive to emulate. Thus, the ommuniations operations theyrepresent should also be avoided.Permutation instrutions allow the �elds of one or two registers to be rearrangedor repliated. These operations are equivalent to ommuniations using advanedinteronnetion networks suh as the router networks of the Thinking Mahines' CM-2 or MasPar MP-1.Only a few extension sets inlude permutation operations. Due to their general-ity, they are diÆult to emulate on arhitetures whih do not support them. Thismakes them diÆult to port. Thus, these operations should be avoided despite theiraeptane and use in previous SIMD programming models. These operations arethus exluded from the urrent SWAR programming model.As tehnology advanes, more arhitetures will inorporate advaned interon-netions between the �elds of their registers. This will allow more omplex operationssuh as permutations to be portable between arhitetures. At that time, advanedommuniations should be inorporated into the model. Until then, inorporation ofsuh operations will only enourage the programmer to write ode whih annot beimplemented eÆiently on most SWAR arhitetures.Cahe Management OperationsCahe management is inherently arhiteture-dependent. One must be awareof the size of ahe lines and memory bloks to order operations intelligently. Forexample, when should a hint be given that a memory loation will soon be needed?

- 191 -Should it our at the beginning of a blok of ode or the beginning of the statementin whih the aess ours? This depends on the size of the soure ode blok versusthat of the ahe lines. This deision also requires onsideration of the availability ofspae in the ahe.Generally, this knowledge should be hidden from the programmer so that he orshe may onentrate on the desription of the algorithm at hand, not the mehanisof exeution or mahine ontrol. Moreover, an optimizing ompiler is likely to makemodi�ations to the order of exeution. This leaves the programmer without learknowledge on whih to base ahe management deisions. In this ase, ahe manage-ment operations would blindly impose onstraints on the reordering of instrutions.For these reasons, ahe management operations should not be exposed to theprogrammer in a portable programming model, and are not in the general-purposeSWAR model.3.4 Properties of a Well-Designed High-Level Language for SWARWith the ompletion of this phase of researh, we are now in a position to enumer-ate a set of properties that a well-designed high-level SWAR language should exhibit,and also to establish guidelines for implementing the general-purpose SWAR modelas a full-sale high-level programming language.The primary harateristis of suh a language are:� The primary parallelizable objet is a one-dimensional vetor.� Vetors onsist of one or more identially-typed data elements.� Vetor element types are arhiteture-independent.� The elements of a vetor are idential in type and preision.� The elements of a vetor are single-valued and non-aggregate.

- 192 -� The elements of a vetor have integer or oating-point type or some other typewhih is treated as a form of one of these types.� Vetor integer elements may have any preision subjet to external onstraints.� The allowed preision and handling of oating-point vetor elements isimplementation-dependent.� The layout of a vetor in memory is implementation-dependent.� Vetor operations are onsistent aross data types and preisions.� Vetor operations are arhiteture-independent.� Vetor operations are losely mathed to the apabilities of urrent SWAR ar-hitetures.3.5 Development of the ModelThe general-purpose SWAR programming model was developed jointly by Profes-sor Hank Dietz and me to address several onerns.Originally, Professor Dietz suggested that the we should look at multimedia exten-sions suh as MMX beause he believed that they would be interesting arhiteturesto target.We then designed the SLIME (SIMD Language for Intel Multimedia Extensions)programming language for use in the fall 1996 undergraduate Compiler and LanguageTranslation Systems Course (EE468) whih he was teahing and for whih I was theassistant.This language is a small MPL-like SIMD language in whih the number of pro-gramming elements depends on the preision of the data to be operated on in parallel.There are two data types in the SLIME language: int and plural. An int is asingle standard C integer whih is visible to eah of the PEs. A plural is a multiple-

- 193 -valued objet with a single name making only one element of the objet visible toany given PE.The preision of a plural objet is given on the ommand line when the ompileris run, and is required to be one of 8, 16, 32, or 64. All plural objets are ompiledwith this preision and have a �xed number of elements. This number is 64 divided bythe given preision. Thus, a plural objet �lls a 64-bit wide MMX register perfetly.Originally, students were to implement a ompiler for SLIME whih would gener-ate C-ode using maros to exeute the neessary MMX instrutions. However, whilethe SLIME programming model requires all operations to be implemented for anyof the given preisions, MMX does not inlude instrutions for eah of these. Thus,unsupported operations required emulation whih we did not want the students tohave to implement in the time allotted.Subsequently, I made a brief survey of the multimedia sets then in existene. Overtime, I have expanded and re�ned this survey into the tables found in hapter 2. Dur-ing my initial investigation, I found the available multimedia extension sets to be bothinompatible and inomplete. Also, it was lear that none of these extensions weredesigned to support a general-purpose parallel proessing model, but were instead in-tended to support partiular algorithms. Professor Dietz then suggested that perhapswe should attempt to develop a general-purpose model.As we began working on this model, I realized that the supported data sizes werehosen based on the designers' beliefs about whih data sizes would be most om-monly used by their respetive ustomer bases. Beause this had led to inompatibleextension sets, it was lear to me that this was not the path to follow when designinga general-purpose model. Rather than to assume knowledge of the data sizes neededby the appliation programmer, I argued that one annot, and therefore should not,guess whih data sizes will be most useful to a future appliations programmer.It was also lear that limiting the size of the parallel data set to �t into one registerwas not neessary, and that few real appliations would use data sets of exatly the\orret" size. For example, there are 3.2 billion gene pairs in the human genome.

- 194 -A good programming model should not prelude the desription of algorithms whihaddress large data sets suh as these. In fat, a good model should allow the pro-grammer to desribe operations on these data sets easily. Thus, as a basi model, weopted for a SIMD model in whih vetors are �rst-lass objets with any number ofelements of any preision.It is important here to stress the di�erene between the model and any partiularimplementation of the model. Pratial onsiderations, suh as �nite memory, annotbe avoided; and ertain situations, suh as data preisions whih are greater than thesize of a register, will not result in speedup. While a partiular implementation of themodel may avoid these situations, they should not be inorporated into the model.As an example, suppose we had hosen to limit data preision to the maximumpreision that would have provided speedup using MMX. Beause MMX registers are64 bits wide, the maximum size would have been 32 bits. While none of the extensionsets ontemporary with MMX inluded instrutions for data whih exeeded thispreision, several urrent extensions do. Had the 32-bit limit been inorporated intothe model, it ould not have been used by a programmer to take advantage of the64-bit apabilities of these arhitetures when they beame available. Similarly, if weinorporate a 64-bit limit into the model, it will not allow the programmer to takeadvantage of any 128-bit hardware support in the future.

- 195 -
4. PROOF-OF-CONCEPT IMPLEMENTATIONS OF THEMODELHaving de�ned a new abstrat model of parallel omputation whih better reetsthe apabilities and limitations of modern SWAR arhitetures than do urrent om-putational models, we now develop prototype implementations of this model andoptimizations whih exploit the apabilities of various target proessors.4.1 Prototype Libraries for SWAR ProessingMy original plan of study alled for the development of a set of small, portablelibraries for writing SWAR algorithms. These were to be optimized to their targetarhitetures and share a ommon portable interfae to show that the model ouldbe applied in this manner.Two prototype libraries were reated to address this goal. The �rst, alled lib-MMX, provided a means to aess MMX instrutions in a manner similar to C fun-tion alls. The seond, SWARlib, was intended to show that a portable libraryinterfae ould be developed for SWAR proessing.4.1.1 libMMXI started by reating the original inarnation of the libMMX library [185℄. Thisprovided aess to the MMX set of extensions via C preproessor maro alls. Thislibrary de�ned a union type, equal to the size of an MMX fragment, whih ould betreated as a repartitionable array of �elds. Operations on objets of this type wereperformed using maros whih hid the atual register usage from the programmer.

- 196 -This is the orret approah for a portable library, but makes the library useless asa ompiler target. Later versions of this library [186℄, based on a version by ProfessorDietz, were written to expose register usage to make them more useful for ompilerwork. A set of similar libraries are used by the S ompiler disussed in setion 4.3to support its various targets.Following the development of this prototype library, we deided that the designof a high-level programming language and ompiler should be given higher prioritythan was originally alled for in the researh plan. We felt that a ompiler wouldbe needed to perform aggressive optimizations and instrution sheduling in order toahieve a reasonable amount of speedup over large ode segments.When using libraries, the programmer is fored to perform these tasks and is lesslikely to ahieve signi�ant speedup over a large amounts of ode. For this reason,development of a portable SWAR library was not pursued until after the ompilerwas relatively mature; and then, only as a proof-of-onept implementation. Theresulting library framework was alled SWARlib.
4.1.2 SWARlibSWARlib does not implement a full general-purpose model, but implements enoughof one to show that it ould be done. Currently, SWARlib has only been targeted toMMX and AltiVe, but would be implemented similarly for any target.SWARlib allows the programmer to reate vetors of unlimited length, but violatesthe requirement that any �eld size be allowed by only allowing power-of-two �eld sizes.It also limits �eld sizes to those smaller than a fragment, but this is allowable as itdoes not limit the obtainable parallelism.

- 197 -Eah vetor is implemented using a C strut whih ontains the vetor's typeand layout information and also a data pointer. This pointer points to an alloatedarea of memory whih is treated as an array of fragments holding the atual data1.In an appliation, vetor pointers, alled swar vetors are �rst delared, thenswar allo() is alled to alloate and initialize the data struture for the vetor.This funtion takes a vetor length, data preision, and signedness and saturationindiators as arguments, stores this information, and alloates memory to hold thevetor data. The user is responsible for initializing this data after the return.The swar vetor names an be used in alls to maros whih implement thebasi operations of the model. Type information is not passed expliitly in thesealls. This provides a level of abstration whih makes the vetors look somewhatlike �rst-lass objets; however, basi operations must be performed via funtions ormaros rather than by using operators as one would with truly �rst-lass objets. Animplementation in an objet-oriented language would allow �rst-lass operation usingoperator overloading, but would be limited in the operators allowed.SWARlib ould have been implemented as a library in whih type information isgiven as part of the name of eah operation performed, but the urrent implementationmore losely mathes that of the SWARC language (setion 4.2). This has a negativee�et on type assessment. While a ompiler an perform type assessment statiallyand arrange for orretly typed operations to be performed, a maro library in whihdata types are passed as arguments or as part of an argument must be assessedduring exeution, thus making the resulting ode slower than the orresponding odegenerated by the ompiler.An example of a SWARlib vetor operation is swar add(). This maro takesthree pointers, whih look like simple variable names, derives type information fromthe underlying data strutures, and then performs a (hopefully) properly typed vetoraddition. This is done by exeuting the MMX or AltiVe instrution(s) neessary to1This area is dynamially alloated and thus needs to be enapsulated to fore orret alignment.This is not urrently done, but is a relatively minor error whih should not need to be orreted toprove the viability of SWARlib.

- 198 -perform the operation on eah of the orresponding pairs of fragments of the sourevetors and storing eah subresult in the orresponding fragment of the result vetor.Currently, SWARlib assumes that the result type is the same as the destinationargument, and treats the soures as being of this type. This is inorret beausethe result type should be a resolution of the soure arguments' types ast to thedestination's type. While this leads to inorret results, it is something that anobservant user should be able to work around, and it should not be neessary to �xthis to prove that the SWAR model an be implemented as a library.Eah target has a set of operations for whih it laks hardware support. Thesemust be emulated in the library; however, the library urrently ontains no emulation.Emulation in SWARlib would be similar to emulation in the S ompiler desribedin setion 4.3. I am on�dent that it ould be done in the framework of a library, andthat it would be time-onsuming to do so.As an example of emulation, MMX does not have an instrution whih performsan 8-bit unsigned maximum operation (max8u), but it does have an 8-bit unsignedgreater-than omparison and a set of polymorphis. The max8u an be emulated asa series of operations similar to the following:gt8u(arg0, arg1, i);and(i, arg1, j);not(i, i);and(i, arg0, i);or(i, j, i);Here, arg0 and arg1 are the arguments to the max8u. i and j are temporaryvariables used to make the example learer. In eah all, the destination is the �nalargument with the soures preeding it.After proessing, eah vetor is freed by alling swar free(). This dealloates thevetor data and strut. Finally, swar end() is alled to perform any operations, suhas MMX's emms instrution, neessary to put the proessor bak into a non-SWARproessing mode.

- 199 -A ompleted version of SWARlib would be a full implementation of the SWARmodel as a library. Using the methods desribed in this setion, a portable libraryould be developed whih would satisfy the requirements of the SWAR model. How-ever, as was previously stated, it beame lear that a fully operational ompiler wouldbe neessary to ahieve signi�ant performane over anything but a trival ode se-quene. Thus, this library was not fully implemented, nor was it made available tothe publi.4.2 The SWARC Vetor LanguageAfter the development of basi SWAR libraries, the next task was to de�ne anddevelop a new, high-level programming language based on the SWAR model for even-tual plaement in the publi domain.We hose to do this rather than to add new lasses to an objet-oriented languagesuh as C++ beause we be believed that it would be diÆult for a C++ ompiler tooptimize vetor ode and beause it would allow more exibility for future researh.To simplify this task, we developed a module language whih ould take advantageof available C libraries and integrate well with ordinary C ode. This allowed us toavoid writing support libraries for the language whih would have been neessary tobuild a omplete appliation otherwise.The language itself is intended to allow the programmer to easily desribe SWARdata and algorithms in a portable manner. The language is similar to C, but allowsparallel data to be represented as vetors. In aordane with the general-purposeSWAR programming model desribed in setion 3.3, vetors are �rst-lass objetswhih an be of any length, subjet to external onstraints suh as the amount ofavailable memory.To make appliations portable between targets with varying word sizes, supported�eld sizes, and data alignments, the language only allows the programmer to speify

- 200 -minimal onstraints on data preision and layout. This allows the ompiler to hoosewhih �eld sizes and layouts will atually be used based on the target's apabilities.The remainder of this setion desribes the SWARC module language whih wehave developed and is adapted from [5℄.4.2.1 Type SystemBase TypesThe SWARC language inludes the C language's base data types to make theintegration of SWARC and C ode easier than it would be otherwise. This allowsarguments to be passed from C ode to SWARC funtions without having to be astto a vetor form �rst. Aggregate types suh as struts and unions are not allowedin this prototype language; however, single-dimensional arrays of a base type areallowed.The base types allowed in SWARC ode are har, int, and float, with harsonsidered to be 8-bit ints. These may be modi�ed with any of the modi�ers signed,unsigned, and onst. Also, the int type may be modi�ed or replaed with the sizemodi�ers short, long, and long long. The storage lasses extern, register, andstati an also be applied to a base type and have the same meanings as in C.In addition to the normal C modi�ers, two additional attributes are allowed inSWARC. These are the modular and saturation attributes whih allow the pro-grammer to speify whih form of overow handling should be used by operationsperformed on the objet. Thus, overow handling is spei�ed by data type using asingle operator for both modular and saturated operations.The general form for delaring C data in SWARC is the same as in C with theexeption that arrays are always one-dimensional and the dimension follows the basetype name, not the name of the variable. The general form is thus:storage-lass modi�ers base-type [dimension℄ name

- 201 -where everything but the base type and name are optional.There are no expliit Boolean or enumerated types in SWARC. Eah of these mustbe handled as a type of integer. Boolean types an be handled as 1-bit unsigned ints,while enumerated types an be handled using n-bit ints where n = dlog2me for mvalues. Maro de�nitions an be used to assign names to these values.Vetor TypesSWARC extends the C type system with a �rst-lass vetor type whih allowsone-dimensional arrays of any length to be de�ned. These objets may be aessed asan aggregate entity as opposed to C arrays whih an only be aessed one elementat a time.In its most general form, the type delaration for SWARC vetor data spei�esan objet whose elements are laid-out either as an ordinary C array or paked as theompiler sees �t using a spei�ed minimum preision. The syntax for delaring suhan objet is similar to the bit-�eld spei�ation used in C strut delarations, andtakes the general form:storage-lass modi�ers base-type:pre[width℄ namewhere the storage lass, modi�ers, and base type are as desribed above, and every-thing is optional exept the base type and name.The preision spei�er : indiates that the objet should have a SWAR (i.e.ompiler-hosen) layout, and that the minimum preision required for the data maybe spei�ed with an optional integer preision. This preision spei�es the minimumpreision to be used for element data and may take any positive integer value subjetto external onstraints.Omitting the preision spei�er indiates that the objet should have a C, ratherthan a SWAR, layout. Using the preision spei�er without an integer preision isequivalent to speifying a SWAR layout with the native preision for the equivalentC layout type.

- 202 -Note that while the ompiler may store data with a higher preision than spei�ed,saturation is always to the delared preision of the data. Also note that when apreision is spei�ed, the integer base types, whih inlude har, short int, int,long int, and long long int, are equivalent.The optional [width℄ spei�er indiates the C layout array dimension or thenumber of SWARC layout vetor elements. If the [width℄ is omitted, it is taken tobe one.ExamplesSome examples of SWARC delarations are in order at this point:� \har " is equivalent to the C delaration \har ", and spei�es that is asingle variable of type har.� \float: f" is equivalent to \float:32 f" on most arhitetures, and spei�esone single-preision oating-point variable.� \int:7 i" delares i to be an integer with at least seven bits of preision.� \long:[14℄ l" delares l to be a vetor with 14 visible elements, eah of whihis an integer �eld with the same number of bits of preision as a C objet oftype long int.� \har:7[14℄ " delares to be a vetor with 14 visible elements, eah ofwhih is an integer �eld with at least seven bits of preision.Type CoerionThese type extensions require several modi�ations to the C type oerion rules.Salar objets are promoted to the dimension of the other type. This allows a salarobjet to be used as an operand to a vetor operation without the programmer ex-pliitly onverting the salar into a vetor.

- 203 -If neither objet is a salar and the dimensions are mismathed, the wider objetis trunated to the width of the other. This an be used with vetor shifts to extratsubvetors from a vetor if neessary. An implementation may optionally generate awarning about the mismath.Expressions whih mix C and SWAR layout objets, result in the SWAR layouteven if this requires the preision to be redued. Otherwise, an expression with mixedpreision yields a result with the higher preision. This is primarily to allow salarsto be onverted to the preision of a vetor (whih is usually smaller) rather thanforing the entire vetor to be onverted to the preision of the salar.Finally, modular expressions are ast to saturated expressions when mixed. Thisensures that overow auses saturation even when generated by interation with mod-ular data.SummaryThis type system allows the programmer to speify vetors of any length andelement preision, and thus onforms to the general-purpose SWAR model. It allowsprogrammers to speify data types whih math the preision of the data in questionwhile leaving the ompiler free to use the whatever preision and layout works beston the target arhiteture.4.2.2 Control Construts and StatementsControl ow onstruts in SWARC are a superset of those in C, and operatesimilarly to those in MPL [107℄. From the point of view of the programmer usingSWARC, onditionally exeuted statements must be applied only to those vetorelements for whih the ondition is true. Beause SWAR instrutions are appliedaross all the elements stored in a CPU register, a onditionally exeuted instrutionmust be applied under an enable maskwhih limits its e�ets to the elements whih areenabled for the operation. SWARC ontrol onstruts must be modi�ed to properly

- 204 -deal with this situation and to hide the underlying operations from the appliationsprogrammer. The SWARC onstruts inlude:� if statements, whih operate as do C if statements if the onditional expressionhas a width (i.e. vetor length) of one. Otherwise, the if body is exeutedi� the ondition is true for some enabled element of the onditional vetor.In this ase, the body is exeuted under enable masking to limit the e�etsto those elements for whih the ondition is true. Likewise, the else body isexeuted, under masking, i� the ondition is false for some enabled element ofthe onditional vetor.� where statements, whih operate as do SWARC if statements, exept that thewhere and elsewhere bodies are always exeuted. These bodies are masked tolimit their e�ets to the orret set of elements.� everywhere statements, whih enable all elements of the vetor for the statementwhih follows. These are used to temporarily interrupt the urrent enable state.� while statements, whih operate as do C while statements if the onditionalexpression has a width of one. Otherwise, the while body is exeuted as long asthe ondition is true for at least one enabled element in the vetor. An elementis disabled when the ondition beomes false for that element, and stays thatway until the loop is exited. Thus, the set of enabled elements is monotoniallynon-inreasing with eah iteration. One all the elements beome disabled, theloop exits, and the enable mask is restored to its ondition before entering theloop.� for statements, whih are related to the SWARC while in the same way thatthe C for is related to the C while.� do statements, whih are related to the SWARC while in the same way thatthe C do is related to the C while.

- 205 -� ontinue and break statements, whih operate as in C exept that an optionalexpression indiates how many nesting levels to ontinue or break from.� return statements, whih operate as in C exept that no expression is allowedto be returned from a SWARC funtion.� labels, blok statements, and empty statements, whih all operate as in C.� funtion alls, whih operate as in C exept that arguments are passed by ad-dress, not by value. The all is exeuted as the body of an implied everywhere.This ensures ompatibility with ordinary C ode.� A speial blok statement, whih enloses ordinary C ode and an be insertedwherever a statement an appear, or as a top-level delaration. These bloksare enlosed by a $f $g pair, and will be emitted into the output ode. Withinthese bloks, a dollar sign is used wherever a pound sign should appear in theoutput C ode.4.2.3 OperatorsThe standard C operators work as usual on C-layout data. Their de�nitions havebeen modi�ed to work in a onsistent and intelligent way with SWARC vetor data:� The unary and binary arithmeti operators operate as in C but in parallelon the elements of vetor operands. These inlude addition and identity (+),subtration and negation (-), multipliation (*), division (/), and modulus(%). Inrementation (++) and derementation (--) are inluded only as pre�xoperators.� The arithmeti assignment operators also work in C. These inlude additive(+=), subtrative (-=), multipliative (*=), divisional (/=), and modular (%=)assignment operators. The assoiative additive and multipliative assignments

- 206 -are extended as in C* [169, 187℄ to perform redutions when storing a vetorvalue into a salar or when the operator is used as a unary pre�x.� The bit shift operators (<< and >>) and assignments (<<= and >>=) operate asin C but are applied in an elementwise manner to vetor operands. Bit rotatesare not urrently supported in the language; however, they probably will be inthe future and use a notation similar to that of vetor element rotates.� The binary bitwise logial operators (&, |, and)̂ are inluded and operate as inC, but within eah �eld on vetor data.� Bitwise logial assignment operators (&=, |=, and =̂) are also inluded and op-erate as in C. These perform redutions when storing a vetor into a salar orwhen the operator is used as a unary pre�x. The unary one's-omplement op-erator (~) is also extended for parallel operation; however, there is no redutiveversion of this.� Comparison operators operate as in C, but evaluate to 0 in every false �eld and-1 (all '1' bits) in every true �eld. This modi�ation to the C de�nition makesthe implementation of enable masking signi�antly simpler. These operatorsinlude less-than (<), less-than-or-equal (<=), greater-than (>), greater-than-or-equal (>=), equal (==), and not equal (!=) operators.Redutive omparisons are not inluded, primarily due to a notational onit.Following the onvention use for arithmeti and logial redutions, a redutive\greater-than" operations would be annotated as (>=) whih onits with thegreater-than-or-equal operator. Beause they are not ommonly used, theseoperations were not inluded in the language.� Logial operators operate as do omparison operators. These inlude logial-AND (&&), logial-OR (||), and logial-NOT (!).

- 207 -� The trinary onditional operator (?:) works as in C, but applies enable maskingto blok side-e�ets from a�eting elements for whih the ondition does notapply.� The C assignment operator (=) is de�ned as in C, but is extended to performrepliation when assigning a salar value to a vetor and in elementwise fashionwhen assigning a vetor value to a vetor. Assignment of a vetor value to asalar is disallowed unless a redutive assignment operator is used.� The typeast operator ((type)) has also been extended to allow SWARC typesand is used as in C.� The sizeof operator operates as in C, returning the size of its operand in bytes.This operand may be a type or objet.� The array generation operator (fg) has been extended to allow vetor genera-tion. This is typially used at initialization. Vetor generation via onatenationis urrently unsupported by the language. This is somewhat in keeping withthe C language from whih SWARC is derived.� The array element operator ([℄) has been extended to allow individual vetorelement aesses.New operators have also been added to failitate operations ommon to SIMDproessing to be performed in the SWAR environment:� Binary minimum (?<), maximum (?>), and average (+/) operators have beenadded to failitate the omputation of these values for salars and vetors.Redutive unary and redutive assignment versions are also available, and takethe forms: ?<=, ?>=, and +/=.� Unary redutive and redutive assignment versions of the binary logial oper-ators (&&= and ||=) have been added to perform the SIMD ANY and ALLoperations for assignments and redutions.

- 208 -� The vetor element shift ([<<n℄ and [>>n℄) and rotate ([<<%n℄ and [>>%n℄)operators have been added to ease the implementation of inter-element ommu-niation and similar algorithms.� The typeof operator returns the type of its expression argument. This allowsparameterized funtions to be written to handle many types.� The widthof operator returns the delared dimension of its expression argu-ment.� The preisionof operator returns the delared preision of its expression ar-gument.4.2.4 An Example FuntionAn example of ode that an be written in SWARC is the Linpak benhmarkDAXPY loop, whih is atually performed as a SAXPY (Single-preision AXPY) onmost SWAR hardware. A C version of the original loop looks like this:for (i = 0;i < n; i++)dy[i℄ = dy[i℄ + da*dx[i℄;In SWARC, the same ode is written as a vetor expression. Here, we show theode wrapped in a funtion body whih an be in-lined or opied diretly into theSWARC soure:void swar_saxpy(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ y += (s * x);} Note that the algorithm is expressed as operations on vetors muh as it wouldbe in mathematial notation. Thus, this SWARC ode is more natural than thelooped C ode. Also, this ode desribes the data and operations to be performedwithout exposing the struture of the target arhiteture. Thus, it is portable arossmultiple arhitetures. This allows users to write portable SIMD funtions that an

- 209 -be ompiled into eÆient SWAR-based modules and interfae ode whih allows thesemodules to be used within ordinary C programs.4.3 The S CompilerThe experimental SWARC module ompiler, S, is the �rst implementation of aompiler for a general-purpose SWAR language. S is a ross-ompiler whih targetsseveral SWAR-apable arhitetures. These inlude the Intel IA32 arhiteture usingstandard C ode and MMX, 3DNow!, Enhaned 3DNow!, and AltiVe arhiteturesusing C ode with inlined assembly maros whih make use of these extensions.S is intended to be not only a proof-of-onept implementation of the SWARmodel, but also to provide a framework for further SWAR researh. To this end, thesoure ode for S will be plaed into the publi domain when this dissertation isdeposited.Any portable SWAR language suh as SWARC must provide the programmer witha onsistent programming model. Any ompiler for suh a language must manage theinonsistenies of the target arhitetures to implement this model. The ompilermust provide emulation for unsupported operations and orretly implement SIMD-style ontrol onstruts.4.3.1 OrganizationThe S ompiler onsists of the front end, a bak end, and a set of utilities whihare used throughout the ompiler. The purpose of the front end is to determinewhat type of proessing must be performed on eah soure �le, parse SWARC soureode, and onvert the SWARC soure into a type-oered, optimized intermediaterepresentation (IR) tree representing the vetor operations. The bak end has the taskof onverting the intermediate vetor tree into lists of tuples representing operationson word-sized data fragments, and generating C ode to implement the operationsdesribed by these tuples based on the apabilities of the target arhiteture.

- 210 -The primary ow of data through the ompiler follows a path from the mainfuntion, through the parser, the fragmenter, and �nally the sheduler.4.3.2 The Front EndThe front end onsists of six major funtional units. These determine how eahsoure will be handled, parse SWARC soures to form an intermediate representation(IR) tree, and perform type heking, type oerion, and vetor-based optimizationssuh as onstant-folding of vetor operations.The parser was built using PCCTS (the Purdue Compiler Constrution Tool Set,see the network newsgroup omp.ompilers.tools.pts). As it reads the SWARCsoure ode, it generates top-level delarations and prototypes for the C output. Aseah funtion body is parsed an IR tree is built to represent it. This tree has a hild-sibling struture and ontains nodes whih represent salar and vetor operations. Itis optionally passed to the front end optimizer before being passed to the bak endfor ode generation.The front-end optimizer reon�gures the IR tree for a funtion by performing sev-eral optimizations. These inlude onstant folding on salar and vetor operations,removal of ode to ompute onditionals with onstant values and the related unusedonditional bodies, and aggressive vetor-level algebrai simpli�ation. These opti-mizations depend not only on the type of the values, but also on their preision andsize.Figure 4.1 is a representation of the IR tree that the front end generates for ourSAXPY example. The notation \2x32f" indiates an entity or operation whih hastwo �elds ontaining 32-bit oating point values. We see that the ADD performs a2x32f addition on the 2x32f value loaded from memory loation y and the produtof the salar (1x32f) objet a, whih is ast to a 2x32f value, and the 2x32f objet x.The 2x32f result is then stored in y.

- 211 -
BLOCK

EXPR 4x32f

STORE 4x32f "y" 1,1

ADD 4x32f

LOAD 4x32f "y" 1,1 MUL 4x32f

CAST 4x32f

LOAD 1x32f "a" 1,1 LOAD 4x32f "x" 1,1Fig. 4.1. IR tree for SWAR SAXPY4.3.3 The Bak EndThe bak end onsists of three major funtional units. These divide vetor datainto word-sized fragments, generate a tuple tree for eah fragment, shedule the tuples,and generate output ode.Vetor operations enoded in the IR tree as single tree nodes need to be onvertedinto a series of equivalent operations on the word-length fragments of their vetorarguments. This is done by the fragmenter, whih onverts the IR tree into lists oftuple DAGs (direted, ayli graphs) whih more losely represent the operationsperformed by hardware.Note that fragmenting is not strip mining, although it serves a similar purpose.The primary di�erene is that fragmenting does not generate any loops, expensiveindexing, or onditional end-of-vetor tests. Instead, it generates longer sequenesof fragment-based ode that have the minimum possible overhead and maximumexibility in sheduling. Future versions of S may use strip mining in ombination

- 212 -

One
Fragment

Vector +

Field Field

1−8x32

1−8x32

4−2x32

2x32 Add 2x32 Add 2x32 Add 2x32 Add

4−2x32

Fig. 4.2. Fragmentation of a Vetor Additionwith fragmenting for very long vetors, where exessive fragmented ode size mightlimit performane.In �gure 4.2, we see how an 8-element vetor addition is fragmented into fourword-sized parallel additions. In the diagram, and this disussion, the notation n-fxbindiates an entity with n parts, eah of whih has f �elds of b bits. In the top halfof the �gure, a single vetor addition is oneptually applied to two vetors, eah ofwhih has eight 32-bit data elements. Assuming that the target's registers have awidth of 64 bits, the fragmenter an only pak two 32-bit �elds into eah fragment asa 2x32 SWAR entity. The lower half of the �gure shows how the vetor is fragmented,with eah pair of elements assigned to a single fragment. The orresponding fragmentsof the two vetors are then added with a single hardware operation.The operations and �eld sizes supported by hardware vary widely aross targetarhitetures. These di�erenes must be aounted for during the onstrution of thetuple trees. Data promotion to supported �eld sizes and emulation of unsupportedoperations are performed as vetor operations represented by IR tree nodes are on-

- 213 -verted to fragment operations represented by tuples. The tuple generation funtionsused must aount for many speial ases and variations while onstruting the tupleDAGs.As the tuple trees are generated, ommon subexpression elimination is performedby reusing previously generated, equivalent tuple trees when possible. Redution instrength optimizations an also be performed in these funtions; however, are mustbe taken, beause these optimizations depend on the availability of an instrutionwith the orret data type and �eld width. Finally, several ompiler optimizationsan be applied at the fragment level during the generation of tuples to lessen theoverhead of enable masking and spaer manipulation or to take advantage of thespeial situations reated by the use of fragmentation, spaer bits, and enable masks.These optimizations will be disussed in setion 4.4.One a tuple tree list for a basi blok has been generated, the fragmenter allsthe sheduler to generate output ode for the list. The ombined sheduler/register-alloator then performs a modi�ed exhaustive searh of the possible shedules forthe tuple list based on shedule permutation [188℄. A detailed model of the targetpipeline is used to estimate the ost of eah shedule.The sheduler attempts to �nd an optimal shedule by �rst building an initialshedule, then trying to improve it by plaing restritions on operations suh asmemory aesses and relaxing these restritions until a viable shedule an be gener-ated.One a shedule for the basi blok is found, output ode is generated for it. Thisshedule is known to be optimal for the target arhiteture based on the pipelineost estimation. This ost estimate takes into aount emulation overhead, multiplepipeline usage, target-spei� instrution osts, operand soure di�erenes, and ostsrelated to register renaming. Unfortunately, our urrent ost estimation model over-estimates the expeted ost of memory referenes in ertain irumstanes. Thisauses the sheduler to hoose non-optimal ode sequenes in ertain situations.

- 214 -Returning to our SAXPY example, the C ode generated by S for the SWARversion targeting an AMD K6-2 (with four elements to keep it brief) is given below.
void swar_saxpy(p64_t *x, p64_t *y, float *a){ register p64_t *_pool = &(mmx_pool[0℄);{ movq_m2r(*(((p64_t *) a) + 0), mm0);pand_m2r(*(_pool + 2), mm0);movq_r2r(mm0, mm1);psllq_i2r(32, mm0);por_r2r(mm0, mm1);movq_r2r(mm1, mm2);pfmul_m2r(*(((p64_t *) x) + 1), mm1);pfmul_m2r(*(((p64_t *) x) + 0), mm2);pfadd_m2r(*(((p64_t *) y) + 1), mm1);pfadd_m2r(*(((p64_t *) y) + 0), mm2);movq_r2m(mm1, *(((p64_t *) y) + 1));movq_r2m(mm2, *(((p64_t *) y) + 0));}_return: femms();}p64_t mmx_pool[℄ = {/* 0 */ 0x0000000000000000LL,/* 1 */ 0xffffffffffffffffLL,/* 2 */ 0x00000000ffffffffLL,/* 3 */ 0xffffffff00000000LL};

The �rst �ve statements inside the inner blok load the 32-bit oat value a intoboth �elds of a 64-bit register. The sixth opies this value for use with anotherfragment. The remaining instrutions perform the SAXPY on the two fragments ofthe vetor data in x and y. Note that the above ode is not optimally sheduled duethe aforementioned errors in the urrent ost estimation ode.

- 215 -4.4 Implementation of Compiler Optimizations For SWAROne goal of this researh was to develop ompiler optimizations whih ould beused to enhane ode performane and alleviate the negative e�ets of emulation onperformane.In [106℄, we introdued and disussed several stati ompiler optimizations thatapply to SWAR programming. These were based on traking data, spaer, and maskvalues, and aggressively simplifying ode dealing with spaers and masks. While someof these tehniques an only be applied for partiular types of targets and �eld sizes,others apply to all targets, and some an be implemented at both the vetor andfragment levels.The S ompiler forms a framework for researh on SWAR-based optimizationsof vetor and fragment operations and instrution sheduling for SWAR-apable tar-gets. In this setion, we disuss how these optimizations have been implementedwithin the framework of the S experimental ompiler. We will briey reintroduethese optimizations here, but refer you to [106℄ for a more detailed disussion. Foursuh optimizations are: promotion of �eld sizes, SWAR bitwise value traking, sim-pli�ation of spaer manipulation, and enable masking optimization.4.4.1 Promotion Of Field SizesIn SWARC, the appliation programmer may speify the minimum number of bitsof preision required for a value. The ompiler may hoose to use more bits for storageof these values in order to make use of speialized hardware on the target arhiteture.For example, 16 bit values are handled very well by HP's PA-RISC MAX-2 [62℄, butsmaller sizes are not. Thus, operations on vetors that were delared to ontain14-bit values will be onverted into more eÆient ode sequenes for MAX-2 if thevetors are internally promoted to 16-bit �elds instead of being handled using 14-bitemulation.

- 216 -In general, for eah SWAR target, there are ertain �eld sizes that are less eÆ-ient than some larger �eld size and should not be used internally. However, not allsmaller �eld sizes are less eÆient than a larger size. In some ases, the �eld size issmall enough that the gain in parallelism outweighs the overhead of onverting to anunsupported �eld size.Current S ompiler targets only diretly support �eld sizes of 8-, 16-, 32-, and 64-bits. Data of any other �eld size must be promoted to one of these or any operationson it will have to be emulated by the ompiler. The S ompiler emulates 1-, 2-, and4-bit support, as these �eld sizes are reasonably eÆient. All other unsupported �eldsizes are promoted to the next larger supported or emulated �eld size.Certain �eld sizes do not supply any added parallelism over the next larger size.This is true whenever the fragment length in �elds is equal for both �eld sizes. In thisase, it is only bene�ial to emulate the smaller �eld size if the extra bits an be usedto inrease the number of spaer bits (this will be explained in setion 4.4.3) betweendata �elds. Otherwise, promoting the data to a higher preision allows the amount ofemulation ode neessary to be minimized without a�eting the performane of theoutput ode.In S, promotion of data preision is performed in the bak-end during the frag-mentation phase beause this is the �rst point in the ompilation proess that theparameters of the target are known. Promotion depends not only on the size ofthe target's registers, but also on the set of instrutions available to operate on thesupported �eld sizes.4.4.2 Vetor Algebrai Simpli�ation and Bitwise Value TrakingIn [106℄, we introdued the topi of bitwise value traking as it related to theoptimization of ompiler-inserted masking operations. These are primarily omposedof bitwise AND and OR operations and left and right shift operations using onstant-

- 217 -valued masks and shift distanes. Consider the following example in C in whih thelow byte of a 16-bit word is moved into the high byte with masking:x = (((x & 0x00ff) << 8) & 0xff00);Simple onstant folding will not improve the above ode beause no single oper-ation has two onstant operands. However, by aggressively applying the algebraiproperties of the operations involved, we an restruture the ode so that onstantfolding an be applied. Distributing the shift over the inner expression yields:x = (((x << 8) & (0x00ff << 8)) & 0xff00);whih an be folded to:x = (((x << 8) & 0xff00) & 0xff00);From here, we see that the AND operations an be folded beause they are assoia-tive and eah has a onstant operand. In this partiular example, they also happen tohave the same value, although this is not true generally. The ode is �nally onvertedto the equivalent, but simpler, form:x = ((x << 8) & 0xff00);Note that unless we are able to fold the operations at eah step, we will be simplyreplaing one set of operations with an equal number of di�erent operations whihare probably equally expensive. A strit set of onditions must be met to make thisoptimization worthwhile:� The top-level operation op1 must have one operand whih evaluates to a on-stant value, and another whih is a tree rooted at an operation op2.� op2 must have one operand whih evaluates to a onstant, and a seond whihis a tree rooted at an operation op3, over whih op2 is distributive 2.2Note that the distributed form of an expression is only approximately equal to the non-distributedform in �nite-preision arithmeti

- 218 -� op3 must have one operand whih evaluates to a onstant, and be assoiativewith op1. Note that op1 and op3 may di�er. For example, in 1-bit �elds,additions and exlusive-ORs are assoiative.� Other restritions may be imposed due to the exat form of the expression treeand the asymmetry of any of the operation's properties. For example, op1 orop3 may be required to be ommutative so that operands may be reordered andassoiative ombining of operations applied.After ensuring that the above onditions are met, the algorithm to perform thisoptimization on an expression tree has four basi steps:� Distribute op2 over op3.� Reorder the tree if neessary, depending on the ommutative properties of op1and op3.� Combine op1 and op3.� Perform onstant folding on the tree.After this last step, op1 has been eliminated from the tree. This proess an thenbe ontinued up the expression tree in the attempt to remove more operations.In S, this optimization an be applied at the vetor level to algebraially sim-plify vetor operations, and at the fragment level to optimize masking and spaeroperations on the tuple trees for eah fragment.4.4.3 Spaer Value Traking and Simpli�ation of Spaer ManipulationSpaer bits form bu�er zones between the �elds of a software-partitioned register.For example, we may plae three 10-bit data �elds in a 32-bit register with one spaerbit, whih does not ontain data, plaed between eah pair of these �elds. These bitsath arries from, and supply borrows to, the data �elds of the register to keep theseations from a�eting the other data �elds.

- 219 -The values of these bits usually need to be preset to an operation-dependent valuebefore eah operation that generates arries or borrows, otherwise they may propagatethese e�ets to another �eld. After suh an operation, these values may have beenaltered by a arry or borrow, and may need to be reinitialized to properly isolatethe �elds. By traking the range of values of spaer bits between operations we anstatially determine when these preset and isolation operations an be eliminated.Also, in a series of vetor operations, these spaer manipulations often result inredundant operations whih an be eliminated and operations that an be optimizedvia bitwise value traking. For example, onsider omputing e=((a+b)-(+d)) us-ing a SWAR representation employing spaer bits identi�ed by the mask s. Theunoptimized form of the operation ontains a large number of preset and isolationoperations: e = (((((a & ~s) + (b & ~s)) & ~s) | s) -((((& ~s) + (d & ~s)) & ~s) & ~s)) & ~s;As disussed in [106℄, redution of these operations an yield a signi�antly tighterode sequene: e = (((a + b) | s) -((+ d) & ~s)) & ~s;For �eld sizes in whih many operations must be emulated, the manipulation ofspaer bits may be a signi�ant fration of all the instrutions exeuted. Thus, opti-mization tehniques whih redue the frequeny of spaer manipulations are desirable.A generalized, but rudimentary form of spaer manipulation is implemented inthe front-end of the urrent S ompiler. Currently, it should be strong enough todetet and optimize ode, suh as that above, in whih the neessary onditions foroptimization are easily heked. However, it does not urrently do so beause theompiler is not building idential trees for the mask loads.Full spaer value traking, in whih the value of the spaer bits is determined andmaintained for eah node of the IR tree is not urrently performed. Suh proessingwould be espeially useful in the bak-end, where masking tuples are often generated

- 220 -to handle partially-�lled fragments. These operations do not appear in front-endproessing.4.5 Comparison with Conurrent WorkIn hapter 1, we disussed work performed at MIT's Laboratory for ComputerSiene onerning Superword Level Parallelism (SLP) and also the VSUIF projetat the University of Toronto. In this setion, we will ompare the approah taken forour S ompiler with the approahes taken by these other researh groups.Any ompiler targeting multimedia-enhaned proessors will have to perform eahof the following steps regardless of the soure language or target arhiteture:� Find parallelizable ode in the soure.� Convert the parallelizable ode into parallelized fragment-based operations.� Output fragment ode as sequential instrutions.The primary di�erene between our approah and that of the University of Torontoand MIT groups is in how the �rst two of these steps are performed. The �rst ofthese steps is onerned with identifying parallelizable ode in the soure. How thisis done depends on the soure language and its struture.Both the Toronto and the MIT groups make modi�ations to the SUIF ompilerto onvert sequential C soure ode into parallelized output. Thus, neither of thesegroups allows for non-standard data types. Only our approah inorporates thispossibility in the programming model. This is done through a signi�ant modi�ationof the soure language.In our approah, the soure is written as �rst-lass vetor ode (whih oneptuallyould be extended to array ode). Detetion of parallelism here is simple { vetoroperations are inherently parallelizable. Thus the �rst step is trivial, and the seondonsists of simply fragmenting the vetor ode and sheduling it.

- 221 -The Toronto approah is essentially traditional vetorization. The ompiler ve-torizes loops of sequential salar ode, written in a language suh as C. This is thenstrip-mined at the fragment level to form fragment ode, with the target arhiteturetreated as a parallel vetor mahine.The SLP approah is more omplex. In this approah, looped, sequential salarode is unrolled, then the entire basi blok is searhed for ode whih an be ombinedinto fragments. Hene, this approah builds fragments in the diretion opposite tothat of our approah or that of the Toronto group.In order to �nd ombinable statements, the SLP detetion algorithm starts by�nding referenes to adjaent memory loations whih an be aessed with a singleload or store instrution. For example, aesses of adjaent array elements generallyan be ombined unless they ross an alignment boundary on a target whih annothandle unaligned aesses. Thus, the SLP ompiler tries to ombine operations ondata whih is already alloated in paked form. This keeps the ost of paking low,but the ost of having the parallelizing ompiler loate data stored in pre-paked formis high.In our approah, data is expeted to be expliitly stored as a pre-paked vetor.Vetor operations are thus not only known to be parallelizable, but are also known tobe in pre-paked form. This makes it trivial for the ompiler to reognize this typeof parallelism and eliminates the osts assoiated with paking and unpaking nativevetor data. The downside is that our approah fores the programmer to store datain paked form or, if neessary, onvert it by hand.After the soure has been onverted to fragment-based operations, the third stepis similar for eah of the ompilers. Optimizations suh as ommon sub-expressionelimination and onstant folding are performed and some form of sheduling tehniqueis used to shedule the sequential fragment operations.One of the primary problems with the design of multimedia sets has been thelak of suÆient mehanisms to minimize the osts of manipulating data layouts. Itis ostly to pak data into the proper form for SWAR-like parallelism to be applied.

- 222 -Often the speedup obtained through exploiting this parallelism is o�set by the expenseof paking and unpaking the data. If suÆient mehanisms are not provided fordealing with this issue, then the problem must be avoided or minimized.Our approah to dealing with this issue is to fore the data to be laid-out in pakedform (as SWAR vetors) at all times. This eliminates the need to onvert data layoutsfrom unpaked to paked form and vie versa. One problem with our approah is thatwe allow vetor ode to be linked with non-vetor ode. This means that in ertainases, the programmer must ensure the proper data layout by generating the datain paked form or by performing paking before passing the data to vetor-basedfuntions. This is not really part of the SWAR model, but is related to the way inwhih it is urrently supported within the SWARC language/S ompiler framework.The SLP group handles this issue while hoosing how single-valued operations areombined to form operations on fragments. Part of the SLP ombination algorithmdetermines if a result an be reused in paked form in a subsequent instrution. Ifso, it is left paked; otherwise, it is unpaked for storage.One negative aspet of our ompiler implementation onerns the size of the prob-lem attaked. In our approah, a large amount of sequential fragment ode may begenerated when a vetor operation on long vetors is fragmented. This is representedby a large graph in memory during ompilation. Sheduling the fragment operationsrepresented by this graph is both time and spae intensive and may take severalminutes to ompile a fairly small benhmark.The MIT group faes a similar problem, whih is exaerbated by the fat that theirapproah is to unroll any loops, then oalese single-valued operations into fragment-based operations. Thus, their ompiler generates even larger internal representationsembodying the individual statements before paking them into fragment-based oper-ations. Paking and sheduling these operations is also time-intensive, and sine theproblem set is larger (single-valued operations versus fragment operations) it is moretime-onsuming than our approah.

- 223 -These problems are avoided by the Toronto group's strip-mining approah beauseloops in the soure ode are onverted diretly into loops in the output ode withoutunrolling or fragmentation. This keeps the problem size small and minimizes thetime required to generate output ode. However, it lessens the possibility of interloopoptimization, espeially in regards to masking and emulation ode.

- 224 -

- 225 -
5. EVALUATION OF GENERAL-PURPOSE SWARMODEL AND IMPLEMENTATIONSTo ensure that the new SWAR model is a viable replaement for urrent parallel pro-gramming models and that it allows programmers to exploit the SWAR tehnology ofvarious COTS proessors, it is neessary to analyze the performane of an inarnationof the model. The SWARC language developed in the previous hapter is one suhinarnation. This language was implemented using the S ompiler whih is alsodesribed in the previous hapter.By studying the oding of various benhmarks and appliations, we an deter-mine if the model is portable and omplete. By studying their performane, we andetermine if performane gains are possible and develop an intuition about the typeof performane gains that an be expeted.The goal of the �nal phase of this researh was to develop and employ metris toexamine the measurable e�ets of SWAR-based tehnology. In this hapter, I will dis-uss a set of benhmark programs that have been used to evaluate the SWAR model,the SWARC language, and the S ompiler. These inlude a brute-fore test of arith-meti expression handling, an algorithm for inreasing the resolution of LCD panels,an algorithm whih mimis DNA subsequene searhes using non-standard preisiondata, and a version of the Linpak benhmark modi�ed with modular SWARC ode.5.1 An Integer Expression Validation ProgramThe \valid" program is used to ensure that the S ompiler generates properode for the majority of binary operations allowed in the SWARC language. Thisprogram was the primary means of testing the ompilation of mathematial, logial,

- 226 -and onditional expressions, and gives a good indiation of how well the ompiler hasbeen ported to a given target.Basi arithmeti operations tested are: addition, subtration, multipliation, di-vision, modulus, minimum, and maximum. Logial AND and OR are also inluded,as are the bitwise logial AND, OR, and XOR operations. The bitwise logial om-bination AND-NOT is also tested, primarily beause this validation program wasoriginally developed for an MMX target. The equality, inequality, less-than, less-than-or-equal, greater-than, and greater-than-or-equal omparisons are also inluded. Bitshift instrutions are not. Eah of the operations tested is done so for both modularand saturated data.For eah operation, a test is onduted whih ompares the results of S-ompiledSWARC ode and C ode ompiled by the native C ompiler for every possible elementvalue repliated throughout the register. That is, given a partiular data preision,for every representable m and n, the operation is applied to one vetor that onsistsof elements whih eah have the value m while the other has elements whih eahhave the value n.Currently, this validation program tests operations on vetor fragments onsistingof signed or unsigned integer elements with power-of-two data preisions up to 32 bits.This test ags any disrepanies in alulation as ompared against the C version ofthe same operation. The auses of these disrepanies an then be studied and ationtaken to orret errors.By default, element preisions of up to 8 bits are tested when the program is runbeause this type of exhaustive testing an usually be done quikly for these smallerpreisions. Exhaustive testing for larger preisions takes signi�ant time (on the orderof days or enturies) to test on urrent hardware. To allow useful testing to be donein reasonable time, 16-bit tests are limited to one type of data (unsigned modular,unsigned saturated, signed modular, or signed modular) per run. In addition, bothoperand values an be strided in non-unit intervals for tests on 32-bit data elements.

- 227 -The soures for this program are not inluded in this dissertation, but are part ofthe S ompiler distribution. Some setions are inluded in appendix E.This program has been suessfully ported to several target arhitetures inludingAMD K6-II and Athlon systems using 3DNow! , Intel Pentium and Pentium 4 systemsusing MMX, and a Motorola 7400 system using AltiVe. It has even been ported to anunenhaned Pentium laptop omputer by generating standard C ode for the target.This shows that vetor arithmeti expressions an be properly desribed, ompiled,and ported to various enhaned and unenhaned target arhitetures.5.2 An Integer Benhmark | Subpixel RenderingOne benhmark test was onduted by Professor Dietz and others in a lassroomsetting in 1999. The purpose of this informal test was to determine what, if any,performane gains ould be obtained for S-generated SWARC ode versus optimizedserial C ode and hand-generated SWAR ode.Color Liquid Crystal Display units are ommonly found on laptop omputers andare beoming more prevalent for desktop and television systems. Eah pixel of oneof these displays atually onsists of a set of three monohromati \subpixels" ofdi�erent olors: red, green, and blue. These are usually arranged as vertial stripesthat have 1/3 the width of the full pixel. By using these subpixels to triple thehorizontal resolution used, the quality of the displayed image an be signi�antlyimproved [5℄.Unfortunately, treating subpixels like full pixels results in olor fringing. To rem-edy this, a 5-point software �lter was used whih applies 1/9, 2/9, 3/9, 2/9, 1/9weightings to the linear set of subpixels surrounding eah subpixel on the display.While this mathes well with the SWAR vetor model, the �lter is relatively expen-sive due to odd weightings and beause the memory referene pattern for subpixelshas a non-unit stride of three bytes.

- 228 -An optimized serial C version of this �lter has been in use with the PAPERSvideo wall library for some time. The problem of oding this �lter was also assignedto 16 individual students as part of a SWARC projet in the \Programming Par-allel Mahines" ourse (Spring 1999 in Purdue's Shool of Eletrial and ComputerEngineering). Students ould write their own MMX ode by hand or they ouldwrite SWARC ode then use the S ompiler to generate C ode whih ould byhand-tuned or an exeutable whih was ready to run.At least a few of the students ahieved more than 5x speedup over the optimizedC ode using S-generated MMX ode. While some students wrote their own MMXode by hand, the fastest version used unedited S-generated ode.This benhmark showed that the SWAR model ould be used to desribe a usefulparallel algorithm, that this ould be oded using the SWARC language, and that theS ompiler ould be used to generate parallel MMX integer ode for standard prei-sion data and ahieve signi�ant performane gains for this algorithm over optimizedserial ode.5.3 An Integer Emulation Benhmark | Gene MathingA third benhmark program operates on integer data of a non-standard prei-sion. This fores the ompiler to emulate unsupported operations on all urrentmultimedia-enhaned arhitetures. The benhmark an thus be used as a test ofthe S ompiler's ability to generate orret emulation ode. This program, dna.S,mimis a series of searhes for a partiular sequene of nuleotides in longer hains ofDNA.The SWAR model and the SWARC language allow a natural desription of theseentities and the algorithms whih manipulate them. Eah DNA hain is representedby a �xed-length (350-element) vetor of 2-bit pseudo-random data whih representsthe four possible nuleotides at eah position in the hain. Similarly, the target se-

- 229 -quene is represented by a shorter, �xed-length (3-element) vetor whih also onsistsof 2-bit data.These data objets math the physial entities whih they desribe more preiselythan do the objets one would be fored to use under other programming models.This allows the ompiler to generate better output ode. For example, desribingthese entities as vetors of 2-bit objets allows the maximum amount of parallelismto be exploited during exeution. It also allows the programmer to avoid struturaloverhead, suh as looping onstruts, required by non-vetor models.The ore of this program was written in the SWARC language and is shown inappendix F. It was ported via the experimental S module ompiler to variousmultimedia-enhaned target arhitetures and even to targets whih do not diretlysupport any form of SWAR parallelism. While this program ontains some non-portable setions, they are entirely restrited to the C interfae ode.The program was ompiled and run on several platforms inluding a 166MHzPentium-based laptop omputer with no multimedia support, a 300MHZ K6-2 desk-top system with 3DNow!, a 1.5GHz Pentium 4 system with and without using MMX,and a 500MHz PowerBook G4 with and without using AltiVe.This benhmark proves that the SWARC language an been suessfully used todesribe algorithms whih are best suited to data of non-standard preisions. Thatit an be ported between a diverse set of targets proves the portability of the SWARmodel and the SWARC language. Also, this benhmark shows that speedup an beobtained on various target arhitetures for data types whih they do not diretlysupport.The rest of this setion is a disussion of the results obtained from porting thisprogram to various target arhitetures and an analysis of the problems enounteredduring the development of this program. For eah target, the benhmark was run forS-generated ode using 2-bit integers and employing various fragment sizes, om-piler optimization levels, and optimization types. It was also run for GCC-ompiledC ode using 32-bit integer data and separately for C ode using 8-bit harater data.

- 230 -5.3.1 Analysis of Results on AltiVe TargetThe AltiVe ode generated by S ahieved speedup, though signi�antly lessthan one would hope given AltiVe's 128-bit registers and the 2-bit data. The optimalspeedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-bit harater ode. The average speedup obtained over measured trials ranged fromabout 3.8x to about 4.6x | only 1/16 of the optimal speedup. The results of thesetrials are given in table G.1 in appendix G.Corret operation of the S-generated AltiVe ode was assumed to be veri�ed byomparing the results with the GCC-generated C versions and �nding no di�erenein the alulated totals. The operation of the C programs was veri�ed by hand usingsmaller DNA vetors.Note that the best speedup, 4.636x, was ahieved by S-generated C ode op-erating on 32-bit fragments of 2-bit data vetors in the PowerPC's general registerset. While this ode was inorret (the alulated total is slightly o�, probably dueto inorret handling of end fragments), it is remarkable beause it does not use theAltiVe instrution set.The best speedup using the AltiVe instrutions was 4.567x, whih is nearly asgood. Given that the AltiVe registers are four times as large as the PowerPC'sgeneral registers, we would expet the 128-bit fragment AltiVe SWAR ode to beabout four times as fast as the 32-bit fragment SWAR integer ode. It is instrutiveto examine why this level of performane was not ahieved.The primary problem is that loads and stores are ineÆient. This is partly dueto the interation of the S ompiler with the underlying C ompiler. S generatesvariables using this ompiler, whih is assumed to be the GNU C ompiler, GCC. GCCallows an aligned attribute to be assoiated with variables and types; however, it onlyapplies to statially alloated objets. Thus, the alignment of automati (i.e. loal)variables and funtion parameters is not guaranteed, and S is fored to assume thatthey are unaligned.

- 231 -AltiVe memory aesses are auto-aligning. That is, a given address is onvertedto the nearest aligned address before memory is aessed. Thus, aligned loads intothe vetor registers an be aomplished with a single instrution but unaligned loadsrequire extra proessing.To handle an unaligned load at address addr, two auto-aligning loads must beexeuted: one whih loads the 128-bit (16-byte) objet starting at the aligned addressbelow addr, and one whih loads the 128-bit objet starting at the aligned addressabove addr. These are followed by an instrution whih loads an alignment indexfragment whih is then used in a permute instrution to rearrange the bytes as needed.Thus, a typial load to an AltiVe register takes four times as many instrutionsas a load to a general register. In fat, depending on the preision of the objet beingloaded, the load may require up to two more instrutions to plae the objet into thebit �eld that S onsiders to be �eld 0.In its urrent inarnation, S simply assumes that all loads and stores, exeptthose whih aess the statially alloated onstant and spill pools, are unaligned.Thus, beause of the way in whih variables are delared and passed between fun-tions, S must exeute several extra steps to retrieve data in a known-to-be-alignedform.Stores are subjet to the same restritions, but here the problem is solved by usinga permute (whih requires an index vetor) followed by four 32-bit stores. Hene, Stakes six instrutions to perform a 128-bit store from an AltiVe register. Smallerpreision stores an be implemented using fewer instrutions beause we an repliatethe value throughout the register in one instrution, then let the following elementstore selet the orret �eld. Comparing these operations to a general register store,it takes up to six times as many instrutions to store an objet whih resides in anAltiVe register.The situation is made worse when a 128-bit objet is aessed beause the twohalves of the objet must be swapped to plae the low end of the data at the low endof the vetor register. Thus, loads take up to �ve operations and stores up to seven.

- 232 -Loads and stores of vetor elements are even more omplex when the element isindexed by a value in an AltiVe register. This is beause AltiVe expets all theparts of an address to be in the general registers, but does not provide a means ofdiretly moving parts whih reside in a vetor register to them. Thus, these partsmust be stored to memory, then loaded into the general registers before they an beused as part of an address in a memory operation.While one may argue that all addressing data should be generated in the general-purpose integer registers, we will dismiss this argument beause any integer valueshould be usable as a vetor index, regardless of whih register set it is generated in.In my opinion, the failure to support addressing modes whih use vetor registers, orto provide instrutions whih allow vetor data to be moved diretly to the general-purpose registers, is a signi�ant aw in the AltiVe instrution set. However, the Sompiler should do a better job of alleviating this problem by aggressively ombiningvetor element memory operations.Another problem enountered exists beause the S ompiler was originally writ-ten to target only Intel-based arhitetures. These allow up to two registers to benamed in eah instrution. S has not yet been fully onverted to support the three-and four-address ode that AltiVe allows. Thus, urrent S-generated C output istwo-address ode. Extra instrutions are used to save register values whih would beoverwritten in two-address ode but need not be in three-address ode. This makesthe S-generated AltiVe ode both longer and slower than is neessary.Despite these problems, these tests show that SWARC ode operating on non-standard integer data types an be ported to a PowerPC G4 target using its standardinteger instrutions or AltiVe-enhaned instrution set. It also shows that this odean ahieve signi�ant speedup in either ase.

- 233 -5.3.2 Analysis of Results on MMX TargetS-generated MMX ode did not ahieved speedup in any of the tests performedon a Pentium 4 target. The speedup obtained over measured trials was between ap-proximately 0.4x and 0.8x. These results are summarized in table G.2 in appendix Gfor 2-bit S-generated MMX ode, 2-bit S-generated C-only ode using the target's32-bit general-purpose integer registers, GCC-generated C ode using 32-bit integerdata, and GCC-generated C ode using 8-bit harater data.The best-ase S ode was generated without using the MMX registers, withS running at optimization level 0, and with S only performing bak-end peepholeoptimizations. Thus, we might assume that the overhead of using the MMX-enhanedhardware was greater than the gains made. However, an inspetion of the generated Code reveals that the MMX-based C ode is hindered by the relatively small numberof enhaned registers available. S's spill ode is admittedly horrendous, so there is ahigh penalty for spills. This is the primary reason for the relatively poor performaneof the MMX ode.The worst-ase S ode performed better than the worst-ase GCC ode. Hene,the range of performane of S-generated ode falls within that of the GCC-generatedode. Thus, the hoie of data preisions and ompiler swithes has more e�et thanthe hoie between the S and GCC ompilers.Corret operation of the S-generated MMX ode was assumed to be veri�ed byomparing the results with the GCC-generated C versions and �nding no di�erenein the alulated totals. Note that there is no di�erene in the results of the S-generated non-MMX ode and the GCC-generated ode.These tests show that SWARC ode operating on non-standard integer data typesan be ported to a Pentium 4 target using its integer instrution set or MMX exten-sions, and that the range of performane of this ode is similar to that of GCC-generated ode from a C soure.

- 234 -5.3.3 Analysis of Results on 3DNow! TargetThe S-generated 3DNow! ode also ahieved speedup when run on the K6-2target. Again, this was signi�antly less than the theoretial maximum of 64/2 or32x over serial 32-bit integer or 8-bit harater ode, but was more than either theAltiVe-based ode on the PowerPC target or the MMX ode on the Pentium 4 target.The obtained speedup for the S-generated ode ranged from approximately 3.9xto 5.1x. The results are summarized in table G.3 in appendix G for 2-bit S-generated 3DNow! ode, 2-bit S-generated C-only ode using the target's 32-bitgeneral-purpose registers, GCC-generated C ode using 32-bit integers, and GCC-generated C ode using 8-bit haraters.As with the MMX target, orret operation of the S-generated 3DNow! ode wasassumed to be veri�ed by omparing the results with the GCC-generated C versionsand �nding no di�erene in the alulated totals.The 3DNow! ode su�ers from the same problems as the MMX ode in relation toregister spills. Interestingly though, the 3DNow! trials all obtained speedup over thebest GCC-generated C ode. This is a signi�ant di�erene in two relatively similararhitetures. The reason for this needs to be studied, but may inlude the use of3DNow!'s femms instrution whih is intended to be a faster version of the MMX emmsinstrution, or an arhitetural issue suh as the number of available pipelines for thegiven ode sequene or the design of the memory hierarhy. It may also be due todi�erenes in the GCC-generated C ode for the di�erent targets.These tests show that SWARC ode operating on non-standard integer data typesan be ported to a K6-2 target using its standard integer instrution set or its3DNow! extensions. It also shows that this ode an ahieve signi�ant speedupin either ase.

- 235 -5.3.4 Analysis of Results on IA32 TargetWhen run on the unenhaned Pentium target, S-generated IA32 ode ahievedspeedup in only one ase, but not by a signi�ant amount over the best GCC-generated C ode. In the majority of ases, the S-generated ode was atuallyslower. This is to be expeted beause the arhiteture does not provide any formof SWAR instrutions other than the basi polymorphis (bitwise logial operations).However, this isn't the point of porting this ode to an unenhaned 32-bit arhite-ture. The important point proven here is that the SWARC ode an be ported to anunenhaned arhiteture without modi�ation.The speedup for S-generated ode ranged from approximately 0.42x to 1.03x. Itis worth noting that the GCC-generated ode ahieved speedups ranging from 0.28x to1.00x. Thus, the hoie of ompiler swithes appears to a�et the performane morethan the hoie between S and GCC. The results are summarized in table G.4 inappendix G for 2-bit S-generated C-only ode using 32-bit integer fragments in thegeneral registers, GCC-generated C ode using 32-bit integers, and GCC-generatedC ode using 8-bit haraters.Corret operation of the S-generated C ode was again veri�ed by omparing theresults with the GCC-generated C versions and �nding no di�erene in the alulatedtotals.These tests show that SWARC ode operating on non-standard integer data typesan be ported to an unenhaned IA32 target using its general registers and integerinstrution set. It also shows that this ode an ahieve performane similar to thatof standard C ode.5.4 A Floating-Point Benhmark | LinpakAs a benhmark for oating-point performane, a version of the Linpak benh-mark used for ranking a wide range of mahines for the Top 500 Superomputers

- 236 -list [189℄ was modi�ed using S-generated ode. This was run on several systemsand ompared with the standard C version for single-preision data.In one test using a 400MHz AMD K6-2 platform [5℄, the standard C versionahieved 54 Mops. The modi�ed version inluded a few lines of the ore DAXPY,DDOT, and DSCAL loops whih were rewritten using hand-inlined S-generate3DNow! ode. Using this ode, the performane inreased to approximately 90 Mops.While a signi�ant improvement, performane was hindered by the S sheduler'sonservative estimations of load ost whih was previously disussed. A hand-tunedversion of the S-generated 3DNow! ode shedule ahieved more than 220 Mops.In more reent testing, a C version of Linpak was modi�ed to onditionally allSWARC ode ompiled by S for the DAXPY, DDOT, and DSCAL loops. This wasonstruted as two soures: one in SWARC, the other in C whih were ompiled andombined by the S ompiler (no hand oding). The SWARC soure is presentedin appendix H. This was ompiled for various �xed subvetor lengths and maximumoptimization times. Results of the trial runs for this set of tests are also presented inappendix H.These tests were onduted on a 1GHz AMD Athlon-based system, with and with-out using 3DNow!, and on a 500MHz PowerPC G4-based system, with and withoutusing AltiVe. Signi�ant improvement of between 51.9% and 105% was ahievedfor the 3DNow! target, taking performane from the 250{270 Mops range to the407{616 Mops range. Performane on the AltiVe target was, however, disappoint-ing. It never reahed the level of the orresponding C ode ompiled by the nativeC ompiler. In fat, there was between a 7.6% and 8.9% derease in performanefrom around 176 Mops to between 160 and 167 Mops for the best S-generatedode. The worst S-generated ode was near 50 Mops | around a 70% derease.This degradation is most likely due to the poor handling of memory aesses bothby the AltiVe target and by the S ompiler as disussed in the setion on the dnabenhmark (setion 5.3).

- 237 -This benhmark showed that the SWAR model ould be applied to standardhigh-performane omputing algorithms, that the SWARC language ould be used todesribe portable ode modules for operating on single-preision oating-point data,and that these modules ould be translated by the S ompiler into 3DNow!- orAltiVe-based parallel oating-point ode. It also shows that the S-generated odean ahieve signi�ant speedup over GCC-generated ode for the 3DNow! target. Italso highlights the weaknesses of the AltiVe target and the urrent S ompiler withregards to the handling of memory aesses.

- 238 -

- 239 -
6. CONCLUSIONIn this thesis, a new, abstrat model of parallel omputation was developed whihbetter reets the apabilities and limitations of modern SWAR (SIMD Within ARegister) arhitetures than did previously-de�ned omputational models.A summary of the support provided by various multimedia extension sets forgeneral-purpose SWAR proessing was ompiled (setion 2) and presented as a set oftables desribing the type of SWAR operations supported by eah of these families(setion 2.1 and appendix C) with an aompanying analysis of their apabilities(setion 2.2).These apabilities were shown to vary signi�antly, with some extensions o�er-ing little support for SWAR proessing, having only a few SIMD instrutions, whileothers o�ered signi�antly better support with larger, more omplete repertoires.Commonly-supported operations were identi�ed, and the suitability of the varioustypes of operations whih these extensions perform was onsidered in terms of inlu-sion in a general-purpose SWAR programming model.This work formed a basis for the design of the new, general-purpose SWAR pro-gramming model developed in this researh (setion 3.3) and hereby plaed in thepubli domain. This programming model allows general-purpose appliations pro-grammers to exploit vetor SIMD parallelism when targeting SWAR-apable om-modity o�-the-shelf (COTS) proessors in a portable, target-independent manner.This model more losely reets the apabilities and limitations of urrent SWARproessors than did previously-de�ned models by allowing for ommonly-supportedoperations suh as saturation addition while disouraging esoteri operations suh asfull permutations and less eÆient operations suh as omplex ommuniations andmulti-dimensional array operations.

- 240 -A list of properties that a well-designed, full-sale, high-level language for SWARshould exhibit (setion 3.4) was enumerated. This formed the basis for the devel-opment of prototype implementations of the model. These guidelines an also beused by others who wish to develop languages based on the general-purpose SWARproessing model.Prototype implementations of the SWAR model were developed and presentedinluding various libraries (setion 4.1) and the SWARC modular programming lan-guage (setion 4.2) whih provides a portable, target-independent language for ex-pressing data parallel appliations in terms of vetor proessing. These implementa-tions show that the SWAR programming model is viable and an be implemented invarious forms.The S ompiler for the SWARC language (setion 4.3) was enhaned through thedevelopment of various tehniques for emulating unsupported operations, for exploit-ing the advaned features of various targets, and for optimizing SWAR-based targetode. These advanements allow ode to be generated for a variety of multimedia-enhaned arhitetures and even unenhaned proessors. The urrent version of theS ompiler is hereby plaed in the publi domain.Various metris were also developed and applied to evaluate the portability, om-pleteness, and performane of the SWARC language and S ompiler. These tookthe form of SWARC programs and inlude:1. A validation program to thoroughly test the orretness of S-generated odefor the majority of binary operations allowed in SWARC. This is limited topower-of-two data preisions through 32-bits, but inludes both signed and un-signed and both modular and saturated data types.2. A program to test the portability and performane of ode whih operates onnon-standard preision integer data.

- 241 -3. A version of the standard Linpak benhmark to test the single-preision oating-point performane of S-generated ode on various platforms whih supportoating-point SWAR operations.4. Various other programs developed by me or by others.These metris show that the SWAR model is viable as exhibited by its implemen-tation as the SWARC vetor proessing language. Spei�ally, they show that:1. The SWARC language allows general-purpose integer and oating-point vetorappliations to be desribed in a onsistent, natural, and portable manner.2. SWARC appliations may use standard preision oating-point data or integerdata of standard or non-standard preisions, inluding those whih are notsupported diretly by the target arhiteture.3. SWARC appliations an inlude sienti� and high-performane algorithms aswell as multimedia algorithms.4. SWARC ode an be, and has been, ported to various multimedia-enhanedand unenhaned arhitetures.These metris also show that the S optimizing ompiler for the SWARC languageis viable and apable of generating highly eÆient ode, although it has been foundto be laking in ertain respets. Spei�ally, these metris show that:1. The S ompiler an generate output whih exploits the multimedia enhane-ments of various targets to ahieve performane gains.2. The S ompiler an generate standard C ode output whih an be ported tovarious unenhaned proessors.3. Signi�ant speedup an be ahieved for integer and oating-point appliations.

- 242 -4. Signi�ant speedup an be ahieved, or signi�ant degradation avoided, for ap-pliations whih require the emulation of operations on non-standard preisioninteger data.5. The S ompiler's interation with the underlying C ompiler has impliationsin regards to the layout of data in memory whih an have a signi�ant negativeimpat on performane.6. The �xed-vetor size required by the S ompiler is a liability, albeit one thatan be easily addressed using known tehniques.7. The fragmentation of large vetors, as opposed to strip-mining them, an havea signi�ant e�et on the size of ode and an negatively impat the ompiler'sability to generate eÆient ode.In summary, the general-purpose SWAR proessing model developed in this thesisis a new, abstrat model of parallel omputation whih better reets the apabilitiesand limitations of modern SWAR arhitetures than did previously-de�ned ompu-tational models and allows programmers to exploit the apabilities of urrent SWARarhitetures in a portable and onsistent manner.6.1 Future ResearhThis work provides a starting point for future researh and the development ofpratial programming languages for SWAR proessing. Future researh may inlude:1. Extension of the model to array-based SWAR arhitetures when they beomeommonplae. Current ommodity SWAR proessors are primarily based onone-dimensional vetor parallel arhitetures. Future COTS proessors willlikely be based on multi-dimensional array parallel arhitetures. This willrequire onsideration of ertain aspets of SIMD proessing whih have beensafely ignored in the urrent work.

- 243 -2. Re�nement of the SWARC language as SWAR arhitetures evolve. The set ofoperations whih a typial multimedia enhaned arhiteture supports an beexpeted to grow as this paradigm matures and new arhitetures are developed.Certain operations will beome more ommon while others will be orphaned.3. Continued development of new emulation tehniques for unsupported SWARoperations. Portability depends greatly on the ability to emulate operationswhih are unsupported by the target arhiteture. Further researh will beneessary to inrease the range of viable targets and the repertoire of viableoperations.4. Development of new languages based on the general-purpose SWAR model.These may inlude appliation-spei� languages or languages whih denoteparallel data or operations in a manner whih di�ers from urrent SWAR lan-guages.

- 244 -
LIST OF REFERENCES[1℄ M. J. Flynn. Very high-speed omputing systems. Proeedings of the IEEE,54(12):1901{1909, Deember 1966.[2℄ Bowen Alpern, Larry Carter, and Kang Su Gatlin. Miroparallelism andhigh-performane protein mathing. In Proeedings of Superomputing '95,pages 536{551, San Diego, California, November 1995.[3℄ Hank Dietz. Tehnial summary: SWAR tehnology. Tehnial report, Shoolof Eletrial and Computer Engineering, Purdue University, February 1997.http://dynamo.en.purdue.edu/~hankd/SWAR/over.html.[4℄ Randall Fisher. General-purpose SIMD Within A Register: Parallelproessing on onsumer miroproessors. Tehnial report, Shool of Eletrialand Computer Engineering, Purdue University, Ph.D. Thesis Proposal,November 1997.[5℄ Randall J. Fisher and Henry G. Dietz. The S Compiler: SWARing at MMXand 3DNow! In Larry Carter and Jeanne Ferrante, editors, Proeedings of the12th International Workshop on Languages and Compilers for ParallelComputing, La Jolla, California, August 1999. Springer-Verlag.[6℄ Mark Rihard Spieth. Single Proessor Multiple Data Parallel Proessing.PhD thesis, Royal Melbourne Institute of Tehnology, Melbourne, Australia,Date unknown.[7℄ Intel Corporation. MMX tehnology tools providers: Intel orporation.Tehnial report, Intel Corporation,http://developer.intel.om/design/perftool/vtune/, Marh 1997.[8℄ Intel Corporation. MMX tehnology tools providers: NuMega tehnologies.Tehnial report, Intel Corporation,http://developer.intel.om/drg/tools/numega.ht, Marh 1997.[9℄ Intel Corporation. MMX tehnology tools providers: Intel orporation.Tehnial report, Intel Corporation,http://developer.intel.om/design/perftool/peribst/spl/, April 1997.[10℄ Intel Corporation. Intel Image Proessing Library. Tehnial report, IntelCorporation, http://developer.intel.om/design/perftool/peribst/ipl/, May1997.[11℄ Intel Corporation. MMX tehnology tools providers: Intel orporation.Tehnial report, Intel Corporation, April 1997.http://developer.intel.om/design/perftool/peribst/rpl/.[12℄ Intel Corporation. MMX(TM) Tehnology Tools Providers: IBM Corporation.Tehnial report, Intel Corporation,http://developer.intel.om/drg/tools/ibm.htm, Marh 1997.

- 245 -[13℄ Apple Computer, In. Frequently asked questions: Apple veloity engine.Tehnial report, Apple Computer, In., 2001.http://www.apple.om/siteh/physialsiene/VE102501.pdf.[14℄ Sun Mirosystems, In. mediaLib, Sun Miroeletronis. Tehnial report,Sun Mirosystems Corporation,http://www.sun.om/spar/vis/mediaLib.html, Marh 1997.[15℄ Sun Mirosystems, In. mediaLib Objet Code Liense. Tehnial report, SunMirosystems Corporation, http://www.sun.om/spar/vis/download/mlib/,Marh 1997.[16℄ Iain Niholson. libSIMD { the Single Instrution Multiple Data Library.Tehnial report, Hosted by SoureFORGE.net, February 2000.http://libsimd.soureforge.net.[17℄ Intel Corporation. Intel Fortran Compiler for Windows. Tehnial report,Intel Corporation,http://www.intel.om/software/produts/ompilers/f60/fwindows.htm, April2002.[18℄ Intel Corporation. Intel C++ Compiler for Windows. Tehnial report, IntelCorporation,http://www.intel.om/software/produts/ompilers/60/windows.htm, April2002.[19℄ Intel Corporation. MMX tehnology tools providers: Mirosoft orporation.Tehnial report, Intel Corporation,http://developer.intel.om/drg/tools/ms v.htm, April 1997.[20℄ Metrowerks, In. Optimizing ode for AMD-K6. Tehnial report,Metrowerks, In., Otober 1998.http://www.metrowerks.om/pdf/Optimizing Code for AMD K6.pdf.[21℄ Metrowerks, In. Support for AMD's 3DNow! tehnology. Tehnial report,Metrowerks, In., 2002.http://www.metrowerks.om/desktop/windows/amd/.[22℄ Metrowerks, In. CodeWarrior for Ma OS, Profession Edition 8.0 features.Tehnial report, Metrowerks, In., 2002.http://www.metrowerks.om/produts/maos/?features.[23℄ Q Software Solutions, GmbH. Q Software Solutions. Tehnial report, QSoftware Solutions, 1999.http://www.q-software-solutions.om/lwin32/index.shtml.[24℄ Christopher W. Fraser and David R. Hansen. A Retargetable C Compiler:Design and Implementation. Addison-Wesley Publishing Company, RedwoodCity, California, 1995.[25℄ odeplay, Ltd. Codeplay: Vetor overview. Tehnial report, odeplay, Ltd.,2002. http://www.odeplay.om/vetor/index.html.[26℄ Green Hills Software, In. Embedded software development tools { powerpfamily. Tehnial report, Green Hills Software, In., 2002.http://www.ghs.om/produts/PowerPC development.html.

- 246 -[27℄ Sun Mirosystems, In. 3/29/96 - sun launhes the VIS software developer'skit. Tehnial report, Sun Mirosystems Corporation,http://www.sun.om/smi/Press/sunash/9603/sunash.960329.5709.html,Marh 1996.[28℄ Sun Mirosystems, In. VSDK Liense. Tehnial report, Sun MirosystemsCorporation, http://www.sun.om/spar/vis/download/vsdk/, April 1997.[29℄ Ruby B. Lee and Mihael D. Smith. Media proessing: A new design target.IEEE Miro, 16(4):6{9, August 1996. Guest Editors' Introdution to SpeialIssue on Media Proessing.[30℄ Free Pasal Web Team. Free Pasal - home page. Tehnial report, FreePasal Organization, November 1997. http://www.freepasal.org.[31℄ Mihael Van Canneyt and Florian Klamp. Free Pasal supplied units:Referene guide. Tehnial report, Free Pasal Organization, Deember 1998.http://rs1.szif.hu/~marton/fp/units.[32℄ Oxford Miro Devies, In. New method for programming Intel multimediaextensions (MMX). Tehnial report, Oxford Miro Devies, In., 1996.http://oxfordmirodevies.om/pr040396.html.[33℄ Rihard M. Stallman. Using and Porting GNU CC. Free SoftwareFoundation, In., Boston, Massahusetts, June 1996. ISBN 1-882114-66-3.[34℄ Joe Wolf. Advaned optimization with the Intel C/C++ ompiler. Tehnialreport, Intel Corporation, 1999. Formerly athttp://developer.intel.om/vtune/newsletr/opts.htm.[35℄ odeplay, Ltd. Codeplay: Vetor vetorization. Tehnial report, odeplay,Ltd., 2002. http://www.odeplay.om/vetor/feat ve.html.[36℄ The Portland Group, In. The portland group { PGF77 Workstation.Tehnial report, The Portland Group, In., 2000.http://www.pgroup.om/prodworkpgf77.htm.[37℄ Doug Miles. PGI Workstation, parallel F90/C/C++ ompilers and tools forIntel proessor-based workstations, servers and lusters. Tehnial report, ThePortland Group, In., 2000.www.ahp.unm.edu/projets/vista-azul/ACTC April 00/pgi.pdf.[38℄ Veridian Systems. Vast/parallel { Fortran and C automati parallelizingpreproessors. Tehnial report, Veridian Systems, January 2002.http://www.psrv.om/vast parallel.html.[39℄ Robert N. Braswell and Malolm S. Keeh. An evaluation of Vetor Fortran200 generated by Cyber 205 and ETA-10 pre-ompilation tools. In Proeedingsof Superomputing '88 [Vol.1℄, pages 106{113, Orlando, Florida, November1988.[40℄ Veridian Systems. VAST-F/AltiVe. Tehnial report, Veridian Systems,September 2001. http://www.psrv.om/altivef.html.

- 247 -[41℄ Veridian Systems. VAST/AltiVe. Tehnial report, Veridian Systems, June2001. http://www.psrv.om/altive.html.[42℄ Absoft Corporation. Pro Fortran for Ma OS 9. Tehnial report, AbsoftCorporation, 2002. http://www.absoft.om/newprodutpage.html.[43℄ Absoft Corporation. Pro Fortran for PPC/Linux. Tehnial report, AbsoftCorporation, 2002. http://www.absoft.om/newppprodutpage.html.[44℄ Derek DeVries and Corinna G. Lee. A vetorizing SUIF ompiler. InProeedings of the First SUIF Compiler Workshop, pages 59{67, January1996. http://www.eeg.toronto.edu/~devrier/done.ps.[45℄ R. Wilson et al. SUIF: An infrastruture for researh on parallelizing andoptimizing ompilers. In Proeedings of the ACM SIGPLAN Conferene onProgramming Language Design and Implementation, volume 29, pages 31{37.ACM, 1994. http://suif.stanford.edu/suif/suif.html.[46℄ Krste Asanovi. The Torrent Arhiteture Manual. University of California,Berkeley, 1994.[47℄ John Wawrzynek, Krste Asanovi, Brian Kingsbury, James Bek, DavidJohnson, and Nelson Morgan. Spert-II: A vetor miroproessor system.IEEE Computer, 29(3):79{86, Marh 1996.[48℄ Todd Mowry and Antonia Zhai. Salar optimization & ode generationdevelopment at the University of Toronto. In Proeedings of the First SUIFCompiler Workshop, January 1996.http://www-suif.stanford.edu/suifonf/suifonf1/papers/paper22.ps.[49℄ Derek DeVries. A vetorizing SUIF ompiler: Implementation andperformane. Master's thesis, University of Toronto, June 1997.http://www.eeg.toronto.edu/~devrier/paper.ps.[50℄ Massahusetts Institute of Tehnology. Superword level parallelism. Tehnialreport, Massahusetts Institute of Tehnology, 2000.http://www.ag.ls.mit.edu/slp/.[51℄ Samuel Larsen and Saman Amarasinghe. Exploiting superword levelparallelism with multimedia instrution sets. Tehnial report, MassahusettsInstitute of Tehnology Laboratory for Computer Siene, MIT/LCSTehnial Memo LCS-TM-601, November 1999.[52℄ Samuel Larsen. Exploiting superword level parallelism with multimediainstrution sets. Master's thesis, Massahusetts Institute of Tehnology, May2000.[53℄ Samuel Larsen and Saman Amarasinghe. Exploiting superword levelparallelism with multimedia instrution sets. In Proeedings of the SIGPLAN'00 Conferene on Programming Language Design and Implementation,Vanouver, British Columbia, June 2000.[54℄ Rainer Leupers. Code seletion for media proessors with SIMD instrutions.In Proeedings of the Design, Automation and Test in Europe Conferene(DATE 2000), Paris, Frane, Marh 2000. www.sigda.am.org/Arhives/-ProeedingArhives/Date/Date2000/papers/2000/date00/pdÆles/01a 1.pdf.

- 248 -[55℄ Rainer Leupers and Steven Bashford. Graph-based ode seletion tehniquesfor embedded proessors. ACM Transations on Design Automation ofEletroni Systems, 5(4):1901{1909, Otober 2000.http://ls12-www.s.uni-dortmund.de/publiations/papers/2000-todaes.ps.gz.[56℄ Paul Cokshott. Vetor Pasal. Tehnial report, Department of ComputerSiene, University of Glasgow, Semptember 2001.http://www.faraday.gla.a.uk/papers/vp-msp3.pdf.[57℄ Paul Cokshott. Diret ompilation of high level languages for multi-mediainstrution-sets. Tehnial report, Department of Computer Siene,University of Glasgow, November 2000.http://www.ds.gla.a.uk/~wp/reports/ilg/mmxomp.pdf.[58℄ Mike Kelley and Matt Posti�. Survey and implementation of limited SIMDinstrution set arhiteture extensions. Tehnial report, University ofMihigan, Ann Arbor, Mihigan, Deember 1996.http://www.ees.umih.edu/~posti�m/papers/598report.ps.[59℄ Pradeep K. Dubey. Arhitetural alternatives for mediaproessing. Tehnialreport, International Business Mahines, July 1997.http://www.researh.ibm.om/people/p/pradeep.[60℄ Compaq Computer Corporation. Alpha Arhiteture Handbook, Version 4.Digital Equipment Corporation, Otober 1998.http://ftp.digital.om/pub/Digital/info/semiondutor/literature/%-alphaahb.pdf.[61℄ Ruby B. Lee. Aelerating multimedia with enhaned miroproessors. IEEEMiro, 15(2):22{32, April 1995.[62℄ Ruby Lee and Jerry Huk. 64-bit and multimedia extensions for the PA-RISC2.0 arhiteture. In Proeedings of Compon '96, Tehnologies for theInformation Superhighway, Digest of Papers, pages 152{160, Los Alamitos,California, 1996. IEEE Computer Soiety Press.[63℄ Ruby B. Lee. Subword parallelism with MAX-2. IEEE Miro, 16(4):51{59,August 1996.[64℄ Silion Graphis, In. MIPS V instrution set. Formerly available via WWW,1996.[65℄ Silion Graphis, In. MIPS digital media extension. Formerly available viaWWW, 1996.[66℄ MIPS Tehnologies, In. MIPS Extension for Digital Media with 3D. MIPSTehnologies, In., Marh 1997. Formerly athttp://www.mips.om/Doumentation/isa5 teh brf.pdf.[67℄ Sam Fuller. Motorola's AltiVe tehnology. Tehnial report, Motorola, In.,Austin, California, 1998. http://www.mot.om/SPS/PowerPC/teksupport/-teklibrary/papers/altive wp.pdf.

- 249 -[68℄ Motorola, In. AltiVe Tehnology Programming Environments Manual, Rev.1.0. Motorola, In., Denver, Colorado, February 2001. http://e-www.motorola.om/brdata/PDFDB/MICROPROCESSORS/32 BIT/-POWERPC/ALTIVEC/ALTIVECPEM.pdf.[69℄ Sun Mirosystems, In. Ultraspar the visual instrution set (VIS): On hipsupport for new-media proessing. Tehnial report, Sun MirosystemsCorporation, http://www.sun.om/spar/whitepapers/wp95-022/, 1996.[70℄ L. Kohn, G. Maturana, M. Tremblay, A. Prabhu, and G. Zyner. The VisualInstrution Set (VIS) in UltraSPARC. In Proeedings of Compon '95,Tehnologies for the Information Superhighway, Digest of Papers, pages462{469, San Franiso, Marh 1995. IEEE Computer Soiety Press.[71℄ Intel Corporation. MMX tehnology overview. Tehnial report, IntelCorporation, February 1997. Formerly athttp://developer.intel.om/drg/mmx/.[72℄ Intel Corporation. Intel arhiteture MMX tehnology: Programmer'sreferene manual. Tehnial report, Intel Corporation,http://developer.intel.om/drg/mmx/Manuals/prm/prm ovr.htm, Marh1996.[73℄ Advaned Miro Devies, In. AMD-K6 Proessor Multimedia Extensions,Rev. D. Advaned Miro Devies, In., Sunnyvale, California, January 2000.http://www.amd.om/K6/k6dos/pdf/20726.pdf.[74℄ Cyrix Corporation. Multimedia instrution set extensions for asixth-generation x86 proessor. Tehnial report, Cyrix Corporation, August1996. ftp://ftp.yrix.om/developr/h-mmx4.pdf.[75℄ Advaned Miro Devies, In. 3DNow! Tehnology Manual, Rev. G. AdvanedMiro Devies, In., Sunnyvale, California, Marh 2000.http://www.amd.om/K6/k6dos/pdf/21928.pdf.[76℄ Advaned Miro Devies, In. AMD Extensions to the 3DNow! and MMXInstrution Sets Manual, Rev. D. Advaned Miro Devies, In., Sunnyvale,California, Marh 2000.http://www.amd.om/produts/pg/athlon/tehdos/pdf/22466.pdf.[77℄ Cyrix Corporation. Appliation Note 108: Cyrix Extended MMX InstrutionSet. Cyrix Corporation.[78℄ Intel Corporation. IA-32 Intel Arhiteture Software Developer's Manual: Vol.1 Basi Arhiteture. Intel Corporation, 2001.http://developer.intel.om/design/pentium4/manuals/245470.htm.[79℄ Paul Rubinfeld, Bob Rose, and Mihael MCallig. Motion Video Instrutionextensions for Alpha. Tehnial report, Digital Equipment Corporation,http://www.digital.om/alphaoem/papers/pmvi.pdf, Otober 1996.[80℄ P. Knebel, B. Arnold, M. Bass, W. Kever, J. D. Lamb, R. B. Lee, P. L. Perez,S. Undy, and W. Walker. HP's PA7100LC: A low-ost supersalar PA-RISCproessor. In Proeedings of Compon Spring '93, Digest of Papers, pages441{447. IEEE Computer Soiety Press, 1993.

- 250 -[81℄ Ruby Lee and Jerry Huk. HPTehnial omputing - 64-bit and multimediaextensions in the PA-RISC 2.0 arhiteture. Tehnial report,Hewlett-Pakard Company, June 1996. http://www.hp.om/ahp/framed/-tehnology/miropro/arhiteture/dos/pa2go3.html.[82℄ Gerry Kane. PA-RISC 2.0 Arhiteture. Prentie-Hall, In., Upper SaddleRiver, New Jersey 07458, 1996.[83℄ D. Hunt. Advaned performane features of the 64-bit PA-8000. InProeedings of Compon '95, Tehnologies for the Information Superhighway,Digest of Papers, pages 123{128. IEEE Computer Soiety Press, Marh 1995.[84℄ Ashok Kumar. The HP PA-8000 RISC CPU. IEEE Miro, 17(2):27{32, April1997.[85℄ In. MIPS Tehnologies. Silion graphis previews new high-performaneMIPS miroproessor roadmap. Tehnial report, MIPS Tehnologies, In.,May 1997. http://www.mips.om/pressReleases/051297A.html.[86℄ In. MIPS Tehnologies. Silion graphis introdues enhaned MIPSarhiteture to lead the interative digital revolution. Tehnial report, MIPSTehnologies, In., Otober 1996.http://www.mips.om/pressReleases/100196B.html.[87℄ In. MIPS Tehnologies. MIPS64 arhiteture produt brief, 1999.http://www.mips.om/produts/s2p2.html.[88℄ In. MIPS Tehnologies. MIPS-3D graphis extension, 2000.http://www.mips.om/produts/s2p13.html.[89℄ Motorola Semiondutor Produts Setor. MPC7400 RISC MiroproessorTehnial Summary. Motorola, In., Denver, Colorado, August 1999.http:e-www.motorola.om/brdata/PDFDB/dos/MPC7400TS.pdf.[90℄ Sun Mirosystems, In. UltraSPARC User's Manual. Sun Mirosystems, In.,Palo Alto, California, July 1997. Formerly athttp://www.sun.om/miroeletronis/manuals/ultraspar/802-7220-02.pdf.[91℄ G. Goldman and P. Tirumalai. UltraSpar-II: The advanement ofUltraComputing. In Proeedings of Compon '96, Tehnologies for theInformation Superhighway, Digest of Papers, pages 417{423, Los Alamitos,California, February 1996. IEEE Computer Soiety Press.[92℄ In. Sun Mirosystems. An overview of the UltraSPARC III Cu proessor.Tehnial report, Sun Mirosystems, In., June 2002.http://www.sun.om/proessors/UltraSPARC-III/USIIICuoverview.pdf.[93℄ Alex Peleg and Uri Weiser. MMX tehnology extension to the Intelarhiteture. IEEE Miro, 16(4):42{50, August 1996.[94℄ Rise Tehnology Company. Welome - Rise Tehnology Homepage. Tehnialreport, Rise Tehnology Company, http://www.rise.om, May 2000.[95℄ Intel Corporation. IA-32 Intel Arhiteture Software Developer's Manual: Vol.2 Instrution Set Referene. Intel Corporation, 2001.http://developer.intel.om/design/pentium4/manuals/245471.htm.

- 251 -[96℄ Intel Corporation. Willamette Proessor Software Developer's Guide. IntelCorporation, February 2000.http://developer.intel.om/design/proessor/index.htm.[97℄ Advaned Miro Devies, In. AMD Athlon Proessor Model 4 Data Sheet,Rev. I. Advaned Miro Devies, In., Sunnyvale, California, June 2001.http://www.amd.om/produts/pg/athlon/tehdos/pdf/23792.pdf.[98℄ Rhett Dillingham. The new AMD Athlon proessor | enhaning the world'smost powerful x86 miroproessor. Tehnial report, Advaned Miro Devies,In., Sunnyvale, California, May 2001.http://www.amd.om/produts/pg/mobile/athlon/newathlonwhitepaper.pdf.[99℄ Jak Huynh. The AMD Athlon XP Proessor. Advaned Miro Devies, In.,Sunnyvale, California, June 2002.http://www.amd.om/us-en/assets/ontent type/-white papers and teh dos/26485A Athlon XP white paper.pdf.[100℄ Cyrix Corporation. Cyrix CPU Detetion Guide, Preliminary Revision 1.01.Cyrix Corporation, 1997.[101℄ In. VIA Tehnologies. VIA Cyrix MII proessor. Tehnial report, VIATehnologies, In., 2002. http://www.viateh.om/en/via3/yrix MII.jsp.[102℄ VIA Tehnologies, In. VIA C3 Proessor Datasheet. VIA Tehnologies, In.,January 2002. http://www.viateh.om/en/via3/-VIA%20C3%20Samuel%201%20datasheet%[103℄ VIA Tehnologies, In. VIA Cyrix III Datasheet. VIA Tehnologies, In.,2000. http://www.yrix.om/viayrixIIIdatasheet 1 2.pdf.[104℄ Motorola, In. AltiVe Tehnology Programming Environments Manual, Rev.0.1. Motorola, In., Denver, Colorado, November 1998.http://www.mot.om/SPS/PowerPC/teksupport/teklibrary/manuals/-altive pem.pdf.[105℄ Intel Corporation. IA-32 Intel Arhiteture Software Developer's Manual: Vol.3 System Programming Guide. Intel Corporation, 2001.http://developer.intel.om/design/pentium4/manuals/245472.htm.[106℄ Randall J. Fisher and Henry G. Dietz. Compiling for SIMD Within ARegister. In S. Chatterjee, J. F. Prins, L. Carter, J. Ferrante, Z. Li, D. Sehr,and P.-C.Yew, editors, Proeedings of the 11th International Workshop onLanguages and Compilers for Parallel Computing, Chapel Hill, NorthCarolina, August 1998. Springer-Verlag.[107℄ MasPar Computer Corporation. MasPar Programming Language (ANSI Compatible MPL) Referene Manual, Software Version 2.2. MasPar ComputerCorporation, Sunnyvale, California, November 1991. Doument Part Number9302-0001.[108℄ Craig Hansen. Arhiteture of a Broadband Mediaproessor. In Proeedings ofCompon '96, Tehnologies for the Information Superhighway, Digest ofPapers, pages 334{340, February 1996.http://www.mirounity.om/www/broadband/library/Arhiteture.pdf.

- 252 -[109℄ Analog Devies, In. ADSP-21160 SHARC DSP Hardware Referene. AnalogDevies, In., Norwood, Massahusetts, 01062-9106, 2nd edition, Marh 2002.http://www.analog.om/library/dspManuals/21160 HR.html.[110℄ Analog Devies, In. ADSP-21161 SHARC DSP Hardware Referene. AnalogDevies, In., Norwood, Massahusetts, 01062-9106, May 2002.http://www.analog.om/library/dspManuals/pdf/Hardware/21161 ed3.zip.[111℄ Analog Devies, In. TigerSHARC DSP Hardware Spei�ation PartADSP-TS101S. Analog Devies, In., Norwood, Massahusetts, 01062-9106,Marh 2002. http://www.analog.om/library/dspManuals/pdf/-tsdsp hardware/ts hw sp 1 0 2.zip.[112℄ Cindy Wang. Broadband signal proessor suits multimedia appliations. InInternational IC | China, Conferene Proeedings, pages 159{173, Marh2001.[113℄ 3DSP Corporation. UniPHY | Universal Physial Layer Signal Proessor.3DSP Corporation, 2002. http://www.3dsp.om/uniphy.shtml.[114℄ K. Vissers, J. T. J. van Eijndhoven, G. J. Hekstra, E. J. D. Pol, and A. K.Riemans. TriMedia CPU64, Otober 1999. Presented at speial session at theICCD onferene.[115℄ Inorporated Texas Instruments. TMS320C80 Digital Signal Proessor DataSheet. Texas Instruments, Inorporated, Otober 1997.[116℄ Karl Guttag, Robert J. Grove, and Jerry R. Van Aken. A single-hipmultiproessor for multimedia: The MVP. IEEE Computer Graphis &Appliations, 12(6):53{64, November 1992.[117℄ Daniel L. Slotnik, W. Carl Bork, and Robert C. MReynolds. TheSOLOMON omputer. In Proeedings of the AFIPS Fall Joint ComputerConferene, pages 97{107, Boston, Massahusetts, Deember 1962. AmerianFederation of Information Proessing Soieties, Spartan Books.[118℄ D. L. Slotnik. The oneption and development of parallel proessors { apersonal memoir. Annals of the History of Computing, 4(1):20{30, January1982.[119℄ George H. Barnes, Rihard M. Brown, Maso Kata, David J. Kuk, Daniel L.Slotnik, and Rihard A. Stokes. The ILLIAC IV omputer. IEEETransations on Computers, C-17(8):746{757, August 1968.[120℄ Greg Wison et al. Parallel omputing history, version 2.1. Tehnial report,University of Alberta, Alberta, Canada, May 1993. Submitted toomp.parallel, omp.sys.super, omp.arh, omp.ompilers newsgroups.[121℄ S. F. Reddaway. DAP, a distributive array proessor. In Proeedings of the�rst Annual Symposium on Computer Arhiteture, pages 61{65, 1973.[122℄ Kenneth E. Bather. MPP - a massively parallel proessor. In 1979International Conferene on Parallel Proessing, 1979.

- 253 -[123℄ Robert J. Baron and Lee Higbie. Computer Arhiteture Case Studies.Addison-Wesley Publishing Company, In., Reading, Massahusetts, 1992.[124℄ John Beetem, Monty Denneau, and Don Weingarten. The GF11superomputer. In Proeedings of the 12th Annual International Symposiumon Computer Arhiteture, pages 108{115. IEEE Computer Soiety Press,1985.[125℄ Harold S. Stone. High-Performane Computer Arhiteture. Addison-WesleyPublishing Company, Reading, Massahusetts, 1987.[126℄ George S. Almasi and Allan Gottlieb. Highly Parallel Computing. TheBenjamin/Cummings Publishing Company, In., Redwood City, California,1989.[127℄ V. Benes. Optimal rearrangeable multistage onneting networks. Bell SystemTehnial Journal, 43(4):1641{1656, July 1964.[128℄ W. Daniel Hillis. The Connetion Mahine. MIT Press, Cambridge,Massahusetts, 1985.[129℄ W. Daniel Hillis. The Connetion Mahine. Sienti� Amerian, 256:108{115,June 1987.[130℄ Lewis W. Tuker and George G. Robertson. Arhiteture and appliations ofthe Connetion Mahine. IEEE Computer, 21(8):26{38, August 1988.[131℄ Thinking Mahines Corporation. Connetion Mahine Model CM-2 TehnialSummary, Version 6.0. Thinking Mahines Corporation, Cambridge,Massahusetts, November 1990.[132℄ Tom Blank. The MasPar MP-1 arhiteture. In Proeedings of the 35th IEEEComputer Soiety International Conferene { Spring Compon 90, pages20{24, San Franiso, California, February { Marh 1990. IEEE ComputerSoiety.[133℄ MasPar Computer Corporation. MasPar MP-1 Arhiteture Spei�ation,Rev. A5. MasPar Computer Corporation, Sunnyvale, California, July 1991.Part Number 9300-5001.[134℄ MasPar Computer Corporation. MasPar System Overview, Rev. A5. MasParComputer Corporation, Sunnyvale, California, July 1992. Part Number9300-0100.[135℄ Rihard M. Russell. The CRAY-1 omputer system. Communiations of theACM, 21(1):63{72, January 1978.[136℄ Ronald D. Levine. Superomputers. Sienti� Amerian, 246(1):118{135,January 1982.[137℄ T. Watanabe. Arhiteture and performane of NEC superomputer SXsystem. Parallel Computing, 5:247{255, 1987.[138℄ Rod A. Fatoohi. Vetor performane analysis of the NEC SX-2. InProeedings of the 4th International Conferene on Superomputing, pages389{400. ACM Press, 1990.

- 254 -[139℄ W. J. Watson. The TI ASC | a highly modular and exible super omputerarhiteture. In Proeedings of the AFIPS Fall Joint Computer Conferene,volume 41, pt. 1, pages 221{228, Montvale, New Jersey, 1972. AFIPS Press.[140℄ Daniel P. Siewiorek, C. Gordon Bell, and Allen Newell. Computer Strutures:Priniples and Examples. MGraw-Hill Book Company, New York, New York,1982.[141℄ Roger Espasa, Mateo Valero, and James E. Smith. Vetor arhitetures: Past,present and future. In Proeedings of the 1998 International Conferene onSuperomputing, pages 425{432, Melbourne, Australia, July 1988. ACM.[142℄ K. Shimizu and K. Uhida. System overview of the Fujitsu VP2000. Fujitsu,41(1):3{11, January 1990. In Japanese.[143℄ S. Kawabe et al. Superomputer HITAC S-820 system. Hitahi Hyoron,69(12):7{12, Deember 1987. In Japanese.[144℄ R. G. Hintz and D. P. Tate. Control Data STAR-100 proessor design. InProeedings of the 6th Annual IEEE Computer Soiety InternationalConferene (Compon 72), pages 1{4. IEEE Computer Soiety, September1972.[145℄ Robert E. Morley, Jr. and Thomas J. Sullivan. A massively parallel systoliarray proessor system. In K. Bromley, Sun-Yuan Kung, and E. Swartzlander,editors, Proeedings of the International Conferene on Systoli Arrays. IEEE,May 1988.[146℄ Jed Deame. Parallel proessing solves the DTV format onversion problem. In33rd AMIC, Orlando, Florida, February 1999. SMPTE.[147℄ Randy Shonho�. Video pre-ompression proessing & bit onservation.Tehnial report, Teranex, In., 2000.[148℄ D. W. Blevins, E. W. Davis, R. A. Heaton, and J. H. Reif. BLITZEN, a highlyintegrated massively parallel mahine. In Proeedings of the 2nd Symposiumon the Frontiers of Massively Parallel Computation. IEEE, Otober 1988.[149℄ Dorothy Wedel. Fortran for the Texas Instruments ASC system. ACMSIGPLAN Noties, 10(3):119{132, Marh 1975.[150℄ Burroughs Corporation. Array Proessing System Fortran IV, Change No. 3.Defense, Spae, and Speial Systems Group, Burroughs Corporation, Paoli,Pennsylvania, August 1971.[151℄ K. Stevens. CFD { a FORTRAN-like language for the ILLIAC IV. ACMSIGPLAN Noties, 10(3):72{80, Marh 1975.[152℄ R. Mihael Hord. The ILLIAC IV, The First Superomputer. ComputerSiene Press, In., Rokville, Maryland, 1982.[153℄ R. H. Perrott. A language for array and vetor proessors. ACM Transationson Programming Languages and Systems, 1(2):177{195, Otober 1979.

- 255 -[154℄ Mark D. Guzzi, David A. Padua, Jay P. Hoeinger, and Dunan H. Lawrie.Cedar Fortran and other vetor and parallel Fortran dialets. In Proeedingsof Superomputing '88, pages 114{121, Orlando, Florida, November 1988.[155℄ G. Paul and M. Wilson. An introdution to Vetran and its use in sienti�omputing. In Proeedings of the 1978 LASL Workshop on Vetor andParallel Proessors, pages 176{204, 1978.[156℄ Burroughs Corporation. Burroughs Sienti� Proessor Vetor FortranSpei�ation. Defense, Spae, and Speial Systems Group, BurroughsCorporation, Paoli, Pennsylvania, 1978.[157℄ Information Tehnology Industry Counil (ITI). Amerian National Standardfor Programming Language | Fortran - Extended. New York, New York,1992. http://www.ansi.org.[158℄ High Performane Fortran Forum. High Performane Fortran LanguageSpei�ation. Rie University, Houston, Texas, November 1994.[159℄ Robert E. Millstein. Control strutures in Illia IV fortran. Communiationsof the ACM, 16(10):621{627, Otober 1973.[160℄ Thinking Mahines Corporation. Getting Started in CM Fortran. ThinkingMahines Corporation, Cambridge, Massahusetts, November 1991.[161℄ Eugene Albert, Joan D. Lukas, and Guy L. Steele, Jr. Data parallelomputers and the FORALL statement. In Proeedings of the 3rd Symposiumon the Frontiers of Massively Parallel Computation, pages 390{396. IEEE,Otober 1990.[162℄ Kenneth E. Iverson. A Programming Language. John Wiley & Sons, In., NewYork, New York, 1962.[163℄ D. H. Lawrie, T. Layman, D. Baer, and J. M. Randal. GLYPNIR { aprogramming language for Illia IV. Communiations of the ACM,18(3):157{164, Marh 1975.[164℄ Alan J. Perlis. The Amerian side of the development of Algol. In The FirstACM SIGPLAN Conferene on History of Programming Languages, pages3{14, 1978.[165℄ Peter Naur. The European side of the last phase of the development ofALGOL 60. In The First ACM SIGPLAN Conferene on History ofProgramming Languages, pages 15{44, 1978.[166℄ Thinking Mahines Corporation. Introdution to data level parallelism.Tehnial report, Thinking Mahines Corporation, Tehnial Report 86.14,April 1986.[167℄ John R. Rose and Guy L. Steele, Jr. C*: An extended C language for dataparallel programming. Tehnial report, Thinking Mahines Corporation,Tehnial Report PL87-5, April 1987.[168℄ John R. Rose. C*: A C++-like language for data-parallel omputation.Tehnial report, Thinking Mahines Corporation, Tehnial Report PL87-8,Deember 1987.

- 256 -[169℄ Thinking Mahines Corporation. C* Programming Guide. Thinking MahinesCorporation, Cambridge, Massahusetts, November 1990.[170℄ MasPar Computer Corporation. MasPar data-parallel programminglanguages, 1990. Doument number PL007.0190.[171℄ Peter Christy. Software to support massively parallel omputing on theMasPar MP-1. In Digest of Papers Spring Compon 90, pages 29{33, SanFraniso, California, February { Marh 1990. IEEE Computer Soiety.[172℄ R. G. Zwakenberg. Vetor extensions to LRLTRAN. ACM SIGPLAN Noties,10(3):77{86, Marh 1975.[173℄ Sergey Gaissaryan and Alexey Lastovetsky. An ANSI C superset for vetorand supersalar omputers and its retargetable ompiler. Journal of CLanguage Translation, 5(3), Marh 1994.[174℄ Anar Jhaveri and Hank Dietz. A simple vetor language and its portableimplementation. Tehnial report, Shool of Eletrial Engineering, PurdueUniversity, TR-EE 90-41, West Lafayette, Indiana 47907, May 1990.[175℄ Guy E. Blelloh, Siddhartha Chatterjee, Jonathan C. Hardwik, JaySipelstein, and Maro Zagha. Implementation of a portable nesteddata-parallel language. In Proeedings 4th ACM SIGPLAN Symposium onPriniples and Pratie of Parallel Programming, pages 102{111, San Diego,May 1993. http://www-2.s.mu.edu/afs/s.mu.edu/projet/sandal/publi/papers/nesl-ppopp93.ps.gz.[176℄ Guy E. Blelloh, Siddhartha Chatterjee, Jay Sipelstein, and Maro Zagha.VCODE Referene Manual, February 1994. http://www-2.s.mu.edu/afs/-s.mu.edu/projet/sandal/publi/ode/nesl/nesl/do/vode-ref.ps.[177℄ Guy E. Blelloh, Siddhartha Chatterjee, Jonathan C. Hardwik, MargaretReid-Miller, Jay Sipelstein, and Maro Zagha. CVL: A C vetor library.Tehnial Report CMU-CS-93-114, Shool of Computer Siene, CarnegieMellon University, February 1993. http://www-2.s.mu.edu/afs/s.mu.edu/projet/sandal/publi/papers/CMU-CS-93-114.ps.gz.[178℄ L. Hamet and J. Dorband. A generi �ne-grained parallel C. In Proeedings ofthe 2nd Symposium on the Frontiers of Massively Parallel Computation, pages625{628. IEEE, Otober 1988.[179℄ Thomas H. Lee. Vertial leap for mirohips. Sienti� Amerian,286(1):53{59, January 2002.[180℄ AltiVe Working Group. AltiVe.README.txt. Tehnial report,SIMDteh.org, Otober 2002.http://www.simdteh.org/apps/group publi/douments.php.[181℄ Amerian National Standards Institute. Information systems - oded haratersets - 7-bit Amerian National Standard Code for Information Interhange(7-BIT ASCII). Amerian National Standards Institute, Sunnyvale,California, 1997. http://www.ansi.org.

- 257 -[182℄ George Boole. The Mathematial Analysis of Logi. Thoemmes Press,Sterling, Virginia, 1998. Reprinted from 1847 edition published by Mamillan,Barlay, & Mamillan with an introdution by John Slater.[183℄ George Boole. An Investigation of the Laws of Thought on Whih are Foundedthe Mathematial Theories of Logi and Probabilities. Dover Publiations,In., New York, New York, 1958. Unabridged reprodution of original editionpublished in 1854 by Mamillan, with orretions made in the text.[184℄ Claude E. Shannon and Warren Weaver. The Mathematial Theory ofCommuniation. University of Illinois Press, Urbana, Illinois, 1949.[185℄ Randall Fisher. libMMX. Tehnial report, Shool of Eletrial and ComputerEngineering, Purdue University, Deember 1997. No longer available on-line.[186℄ Hank Dietz and Randall Fisher. The libmmx homepage. Tehnial report,Shool of Eletrial and Computer Engineering, Purdue University, May 1998.http://min.en.purdue.edu/~r�sher/Researh/Libmmx/libmmx.html.[187℄ P. J. Hather, A. J. Lapadula, R. R. Jones, M. J. Quinn, and R. J. Anderson.A prodution quality C* ompiler for hyperube multiomputers. In ThirdACM SIGPLAN Symposium on Priniples and Pratie of ParallelProgramming, pages 73{82, Williamsburg, Virginia, April 1991.[188℄ A. Nisar and H. G. Dietz. Optimal ode sheduling for multiple pipelineproessors. In 1990 International Conferene on Parallel Proessing,volume II, pages 61{64, Saint Charles, Illinois, August 1990.[189℄ Jak J. Dongarra. Performane of various omputers using standard linearequations software. Tehnial report, Computer Siene Department,University of Tennessee and Mathematial Sienes Setion, Oak RidgeNational Laboratory, CS-89-85, Otober 2002. http://www.top500.org.[190℄ Harvey G. Cragon and W. Joe Watson. A retrospetive analysis: The TIAdvaned Sienti� Computer. IEEE Computer, 22(1):55{64, January 1989.[191℄ Christopher Eoyang, Raul H. Mendez, and Olaf M. Lubek. The birth of theseond generation: The Hitahi S-820/80. In Proeedings of Superomputing'88 [Vol.1℄, pages 296{303, Orlando, Florida, November 1988.[192℄ Steven J. Wallah. The CONVEX C-1 64-bit superomputer. In Proeedingsof Spring Compon '85, February 1985.[193℄ Kenneth E. Bather. Flexible Parallel Proessing and STARAN. In 1972WESCON Tehnial Papers, Session 1, volume 16, 1972.[194℄ Ative Memory Tehnology, In. DAP Series Tehnial Overview. AtiveMemory Tehnology, In., Irvine, California, 1988.[195℄ Robert Shreiber. An assessment of the Connetion Mahine. Tehnialreport, Researh Institute for Advaned Computer Siene, NASA AmesResearh Center, June 1990. RIACS Tehnial Report 90.40.[196℄ Marshall Brain. Blitzen tutorial one | what is Blitzen? Tehnial report,North Carolina State University, 1991. http://www.eos.nsu.edu/eos/info/-eos info/other tutorials/blitzen/tutorials/bt1.

- 258 -[197℄ H. J. Siegel, L. J. Siegel, F. C. Kemmerer, P. T. Mueller, Jr., H. E. Smalley,Jr., and S. D. Smith. PASM: A partitionable SIMD/MIMD system for imageproessing and pattern reognition. IEEE Transations on Computers,C-30:934{947, Deember 1981.[198℄ T. Shwederski, W. G. Nation, H. J. Siegel, and D. G. Meyer. Theimplementation of the PASM prototype ontrol hierarhy. In Proeedings ofthe Seond International Conferene on Superomputing, volume i, pages418{427, 1987.[199℄ G. Jak Lipovski and Miroslaw Malek. Parallel Computing: Theory andComparisons. John Wiley & Sons, In., New York, New York, 1987.[200℄ G. Jak Lipovski and Anand Tripathi. A reon�gurable varistruture arrayproessor. In 1977 International Conferene on Parallel Proessing, pages165{174. IEEE Press, 1977.[201℄ James Gleik. Genius: The Life and Siene of Rihard Feynman. RandomHouse, Inorporated, November 1993.[202℄ Mar Tremblay, J. Mihael O'Connor, Venkatesh Narayanan, and Liang He.VIS speeds new media proessing. IEEE Miro, 16(4):10{20, August 1996.[203℄ L. Kohn and N. Margulis. Introduing the Intel i860 64-bit miroproessor.IEEE Miro, 9(4):15{30, August 1989.[204℄ K. Diefendor� and M. Allen. Organization of the Motorola 88110 supersalarRISC miroproessor. IEEE Miro, 12(2):40{63, April 1992.[205℄ Leonard Gilman and Allen J. Rose. APL: An Interative Approah. KriegerPublishing Company, Malabar, Florida, reprint of 3rd edition, 1992.Copyright 1984 John Wiley & Sons, In.[206℄ Adin D. Falko� and Kenneth E. Iverson. The evolution of APL. In The FirstACM SIGPLAN Conferene on History of Programming Languages, pages47{57, 1978.[207℄ Author Unknown. APL language summary. In The First ACM SIGPLANConferene on History of Programming Languages, page 45, 1978.[208℄ Marvin Shaefer. An APPLE tutorial. Tehnial report, System DevelopmentCorporation, SDC-TM5074/100/100, September 1973.[209℄ David Gries. ACM SIGPLAN history of programming languages onfereneALGOL 60 language summary. In The First ACM SIGPLAN Conferene onHistory of Programming Languages, page 1, 1978.[210℄ John Bakus. The history of FORTRAN I, II, and III. Annals of the Historyof Computing, 1(1):21{37, July 1979.[211℄ Unidenti�ed text. Setions 12.3{12.5, pages 254{266, n.p., n.d.[212℄ Walter S. Brainerd, Charles H. Goldberg, and Jeanne C. Adams.Programmer's Guide to Fortran 90. Uniomp, In., Albuquerque, NewMexio, 2nd edition, 1994.

- 259 -[213℄ Amerian National Standards Institute. Fortran 8X, X3J3/S8 (X3.9-198x).New York, New York, 1986. http://www.ansi.org.[214℄ Guy L. Steele, Jr. Languages for massively parallel omputers. In Proeedingsof the 2nd Symposium on the Frontiers of Massively Parallel Computation,pages 3{13. IEEE, Otober 1988.[215℄ Seema Hiranandani, Ken Kennedy, Charles Koelbel, Ulrih Kremer, andChau-Wen Tseng. An overview of the Fortran D programming system. InU. Banerjee, D. Gelernter, A. Niolau, and D. Padua, editors, Languages andCompilers for Parallel Computing, Fourth International Workshop, pages18{34, Santa Clara, California, 1991. Springer-Verlag.[216℄ N. Wirth. The programming language PASCAL. Ata Informatia, 1:35{63,1971.[217℄ K. V. Nori, U. Ammann, K. Jensen, and H. N�ageli. The Pasal (P) ompiler:Implementation notes. Tehnial report, Institut f�ur Informatik,Eidgen�ossishe Tehnishe Hohshule, Z�urih, 1975.[218℄ A. S. Tanenbaum, M. F. Kaashoek, K. G. Langendoen, and C. J. H. Jaobs.The design of very fast portable ompilers. ACM SIGPLAN Noties,24(11):125{131, 1989.[219℄ In. Sun Mirosystems. The soure for Java tehnology. Tehnial report, SunMirosystems, In., 2002. http://java.sun.om.[220℄ Brian W. Kernighan and Dennis M. Rithie. The C Programming Language.Prentie-Hall, In., Englewood Cli�s, New Jersey 07632, 1978.[221℄ Dennis M. Rithie. The development of the C language. In The Seond ACMSIGPLAN Conferene on History of Programming Languages, pages 201{208.ACM Press, 1993.[222℄ James T. Kuehn and Howard Jay Siegel. Extensions to the C programminglanguage for SIMD/MIMD parallelism. In Proeedings of the 1985International Conferene on Parallel Proessing, pages 232{235. IEEEComputer Soiety, August 1985.[223℄ David Beeh. A strutural view of PL/I. Computing Surveys, 2(1):33{64,Marh 1970.[224℄ Robert F. Rosin. ACM SIGPLAN history of programming languagesonferene PL/I language summary. In The First ACM SIGPLAN Confereneon History of Programming Languages, pages 225{226, 1978.[225℄ George Radin. The early history and harateristis of PL/I. In The FirstACM SIGPLAN Conferene on History of Programming Languages, pages227{241, 1978.[226℄ Digital Equipment Corporation. Digital Semiondutor Alpha 21164PCMiroproessor Hardware Referene Manual. Digital Equipment Corporation,September 1997.

- 260 -[227℄ John H. Edmondson, Paul Rubinfeld, Ronald Preston, and VidyaRajagopalan. Supersalar instrution exeution in the 21164 Alphamiroproessor. IEEE Miro, 15(2):33{43, April 1995.[228℄ M. Tremblay, D. Greenley, and K. Normoyle. The design of themiroarhiteture of UltraSPARC-I. Proeedings of the IEEE,83(12):1653{1663, Deember 1995.[229℄ Intel Corporation. IA-32 Intel Arhiteture Software Developer's Manual: Vol.1 Basi Arhiteture. Intel Corporation, 2002.http://developer.intel.om/design/pentium4/manuals/245470.htm.[230℄ In. Advaned Miro Devies. AMD Athlon MP Proessor Model 6 DataSheet. Advaned Miro Devies, In., Sunnyvale, California, June 2001.http://www.amd.om/produts/pg/athlon/tehdos/pdf/24685.pdf.[231℄ Doug Beard. MXi: A high-performane x86 proessor with integrated 3Dgraphis. Tehnial report, Advaned Miro Devies, In., 1998.[232℄ Cyrix Corporation. Cyrix M II Data Book. Cyrix Corporation, April 1998.http://www.national.om/yrix/mii/mi-all.pdf.[233℄ Corinna G. Lee and Mark G. Stoodley. Simple vetor miroproessors formultimedia appliations. In Proeedings of the 31st Annual InternationalSymposium on Miroarhiteture, pages 23{36, Deember 1998.[234℄ Intel Corporation. MMX tehonology developer's guide. Tehnial report,Intel Corporation, 1999.http://developer.intel.om/drg/mmx/manuals/dg/devguide.htm.[235℄ Advaned Miro Devies, In. AMD Athlon Proessor Tehnial Brief.Advaned Miro Devies, In., August 2001. http://www.amd.om/us-en/assets/ontent type/white papers and teh dos/22054.pdf.

- 261 -
APPENDIX AHISTORICAL PERSPECTIVEIn order to develop this new abstrat model for modern SWAR arhitetures, we needto have a good understanding of related arhitetures and programming models. Inthis appendix, we disuss some of these arhitetures and the languages developedfor programming them in relation to SWAR proessing.Vetor ArhiteturesSWAR arhitetures are losely related to vetor arhitetures in that both aredesigned to perform idential operations on sets of related data. Knowledge of thesearhitetures, their features, and the issues traditionally assoiated with them shouldprovide insight into how SWAR arhitetures may be best used, and may give luesas to the future of SWAR arhitetures.In general, a typial vetor proessor has one or more sets of funtion units. Thesemay be ontained within a single proessor (a uniproessor) or spread aross a groupof onneted proessors (a multiproessor). Eah set ontains one or more individualfuntion units, some or all of whih may be redundant. In this disussion, we will referto a set of funtion units as a \proessing element" (PE), regardless of the numberof proessors involved.Having multiple funtion units allows multiple instrutions to be issued at onetime, as long as no two instrutions require the same funtion unit simultaneously.For example, the exeution of an addition and a multipliation in the same lokyle an take plae if separate adder and multiplier units are available. This is oftenreferred to as supersalar operation. Almost all of the vetor proessors disussedbelow had supersalar PEs.

- 262 -Redundany of funtion units within a PE allows instrutions of the same type tobe issued simultaneously. These may or may not be part of the same vetor instru-tion, depending on how the funtion units are used and ontrolled. In some asesthese units are used independently, in supersalar fashion, suh as when exeutingtwo unrelated additions in the same lok yle. In other ases, they are used togetherto exeute the same instrution on di�erent parts of the same set of data. In thisase, they are ating in a SIMD manner.Most of the vetor proessors disussed below have multiple idential PEs. Suh asystem, whether a uniproessor or multiproessor, is essentially a parallel proessingsystem. If these are driven by a single instrution, then they at as a SIMD system.If they are driven as independent setions, they at as a MIMD system instead. Inthis disussion, we are primarily onerned with pipelined and SIMD vetor systems,whih are similar to SWAR arhitetures, rather than MIMD vetor systems, whihare not.STAR-100Built in the early-1970s, the Control Data Corporation (CDC) STring ARraySTAR-100 [144, 125℄ was one of the �rst vetor superomputers. Its supersalarvetor unit onsisted of two dissimilar pipelined funtion units. These were an adder/-divider/logial unit and a separate adder/multiplier. Both ould produe a resultduring eah lok yle, so the vetor unit ould omplete up to two vetor elementoperations per yle.Aording to [141℄, eah of the STAR-100's vetor funtion units also had a SWAR-like feature: they ould proess one 64-bit operation or two simultaneous 32-bit op-erations. Speial logi inserted between the two halves of the 64-bit datapath brokethe arry hains between them. This e�etively separated the datapath into two in-dependent parts whih performed idential operations. This method of partitioningthe proessor is essentially the same method used in modern SWAR arhitetures.

- 263 -Speial hardware was inorporated into the STAR-100 to handle sparse vetors,whih onsist mostly of zero-valued elements. These were stored as two separatevetors: one whih held a bit mask indiating the non-zero elements and a seondwhih atually stored those elements. When a sparse vetor was aessed, the bitvetor was heked for eah element to determine if it needed be loaded or storedfrom the vetor of non-zero elements.The STAR-100 had several other innovative features. One was the use of bit masksfor ontrolling onditional operations. Another was the ability to use \...stride[s℄ andgather/satter memory aesses...." [141℄ This last point is ontradited, however,in [135℄ whih laims that the STAR-100 ould only handle single-strided aesses.Unfortunately, neither [141℄ nor [135℄ is a �rst-hand soure, and I have been unableto obtain a opy of [144℄.Operands were drawn from a fast main memory and results were stored there. Anyresult that was to be used in a subsequent operation was �rst written to memory,then read bak from it. This memory-to-memory arhiteture resulted in slower thanneessary inter-operation times. The STAR-100 ultimately failed due to this and itspoor salar performane. However, it was the beginning of the CDC line of vetorproessors whih survived into the late 1980s.TI-ASCThe Texas Instruments Advaned Sienti� Computer (TI-ASC) [139, 190, 141℄had an arhiteture similar to that of its ontemporary, the CDC STAR-100. Bothwere �rst-generation pipelined, memory-to-memory, vetor proessors. Both em-ployed bit masks for onditional exeution and were apable of providing SWAR-likefuntionality.There were some di�erenes between the TI-ASC and the STAR-100. One was theapparent lak of sparse vetor handling in the TI-ASC. The other was the funtionalityand expandability of the TI-ASC's pipelines.

- 264 -The TI-ASC's entral proessor ontained of a set of up to four idential, miropro-grammed vetor pipelines, eah of whih onsisted of an ombined adder/multiplierunit and was servied by a ombined load/store path. This allowed up to four ele-mentwise operations to be applied simultaneously. These pipelines were driven by asingle instrution proessing unit and ould be used in a SIMD manner [139, 140℄.The ASC was TI's only venture into large sale omputers [141℄ and failed forreasons similar to those of the STAR-100. Many of the features of the TI-ASC anbe found in the digital signal proessing hips urrently produed by TI.CRAY-1Cray Researh, Inorporated introdued the CRAY-1 [135℄ in 1976. Unlike theTI-ASC and CDC STAR-100 memory-to-memory arhitetures, it had a set of vetorregisters for storing vetor operands and results. It also had a larger number of vetorfuntion units and was designed to allow better data ow between them.A set of eight 64-word registers were used to store vetor operands, whih onsistedof elements of 64-bits eah. This allowed lower-lateny aess to data than memory-based arhitetures ould ahieve. Maintaining high-performane depended in parton making good use of these registers. The data path between memory and the vetorregister �le was only a single word wide and thus ould only supply one 64-bit wordper lok yle. Thus, the register �le was neessary to provide data at a high enoughrate to keep the multiple vetor units suÆiently supplied.The CRAY-1 had twelve independent, non-redundant funtion units whih ouldbe thought of as a single supersalar PE. Its funtion units were grouped into vetor,oating point, salar, and address units. Six of these, the vetor and oating-pointunits, ould be used to operate on vetor data. These inluded integer and oating-point addition units, oating-point multipliation and reiproal approximation units,and integer logial and shift units.

- 265 -One of the strengths of the CRAY-1 was the ability to \hain" funtion unitstogether to form a pipeline. As the individual elemental results of a vetor operationleft one funtion unit, they ould be immediately forwarded to another for use as anoperand before the �rst vetor operation ompleted. This allowed a series of vetoroperations to be performed in an overlapped manner that is similar to the operationof a pipelined salar proessor.The CRAY-1's memory system had 16 banks of 72 modules. Eah 64-bit wordwas stored aross the modules of a bank along with an 8-bit SECDED (single-errororretion, double-error detetion) ode. The memory address spae yled throughthe banks so that sequential addresses were stored in neighboring banks and every16th address ourred in the same bank. This allowed up to 16 sequential data wordsto be aessed with no two aessing the same bank of memory.The CRAY-1 was desended from a line of proessors developed by Seymour Crayat CDC inluding the 6600 and 7600 and was the �rst of the Cray line whih ontinuestoday. The CRAY-1 was a signi�ant improvement over the TI-ASC and CDC STAR-100 systems. However, as a non-parallel vetor system, it was not able to fully makeuse of the data parallelism available in vetor programs, and thus was not able toahieve the full potential of vetor proessing.Cyber 205The vetor proessor of the CDC Cyber 205 [136, 126℄ was a SIMD proessorwith up to four idential PEs. These were pipelined oating-point ALUs driven by aontrol unit whih read a single instrution stream. Like its predeessor, the STAR-100, the Cyber 205 was a memory-based arhiteture. Its PEs had no registers andoperated on data stored in the entral memory.The Cyber 200 series of omputers, inluding the Cyber 205, had improved salarproessing over the STAR-100 and inorporated SIMD proessing. However, its

- 266 -memory-based arhiteture was not a math for later register-based systems. The Cy-ber 200 line ontinued with the ETA-10 and eventually died out in the late 1980s [141℄.VP200Fujitsu, Limited introdued the VP200 in 1982 [141℄. It had up to two identialsets of pipelines operating as a SIMD system. Eah of these onsisted of an adder/logiunit, a multiplier, and a separate divider. Like the CRAY-1, the VP200 was a register-based system. Eah PE had a large register �le supplied by two ombined load/storeunits. The VP200 was part of the \�rst generation" of Japanese vetor proessors.Later generations would eventually dominate vetor proessing.S810/20Hitahi introdued the S810/20 in 1983 [141℄. It had up to two idential vetorPEs operating in SIMD mode. Eah of these onsisted of two adder/logi units, amultiplier with a asaded adder, and a multiplier/divider whih also had a asadedadder. The S810/20 had 32 vetor registers of 256 elements eah. These were suppliedwith data via a set of three load units and a separate load/store unit for every PE.SX-2The NEC SX-2 [137, 138℄ vetor parallel proessor was introdued in 1984. Itsvetor unit had \four idential sets of funtional units" [138℄ whih worked in SIMDparallel fashion. Eah set onsisted of adder, multiplier, logial, and shift units. Theseould be hained to inrease performane.The SX-2 had forty 256-element vetor registers whih were onneted to memoryvia a four word wide load path and a separate four word wide load/store path. Themain memory ould store up to 1GB of memory organized in 512 banks of 2MB eah.Extended memory of up to 8GB was also available.

- 267 -S820/80The Hitahi S820/80 [143℄, introdued in 1987, had \the same basi arhitetureas its predeessor, the S-810." [191℄ Aording to [141℄, the S820/80 had a maximumof four idential vetor PEs whih were simpler than those of the S810/20. Theseonsisted of a ombined adder/logial unit, a multiplier with a asaded adder, anda separate divider. Two of the load units were eliminated, leaving the S820/80 witha single load unit and one ombined load/store unit. The S820/80 was part of theseond generation of vetor proessors from Japan whih were uniproessor, SIMDvetor mahines.VP2600The VP2600 was introdued by Fujitsu in 1989 [142, 141℄. Arhiteturally, itwas primarily a re�nement of the VP200 SIMD vetor arhiteture. It had fouridential PEs whih were more advaned than those of the VP200. Eah onsistedof two multipliers, whih eah had an adder/logial unit asaded behind them, anda separate divide unit. The memory paths were unhanged from the VP200 design.The VP2600 had a large register �le with 2048 vetor registers of 64 elements eah.Other Vetor MahinesOther ompanies developed slower, less powerful, low-ost vetor proessors alled\mini-superomputers" [141℄. These were intended to be a�ordable yet relatively pow-erful systems. They were often saled-down versions of high-end vetor proessors andthus typially provided little in the way of arhitetural innovation. For this reason,they have been exluded from this disussion. One example of a mini-superomputerwas Convex Computer Corporation's C-1 [192℄ whih was introdued in 1985.In this disussion we have also avoided multiproessor systems suh as the Cray2, X-MP, and Y-MP, and the later Japanese models suh as the NEC SX-3 and

- 268 -SX-4 and the Fujitsu VX and VPP series systems. The most signi�ant features ofthese mahines are related to multiproessor and MIMD proessing issues rather thanSIMD vetor proessing. Thus, they are of less interest than the earlier models withrespet to the subjet of this thesis.SummaryThe purpose of this disussion was to develop an understanding of historial vetorarhitetures so that we may better understand the relationship between them andmodern SWAR arhitetures. Having knowledge of past vetor systems gives us abaseline for omparing the apabilities and limitations of urrent SWAR proessors.SWAR proessors are most losely related to pipelined SIMD vetor systems.The latter are, as a general rule, uniproessor systems whih onsist of one or moreidential sets of pipelined funtion units driven by a single instrution stream. Eahset of funtion units in a pipelined SIMD vetor system an thus be thought of as asingle pipelined, supersalar PE in a SIMD system.A typial SWAR system is a pipelined uniproessor with a data path that hasbeen split into multiple parallel setions. These systems an be onsidered SIMDproessors whih are omprised of a linear array of idential pipelined, supersalarPEs. Coneptually, eah PE onsists of one setion of the miroproessor's data path.To better understand how these types of arhiteture are related, we an om-pare various aspets of their design inluding instrution feth and deoding systems,funtion units, register �les, memory systems, and onditional exeution mehanisms.A typial vetor system has an instrution feth unit whih deodes a single in-strution stream from a ommon memory and generates a set of ontrol signals todrive the system's funtion units. This is essentially what happens in SWAR arhi-tetures. Here, a single multimedia instrution is fethed from main memory anddeoded to generate a set of ontrol signals. These determine whih operation will beperformed and how the data path will be partitioned into parallel setions. Thus, a

- 269 -SWAR system is a SIMD parallel system whose on�guration is determined by, andmay hange with, eah instrution exeuted.Most traditional vetor proessors have supersalar arhitetures, as do modernmiroproessor systems. In eah ase, the number and type of funtion units availablevaries between arhitetures and determines their apabilities. Early vetor proessorshad one or two funtion units per proessing element while the seond generationtended to have signi�antly more. Later generations were more balaned and tendedto have a moderate number of funtion units. Similarly, SWAR arhitetures an beexpeted to undergo an evolutionary proess as their use beomes more re�ned.A typial vetor proessor's funtion units were pipelined to allow a result to begenerated with every lok yle. This is also true of the typial SWAR arhiteture,in whih the data path of a pipelined CPU is split into multiple independent setions.Chaining, in whih funtion units are onneted to form a pipeline, is similarto data forwarding tehniques used in modern pipelined salar proessors. Somemultimedia-enhaned arhitetures may allow for this type of forwarding as a naturalonsequene of using existing pipelines for SWAR proessing.The earliest vetor proessors were memory-based arhitetures whose perfor-mane su�ered from their long memory latenies. Later vetor proessors inor-porated multi-element vetor register �les. These registers were apable of storingmultiple data words as a single entity and allowed intermediate results to be storedinternally. This redued the e�etive lateny of these proessors' memory systems,whih in turn allowed them to have shorter lok yles and ahieve better perfor-mane than memory-based vetor proessors.Modern SWAR arhitetures are register-based mahines in whih existing orespeially-designed registers are used with multimedia instrutions. These registersare typially one to four words wide and few in number. For example, a register �leontaining 32 registers of 128 bits eah (4kb) would be very large by SWAR standards.This is an eighth of the size of the CRAY-1's register �le, whih had eight registers

- 270 -of 64 64-bit elements (32kb), and less than one perent of the size of the SX-2's 40registers of 256 64-bit elements (640kb).Traditional SIMD vetor uniproessors typially had a ommon memory sharedby eah of their proessing elements. To inrease performane, later vetor proessorswere equipped with banked memories whih allowed multiple simultaneous aesses.They were also often designed with a set of memory aess pipelines for eah inde-pendent set of funtion units in the system. This allowed eah set to obtain data andstore results at a rate independent of the other proessors as long as there were noaddressing onits.SWAR proessors are similar with one aveat | eah memory aess touhes aontiguous set of bits in a ommon main memory. No individual addressing is possiblebeause these systems use memory data paths whih are split in the same way as theirfuntion units. Thus, eah word in memory an be thought of as being spread outaross several banks of memory whih are aessed simultaneously. The degree ofinterleaving depends on the preision of the data stored and the word size of thearhiteture.More omplex memory aesses suh as strides and gather/satters are diÆultto implement on SWAR systems. Strided aesses are often used to aess elementsof an array along one of its minor axes. Gathers and satters are typially used toompress and expand sparse matries or vetors. Some SWAR arhitetures allowstrided aesses to our, but gathers and satters require a level of indiretion thaturrent SWAR systems annot provide.The �rst generation of vetor proessors had only one or two funtion units perindependent setion. The throughput of these systems was thus limited to a fewsalar operations per lok yle. Hene, these arhitetures ould be served by adata path that was at most a few words wide.Later vetor proessors had a moderate number of funtion units and large vetorregister �les. Due to their prohibitive osts, the memory pipelines of these systems

- 271 -were often kept narrow in omparison to the size of their vetor registers, but wideenough to keep the funtion units supplied with data.Thus, the bandwidth of the full memory-to-memory data path was typially lim-ited to the data rate of the funtional pipelines. This meant that to maintain peakperformane, the vetor registers had to be �lled at the same rate, and at the sametime, that they were being emptied.Over time, as the number of proessing elements has inreased, the bandwidthrequired to maintain high eÆieny has also inreased. Beause of this, later vetorproessors had some of the highest bandwidth memory systems ever built.Beause SWAR systems have modi�ed miroproessor arhitetures, their memorysystems are often pre-de�ned by their underlying arhitetures. Generally, they areable to load or store an entire multimedia register with eah lok yle. Dependingon the width of the data path and the preision of the data being aessed, eahmemory aess may move between one and several vetor elements. For example, amiroproessor with 64-bit registers and a 64-bit memory path an load the registerin one lok yle. If the data loaded is 8-bit data, then this single load brings in upto eight vetor elements in one lok.SIMD proessors must also deal with the issue of onditional exeution. When aonditional branh is enountered in a program, the ondition may be true for some ofthe proessor's PEs, but not for others. Normally, every SIMD instrution is exeutedby all of the PEs in the system, but when a ondition does not hold for some set ofPEs, there needs to be some mehanism to prevent them from exeuting the relatedinstrutions or to blok or undo their e�ets.Early SIMD vetor proessors used bit masks to trak whih of their PEs wereenabled to exeute instrutions and whih were disabled due to failing some ondi-tional test. These were typially used with masked stores to prevent side e�ets fromourring. Modern SWAR proessors may use a variety of methods to perform thisbasi task. These are disussed in more detail later in this hapter.

- 272 -From this disussion, ertain trends an be reognized in vetor proessor arhite-ture. While the number of funtion units within eah proessing element has tendedto level o�, the number of proessing elements themselves has inreased signi�antly.The size of their vetor register �les has gone from zero to well into the hundreds ofkilobits range, and their memories and bandwidths have also inreased dramatially.Current vetor proessors are signi�antly more omplex than any of those dis-ussed above. This omplexity makes them less like urrent ommodity SWAR arhi-tetures than were earlier vetor systems. For this reason, we have avoided disussingthem in this setion; however, the trends they exhibit are still worth briey noting.These mahines are generally multiproessor MIMD systems with a large num-ber of idential PEs. These typially have a few well-designed, pipelined funtionunits whih are used in supersalar or VLIW (Very Long Instrution Word) mode,depending on whether the parallelization is performed in hardware or by a ompiler.They are also inreasingly onneted to allow data to be transferred diretly betweenthem. In many ways, vetor proessors are beoming inreasingly like the parallelarray proessors whih will be disussed next.SIMD Array ArhiteturesModern SWAR arhitetures are also related to traditional SIMD array arhite-tures. Brief desriptions of several of these are presented here with an emphasis ontheir relationship to SWAR proessing. This should provide an understanding of theevolution of these proessors and of how modern SWAR arhitetures are onstrainedin omparison.SOLOMONThe SOLOMON [117, 118℄ prototypes were early SIMD proessors built for theWestern Eletri Company in the early 1960s. Their design was inspired by the

- 273 -physial appearane of a magneti drum used as storage for the IAS mahine built atPrineton University.The original design alled for 512 byte-wise \proessing elements" onneted ina 2-dimensional toroidal mesh, and ontrolled from a \entral soure." In the �naldesign for the original prototype, the PEs were to be grouped into up to eight 32x8subarrays for a maximum of 2048 PEs. The atual prototypes used signi�antly fewerPEs in various on�gurations.The PEs were essentially single bit full adders whih used operands that wereeither stored in loal ore memory frames, broadast from the entral soure, or readover the link from any of the PE's nearest neighbors. An \L-bu�er" was used toonvert word-sized data from the ontrol unit into a serial bit stream for the PEs.The length of this stream was variable and determined by the value of a settableregister.The entral soure was responsible for program storage and supplying immediatedata, but its primary task was to at as a ontroller for the rest of the system. This itdid by providing the PEs with ontrol signals to selet operations, enable or disablePEs, and ativate onnetions between the PEs.Eah PE had a 2-bit \mode" register whose value determined whih of four pos-sible modes the PE was operating in. Eah instrution arried a 4-bit �eld (one perstate) whih spei�ed a set of possible modes. Only the PEs that were in one of thesemodes were allowed to exeute the instrution. This allowed PEs to be e�etivelydisabled for a given instrution. While \o�", a PE ould supply operands to itsneighboring PEs but was not allowed to hange state.Later SOLOMON prototypes replaed the bit-serial PEs with byte-slied proes-sors. These had 24-bit registers and 8-bit arithmeti hardware. As PEs with widerdata paths began being used, the number of PEs in suessive prototypes was saleddown. A full-sale model was never built; however, the design led diretly to theILLIAC IV.

- 274 -SOLOMON provides us with a basi model of a SIMD array proessor: an arrayof proessing elements, ontrolled by a single ontrol unit, with loal memories, andonneted via some form of interonnetion network.ILLIAC IVThe �rst operational SIMD mahine was the ILLIAC IV [119℄, built at the Uni-versity of Illinois. It was an extension of the SOLOMON prototypes, and was builtby a group led by D. L. Slotnik and whih inluded others from the SOLOMONprojet. Both [152℄ and [123℄ ontain ase studies of the ILLIAC IV, and some of thefollowing material is drawn from these soures.The ILLIAC IV was ontrated by the Department of Defense's Advaned Re-searh Projets Ageny (ARPA) in about 1965. A quarter-sized prototype was de-veloped and used at Illinois until the early 1970s when it was deided that it shouldbe moved to a government faility. The prototype was delivered to the NASA AmesResearh Center in 1972, but was not fully operational until 1975. The ILLIAC IVwas deommissioned in 1982.As delivered, the ILLIAC IV's proessing array onsisted of one quadrant of 64proessing elements (PEs). Eah of these had an arithmeti/logi unit (ALU), variousregisters, and a loal proessing element memory (PEM).The ALU ould perform arithmeti, logial, and omparison operations on data inits four 64-bit data registers. These ould be loaded from loal memory or with a valuebroadast by the ontrol unit (CU). The operation applied depended on the ontrolsignals from the CU and the values stored in the PE's ag registers. These ontainedstatus and ontrol values and were aessible by both the PE and the CU. Thisallowed the various PEs to behave di�erently while exeuting the same instrution,and allowed onditional exeution based on an individual PE's omputational results.Attahed to eah PE was a loal bank of memory from whih its data stream wasnormally drawn during parallel operations. These banks held 2k words of 64 bits

- 275 -eah, and were aessible by both the PE and the CU. Eah PE ould aess a loalmemory loation that di�ered from that of the other PEs. This was done by indexingthe address by the value in the PE's 16-bit index register.ILLIAC IV's ontrol unit drove the proessor array by issuing ontrol signals tothe PEs over a \nanoinstrution" bus. It ould set the PEs' ag registers and modebits with di�erent values to onditionally enable or disable sets of PEs. The CU ouldalso broadast data and addresses over a 64-bit ommon data bus. This allowed it totransmit salar values and onstants to the PE array. A mode \ip-op" bus olleteda single bit from eah PE and delivered the set to the CU as a 64-bit word. Thisword ould then be tested to determine global onditions.The CU ould aess the PEs' loal memories diretly over a separate 512-bit bus.This allowed it to use all of memory and treat the PEs' memory banks as a singleglobal store. The CU read its instrutions from this memory and fethed them intoan instrution ahe. Data also ould be loaded from this memory and stored in aprivate bu�er.The PE interonnet was an 8x8 mesh, with eah olumn onneted as a separatetorus, and the rows onneted together as a single torus. This allowed data to berotated through the olumns of the mesh or through the entire set of PEs. It alsoallowed nearest neighbor ommuniations in any of four diretions. This was usefulfor moving data vetors and arrays whih had been mapped onto the proessor array.The ILLIAC IV was apable of a form of variable-width proessing. Eah PEould operate as a single 64-bit oating-point element, as two 32-bit oating-pointelements, or as eight 8-bit �xed point elements. Whether this was implemented ina manner similar to that of modern SWAR arhitetures is unlear from [118℄. Thisvariable-width proessing made the arhiteture more exible in its ability to supportvarious data types; however, the languages used to program the ILLIAC IV tendednot to take advantage of this apability.

- 276 -ICL DAPThe �rst ommerial massively parallel omputer was the Distributed Array ofProessors (DAP) built by International Computers Limited (ICL) [120℄. It wasdeveloped in the mid 1970s based on a \design study" by S. F. Reddaway [121℄.Work on a prototype took plae during the rest of the deade, and the originalsystem was delivered to Queen Mary College, London University in 1979. In the mid1980s, Ative Memory Tehnology (AMT), In. was spun-o� from ICL to developDAP systems.The idea behind the ICL DAP was to use bit-serial proessors to simplify thelogi design and provide these with loal memories to losely integrate the logi andstorage systems. With enough proessors, the entire problem ould theoretially bemapped onto the proessing array.The paper design onsisted of a main ontrol unit (MCU) and a proessor array,and was \somewhat similar to SOLOMON 1" [121℄. The DAP was to be onnetedto, and supported by, a \parent" omputer system whih provided it with data andinstrutions.The MCU was to onsist of a \onventional" instrution feth system, an instru-tion bu�er, and a set of registers whih ould be onneted to a row or olumn of thearray. These registers would allow data to be loaded to, or retrieved from, the arrayalong either of its sides, and was apparently intended for use in proessing salar data.The proessor array was to be two-dimensional with one side onneted to the\store highway" of the parent system. The parent ould then load data and instru-tions via this bus and hene ould use the array for storage or omputation. A word ofdata was normally to be stored along a olumn of PEs in what was alled \main storemode". Words would also be stored in a single PE in \array mode" for more eÆientproessing in some irumstanes. Conversion between these two modes would ourwithin the PE array.

- 277 -The PEs were to be onneted in a retangle via a nearest neighbor network witheah PE also onneted to the PE \half a row away in the same row". Independent,program ontrolled edge onnetions were to allow the PEs to be onneted as alinear array, a ring, a mesh, a toroid, or any of up to 32 geometries when half-rowonnetions were used.Eah PE would have a 4kb loal memory. Storage to these memories ould bebloked by the MCU on a row or olumn basis to allow operations on array subse-tions. Eah PE also had a set of single-bit registers whih were to be used to holdoperands and bu�er inoming and outgoing bits. One of these was used as a maskbit to ontrol onditional exeution aording to [126℄.The design emphasized onnetivity and allowed several input and output onne-tions to be made with the MCU, the parent mahine's store highway, and neighboringPEs. Multiplexers were to be used to ativate onnetions between the registers andthe various soures and destinations.MPPGoodyear Aerospae Corporation's Massively Parallel Proessor (MPP) [122, 123℄was developed in the late 1970s and built in the early 1980s. It was the �rst so-alled\massively parallel proessor," whih meant that it ontained thousands of PEs. Itonsisted primarily of an array unit whih housed the PEs and an array ontrol unitwhih direted them. The MPP was desended from the STARAN [193℄ bit-serialassoiative proessor, and was similarly intended for image proessing using bit-slies.The array unit (ARU) was a 128x128 array of bit-serial PEs. Eah PE had aset of six bit registers, a programmable shift register, a full-adder, and a Booleanlogi/routing unit. Arithmeti operations were performed bit-serially, with the re-sult stored in either the shift register or loal memory. Most instrutions ould beprevented from exeuting on a partiular PE by resetting a \mask bit" in that PE'sstatus register.

- 278 -Eah PE had 1kb of loal memory. Beause the MPP was designed to operateon bit planes, these were used olletively with the planes stored aross the entireset. During a memory operation, all of the PEs aessed the same loal address,and thus the same bit plane. Thus, these memories ould be thought of as a setof 1024 bit-planes, with eah PE ontrolling one bit in the same position of eah128x128 plane. Data was typially from 1 to 32 bits in length and was stored arossmultiple, onseutive bit-planes. Thus, a set of onseutive bit-planes ould be usedto represent an array of multi-bit items.Beause the depth of the memory array was �xed at 1028 bits, the MPP ouldstore 128 8-bit images or 32 32-bit images. The more preise the pixel data, thefewer pixels the MPP ould store. This trade-o� is similar to one found in SWARarhitetures in whih a �xed number of bits are available in the CPU's registers.This �xed number must be traded o� between data preision and parallelism width.Instrutions for the MPP's ARU were handled by the array ontrol unit (ACU)by plaing them in a \all queue" to be read by the ACU's PE ontrol setion. Eahof these instrutions was exeuted as a miroprogram by the PE ontrol unit whihgenerated one stream of ontrol signals whih it broadast to the entire PE array. Formemory aesses, these signals inluded a single address that was used by all of thePEs simultaneously.The MPP had multiple interonnets inluding a reon�gurable mesh, a globalOR network, and an aggregate word network. The inter-PE mesh network allowednearest neighbor ommuniations in any of four diretions alled north, east, west,and south. For this reason, it was alled the NEWS network. It onneted the PEsin a 128x128 mesh whose topology was ontrolled by the ACU. This was done byontrolling the onnetions of the PEs at the edges of the mesh. The PE at the edgeof a olumn ould be onneted with the PE at the other edge of the same olumn orleft disonneted. The same was true of the rows, exept that the PE at one edge ofa row ould be onneted to the PE at the other edge of the next row. This exibilityallowed the MPP to be onneted as a mesh, a vertial or horizontal ylinder, a torus,

- 279 -an open or losed spiral, or a spiral torus. This level of exibility an only be ahievedin SWAR arhitetures whih support permutations.A seond network, alled the \sum-or" network, performed a bitwise ORing of thebits sent by the PEs to the ontrol unit. The SWAR equivalent to this global ORnetwork would be a test of the CPU register for a non-zero value. In both ases, thisallows aggregate data to be olleted and tested easily.A single bit ould also be olleted from eah of the 16 PEs in the southeastorners of the ARU's 32x32 subarrays. These formed a 16-bit aggregate value thatthe ACU ould aess and manipulate as a single word. This third network was moregeneral than the sum-or network.The MPP ould be diÆult to use for higher-dimensional problems and for prob-lems whih did not math its dimensions. While the NEWS network was more exiblethan the mesh of the ILLIAC IV, it still required all PE data ommuniations to fol-low the same pattern. For example, for one PE to send data to its northern neighbor,all the other PEs had to do the same.The ILLIAC IV and MPP represented opposite ends of the SIMD ontinuum. TheILLIAC IV had a relatively small number of fairly powerful multiple-bit proessors,while the MPP had a large number of very simple one-bit proessors. This was a resultof the two arhitetures having been designed for di�erent purposes. ILLIAC IV wasintended to be a number-runher, operating primarily on 32- and 64-bit measureddata, while MPP was intended to be an image proessor, operating primarily on 8-bit,or at most 32-bit, pixel data.AMT DAPThe AMT DAP [194℄ was a suessor to the ICL DAP and was built in the late1980s by Ative Memory Tehnology (AMT), In. The 500 series had a 32x32 arrayof 1-bit proessing elements while the 600 series had a 64x64 array. In both systems,

- 280 -eah PE had between 32k and 1Mbit of loal private memory. Thus, both versionswere somewhat smaller than the MPP, but had signi�antly more memory.The PEs were bit-serial and onsisted of a full adder/logial unit, three 1-bitregisters, and two multiplexers. One of these was used to hoose the operand soures,whih ould be any of the registers or interonnetion networks. The other was usedto hoose the soure of the result sent to the memory and interonnets.The PEs were arranged in a two-dimensional mesh with eah onneted to its fournearest neighbors in a NEWS network, and also to all of the PEs in its row and toall of the PEs in its olumn via buses. This interonnetion was more exible thanthe MPP's NEWS network, allowing a PE's data to be broadast within a row orolumn, or even to the entire array.The master ontrol unit (MCU) was a 32-bit CPU. It read instrutions from theode memory and issued ontrol signals to the PEs in the proessing array. It alsoperformed salar operations and ould broadast data to the array.One unique feature was a hardware DO instrution whih ould enompass otherinstrutions. These instrutions ould then aess various setions of the array in aninremental manner, with the index automatially inremented for eah iteration.Later versions of the DAP had an 8-bit o-proessor whih was used for ompu-tation while the 1-bit proessors were used for ommuniation. This medium-sizedolletion of moderately powerful proessing elements represented a trade-o� betweenthe ILLIAC IV and MPP arhitetures. This allowed it to be more ommerially a-eptable on a prie/performane basis.GAPPThe NCR Geometri Arithmeti Parallel Proessor (GAPP) 1 was a single hipSIMD proessor whih onsisted of a ontrol unit and a 6x12 array of PEs onneted1Part number NCR45CG72.

- 281 -by a two-dimensional NEWS network. A brief desription of the GAPP an be foundin [145℄ whih explains its use in a partiular appliation.The PEs were bit-serial full adder/subtraters whih ould perform basi arith-meti and logial operations. Operands were drawn from a set of four 1-bit registerswhih bu�ered data that was either drawn from a set of ommon memory lines or theNEWS network, or was generated as arries or borrows during arithmeti operations.The generated output inluded the sum (SM), arry out (CY), and borrow (BW)bits.A set of �ve multiplexers were used to hoose the soure of the data lathed duringthe exeution yle. These were hosen from any of the registers, the ALU outputs,or the data inoming over the interonnet. Data ould also be moved between thehost proessor and the PEs' loal memories via a set of ommon data lines, alledCMN and CMS.Eah PE had a relatively small 128-bit loal memory, addressed by a 7-bit imme-diate �eld in the instrution opode. This meant that all PEs addressed the sameloation in their loal memories during memory aesses.GAPP hips had a set of I/O ports whih allowed them to be onneted intolarger proessing arrays. This allowed the hip to be used by others to develop largersystems. One example is the systoli array onstruted by Morley and Sullivan [145℄.While the GAPP proessor is over a deade old as of this writing, it is still in use.A urrent video proessing/onversion system, the TeraNex video omputer [146℄ isbased on the sixth generation of the SIMD miroproessor whih was introdued in1998 by Lokheed Martin Eletronis and Missiles. This proessor, alled the GAPPVI, is implemented as a single hip with 1k PEs in a 32x32 mesh. These an beombined in a 32x32 array for a total of over one million PEs.The GAPP is atually a full SIMD arhiteture on a hip, and represents a morepowerful arhiteture than the SWAR arhitetures we are onerned with in thisresearh. If multimedia, espeially image proessing, ontinues to be a driving fore

- 282 -in omputing design, then the GAPP and similar arhitetures may move into theommodity market. For now, they are used in speialized arhitetures.GF11The IBM GF11 [124, 125, 126℄ was a pipelined SIMD parallel proessor designedfor verifying researh in quantum hromodynamis. It had 576 pipelined PEs withhigh-speed register �les. Eah of these had 64KB of high-speed memory and 256KB oflower-speed memory. The lower-speed memory was expandable to 2MB per proessor,allowing up to 1.125GB in total.Possibly the most interesting feature of the GF11 was that the PEs were fullyinteronneted via a non-bloking Bene�s network [127℄. This network had three stagesof 24x24 rossbars and allowed the PEs to be onneted in any arbitrary permutationin order to share data. Thus, the PEs ould be onneted in a large number of variousmulti-dimensional shapes.CM-1The Thinking Mahines Corporation's �rst \Connetion Mahine", the CM-1 [128,129, 130℄, was another massively parallel SIMD system onsisting of a parallel pro-essing unit whih ontained a very large array of PEs, a front-end host omputerwhih read instrutions from its memory and issued nanoinstrutions to the PEs, andinteronnetion networks between the PEs and between the PEs and the front end.The CM-1 had up to 64k PEs { signi�antly more than previous arhitetures.These were bit-serial ALUs whih ould perform any of 232 funtions on their inputs.Eah PE had a private memory from whih two input bits were taken and a set ofags from whih a third input bit was drawn. Output onsisted of one bit whih wasstored in memory and another whih was stored in the ags register.Conditional instrutions on the CM-1 were exeuted based on the value of a spei-�ed proessor ag. For eah PE, if this ag had a spei�ed value, then the instrution

- 283 -was exeuted; otherwise, it was skipped. Thus, like the ILLIAC IV, onditionals wereperformed on an instrution-by-instrution basis, with no sense of nesting.The CM-1 had multiple interonnetion networks. A NEWS network onnetedthe PEs in a two-dimensional mesh and moved bits between neighboring PEs' ags.This was used for short distane and regular pattern ommuniations. A global ORnetwork ombined data from the PEs into a single salar value that was passed tothe front-end. This provided aggregate data to the ontrolling system.The most interesting of the CM-1's interonnets was, however, an adaptivepaket-swithed hyperube network. It allowed any set of PEs to ommuniate withany other set in an irregular pattern. This network was signi�antly more omplexand powerful than those of earlier systems, whose interonnets did not allow suhgeneral ommuniation.Messages on this network passed through a paket-swithed adaptive router. Eahset of 16 PEs was onneted to a single router node, and these nodes were onneted toform a hyperube. Collisions within the hyperube were resolved by using other paths;thus, the router network adapted to internal loading. However, beause multiplePEs were onneted to a single router node, ontention for aess to the router waspossible, and bloking ould our as a result.In relation to SWAR arhitetures, use of the router network is analogous to ex-euting a generalized permutation instrution. These instrutions allow any typeof permutation of the data �elds in a CPU register to be seleted inluding replia-tions. Thus, they an be used to perform broadasts and generalized ommuniationsbetween �elds just as the CM-1's router network ould be used for interproessor om-muniation.The CM-1 represented a return to the ideas behind the Goodyear MPP, but withthe addition of the hyperube network to failitate the types of ommuniation thatthe MPP was weak at. This allowed the CM-1 to be used for problem types that theMPP performed poorly on.

- 284 -CM-2 / CM-2a / CM-200The Thinking Mahines CM-2 [131, 130℄, CM-2a, and CM-200 were updates ofthe CM-1 with various sizes and options 2. The CM-2 ould have 16k, 32k, or 64kPEs, while the the CM-2a ould have 4k or 8k PEs. \CM-200" may have been thename assigned to a version with oating-point o-proessors. The basi arhiteturewas essentially the same as that of the CM-1, although there were some signi�antmodi�ations.One di�erene was the addition of a sequener between the front end system andthe PE array. It read instrutions from the front end system and issued nanoinstru-tions to the PEs, thus taking over this part of the duties of the CM-1's front-end.The broadast and salar memory buses whih had previously onneted the PEs tothe front-end now onneted them to the sequener instead.A seond di�erene was the modi�ation of the global OR network to a moregeneral ombinatorial network whih onneted the PE array to the sequener. Thisnetwork ould perform global redutions suh as maximum, summation, and logialAND on the PE data to form a single value whih the sequener then reeived. Thiswas a signi�ant advanement over the previous global network, and ould be usedto gather more diverse information about the system's aggregate state. In relationto SWAR arhitetures, this was the equivalent of adding advaned redutions to theinstrution set.Another di�erene was the modi�ation of the NEWS network. First, it wasextended from a two-dimensional mesh to an n-dimensional mesh implemented on topof the existing hyperube. This upgrade allowed regular ommuniations patterns inmultiple diretions. Seond, it was modi�ed to perform sans and spreads. Sans,whih are also known as parallel pre�x operations, are redutions in whih the runningsubresults are retained. Spreads are operations whih repliate a value throughout2While the literature is somewhat ontraditory with respet to the features of the various Conne-tion Mahine implementations, the spei�s are not ruial to the understanding of this thesis.

- 285 -the PE array. These operations are often used in data parallel proessing, espeiallywhen a alulation is split-up between PEs.In terms of SWAR arhitetures, no urrent system performs sans, although theyan usually be emulated rather easily, but expensively, using shifts. Spreads are foundon some arhitetures, while others attempt to obviate them by inluding instrutionswhih use a single data �eld as a salar operand to eah of the elemental operationswhih omprise the vetor instrution.Operations on multibit data were exeuted bit-serially within the CM-2's 1-bitALUs, while single- and double-preision oating-point operations were proessed onan optional oating-point aelerator. This onsisted of one oating-point memoryunit and one oating-point proessing unit per pair of proessor hips (i.e. one a-elerator per 32 PEs). The memory unit ated as a glue hip whih onverted databetween a olletion of 32 single bits or 32 pairs of single bits and a single- or double-preision oating-point value that the proessing unit ould operate on. Thus, itworked similarly to the MPP's bit-slie proessor.An analysis of the CM-2 and its use at the Researh Institute for AdvanedComputer Siene (RIACS) at NASA Ames Researh Center, written by RobertShreiber [195℄, provides a more in-depth analysis of the system's utility, strengths,and weaknesses.BLITZENThe goal of the BLITZEN [148℄ projet at the Miroeletronis Researh Centerof North Carolina was to develop a miniaturized massively parallel proessor. Suha proessor was expeted to be eonomial and easily attahed to, or embedded in,other systems. While the hip layout was submitted for fabriation, it appears thata prototype system was never built [196℄. Despite this, the arhitetural de�nition isinstrutional.

- 286 -Eah hip ontained an 8x16 array of bit-serial PEs driven by an on-hip ontrolunit. The ontrol unit onverted mirooded routines into the ontrol signals for thearray. These routines were stored in a ontrol memory and ould be loaded from thehost mahine via an external interfae. This interfae ould also be used to transferdata between the hip and the host's peripherals.The PEs had essentially the same design as those of the MPP, but employed vari-ous modi�ations. One was a redesign of the shift register to make it bidiretional andto limit the shifted bits to a seleted set, thus proteting the data in the unseletedbits. This made the register more generally useful and allowed parts of it to be usedfor temporary storage and address indexing. Another modi�ation was the extensionof masking to all memory aesses. A third was the addition of omplementary ondi-tional operations. These performed either the spei�ed operation or its omplementdepending on the value of a ontrol bit on eah of the PEs. This allowed the PEs totake opposite ations simultaneously, and ould be used to simplify ertain ontrolstrutures.Eah PE had 1kb of loal on-hip memory whih was individually addressableusing the ontents of the PE's shift register as an o�set to the globally suppliedaddress. This was done by bitwise ORing them together, and required that theglobal address be aligned on a 10 bit boundary. This memory organization hadtwo advantages over that of the MPP. First, it was more exible beause it allowedits PEs to aess di�erent loations in memory. Seond, the BLITZEN design wastheoretially faster beause memory aesses were on-hip and thus didn't su�er fromo�-hip delays.Data ould be transferred over a set of 4-bit buses, eah of whih onneted arow of 16 PEs and provided a port for memory aesses. This allowed memory to beaessed in 4-bit bloks during row I/O operations. An innovative interonnetionnetwork alled the X-grid was also inorporated in the design. This network onnetedeah PE with eight nearest neighbors: its four NEWS neighbors and its four diagonal

- 287 -neighbors. The X-grid was more exible than a NEWS grid, yet was signi�antlysmaller than a full routing network and required fewer I/O pins.Eah PE had four onnetions | one leaving eah of its four orners. Every fourneighboring PEs whih formed a square were onneted via their orners within thesquare in an X onnetion. By hoosing whih orners the PEs would send data out,and from whih they would read data in, the X-grid ould be used to onnet thevertial, horizontal, or diagonal pairs of PEs. The unused lines would be e�etivelydisonneting by plaing them in a high-impedane state.Like the GAPP, the BLITZEN arhiteture was an attempt to plae a full SIMDarhiteture on a single hip and represents a possible future diretion for ommodityproessors.MP-1 and MP-2The ompute engine of MasPar Computer Corporation's MP-1 [132, 133, 134℄ wasalled the data proessing unit (DPU). The DPU onsisted of a PE array of between 1kand 16k nodes, an Array Control Unit (ACU) whih also performed salar arithmeti,and multiple interonnetion networks.While the arrayed PEs were 4-bit ALUs, miroode was used to make them behave,from a programming perspetive, as 32-bit proessors. Thus, the MP-1 was anotherompromise arhiteture, falling between the massively parallel 1-bit mahines andthose with fewer, more powerful PEs. Eah of the MP-1's PEs had forty 32-bitregisters and was onneted to its own loal memory of between 16 and 64 kB.Floating-point support onsisted mainly of fast normalization hardware whihdereased the time needed to normalize the integer mantissa and exponent partsof the operands. This sped-up what is often the slowest part of a oating-pointoperation. Floating-point data ould be single- or double-preision, and ould be inVAX or IEEE formats.

- 288 -Communiation between the PEs ould be aomplished in two ways. First, anX-net provided straight-line ommuniation in any of 8 diretions. This may havebeen a re-invention of the BLITZEN X-grid or an independent invention by MasPar.Either way, it provided the same level of interproessor ommuniation and had thesame advantages as the BLITZEN X-grid.Seond, a three-stage global router network, similar to that of the CM-1, allowedsimultaneous, independently-indireted, duplexed ommuniations between pairs ofPEs. The PEs were grouped in lusters of 16, with eah luster having a singleonnetion to the router network. This onnetion was multiplexed between the PEsin the luster, and operated in a bit-serial fashion.As in earlier arhitetures, ommuniation between the PE array and the ontrolunit was also provided for. Communiation from the ACU to the PEs took plae overa broadast network, and ommuniation from the PEs to the ACU took plae overa global OR network.As a later SIMD array arhiteture, the MP-1 bene�tted from many of the lessonslearned from previous arhitetures. While similar to the CM-1 and CM-2, the MP-1'sarhiteture was more of a ompromise, ombining a fairly large number of proessorswith a reasonable amount of memory and multiple types of interonnetion networks.The MP-2 was essentially a saled-up version of the MP-1 whih had thirty-two 32-bitPEs per hip with a oating-point unit attahed to eah PE. Thus, it too representeda ompromise between the two extremes in SIMD array arhiteture.SummaryThe purpose of this disussion was to develop an understanding of historial SIMDarray arhitetures so that we may better understand the relationship between themand modern SWAR arhitetures. This should make it easier to set reasonable goalsand avoid pitfalls while designing a SWAR proessing model.

- 289 -SWAR proessing is a limited form of SIMD implemented within a single miro-proessor. A traditional SIMD array arhiteture onsists of a ontrol unit, a pro-essing array, memory, and an interonnet. Eah of these has a SWAR arhitetureounterpart. We will briey disuss the relationships between them.The primary task of a SIMD ontrol unit is to read instrutions and deode theminto ontrol signals for the proessor array. In a SWAR arhiteture, the analogue ofthe ontrol unit is the normal CPU instrution issue mehanism. An instrution isread from a single instrution stream in memory and deoded into a set of ontrolsignals. These signals speify a single operation to be performed by the ALU or otherfuntional units. They also turn o� logi suh as the arry and borrow hains toensure that the operation ats independently within eah of the �elds of the a�etedregisters.In a SWAR arhiteture, eah register �eld an be thought of as a small, ompleteregister residing on one of the PEs of a SIMD system. The set of �elds loated in thesame position aross the set of CPU registers an then be thought of as a partiularPE's register set. That PE onsists not only of this set of register �elds, but also ofthat part of the CPU's data path whih operates on them. Thus, a SWAR systeman be thought of as a one-dimensional linear array of PEs.Thus, a SWAR system is really a vetor parallel proessor in whih vetor ele-ments are stored in the �elds of the CPU registers. In ontrast, traditional SIMDsystems were usually multi-dimensional array proessors with eah PE holding onearray element in eah of its registers. This implies that many of the problems thatmap easily to SIMD array proessors will not map easily to SWAR arhitetures.In a typial SIMD array proessor, eah PE had a loal memory whih was oftenshared by, or at least aessible to, the ontrol unit. On a SWAR system, data isloaded or stored in hunks that are often larger than a single �eld. For example, aload that mathes the size of the partitioned register is equivalent to all of the SWARPEs loading a value from the same address of a banked memory. In this sense, mostSWAR memory systems are similar to that of the ILLIAC IV.

- 290 -On most SIMD arhitetures, a PE's loal memory was not available to the otherPEs. Continuing this analogy, on most SWAR arhitetures a PE annot diretlyaess data from another PE's part of memory. This is beause loads and stores areusually performed on word-sized entities and preserve the bit ordering of the data.An aess of another PE's memory slie would be equivalent to performing suh aload with a simultaneous shift of the data to the desired position.In some SIMD arhitetures, the ontrol unit also ated as a salar unit. In SWARproessors, non-SIMD instrutions treat the ontents of the registers as single valuesregardless of their origins or any earlier partitionings. If the ALU is thought of asa salar unit when exeuting normal instrutions, it is one with diret aess to theglobal memory onsisting of the PEs' loal memories. This is true only if the arhi-teture supports instrutions whih operate on the entire register ontents. Often,this is not the ase, and is a weakness of several of the urrent SWAR arhitetures.One of the weaknesses in early SIMD array arhitetures that was addressed inlater generations was the lak of suÆient ommuniations apabilities. Early meshsystems were suÆient for regular ommuniations patterns, but it beame lear thatmore generalized apabilities were needed. As SIMD systems evolved, more omplexinteronnets were developed to provide these apabilities.Most SWAR arhitetures have the one-dimensional equivalent of a NEWS net-work whih an be emulated using logial shifts and rotates; but few have any equiva-lent to the general ommuniation apabilities of a full router network, whih requiressome form of permutation instrution. Beause of this, a good portable model shouldprobably avoid this generality, at least until SWAR arhitetures mature a little more.One other aspet of SIMD proessing requires disussion. As with SIMD vetorproessors, SIMD array proessors had to inorporate some means of allowing separateontrol paths to be taken by di�erent PEs. In most systems this was done by turningthe PE o� on an instrution-by-instrution basis. Usually, this was done by theontrol unit, but in some ases the PEs ould turn themselves o� based on the statusof an exeuted instrution. SWAR arhitetures do not have equivalent funtionality.

- 291 -SWAR instrutions are exeuted aross an entire register; thus, all SWAR PEs exeutethe same instrution.Other SIMD systems allowed the PE to exeute the instrution, but prevented theside-e�ets of exeution from ourring. Some SWAR arhitetures employ maskedstores to aomplish this. These operations store only those register �elds whih areseleted by some type of mask. As long as the data preision used mathes one ofthe hardware-supported �eld sizes, masked stores an be used to blok unwantedside-e�ets during onditional exeution.Where no hardware support for onditional exeution is available, arithmeti nul-li�ation must be used to blok the e�ets of exeution on those PEs for whih theondition doesn't hold. This was used on some SIMD systems, and an also be usedon SWAR arhitetures. Arithmeti nulli�ation is also neessary if the data preisiondoesn't math any supported �eld size.It is lear that SWAR arhitetures, while similar to traditional SIMD systems,also di�er from them in signi�ant ways. SWAR arhitetures are less mature andmore restrited than the later SIMD systems. As we disuss the spei�s of ommoditySWAR arhitetures in the next hapter, we will be able to do so with a perspetivegained from knowledge of past SIMD arhitetures.
Reon�gurable ArhiteturesSWAR arhitetures are also related, though less losely, to reon�gurable arhi-tetures. These are arhitetures whose proessing model or logial on�guration anbe hanged without atually hanging the hardware, either as the mahine is runningor between runs. A detailed study of these arhitetures is unneessary; however, wewill briey disuss two in order to ompare and ontrast them to SWAR arhitetures.

- 292 -PASMThe PArtitionable SIMD/MIMD (PASM) system [197, 198℄ was a dynamiallyrepartitionable arhiteture in whih the system ould be partitioned, while running,into several smaller SIMD and/or MIMD systems to perform separate parallel tasks.As the needs of the tasks hanged, the system ould be reon�gured on the y. Thisallowed multiple proesses to use the array simultaneously, and in a manner that best�t their needs.SWAR arhitetures, by ontrast, are muh less exible than was PASM. SWARsystems are always SIMD and are not partitionable into separate parallel subsystems.They an, however, dynamially hange preision and parallelism by hanging howtheir data paths are partitioned into logial PEs.Reon�guration on PASM was expliit, meaning that a program exeuted a sep-arate instrution to set the on�guration of the system, then exeuted other instru-tions under that on�guration. Reon�guration on a typial SWAR arhiteture o-urs impliitly with every multimedia instrution exeuted. The multimedia instru-tion determines the on�guration of the system, but only during is own exeution |no state is maintained between instrutions.While modern SWAR arhitetures share some hardware aspets with PASM, thefous of this researh is the development of a programming model for systems inwhih the partitioning of individual registers is dynami. SWAR arhitetures aredynamially partitionable not in the sense of tasks, like PASM, but in the sense ofthe layout of �elds in the register set. Thus, while a study of arhitetures suh asPASM's an provide insight into the design of modern miroparallel arhitetures,they are not partiularly relevant to the urrent work.TRACThe Texas Reon�gurable Array Computer (TRAC) prototype onsisted of four8-bit proessing elements onneted to nine memory modules via a Banyan net-

- 293 -work [126, 199℄. To perform an operation, the network swithes were set to forman instrution tree rooted at one of the memory modules whih would be used tosend instrutions to a set of PEs. A set of separate data trees rooted at eah of thesePEs were also formed. These were used to aess data during the operation.A more important feature of the TRAC from the perspetive of SWAR proessingwas its varistruture. This allowed PEs to be ganged together to perform higher-preision operations. The TRAC's PEs were byte-slie (i.e. 8-bit) proessors whihould be ombined to perform operations on data sizes whih were multiples of eightbits. Beause the prototype had only four proessors, it was limited to 8-, 16-, 24-,and 32-bit operations, but would allow any ombination of data preision and set sizewhose produt was limited to 32.TRAC was an extension of the Reon�gurable Varistruture Array Proessor [200℄.For this arhiteture, the preision and vetor sizes were spei�ed by the programmervia dimension delarations. The trees were then built, with the PEs ganged togethervia exposed arry networks. By passing the arry signals between PEs, multi-bytepreision objets were formed, and by bloking the arry signals multiple elementsof a vetor were formed. This is similar to modern SWAR arhitetures whih alsoontrol the arry hain to reate sets of equivalent elements of various sizes.A later version, TRAC 2.0, was built at a time when 32-bit miroproessors werea�ordable enough to use as the PEs. Varistruture, whih ombined byte-slie pro-essors to form multi-byte objets, was no longer needed. Eah PE in the TRAC 2.0design ould handle 32-bit and smaller objets itself. Beause of this, the TRAC 2.0design is not partiularly relevant to SWAR proessing.Early Forms of SWAR ProessingSWAR-like proessing is not a new onept. Various forms have been used toexploit limited mahine resoures suh as memory and register spae for some time.

- 294 -As demonstrated in this hapter, both the ILLIAC IV and the MPP ould performdatapath partitioning to operate on data in a SWAR-like fashion.In fat, James Gleik indiates in \Genius" [201℄ that Stanley Frankel, a mathe-matiian at Los Alamos during the seond World War, modi�ed IBM 601 multipliers,whih performed a single ten digit multipliation, to perform three separate threeor four digit multiplies simultaneously. This was learly a form of SIMD proessing,and, depending on the design of the multipliers, may even have been a form of SWARproessing. I have not been able to obtain more spei� information on this work,nor was Mr. Gleik able to guide me to the original soure of this information 3, so Iannot on�rm this.Early work in applying this form of proessing to miroproessor systems fousedon enhaning these proessors with on-hip graphial hardware. These were latergeneralized into the multimedia extensions urrently in use. A short history of SWAR-like multimedia extensions is given in [29℄. There is also some disussion of earlySWAR-like arhitetures in [202℄. In this setion, we will disuss some of these earlySWAR proessors.Intel i860In 1989, Intel introdued the i860 miroproessor [203℄. This was the �rst general-purpose miroproessor to inorporate SIMD-style instrutions for graphis proess-ing [202℄. This funtionality was intended to aelerate \bak-end rendering opera-tions" suh as \shading and hidden surfae removal." [203℄The i860 had a three-dimensional graphis proessing unit that ould operatesimultaneously on a set of pixels stored in any of its 64-bit oating-point registers.When used in this manner, these registers were partitioned into sets of eight 8-bitpixels, four 16-bit pixels, or two 24- or 32-bit pixels.3James Gleik, email to author, 19 Deember 2001.

- 295 -A set of ten graphis instrutions were supported by the i860 whih performedoperations suh as z-bu�er heks, pixel intensity interpolation, and z-distane inter-polation. These were used for determining whih pixels were losest to the viewer,and therefore must be visible, and for rendering unstored, but visible, points betweenpolygon verties.Motorola 88110The 88110 [204℄, introdued by Motorola in 1992, had a set of about nine SIMDinstrutions for performing \...�xed-point shading and image proessing." These in-strutions operated on pixel or olor intensity data stored in the 88110's 64-bit generalregisters. The 88110 had separate pak/unpak and arithmeti units and ould issuean instrution to eah on every lok yle.Graphial data was normally stored as \pixels" in paked format. These onsistedof four 8-bit integer values stored as a 32-bit entity. It appears that these werenormally operated on in an \unpaked" format with four 16-bit �xed-point valuesstored in a 64-bit register. Instrutions for unpaking pixel data into �xed-point formand paking �xed-point data into pixel form were inluded.The 88110 allowed modular and signed or unsigned saturation addition and sub-tration on 8-, 16-, and 32-bit unpaked �xed-point data. Modular arithmeti refersto operations in whih only the bits that an �t into the assigned storage spae arestored. Overow bits are ignored, although side e�ets suh as the setting of ondi-tion odes may our. This is equivalent performing a modulus operation after thearithmeti operation, and is how arithmeti is traditionally handled on omputingsystems.Saturation arithmeti refers to operations in whih overow is prevented by settingthe result of an operation to the maximum storable value of the same sign when anoverow would have ourred and to the minimum storable value of the same signwhen a negative overow would have ourred. Signed saturation refers to performing

- 296 -saturation arithmeti while treating the data as signed values. Unsigned saturationrefers to performing saturation arithmeti while treating the data as unsigned values.Multipliation of �xed-point data by an 8-bit integer salar value was also sup-ported. This instrution multiplied eah 16-bit unpaked �xed-point �eld by the same8-bit value to form a set of 16-bit results stored in unpaked �xed-point form. Thisallowed olor intensity values to be saled simultaneously by the same amount.Other instrutions inluded rotation of the �elds of a register by a onstant orvariable amount and z-bu�er omparison operation. The rotate ould operate on 4-,8-, 16-, and 32-bit �elds, presumably in unpaked form.Texas Instruments MVPIntrodued in 1992, the Texas Instruments multimedia video proessor (MVP) [116℄was a single-hip parallel proessor intended for \...general integer DSP or bit andpixel manipulation...." The arhiteture allowed for one to eight parallel proessingunits ontrolled by a \master proessor".Eah parallel proessing unit had a 32-bit ALU whih ould perform arithmetioperations in a SWAR-like manner. These were referred to as \split ALU" operationsand ould be performed on either two 16-bit or four 8-bit register �elds simultaneously.It is unlear from [116℄ exatly whih operations ould be performed in this manner.The MVP was a highly speialized high-performane arhiteture intended forDSP and graphis manipulation algorithms. I am unsure if any proessor was everbuilt based on this arhiteture.Parallel Programming LanguagesBeause SWAR arhitetures implement a limited form of SIMD proessing, itmakes sense to try to develop a SIMD-like abstrat model to program them. How-ever, it is lear that past SIMD arhitetures di�er somewhat from modern SWARarhitetures. Beause of this, the programming models developed for SIMD mahines

- 297 -may not work well with SWAR arhitetures. Also, while SWAR arhitetures aresimilar to SIMD arhitetures, their operation more losely �ts the one-dimensionalvetor proessing model than the multi-dimensional array proessing model. In orderto develop a good SWAR programming model, it is best to have some understandingof both.A large number of programming languages have been developed for programmingvetor and SIMD parallel proessors. In this setion, several of these are disussedin order to gain an understanding of vetor and SIMD programming models andhow they have been embodied in these languages. Having an understanding of therelationship between these models and languages will be useful when developing ausable SWAR proessing model. We will also borrow from these languages to developan experimental SWAR programming language.Most parallel programming languages are based on previously existing omputerlanguages, so it is useful to group them into families of languages whih are based ona ommon anestor.APL-based LanguagesAPL [162, 205℄ was developed starting in early 1956 \as a tool for desribing andanalyzing various topis in data proessing, for use in teahing lasses, and in writinga book...." [206℄ APL is rooted in mathematis and has a syntax similar to that ofalgebrai notation. Thus, APL programs are essentially mathematial expressions.In APL, vetors and arrays are \�rst-lass" objets. This means that the languageallows the programmer to onisely desribe the task at hand as simple high-leveloperations on vetors and arrays rather than as a series or loop of low-level operationson their individual elements. This, in turn, makes it easier for a ompiler to reognizeparallelizable operations.Vetors and arrays are operated on using a set of primitive \funtions" (oper-ations) whih are de�ned in an implementation-independent manner [207℄. These

- 298 -inlude arithmeti, Boolean, and relational operations, and other operations suh asarray element seletion. Operations on salars are extended in a onsistent way toarray operands and handle them in elementwise fashion. These operations have no\side e�ets" whih are hidden from the programmer and are thus well-suited toparallelization.APL also introdued several advaned features. These inlude redution and san(parallel pre�x) operators. Redutions ombine the elements of a vetor or array toform a single salar result. For example, adding all the elements of an array together.Sans are redutions in whih eah of the intermediate results is also kept, not justthe �nal result. For example, keeping the running total for the above example as eahelement is added in. Other features were an \axis" modi�er whih indiated that anoperation was to be applied aross the rows or olumns of an array, and inner- andouter-produt operators whih resulted in a salar or array respetively.Beause of its mathematial basis and onsistent treatment of salar, vetor, andarray objets, APL might be a good hoie for SWAR proessing. However, APLhas several aspets whih make it less desirable as a basis for a SWAR language.For one, it is a dynami language. Array types and dimensions are often undelaredand must be determined by the ompiler [126℄. Also, variable types may hangeduring proessing. While these features make APL versatile, they also make buildinga properly working ompiler for it a diÆult task.APL also makes use of symbols that are not part of a modern miroomputer'srepertoire. Its harater set is based on that of the IBM 1050 terminal and inludesa number of symbols not available in the ASCII harater set whih is used on mostmodern systems. Finally, APL di�ers signi�antly from the languages most oftenused by programmers in the high-performane area. This may be the most damning,as programmers tend not to use unfamiliar languages no matter how well designedthey are. For these reasons, the SWAR model presented in this thesis will drawfrom APL's strengths, but our inarnation of it will be based on a more universallyaepted language.

- 299 -APPLE [208℄ was intended to be a general-purpose parallel language for theILLIAC IV. Like APL, it was highly dynami and allowed operations on vetors andarrays to be desribed eÆiently. These would be performed in parallel on the PEarray. While this language may have been useful for SWAR proessing, the projetwas abandoned after proving to be too diÆult to implement orretly for the ILLIACIV [126, 152℄.ALGOL-based LanguagesALGOL [164, 165℄ was developed in the late 1950s. It was intended to be a well-designed, mahine- and appliation- independent language for expressing algorithmswith oniseness and struture.ALGOL was the �rst blok-strutured language [126℄. It allowed programs to behierarhial and better organized than those written in earlier languages suh as FOR-TRAN. It also allowed for dynamially alloated loal variables, reursive proedures,and all-by-value and all-by-name parameters [209℄. This struture had a prie inthat ode written in FORTRAN tended to be ompiled to more eÆient mahineode. Thus, programmers onerned with performane tended to use FORTRANinstead.ALGOL has been the basis for muh theoretial work in omputer languages, andhas inuened the design of many subsequent languages. ALGOL was a sequentiallanguage, but at least one parallel language, GLYPNIR, was based diretly on it.GLYPNIR [163℄ was a general-purpose language intended to provide a stable,eÆient method of programming the ILLIAC IV. Designed in 1968, it was one ofthe �rst attempts at the development of a true SIMD language. GLYPNIR was anextension of ALGOL 60 whih allowed parallelism to be expressed expliitly in termsof 64-word vetors (the size of the ILLIAC IV's PE array).GLYPNIR di�erentiated between what were alled CU variables and PE variables.CU variables represented salars and vetors of salars that would normally reside

- 300 -on the ILLIAC IV's ontrol unit, while PE variables represented swords or vetors ofswords (sword vetors) residing on its PE array. A sword was the group of 64 words atthe same address in eah of the PEs' loal memories. A sword vetor was a olletionof swords ontiguously alloated on eah of the PEs.PE variables were �rst-lass objets, and operations on them were exeuted inparallel aross the PE array. Using PE variables to index a sword vetor alloweda slie to be aessed. This was a group of 64 words residing on the PE array atpossibly di�erent loal addresses in eah PE. Thus, GLYPNIR allowed what wouldlater be alled \vetor-valued indexing" or \vetor indexing" of a vetor or array.GLYPNIR allowed data to be stored in a paked format along the same lines asmodern SWAR arhitetures. The partitioned objet was represented by an identi�er,but ould not be operated on in a SWAR manner. An individual piee of data wasaessed by modifying the identi�er with a bit �eld spei�er whih de�ned the rangeof bits to be aessed. A sword of bit �elds ould be operated on in parallel just aswith any other type of sword.IF and ELSE statements were parallelized, with impliit PE enabling, if theironditional tests were PE expressions. This was also true for FOR, DO, and WHILEloops. A FOR ALL onstrut was added as an alternative equivalent syntax for theparallelized IF. These onstruts allowed the programmer to express parallelism usingfamiliar means.GLYPNIR also inluded the Boolean quanti�ers SOME and EVERY whih ould beused to test aggregate onditions and provide a salar result. These were TRUE if aondition was TRUE for some or all of the tested elements, respetively.Unfortunately, GLYPNIR was not designed to hide the arhiteture of the ILLIACIV from the programmer. In fat, quite the opposite was true. PE variables alwaysde�ned a set of 64 objets whih were spread aross the width of the mahine'sproessor array. Operations on larger data sets had to be strip-mined (i.e. split into aseries of operations on smaller parts of the data set) by the programmer to �t within

- 301 -this limit. This exposure of the arhiteture makes GLYPNIR unsuitable as a basisfor a portable SWAR model.FORTRAN-based LanguagesThere are a large number of parallel proessing languages based on FORTRAN(the FORmula TRANslation system). This language was developed by a group atIBM led by John Bakus in the mid-1950's [210℄. It was originally designed as a meansto program the 704, a ommerial SISD omputer, in a manner whih more loselyrepresented the sienti� problems of the end-users than other languages of the time.In later inarnations, the name was hanged to Fortran to signify the aeptane ofase-sensitive soures.Fortran has a long history as a language for sienti� and tehnial omputing,and has been in ontinual use sine its ineption. The proverbial \dusty deks" ofpunh ards are typially Fortran soures that few people want to make signi�anthanges to unless there will be suÆient pay-o�. As a result, muh researh hasentered on onverting sequential soure ode into vetorized or parallelized mahineode. This is typially done by parallelizing the iterations of ode loops.As arhitetures evolved, so did Fortran. Newer versions of the language treatarrays and vetors as �rst-lass objets. Thus, looping onstruts are no longer ne-essary for desribing vetor and array operations. Unfortunately, muh of the dustydek ode is still written as looped onstruts. Thus, while Fortran has grown toallow new paradigms, it has also been fored to ontinue supporting the old ones.Beause of its history, Fortran is the most widely used language for high-per-formane omputing. This same history has also transformed it into a large andunwieldy language with many arhai features whih are only slowly being removed.This makes Fortran a non-optimal hoie for the basis of a new programming model.Despite this, muh an be learned from its evolution, so it is worth studying. In

- 302 -this setion, we will onentrate on desribing versions of Fortran used on vetor andSIMD proessing systems.ILLIAC IV FORTRAN [150℄ by Burroughs Corporation was developed some-time before 1968 and was the earliest parallel version of FORTRAN for the ILLIACIV [154℄. This language introdued some simple onstruts for supporting parallelproessing whih were used in later languages.Parallelism was supported via a notation in whih an asterisk was used as anarray index. This indiated that operations on the array should be applied to eahof its elements in parallel. Thus, arrays ould be treated almost as though they were�rst-lass objets. Some later versions of Fortran used a similar notation. We willrefer to the use of this notation as wildard indexing.ILLIAC IV FORTRAN also introdued the use of \ontrol vetors" as array sub-sripts to indiate onditional exeution. Eah element of a ontrol vetor had eithera .true. or .false. value. When used as an array subsript, the value of eah ontrolvetor element indiated whether or not operations were to be performed on the or-responding element of the array. This allowed elementwise onditional operations tobe written as operations on arrays rather than as loops of onditional salar ode.These onstruts provided rudimentary support for parallel proessing, but weresomewhat restritive. Later parallel dialets of FORTRAN would build on this start-ing point and were signi�antly more omplex.IVTRAN [159℄ was an extension of ILLIAC IV FORTRAN whih allowed moreomplex parallel operations to be performed on arrays of integer or oating-pointdata. This was done by adding new looping and data alloation onstruts whihhelped the ompiler to �nd and extrat useful parallelism.The primary mehanism for expressing parallelism was a new DO FOR ALL on-strut whih was somewhat similar to a DO loop. This onstrut indiated that ertainassignments within the loop were logially simultaneous and ould therefore be par-allelized. These assignments were denoted as salar element assignments and wererequired to be of a ertain form.

- 303 -Rather than having a single index variable as with standard Fortran DO loops, DOFOR ALL loops ould be indexed over a set of variables alled a \ontrol multi-index".Eah member of this set represented an axis of the objet or objets to be aessed.A related logial expression spei�ed a range of values for eah axis to be operatedon. The values thus spei�ed were alled the \index set". This allowed a subarray tobe seleted for parallel operation within the loop body. PE enabling for the seletedelements was handled impliitly.Using IVTRAN required having knowledge of the ILLIAC IV's arhiteture. Toahieve eÆient speedup, the data had to be laid-out so that it ould be aessed inparallel. This required the programmer to struture arrays to math the underlyingarhiteture. Two onstruts were provided to help in this endeavor. The �rst, anoptional alloation delaration, allowed the programmer to speify the layout of anarray. The seond was an OVERLAP spei�er whih allowed an array to be transformedbetween multiple layouts in plae during proessing.While IVTRAN had ertain features whih may be useful in a SWAR model, theexposure of the arhiteture made it non-portable, and thus not useful in the urrente�ort. The language also had a short life, having been replaed by CFD soon afterthe ILLIAC IV was delivered to NASA [126℄.CFD [151, 152℄ was a FORTRAN-based language designed primarily to allowomputational uid dynamis ode to be ported to the ILLIAC IV (hene the name).CFD was not intended to be a general-purpose language and was intentionally tiedto the underlying arhiteture. This allowed programmers in NASA's CFD researhbranh to optimize ode for the ILLIAC IV target.Parallelizable \vetor-aligned" arrays of up to three dimensions were allowed, butthe �rst dimension was required to be less than or equal to the number of PEs.Parallel operations on these were pseudo-�rst-lass using a wildard indexing shemesimilar to that of ILLIAC IV FORTRAN. This was extended to allow expressionsover wildards to denote rotations of the indexed objet.

- 304 -Salars and non-parallelizable arrays resided on the CU and operations on themwere performed there. These were thus limited to the operations whih the CU ouldperform, while a di�erent set of operations ould be performed on the vetor-alignedarrays residing on the PEs.Thus, the language not only required the user to have knowledge of the targetarhiteture, it odi�ed the di�erenes between its funtional units. These issuesmake CFD unsuitable for use as a basis for a portable programming model.Despite this, CFD did have ertain features whih ould be inorporated into amodern SWAR programming model. Like GLYPNIR, CFD had used CU and PE stor-age lass modi�ers whih expliitly indiated where the data should be stored. LogialIF statements with parallel onditionals were parallelized and impliitly handled PEenabling, thus hiding these issues from the programmer. Finally, expliit .ANY. and.ALL. quanti�ers, whih were similar to GLYPNIR's SOME and EVERY tests, ouldbe used to obtain aggregate information. CFD expanded upon these with new .NOTANY. and .NOT ALL. quanti�ers whih performed omplementary tests.TI-ASC NX Fortran [149, 154℄ was a vetor Fortran developed for the TexasInstruments Advaned Sienti� Computer | a parallel pipelined vetor proessor.This language was introdued around 1973. The NX ompiler was one of the �rstvetorizing ompilers, apable of onverting standard Fortran 66 ode into vetormahine ode. To make it easier to make use of the TI-ASC's apabilities, NX Fortranalso inluded some array proessing features.Vetors and arrays were apparently �rst-lass objets in NX Fortran whih ouldbe referened in expressions and assignments by simply using their names. No speialindies or loop onstruts were neessary to invoke parallel operation on these objets.This was essentially a notational improvement over previous versions of FORTRANwhih brought them loser to GLYPNIR or APL.Elementwise array assignments ould be performed as long as the right-hand sideof the assignment onformed to the shape and size of the objet on the left-hand side.Salars on the right-hand side were promoted to a onforming shape via repliation.

- 305 -A set of \array generating intrinsis" allowed \the generation of an array rosssetion from other array ross setions by use of vetor instrutions...." [149℄ Variousredution intrinsis were also available whih generated an aggregate salar value froma vetor or array argument.Other features allowed aess to subsetions of multi-dimensional objets. ASUBARRAY statement allowed the dynami aliasing of an array subsetion to anotherarray of the same rank. This allowed multiple operations to be performed on the sub-setion without requiring the subsetion to be spei�ed for eah one. Cross-setionsof an array ould be spei�ed using an asterisk wildard index. This indiated the fullrange of possible values for that index from one to the objet's length in that dimen-sion. Choosing a partiular index value for only one dimension aused a ross-setionof rank n � 1 to be seleted from an objet of rank n. A negated asterisk ould beused to speify the full range of values from the objet's length down to one.From the perspetive of designing a model for vetor-based SWAR proessing, themost signi�ant ontribution of NX Fortran was probably its use of �rst-lass vetorobjets. Vetorization is used primarily when the soure is based on a salar pro-gramming model. Cross-setions are trivial unless the objet is a multi-dimensionalarray | the ross-setion of a vetor is a single element. Thus, most of NX Fortran'sfeatures are better suited to non-SWAR programming models.Vetor LRLTRAN [172, 154℄ was developed, also around 1973, at the LawreneLivermore Labs. It was intended to allow programmers to make use of the vetorapabilities of the CDC STAR-100 vetor proessor by extending the LRLTRANversion of Fortran with vetor features. Vetor LRLTRAN was also used to odeprograms for the TI-ASC, ILLIAC IV, and CDC 7600 before the STAR system wasdelivered.The language supported single-strided (i.e. ontiguously alloated), one-dimen-sional vetors as �rst-lass objets. These vetors ould onsist of REAL, INTEGER, orBIT data. Vetor delarations, assignments, expressions, subsripting, and funtionswere inluded to support these objets.

- 306 -Vetor LRLTRAN allowed vetor objets to be delared in a manner similar to aFortran DIMENSION statement. Vetors di�ered from arrays in that they were �rst-lass objets and thus ould be operated on as a single objet. Related to eah vetorwas a \desriptor". This was essentially an index into a table ontaining the memoryaddress of the �rst element and the number of elements in eah vetor.If the vetor was delared with a salar dimension, it was alloated statially andassigned a new desriptor whih ould not be hanged during exeution. If the vetorwas delared using a desriptor, but no dimension, the information in the desriptorwas used to alloate the vetor. If both were given in the vetor delaration, thenthe dimension was assigned to the desriptor and the vetor was alloated usingthis information. In eah of the last two ases, the desriptor was available to theprogrammer during exeution; thus, the vetor's size and loation were dynamiallyalterable.LRLTRAN's salar operators were extended to perform in elementwise fashion onvetor operands inluding sparse vetors. Pure vetor and mixed expressions ould bewritten, with promotion and vetor extension performed as neessary. If the size ofthe vetor operands did not math, the shorter vetor was extended with an identityvalue for the applied operation.Available operations inluded the standard Fortran arithmeti, Boolean, rela-tional, and logial operators. Loation and mode (type) operators, and a set of\STAR-spei�" vetor operators were also inluded. Arithmeti operations on ve-tors were parallelized and had vetor results. Boolean and logial operations ouldonly be applied to bit vetors and produed a bit vetor as a result. Relationaloperations ould be applied to any type of vetor, but produed a bit vetor as aresult.Assignments ould also be performed on vetor objets using the same syntax assalar assignments. When assigning a salar value to a vetor, the salar was repli-ated to onform to the vetor's size. Vetor to vetor assignments were performed

- 307 -elementwise to �ll the result vetor. If the result was longer than the right-hand sidevetor value, then the remaining elements of the result were unde�ned.The language also allowed subvetors to be de�ned using \dynami equivalening"in whih a range of vetor elements ould be assigned an alias and operated on as asingle entity. This was similar to vetor assignment, but did not reate a new objet.Vetors ould also be used as funtion arguments and return values. Although thelength of the returned vetor had to be spei�ed upon delaration of a user-de�nedfuntion, this size ould be a run-time value. When alled, the alling routine wasresponsible for evaluating the size of the return value and alloating spae for it.Vetors and parenthesized vetor expressions ould be indexed using several dif-ferent methods. These allowed a single element, a range of elements, or any set ofelements to be seleted for use in expressions. Salars ould be used as with arraysto speify a single element. Non-bit vetor expressions ould be used as an indexvetor whih listed the elements to be seleted. This allowed arbitrary permutationsof a vetor to be generated. Bit vetors ould also be used as indies and ated like aontrol vetor, indiating whether or not eah element would be used in the urrentoperation.Semiolon-separated o�sets ould be used as an index. These spei�ed the numberof elements to dismiss at either end of the vetor. The result was the remainingelements from the middle of the vetor. Either o�set ould be omitted and defaultedto zero.Colon-separated limits also ould be used as an index. These spei�ed the �rstand last elements to inlude in the result. Either limit ould be omitted. The lowerlimit defaulted to zero, while the upper defaulted to the length of the vetor minusone.The STAR-spei� operators were .LGTH., .VEC., .DES., .CTRL., ', :, and ;.These were used to obtain information about a vetor, manipulate it, or selet sub-setions of it. The olon and semiolon index operators were just desribed. Theothers an be desribed briey.

- 308 -The length of a vetor ould be obtained using the unary .LGTH. operator. The.VEC. and .DES. operators were used to manipulate vetor desriptors. Coneptually,.VEC. onverted its salar argument to a vetor desriptor whih ould be used inexpressions and assignments. The .DES. operator returned the desriptor of its vetoror vetor expression argument. This allowed the programmer to obtain, opy, ormodify a vetor's desriptor.Similar to ILLIAC IV FORTRAN, ontrol vetors were bit vetors used to im-plement onditional exeution by indiating whih elemental results of a vetor ex-pression were to be stored. These were used with the binary .CTRL. operator whihapplied the ontrol vetor, or an expression whih evaluated to one, whih preededit to the vetor expression whih followed it. Only one .CTRL. operator ould be usedper statement and it was not allowed to be enlosed in parentheses.A representation for sparse vetors was also inluded in the language. These werestored as a pair of vetors. The \value vetor" ontained the non-zero element values,while the \order vetor" stored a bit vetor indiated whih elements ontained thesenon-zero values. Sparse vetors were denoted as an apostrophe-separated value/ordervetor pair.A set of inlineable intrinsi vetor funtions were also inluded in LRLTRAN. Oneset of these performed arithmeti redutions on their vetor arguments. Q8SUM()and Q8PROD() performed, respetively, redue-add and redue-multiply operationson their vetor arguments. Eah of these ould also take a ontrol vetor as a se-ond argument. This spei�ed a subset of the vetor's elements to be used in thealulation.A seond set of intrinsis ould be used either as funtions, whih returned aresult, or subroutines, whih required pre-alloated storage for the result to be madeavailable to them. This seond set of intrinsis inluded Q8MASK, Q8MERG, Q8CMPRS,and Q8XPND. The �rst two of these ombined two data vetors using a ontrol vetorto selet whih elements from eah data vetor would be seleted. Q8MASK seleted oneof the two data elements whose index orresponded with that of the result element,

- 309 -while Q8MERG treated the data vetors as two staks and used the ontrol vetor tohoose from whih the next sequential result element would be taken. Q8CMPRS wasused to ompress a vetor into sparse form, while Q8XPND was used to expand a sparsevetor bak to normal form.Vetor LRLTRAN had a large number of vetor-handling features, some of whihare beyond our urrent needs or the apabilities of urrent SWAR arhitetures. How-ever, a number of them an be inorporated into a SWAR model or used to implementa SWAR-based programming language.VECTRAN [155, 154℄ was introdued by International Business Mahines (IBM)Corporation in 1978 4. Triplet notation, identify statements, and where onstrutswere introdued by this language and/or BSP Fortran whih was introdued aboutthe same time by the Burroughs Corporation [156, 154℄.Triplet notation allowed the programmer to referene setions of arrays using aonise notation. A triplet was a omma-separated list onsisting of the indies of the�rst and last elements along a partiular dimension to be aessed and an optionalstride to be used between suessive elements. This notation allowed the programmerto desribe regular patterns of aess without using looping onstruts.Eah part of the triplet had a well-hosen default value whih made ommonly-aessed subsetions trivial to desribe. If the �rst index was omitted from a triplet,the �rst element in the array was used. Similarly, if the last index was omitted, thelast element was used. An omitted stride was set to one.Triplet and standard index notations ould be mixed as long as orrespondingdimensions had the same number of elements. When used as an array index, tripletnotation allowed the programmer to express regular patterns of aess without usinglooping onstruts. However, triplet notation did not allow onditional seletion asdid ILLIAC IV FORTRAN's ontrol vetors.The where onstrut allowed onditional assignment in a manner that was moreexible than ontrol vetors. A onditional vetor expression was evaluated and4 [154℄ reports this date as 1973, but the ited work is from 1978.

- 310 -used to deide whih elements would be operated on. In a sense, the where reatedthe equivalent of a ontrol vetor to be applied to its body. This body ould onlyontain array assignment statements whih onformed to the shape of the onditionalexpression. An otherwise statement was also inluded whih operated on the set ofelements where the ondition did not hold.The identify statement was used to allow the expression of operations thataessed memory in regular strides, but were denoted by array indies with irregularstrides. For example, the diagonal of an array is typially stored with a regular strideof n + 1 for an array with dimensions of length n, but the orret set of indiesannot be desribed using triplet notation. The identify statement applied aliasingto reate a smaller-dimensional objet with orretly strided element indies. Thisobjet ould then be used in a separate assignment statement.VECTRAN handled parallelism somewhat more elegantly than earlier parallelversions of FORTRAN. Subsetion seletion and onditional exeution were denotedusing onise notations and language onstruts. These features would be opied byseveral later languages.DAP Fortran [211℄ was a variant of Fortran for programming the ICL DAP. Itwas inuened by CFD, but extended for use with the DAP's bit-serial arhiteture.It was developed in the late 1970s.Two parallelizable data strutures were de�ned whih were learly related to thegeometry of the DAP's PE array: Two-dimensional arrays equal to the size of the PEarray, and one-dimensional vetors equal to the size of one edge of the array. Higher-degree objets ould be de�ned as arrays of lower-level objets. Thus, a programmerould delare an objet that was a olletion of arrays or vetors.DAP Fortran, like Vetor LRLTRAN, allowed expressions of mixed dimensions. Inthese expressions, lower-dimensional objets were repliated and promoted to maththe dimension of higher-dimensional objets. This allowed the programmer to easilymix vetor and array ode.

- 311 -A set of intrinsi funtions were inluded whih performed restruturing operationssuh as vetor and array shifts and rotates, element and subarray seletion, redutionssuh as summations and ANY and ALL tests, and a trinary merge whih ombinedtwo objets based on the elemental values of a third. Masked assignments, whihstored elements based on an element-wise onditional, were also available.Beause DAP Fortran was so losely tied to the DAP arhiteture, it is not agood andidate for a portable SWAR language. However, some of the ideas, suh asde�ning high-level objets as olletions of lower-level ones and dimensional promotionvia repliation, may be useful for a SWAR programming language.Fortran 90 [157, 212℄ is an extension of the Fortran 77 language whih allowsthe proessing of vetors and multi-dimensional arrays. An interim version, Fortran8X, was standardized during the late 1980s [213℄.Vetors and arrays are treated as �rst-lass objets in Fortran 90; thus, operationson them an be expressed with a simple syntax. A large number of operations andfuntions an be performed on these objets inluding elemental operations, ondi-tional tests, array setioning operations, redutions, and various intrinsi funtions.As with earlier languages, elemental operations behave as though they are appliedindependently aross the elements of their array operands and are often parallelized.Their operands are required to be onformable in shape and size. As with NX Fortran,salar objets were onsidered to be onformable to any shape and size, thus makingit possible to mix salars with vetors or arrays within expressions.Fortran 90 reuses the VECTRAN/BSP Fortran where onstrut with some mod-i�ations. As in VECTRAN, WHERE operates in parallel on eah of the elements ofan objet for whih a spei�ed ondition holds. It is equivalent to an IF statementenlosed by a DO statement, and an therefore be thought of as a parallelized IF. AnELSEWHERE statement replaes the VECTRAN otherwise, and operates on the setof elements where the ondition does not hold. It is analogous to a parallel ELSE.Statements in the WHERE/ELSEWHERE bloks are restrited to array assignments andwere required to onform to the shape of the tested objet. The WHERE is typially

- 312 -used to avoid singular ases suh as dividing by a zero-valued element. To minimizethe overhead of traking the set of enabled PEs, WHEREs annot be nested.Fortran 90 also reuses VECTRAN's triplet notation for referening setions ofarrays, and allows vetor and arrays to be indexed using vetor subsripts. These areused to selet elements in an independent and variable manner. This allows the pro-grammer to speify omplex data movement and rearrangement suh as repliations,permutations, and gathers and satters of the elements of a sparse array.These notational apabilities an be used on either side of an assignment statementto reorganize data, and are typially mapped to interproessor ommuniations onthe hardware. By assigning one array setion to another, the data is e�etively movedbetween PEs. Setion assignments spei�ed by triplet have regular ommuniationspatterns, while those spei�ed by vetor subsripting are equivalent to generalizedpermutations. The latter is a powerful feature that is only reasonable to use onarhitetures with generalized interonnetion networks suh as the routers found onthe Connetion Mahines and MasPar systems.Fortran 90 also has a large number of intrinsis whih perform various array opera-tions. These intrinsis inlude onstrution, transposition, multipliation, redutions,geometri loation of elements with spei� properties, and struture inquiries. A on-ditional MASK an be applied to some of these to limit the operation to a subset ofelements.Fortran 90's redutions inlude SUM, PRODUCT, MAXVAL, MINVAL, COUNT,ANY, and ALL. These an be applied aross the rows of an array in any dimension toform an array of one less dimension, forming a salar in the limiting ase. Conversely,data an also be spread (repliated) along a new axis to expand an array by onedimension.A limited amount of operator and intrinsi funtion overloading is possible, asare user-de�ned operators. These features let the programmer de�ne short-handnotations for spei� tasks, but an also make the soure less understandable.

- 313 -Fortran 90 is a large and omplex language whih has evolved to handle arrayproessing on SIMD and MIMD arhitetures. However, SWAR arhitetures are notpartiularly well suited to multi-dimensional array proessing. Thus, Fortran 90 ismore omplex than is neessary for a SWAR proessing model.A number of parallel variations on Fortran were developed onurrently with theFortran 90 standard. These languages have features whih are similar to those of For-tran 90. Often these were intended to math the (then proposed) standard. Beauseof their onurrent development, and beause several dialets of C were developed atabout the same time, it is diÆult to determine whih of these languages implementedwhih features �rst. We will not be onerned with this, but will introdue some ofthese languages and point out salient features regardless of their origins.Fortran-Plus [194℄ was a high-level language for programming the AMT DAP.It had features that were later inluded in the then proposed Fortran 8X language.These inluded extensions and intrinsi routines intended to allow the programmerto easily take advantage of data parallelism.As with DAP Fortran, parallel data types were limited to vetors and two-dimen-sional matries. These were �rst-lass objets, but were limited to the size of theDAP array. Later versions of the language were expeted to allow arbitrarily-sizedobjets.Fortran-Plus had seletion operators whih ould onditionally operate on setionsof a vetor or matrix. This was similar to the proposed Fortran 8X standard. It alsohad a set of aggregate funtions suh as redutions whih operated on both vetorsand matries.CM Fortran [160, 131℄ was essentially Fortran 77 with Fortran 90 and Con-netion Mahine-spei� array extensions for speifying potential data parallelism.These extensions were automatially parallelized by the ompiler for exeution onthe parallel unit of the Connetion Mahine.Generally, CM Fortran soure ode ould be divided into Fortran 77 ode andparallel-extended ode. Fortran 77 operations were exeuted on the front end system

- 314 -and applied to salar data and arrays whose elements were only aessed individually.These data objets were stored on the front end. All other arrays were stored on thePE array, and were operated on in parallel by Fortran 90 and CM Fortran-spei�operations.CM Fortran allowed vetor subsripting whih was only reasonable to use beauseof the presene of the CM's router interonnet. The Fortran 90 WHERE onstrutwas supported to allow parallel onditional exeution. Also, a few CM-spei� exten-sions were supported by the language inluding a FORALL [161℄ statement (whih hadbeen dropped from the Fortran 8X proposal) and various advaned array proessingintrinsis.The FORALL onstrut was similar to a FOR loop in whih the iterations wereknown to be parallelizable. This allowed the programmer to expliitly indiate arrayassignments whih ould be parallelized and made it easier for the ompiler to �nd andexploit this ode. To ensure the independene of its iterations, the body of a FORALLloop was restrited to ontaining \...a single array assignment statement." [214℄Array elements to be operated on ould be seleted by value or position withinthe array. The FORALL was typially used for array initialization and elemental as-signment, but it was also useful for performing various data movements suh as sansand generalized permutations.From the programmer's point of view, the elemental operations denoted by aFORALL exeuted simultaneously, although this was not neessarily the ase. Thisguaranteed that elemental assignments whih would overwrite a value used in an-other assignment would not destroy the old value before it was used. Thus, theprogrammer did not have to take extra steps to protet values from the exeution ofother iterations.The FORALL was the equivalent of the VECTRAN identify, exept that it avoidedthe aliasing step by ombining the separate aliasing and assignment statements intoa single onstrut. Syntatially, it was similar to IVTRAN's DO FOR ALL onstrut.

- 315 -As in Fortran 90, intrinsi funtions were modi�ed to work in parallel on the ele-ments of the objet. Also, many of the Fortran 90 array intrinsis were implementedin CM Fortran inluding those for onstrution, loation, manipulation, inquiry, andmultipliation. Redution intrinsis were also supported, but were extended by al-lowing them to be used with a FORALL to speify sans (parallel pre�x operations) tobe performed on the PE array.A number of other intrinsis beyond those in Fortran 90 were available for per-forming a variety of transformations on vetors and arrays. These inluded severalinquiry and loation intrinsis, a DIAGONAL onstrutor whih plaed a vetor in thediagonal of a matrix �lled with an optionally spei�ed value, and a REPLICATE whihextended an array along one of its dimensions.Compiler diretives whih ontrolled the layout of arrays in the memory of thePE array were also available. These allowed the programmer to attempt to optimizethe plaement of the data on the CM. A diretive to allow the programmer to speifywhere ommon data should be stored was also provided.MPF [170, 171℄ (MasPar Fortran) was a subset of Fortran 77 whih inludedsome of the array-handling extensions of Fortran 8X. It was intended to allow theprogrammer to write ode in a familiar manner by hiding the details of the Mas-Par arhiteture. This made the ompiler responsible for �nding and automatiallyparallelizing operations on vetor and array objets.MPF implemented a subset of the proposed Fortran 8X standard. It treated ve-tors and arrays as �rst-lass objets. It allowed array setions to be referened and op-erated on using triplet notation or vetor subsripts. It inluded the WHERE/ELSEWHEREonstrut for desribing parallel onditionals. It also supported a subset of Fortran8X's array intrinsis. Layout diretives whih allowed the programmer to speify howdata was to be stored on the MasPar's DPU were also inluded.Fortran D [215℄ was a post-Fortran 90 attempt to develop a portable, parallelversion of Fortran that ould replae the variety of dialets whih were around atthe time. These had been developed for various proessing models and arhitetures

- 316 -inluding SIMD, MIMD, and vetor systems. It was believed that they tended toexpose the underlying model, and thus programs written in them were often hard toport to systems based on other models.The important aspet of Fortran D was deomposition: separating a problem intoa problem mapping and a mahine mapping. The problem mapping was an expressionof the inherent, target-independent parallelism of the problem. The mahine mappingwas an expression of how the problem was to be mapped onto the spei� target ar-hiteture. Thus, the problem was deomposed into a portable, mahine-independentpart and a non-portable, mahine-dependent part.Fortran D operates at a higher level than this researh is onerned with. Thepurpose of the urrent work is to develop a new SWAR proessing model and relatedprogramming methods, while Fortran D was developed to promote the portability ofFortran ode between multiple proessing models.High Performane Fortran [158℄ (HPF) is a later dialet of Fortran 90 withextensions intended to better support data-parallel proessing, primarily on MIMDand SIMD omputers with non-uniform memory aess osts.New diretives, implemented as Fortran 90 omments, allow the programmerto suggest parallelization strategies or to make assertions about the program. AnINDEPENDENT diretive indiates that statements in a DO loop an be parallelized. AnALIGN diretive indiates that an objet should be o-loated with another objet.Also, DISTRIBUTE and REDISTRIBUTE diretives allow the programmer to suggestdata layouts.Other additions inlude support for extrinsi funtions whih allow the program-mer to tailor algorithms to the target system. Also, ertain of Fortran 90's apabilitieshave been eliminated to remove assoiated problems.As with Fortran D, HPF an be rejeted for our purposes. HPF is basiallyFortran 90 with a CM Fortran-style FORALL and some mark-up. The FORALL shouldnot be neessary in a well-designed programming language ompiled with a smart

- 317 -vetorizing ompiler, and the work of the mark-up diretives should be unneessaryin a SWAR environment and should probably be handled in some other manner.Various vetorizing ompilers for Fortran [154℄ inluded Cray CFT, FujitsuFortran 77, IBM VS Fortran, Alliant FX/8 Fortran and NEC SX Fortran. Thesewere developed between about 1979 and 1987. As automati vetorizors for standardFortran, they did not add muh in the way of interesting language onstruts orprogramming onepts for parallel proessing. Their purpose was to avoid doing thisso that the programmer ould reuse sequential Fortran ode without hange or, atmost, with the addition of a few diretives to provide the ompiler with hints abouthow to vetorize parts of the ode.PASCAL-based LanguagesPASCAL [216℄ is an ALGOL-based language that was designed as a portableteahing tool sometime around 1971. This was done by ompiling the soure to asimpli�ed, portable intermediate language alled P-ode [217, 218℄, then using aninterpreter to exeute this ode on the target mahine. This method was very su-essful. In fat, the highly portable JAVA [219℄ uses a remarkably similar method toobtain its portability.Beause of its portability, PASCAL beame widely used and well-known, and hasinuened a number of later languages. This ubiquity makes it a reasonable hoieas a basis for parallel programming languages. One parallel language that was basedon PASCAL was Atus.Atus [153℄ was a SIMD-parallel language developed just after NX Fortran andVetor LRLTRAN and at about the same time as VECTRAN and BSP Fortran.It was a strutured language intended to provide a target-independent programmingmodel for vetor and array proessors whih allowed for the diret, natural expressionof data parallelism. Atus was originally targeted to the ILLIAC IV using a PASCALP-ode ompiler.

- 318 -In Atus, the maximum parallelism width that ould be applied to an array orvetor was spei�ed upon delaration of the objet. This was done using a dimensionnotation in whih the starting and ending indies along one dimension of the objetwere separated with a olon instead of a pair of periods. This indiated both themaximum \extent of parallelism" and the dimension aross whih it should be applied.For example, the delaration var a: array[1:4, 1..5℄ of integer; woulddelare a to be a two-dimensional array and indiate that it should be arrangedin memory so that aesses aross its �rst dimension ould our in parallel. Themaximum extent of parallelism for this array would be four (the length of its �rstdimension).The extent of parallelism to be applied for a partiular aess ould also be ex-pliitly spei�ed when that aess ourred. This allowed subvetors and subarraysto be desribed and operated on in a parallel fashion. Suppose that the array a abovewas aessed as a[2:3, 1℄ in an expression. This would indiate that the elementsa[2, 1℄ and a[3, 1℄ should be aessed in parallel. The extent of parallelism thusontrolled the enabling of PEs whih held seleted elements.Atus was one of the �rst languages to allow vetor subsripting. It also allowednamed \parallel onstants" whih were a set of strided values that were de�ned usinga notation similar to that of VECTRAN triplets. These ould be used as array indiesor as initial values for vetors. They had the form: onst id = start:(stride)finish,where the stride was optional and defaulted to one.Atus introdued a general form of index sets whih were similar to parallel on-stants. These allowed the programmer to speify a set of indies that would beinvolved in an operation. For example, the ode index ind = 1:10, 11:(2)99;reated an index set ontaining all values from 1 to 10 and the odd values from 11to 99. The identi�er ind ould then be used to indiate the indies involved in apartiular operation.These sets ould be operated on using set operators to obtain their union, in-tersetion, di�erene, or omplements. Vetor shift and rotate operations ould also

- 319 -be applied to index sets or to expliit extents of parallelism. For example, the odesegments a[1:10 shift 2℄; and index idx=1:10 shift 2; a[idx℄; eah repre-sented the �rst ten elements of the vetor a shifted by two positions.To allow an extent of parallelism to be reused within a setion of ode withoutforing the programmer to repeatedly supply the same information, Atus had awithin onstrut whih de�ned an extent of parallelism to be used throughout itsbody. Within the body, the urrent extent of parallelism was represented by a poundsign (#).Like GLYPNIR, Atus had parallelized if, while, and for onstruts and any andall tests that were equivalent to its SOME and EVERY tests. It also had a parallelizedase statement whih embodied multiple jump targets given a single onditional test.Atus also allowed vetors to be passed to funtions and proedures as argumentsand used as return values from funtions.While Atus allowed virtualized vetor and array dimensions (i.e. dimensions thatdid not math the underlying arhiteture), it only allowed standard data preisions.As a language whih allowed and promoted the use of multidimensional arrays, itis not a good math for urrent SWAR arhitetures whih are all one-dimensional.Under the assumption that future SWAR arhitetures will be multi-dimensional;that is, something more akin to the GAPP or BLITZEN proessors, they may bene�tfrom an Atus-like programming model.C-based LanguagesThe C programming language was developed in the mid 1970s by Dennis Rithieand others at AT&T Bell Laboratories [220, 221℄. It was o-developed with the UNIXoperating system and was its primary soure language.C is a well-de�ned language that is useful for writing portable appliations ode.Its real strength, however, lies in its low-level nature. This allows the programmer ahigh degree of exibility and aess to the target system.

- 320 -Beause of the wide-spread use of UNIX on high-performane, multi-user systems,most of these systems have a working C ompiler available to their programmers.Beause of this ubiquity and its power, C has beome a favorite of systems-levelprogrammers, and the basis for several parallel programming languages. Amongthese are PASM Parallel-C, C*, and MPL. The language developed as part of thisresearh, SWARC, is also based on C.PASM Parallel-C [222℄ was developed for the dynamially reon�gurable PASM.It allowed any data type to be parallelized, and treated objets of these types as �rst-lass entities.Conditional tests suh as if statements were modi�ed for use with parallel ex-pressions, and a seletor type was added whih allowed subarrays to be spei�ed.Assignment of parallel data objets used a syntax similar to that of C and oper-ated in an element-wise fashion. Mixed-sized parallel assignments were allowed, butwere exeuted only for orresponding elements. Parallel to salar assignments werenot allowed, so the the programmer was required to onvert the parallel data to asingle value. This was done by using the value of a single seleted element from theparallel objet. No redution operations or redution-assignments were available inthe language.Beause PASM ould be partitioned into setions whih used SIMD and MIMDmodes simultaneously, the Parallel-C language was primarily geared toward allowingthis type of usage. Later languages were targeted to more SWAR-like arhitetures.C* (pronouned C-star) was an extension of the C language intended to help theprogrammer exploit data parallelism on the SIMD Connetion Mahine. There wereatually two major versions of C*. One was introdued in the mid-1980s and wasmodi�ed slightly soon afterward. A seond was introdued around 1990 whih wassigni�antly di�erent from the earlier versions. It is instrutive to look at eah ofthese.The original version of C* [166℄ was developed for use on the CM-1. It used twostorage lass identi�ers to expliitly indiate parallel versus salar data, and impliitly

- 321 -indiate where in the system a data objet would reside. mono objets were salarsthat were plaed in the memory of the host omputer and were typially operatedon there. poly objets were plaed in the memories of the proessors in the parallelarray, and were operated on in parallel.PEs were represented in the language via the proessor type. The programmerould delare an array of proessors to represent a subset of the available PEswhere a parallel data objet would reside. By delaring di�erent proessor objets,the programmer ould reate di�erent sets of PEs to hold di�erent data sets.C* had a seletion statement modi�er whih allowed the programmer to hoosean \ative set" of PEs to be enabled during the exeution of the modi�ed statement.Upon ompletion of this statement, the PEs were returned to their previous enablestate.The format of this seletion statement was [seletor℄.statement. The seletorould be a proessor variable, an array of proessors, an indexed value representinga onseutive series of proessors, or a list of any of the above. This allowed anysubset of proessors to be hosen at any time to exeute a statement, thus providinga great deal of exibility.The standard C ontrol onstruts retained their C syntax, but were modi�edsemantially to math the SIMD proessing model using ative sets. These weresplit and reombined as neessary to handle onditional exeution. The bodies ofif, else, and while statements were only exeuted if, and while, the test onditionheld for at least one ative PE. This was later alled the \rule of loal support".Nested onstruts were allowed. These reursively divided the set of ative PEs intosmaller sets whih reombined as eah level of nesting ompleted. One a onstrutwas ompleted, the ative set before it was entered was restored.The language supported the full set of standard C operators inluding its variousassignment operators. New operators were also inluded to represent the minimum(<>) and maximum (><) binary operations. These operators provided a onisemeans of denoting these often used operations, and ould represent salar or parallel

- 322 -operations depending on the types of their operands. These operations ould also beombined with assignment to form omparison-assignment operators.Purely mono expressions were exeuted as in C, but poly and mixed expressionsrequired the semantis of the standard C operators to be modi�ed for use with theSIMD model. Both poly and mixed expressions were required to follow the \as-if-serial" rule. This stated that the result was determined as if the parallel parts hadbeen exeuted in some undetermined serial order.In mixed expressions, mono values were promoted to polys as needed via replia-tion. Assignment of a mono value to a poly objet implied repliation of the value toeah of the members of the ative set. Assignment of a poly to a mono implied someform of redution operation to form the single assigned value.The standard C assignment operators, and those formed from the minimum andmaximum operators, ould be used for both assignment and unary redution. Whenused as assignments, they ated as desribed above. When used as unary redutions,the result was a mono value whih ould be used in an expression.Under the as-if-serial rule, redutions were performed as if the elemental as-signments ourred in some unspei�ed serial order. This ensured that redution-assignments to a mono objet resulted in the orret value being stored without theloss of any parts of the redution.C* had a this keyword whih ould be used in poly expressions to represent theurrently exeuting proessor. It ould be dereferened to aess data on the loalproessor; but more importantly, it ould also be indexed to aess data on anotherproessor, thus allowing a form of interproessor ommuniation.Daniel Hillis' dissertation [128℄ desribes the theory behind the use of the Con-netion Mahine. It was based on mapping data onto the PE array in any of severalrepresentations alled xetors. Xetors were domain/range pairings of the indexedPEs with values determined by applying a funtion to these indies. The original C*language was modi�ed to inorporate the domain onept soon after its introdution.

- 323 -The modi�ed C* language, desribed in [167℄ and [168℄, inluded a C++ lass-like onstrut alled a domain. Eah instane of a domain represented data residingon a single PE. An array of some domain represented a set of data (i.e. a xetor)whih was distributed with one element per virtual proessor. Eah proessor onwhih an instane resided was said to belong to the domain. Using this onept, thePEs ould be divided into groups for performing di�erent tasks on di�erent sets ofdata.Similar to lasses in an objet-oriented language, domains onsisted of a datastruture and a set of funtions whih ould aess it. The data struture desribedthe xetor data and its layout in the memory of eah of the PEs on whih it resided.These PEs were said to \belong" to the domain.A domain's data elements were treated as �rst-lass objets. A referenes to anyof them referred to the entire set of same-named elements aross all of the instanesof the domain. This allowed the programmer to speify an entire parallel data objetonisely.Parallel exeution was performed by alling the member funtions of the domainrelated to the xetor to be operated on. These funtions were exeuted simultaneouslyaross all the PEs belonging to the domain. Thus, domains were used to speify theative set of PEs as used in the original version of the language. A domain's memberfuntions ould only be alled on a partiular PE if that PE belonged to the domain.This ensured that the proessor had the orret data layout for the alled funtion.For this version of C*, the meanings of mono and poly were modi�ed slightly towork with domains. mono domain members were salars stored on the front-end, whilepoly members were alloated aross the PEs belonging to the domain.Other hanges inluded the replaement of the minimum and maximum operatorswith (<?) and (>?), respetively, and the addition of a (;=) assignment operatorwhih indiated that a single, arbitrary element should be hosen as the result.The use of the seletion statement was modi�ed to ativate the proessors be-longing to a partiular domain for a single statement (whih ould be a blok). This

- 324 -was done by modifying the format of a seletion to: [domain tag℄.statement. Thee�et of this hange was to make seletion less exible, thus making it harder for theprogrammer to violate the semantis of the language's ontrol strutures.Seletion deativated the urrent ative domain before seleting the new one,and reativated it one the statement ompleted. Indexing ould still be done withseletion, and the this keyword had the same meaning, exept that the index referredto a PE in the ative domain. Seletion ould also be used to initiate parallel exeutionfrom within serial ode.The programmer ould still do something along the lines of the original C*'sseletion statement using a dot operator. This was interpreted by evaluating theleft-hand side as an lvalue whih spei�ed a set of PEs. These PEs would evaluatethe right-hand side based on the type of the left-hand side. If the right-hand sideevaluated to a value, it was used as the value of the dot operation. In this sense, C*'sseletion statement was an extension of its dot operator.Funtion overloading was available and allowed multiple variations of same-namedfuntions to be written for various ombinations of mono and poly parameter andreturn types. Resolution was done using an algorithm whih tried to �nd the bestmath between the argument and return types of the all and the parameter andreturn types of the available funtions. C* also had a typeof keyword whih wasused to allow funtion parameters to be polymorphous.This version of C* allowed interproessor ommuniation to be denoted onisely.As in the original C*, the this keyword ould be used with the dot operator todenote interproessor ommuniation between a PE and its neighbors. For example,x=(this+1)->x; sets the loal PE's value of x to that of its nearest neighbor's x. Sim-ilarly, C* pointers ould be used to denote ommuniations between the proessors ina domain. This was aomplished by simply pointing at an objet in another proes-sor's memory. This notation supported permutations, multiple parallel broadasts,and multiple parallel redutions.

- 325 -Around 1990, after about three years of use in this seond form, the languagewas again redesigned [169, 131℄. This seond major version of C* was somewhatleaner than the previous two, and was based on the onept of data \shapes".Shapes were used to speify multi-dimensional spaes on a virtual PE array. Onespei�ed, these shapes ould be assoiated with data objets as part of their delara-tion. The syntax for a shape spei�ation was similar to that of a multi-dimensionalarray delaration, with the size of eah dimension spei�ed by the number of positionsalong its axis. This allowed a shape to be desribed onisely and easily applied tomultiple data objets.Shaped objets ould be simple variables, arrays, struts, or any other C typeonstrut. Pointers to shapes were also available, and shapes ould be passed betweenfuntions. Thus, the new C* provided a signi�ant level of exibility in dealing withobjets of di�erent sizes and dimensions.One aspet of this version of C* was the onept of a \urrent shape". This wasspei�ed using a with statement. In general, objets had to be of the urrent shapein order to be operated on in parallel. The addition of with allowed multiple layoutsto be spei�ed and used within a single program. This allowed parallel data objetsto be independent of not only the arhiteture, but also of other parallel objets.Parallelism was expressed in terms of the positions in a data shape that were tobe ated on. A where statement, similar to that of VECTRAN, allowed the set ofative data positions to be onditionally determined. This was referred to as \settingthe ontext". The standard C onstruts were modi�ed to work with the wherestatement to provide onditional exeution. These inluded the else statement,whih was modi�ed to ativate the set of positions opposite to that of the where.An everywhere onstrut was also added to allow all positions, ative or not, tobe enabled for the exeution of an embodied statement. Nested wheres operated asexpeted, possibly making the set of ative positions smaller as eah was entered, andreturning to the previous set as eah exited.

- 326 -Funtions ould take parallel objets as arguments and also return them. Theyould be written with the shape of their parameters expliitly spei�ed or left un-spei�ed, in whih ase the urrent shape would be used during the all. As withearlier versions of C*, overloading ould be used to speify multiple funtions withthe same name but various parameter shapes.C*'s expression syntax was made onise through the use of operator overloading.Overloading allowed the standard C operators to be used on shaped objets in a �rst-lass manner. Operations on these objets ould then by parallelized and modi�edwith repliations or redutions as neessary. Thus, C* shapes were similar to objet-oriented lasses with overloaded operators.The this keyword was replaed by the poord intrinsi funtion whih returnedan identi�er for the urrent data element along a spei�ed axis. This ould be usedin a manner similar to this, allowing regular ommuniation along one axis of thedata struture.\Left indexing" was used with assignments to aess data in irregular parallel pat-terns. Indexing a parallel objet on the right-hand side was equivalent to performinga \get" operation. In this ase, the operation assigned the instane of the parallelobjet on the indexed virtual PE to the left-hand side. Indexing a parallel objeton the left-hand side was equivalent to performing a \send" operation. In this ase,the operation assigned the value on the right-hand side to the instane of the parallelobjet on the virtual PE indexed on the left. These operations allowed generalizedommuniation to be desribed using a syntax similar to that of element aess andassignment.This version of C* also di�ered from the previous versions by the inlusion of abool Boolean type. This type losely mathed the bitwise arhiteture of the parallelarray, and allowed the programmer to make use of this aspet of the system moreeasily than the previous versions of C* allowed.Obviously, C* was hanged signi�antly over time as experiene was gained withits use. The original version foused on the PEs as the parallel entities whose ativity

- 327 -needed to be desribed and ontrolled. This was replaed by the seond version, whihfoused more on desribing the data sets to be parallelized. This version was moreomplex in its handling of seletion and domains, but more losely mathed Hillis'thesis. Both of these exposed the virtual proessor array via seletion, a mehansimwhih was promoted for ommuniations purposes.These versions of C* an be rejeted as the basis for a SWAR model, just as theywere ultimately rejeted by Thinking Mahines. In eah ase, the language was amix of a data-oriented programming model and one with expliit ontrol over PEseletion and inter-virtual PE ommuniations. This made eah of these languagesmore omplex than neessary. While these versions of C* ould be thought of asfailures, ertain of their aspets were very well-designed and deserve to be rememberedby anyone trying to design a new parallel programming model.The last version of C* was, semantially, the leanest of the three. Proessorseletion was limited to the onditional where and the unonditional everywhereonstruts. Few new onstruts were added beyond those of the C language, and thesemantis of the C operators were extended to handle parallelism through operatoroverloading. This version of the language also allowed the programmer to fous ondesribing the data sets, and the operations to be performed on them, rather than onthe ontrol of parallel exeution.This last version of C* might be a good hoie for the basis of a SWAR program-ming model. However, \shapes" are more useful for multi-dimensional data struturesthan for the vetors whih more losely �t the SWAR model. Thus, a SWAR modelshould probably avoid C*-like shapes. Also, speial syntax and intrinsi funtions areprobably unneessary for ommuniations in a SWAR environment { simple elementaesses and assignments should suÆe.A generi �ne-grained parallel C [178℄ was developed by sientists at NASA'sGoddard Spae Flight Center in the late 1980s. It was intended to be a ommoninterfae language to multiple types of arhitetures inluding serial proessors [178℄.

- 328 -At the time [178℄ was published, the language was only partially implemented for theApple Maintosh II | a serial proessor.This language extended C with a parallel storage lass whih indiated thatthe delared objet was multi-valued. Coneptually, parallel objets were stored in aparallel memory and serial objets stored in a separate serial memory. When mappedto a target arhiteture, these memories may or may not have been separate.As with previous parallel languages, the standard C operators were extended tooperate on parallel objets. Arithmeti operators were extended to perform in anelementwise manner. Bit shifts were implemented suh that shifting by a parallelvalue resulted in eah element being shifted by a (possibly) di�erent number of bits.Logial operators were implemented using a parallel if-else struture, apparently tomaintain the short-iruit semantis of C's logial operators. Mixed expressions wereallowed, with salar values repliated to math the dimensions of parallel objets.Mixed assignments were also allowed. Assignment of a parallel value to a salarobjet resulted in a redue-OR of the parallel elements, while salar to parallel as-signments resulted in repliation of the salar. C's assignment operators were alsoparallelized with redution or repliation of values taking plae as neessary.The C ontrol onstruts, if, while, for, and swith were modi�ed for use withparallel onditionals. If the onditional was a parallel expression, eah body wouldbe exeuted if the ondition held for at least one element. Eah ase in a swithwas exeuted only if at least one element was direted to that ase.Parallel pointers were disallowed, but serial pointers to parallel objets were legal.Arithmeti on these pointers ould be used to denote interproessor ommuniationby shifting values between elements. Thus, the language hid ommuniation behindits normal syntax.This language also allowed all variables, inluding parallel objets, to be assigneda bit size. This was primarily intended for use with bit-slied target arhitetures,suh as the MPP, whih allowed variable data lengths. It is unlear from [178℄ ifthis feature allowed all bit sizes to be applied. To ease portability to more restritive

- 329 -arhitetures, the ompiler was allowed to use larger bit sizes than were spei�ed inthe program soure. Given the assertion that a general-purpose SWAR model shouldsupport any data preision, this aspet of the language deserves further examination.This language had several interesting features that may be of value for a SWAR-based programming language. Unfortunately, I ould �nd no further referenes to thislanguage, so it is probably safe to assume that it either was abandoned or evolved intoanother language. The SWARC language desribed in this thesis has some similaritiesto this language, but is more fully developed.MPL [107, 170, 171℄, the MasPar Programming Language, was another SIMDvariant of C developed around 1990. Semantially, it was similar enough to C toallow it to be ompiled with a simple variation of the GNU C Compiler (GCC). MPLwas also known as the MasPar Parallel Appliation Language.To allow the programmer to speify data parallel algorithms, a plural type modi-�er was used whih indiated that the objet was multi-valued and distributed arossthe PE array. An operation on a plural objet was exeuted simultaneously on theenabled PEs and resulted in another plural objet. This allowed the programmer tospeify data parallel operations in a manner semantially similar to C.A salar data objet in MPL was referred to as a single. These objets had onevalue and resided on the MasPar's ACU. Operations on single objets took plae inthe ACU and resulted in single values. This allowed the programmer to speify salaroperations simply, again using C-like semantis.MPL also allowed mixed-mode operations and assignments, with redutions andrepliations performed as neessary. As with C*, the semantis of ontrol onstrutssuh as while loops and if statements were modi�ed for proper operation under theSIMD proessing model.MPL allowed for synhronous inter-PE ommuniation via the addition of threenew onstruts: pro, router, and xnet. These allowed non-loal data to be aessedby the PEs. They also allowed expressions to be exeuted where their operandsresided, with only their results passed over the interonnet. Using these onstruts,

- 330 -ommuniation ourred synhronously with all ative PEs sending and reeivingdata on the same instrution.The pro[ex1℄.ex2 onstrut allowed the programmer to speify the exeution ofan expression, ex2 on a single PE hosen by another expression, ex1. In the simplestase, this allowed the extration of elements from plural objets.The router[ex1℄.ex2 onstrut was a plural operation in whih the result oneah of the PEs was the result of evaluating expression ex2 on PE number ex1 withommuniation ourring over the three-stage router network. The expression ex1was a plural objet. This allowed independently indexed ommuniations to bespei�ed.Similarly, the xnetdir[ex1℄.ex2 onstrut was a plural operation in whih theresult on eah of the PEs was the result of evaluating expression ex2 on the PE whihis ex1 steps away in diretion dir with ommuniation ourring over the Xnet. Theexpression ex1 was a single value; thus, all PEs exeuted the same ommuniationspattern.While the names of these onstruts are taken diretly from the MP-1's majorinteronnetion networks, they are really more generally appliable. For example,the PE numbering used in the router onstrut is linear, but these numbers maybe mapped onto an N-dimensional array where N is any non-negative integer. Also,the xnet onstrut ould be mapped to smaller-dimensional PE arrays by ignoringdimensions, or to larger-dimensional ones by adding new diretions.MPL ode was allable from other languages used on MasPar systems to easeode migration to the parallel model. This allowed the programmer to inrementallyrewrite existing ode to take advantage of the parallel arhiteture.MPL was well-designed and semantially lean. It allowed the programmer toexpress parallelism and operations suh as redutions in a manner whih did notexpose the properties of the underlying arhiteture. It also allowed ommuniationsusing language onstruts that were appliable to other types of arhitetures. MPLwould be a good hoie for the basis of a SWAR programming model, with the

- 331 -aveat that most SWAR arhitetures annot easily support its highly-generalizedommuniations onstruts.C[℄ (C brakets) [173℄, developed in the early 1990s, is an extension of the ANSIC language. It was intended to allow the programmer to write eÆient ode thatwas portable between the SIMD arhitetures then available without inorporatingnon-portable features.C[℄ is vetor-based, treating vetors as �rst-lass objets with a delarable �xedstride between elements. Multidimensional arrays are allowed, and are treated asvetors of vetors. This is an approah that may work well for allowing array-basedproessing on vetor-based SWAR arhitetures.C[℄ was de�ned in a manner that ensured that pointer arithmeti has a onsistentinterpretation whih followed the basi intent of the then urrent ANSI C standard.Aesses of vetor and array elements obey an arithmeti whih takes the delaredstride into aount. Subarrays an be spei�ed using either pointer arithmeti or anotation similar to C's array indexing.C[℄ extends the C language's bit �elds by allowing vetors of these to be assignedvalues via a gather operation on an integer vetor of �xed stride. However, it appearsthat this is the only �rst-lass operation allowed on bit �eld vetors, and that thelanguage does not allow SWAR-like operations to be performed on them.Along with the standard C operators, C*-like salar maximum (?>) and mini-mum (?<) operators were inluded in C[℄, as were operators for bitwise population(?), leading zero ount (%) and word reversal (�). Unary operators an be appliedto vetors and operate in elementwise fashion, while binary operators an operateon vetor or mixed operands. These same operations an be performed as unaryredutions using a set of \unary linear operators" whih are denoted by enlosingthe orresponding C operator in a braket pair. For example redutive addition isdenoted by the symbol [+℄.Vetors ould be onverted in length or type via asting or on assignment, butvetor to salar onversions were not allowed. Binary operations between vetors of

- 332 -di�ering lengths had unde�ned results. Vetors and arrays ould also be passed tofuntions as �rst-lass objets and return values ould be of vetor type. All of theattributes of a vetor or array parameter were required to be de�ned as part of thefuntion's formal delaration. Thus, funtions using these parameters ould not bewritten to aept objets of some other size without resorting to pointer arithmeti.The goals of C[℄ are similar to those of the SWAR model of proessing, but thelanguage was intended to provide eÆieny and portability at the level of array andvetor proessing of standard data types. While not the best model for the urrentset of SWAR arhitetures, this language has features that may be useful in futureSWAR-like languages targeting array-based arhitetures.Other LanguagesThere are a few other languages that are worth mentioning beause they havesome feature or features whih are related to SWAR proessing; however, for variousreasons, are not languages that we wish to model.PL/I [223, 224, 225℄ was developed in the mid-1960s and was originally intendedto be an update of FORTRAN IV that was referred to by the name of FORTRANVI. After it was deided that it would be inompatible with FORTRAN IV, the nameNPL (New Programming Language) was given to it. This name happened to onitwith the name of a laboratory in England, so the name of the language was �nallyhanged to PL/I.PL/I allowed the programmer to speify arbitrary preisions to be used for storingindividual data objets \by delaring the total number of digits and the number ofdigits to the right of the deimal (or binary) point." [225℄ This allowed the programmerto speify data preisions that losely mathed those of the appliation. The ompilerould then attempt to preserve preision when possible. As a pratial matter, usingpreisions that di�ered signi�antly from those supported by IBM's S/360 series of

- 333 -omputers, PL/I's primary target, resulted in unexpeted results and were thus rarelyused.AJL (Anar Jhaveri's Language) [174℄ was developed around 1990 and was in-tended to provide a simple vetor programming model whih ould be easily portedto various target arhitetures. AJL was a alulator language whih provided ba-si arithmeti and trigonometri operations and funtions on either salar (mono) orvetor (poly) objets. It was similar in ertain respets to both C and Pasal.Arithmeti operations provided by AJL inluded addition, subtration, negation,multipliation, division, and power. Intrinsi funtions inluded sine, osine, tangent,oor, and eiling. Mixed expressions were allowed for some of these operations andfuntions, but eah ould be applied to purely salar or vetor expressions.A set of prede�ned values was also provided, inluding pi and e, and a shorthandfor the number of elements in any vetor (#). A set of intrinsi funtions were alsoinluded whih provided limited support of the input and output of salar values.AJL provided operations related to layout and rearrangement of vetor data.These inluded vetor value de�nitions (i.e. the ability to assign the values of a ve-tor's elements from a list), generation of linearly ranging vetors, left and right vetorshifts, shu�e, and inverse shu�e.Only a \less than" omparison operator was available in the language. It operatedon either salars or on vetors in an element-wise fashion. A C-like trinary operatorwas also provided whih operated on vetors by element.Soure ode written in AJL was translated into a pseudo-assembly language fora non-existent stak-based mahine. This ode was atually a list of maros whihwere then onverted into native C ode for the target mahine. Thus, porting AJL-ompiled ode onsisted of de�ning the pseudo-assembly maros for the new target.This method of translation allowed AJL to be very portable and to take advantageof the optimization apabilities of the native C ompiler.AJL was a limited language whih dealt neither with vetors of unequal lengths norwith vetor element preisions. However, many of its features are useful for developing

- 334 -a new SWAR programming language, and lessons learned in its development an beapplied to the development of a new SWAR language. In fat, the language developedas part of this thesis has some similarities to AJL, but AJL itself is not partiularlysuited to SWAR proessing.NESL/VCODE/CVL NESL [175℄ is a \nested data-parallel language". Thismeans that it allows data to be desribed using reursive data strutures and allowsoperations to be applied to sets of data desribed by these strutures. Its primary ben-e�t is the desription of irregular data sets. Like APL, NESL di�ers signi�antly fromthe programming languages whih are most ommonly used in the high-performaneomputing ommunity.NESL is built on top of the stak-based VCODE vetor language [176℄. VCODEallows operations on the primitive data types: int, bool, float, har, and segdes,where segdes \spei�es a partitioning of one of more vetors into segments." Thelanguage allows basi arithmeti operations, onditional tests, intra-element shifts,logial operations, and onversions. It also allows higher-level mathematis suh asexponentials and trigonometri funtions. A limited set of redutions and sans arealso available. Various operations allow data manipulation suh as permutations,extrations, and paking. Operations for manipulating the stak and performing I/Oare also inluded.While VCODE allows a large range of useful funtions whih an be inluded ina SWAR model, it is a stak language for a rather powerful, theoretial mahine. Assuh, it does not math the urrent set of multimedia-enhaned targets very well.VCODE itself is built on top of CVL [177℄, a low-level vetor library for the Clanguage. CVL funtions inlude elementwise operations, redutions, sans, permu-tations, vetor-salar onversions, management, and some higher-level funtions.CVL funtions operate on an area of memory set aside exlusively for the storageof vetors. Vetors are laid-out within this memory in an implementation-dependentmanner. Vetor elements may be stored in larger than neessary loations in memoryin order to simplify proessing or provide portability.

- 335 -Funtions are passed a \handle" for eah of their vetor operands. This handlemay be a pointer or a more omplex struture whih indiates the position and layoutof the vetor. Funtions must also be passed the length of their vetor operands and,in some ases, a handle to a previously alloated srath spae in vetor memory.CVL's funtions operate on vetors of type int and double, whih have nativepreision, and vl bool whih may be stored in any useful form suh as hars orbits. A vetor may be segmented, meaning that it is atually a olletion of smallervetors, or unsegmented whih means that it onsists of a single vetor (i.e. it has onesegment). Operations performed on a segmented vetor are applied to eah segmentindependently.CVL was intended to provide portability between massively-parallel proessorssuh as the Connetion Mahines CM-2 and MasPar MP-1. It was not intended toprovide funtionality for non-standard data preisions. CVL's use of a private vetormemory allows vetors to be laid-out in the most eÆient manner without regards toissues suh as pointer arithmeti although it provides similar funtionality via vetorhandles.CVL provides muh of the funtionality that one would hope to have in a goodSWAR model. However, it is limited to standard data preisions and provides ertainfuntionality, suh as trigonometri funtions, whih should not be inluded in ageneral-purpose SWAR model.

- 336 -

- 337 -
APPENDIX BSUPPORTED SWAR EXTENSIONSIN COMMODITY CPUS

- 338 -
Table B.1Supported SWAR Extensions in Commodity CPUsProessor Name Year 1 Aliases MVI MAX-1 MAX-2 MIPS-V MDMXDEC Alpha 21264 [60℄ 1997? EV6 Yes - - - -DEC Alpha 21164PC [226℄ 1997 PCA56 Yes - - - -DEC Alpha 21164A 1995? EV56 - - - - -DEC Alpha 21164 [227℄ 1994 EV5 - - - - -HP PA-8000 [84℄ 1996 - Yes Yes - -HP PA-7100LC [61℄ 1994 - Yes - - -MIPS MIPS64 [87℄ 1999 - - - Optional -MIPS H1 Arh. [85℄2 1999? - - - Yes YesMIPS R12000 [85℄ 1998? - - - - -MIPS R10000 [66℄ 1994? - - - - -Motorola MPC7400 [89℄ 1999 G4 - - - - -Sun UltraSpar III Cu [92℄ 2001 - - - - -Sun UltraSpar III [92℄ 2000 - - - - -Sun UltraSpar II [202, 91℄ 1996? - - - - -Sun UltraSpar I [202, 228℄ 1995 - - - - -Intel Pentium 4 [229℄ 2000 Willamette - - - - -Intel Pentium III [229℄ 1999 Katmai - - - - -Intel Pentium II [229℄ 1997 - - - - -Intel Pentium w/MMX [229℄ 1996 - - - - -Intel Pentium Pro [229℄ 1995 - - - - -Intel Pentium [229℄ 1993 80586 - - - - -AMD Athlon XP [99℄ 2002 Thoroughbred - - - - -AMD Athlon MP [230℄ 2001 Palomino - - - - -AMD Athlon 4 [98℄ 2001 Palomino - - - - -AMD Athlon [76℄ 1999 K7 - - - - -AMD K6-III [75℄ 1999 - - - - -AMD K6-2 [75℄ 1998 Model 8 - - - - -AMD K6 [73℄ 1996 Models 6-7 - - - - -VIA C3 [103℄ 2000 Cyrix MIII - - - - -Cyrix MXi [231℄2 1998? Cayenne - - - - -Cyrix M-II [232, 77℄ ? M2 - - - - -Cyrix MediaGXm [100℄ ? - - - - -Cyrix 6x86Mx [100℄ 1997 - - - - -Cyrix MediaGX [100℄ ? - - - - -Cyrix 6x86 [100℄ ? - - - - -1Approximate year of introdution or implementation.2I'm not sure that this was ever implemented.

- 339 -

Table B.1 ont'd.Supported SWAR Extensions in Commodity CPUsProessor Name AltiVe VIS MMX SSE SSE2DEC Alpha 21264 - - - - -DEC Alpha 21164PC - - - - -DEC Alpha 21164A - - - - -DEC Alpha 21164 - - - - -HP PA-8000 - - - - -HP PA-7100LC - - - - -MIPS MIPS64 - - - - -MIPS H1 Arh. - - - - -MIPS R12000 - - - - -MIPS R10000 - - - - -Motorola MPC7400 Yes - - - -Sun UltraSpar III Cu - 2.0 - - -Sun UltraSpar III - 2.0 - - -Sun UltraSpar II - 1.0 - - -Sun UltraSpar I - 1.0 - - -Intel Pentium 4 - - Yes Yes YesIntel Pentium III - - Yes Yes -Intel Pentium II - - Yes - -Intel Pentium w/MMX - - Yes - -Intel Pentium Pro - - - - -Intel Pentium - - - - -AMD Athlon XP - - Yes - -AMD Athlon MP - - Yes - -AMD Athlon 4 - - Yes - -AMD Athlon - - Yes - -AMD K6-III - - Yes - -AMD K6-2 - - Yes - -AMD K6 - - Yes - -VIA C3 - - Yes - -Cyrix MXi - - Yes - -Cyrix M-II - - Yes - -Cyrix MediaGXm - - Yes - -Cyrix 6x86Mx - - Yes - -Cyrix MediaGX - - - - -Cyrix 6x86 - - - - -

- 340 -
Table B.1 ont'd.Supported SWAR Extensions in Commodity CPUsProessor Name 3DNow! E3DNow! 3DNow!Pro EMMX MMFPDEC Alpha 21264 - - - - -DEC Alpha 21164PC - - - - -DEC Alpha 21164A - - - - -DEC Alpha 21164 - - - - -HP PA-8000 - - - - -HP PA-7100LC - - - - -MIPS MIPS64 - - - - -MIPS H1 Arh. - - - - -MIPS R12000 - - - - -MIPS R10000 - - - - -Motorola MPC7400 - - - - -Sun UltraSpar III Cu - - - - -Sun UltraSpar III - - - - -Sun UltraSpar II - - - - -Sun UltraSpar I - - - - -Intel Pentium 4 - - - - -Intel Pentium III - - - - -Intel Pentium II - - - - -Intel Pentium w/MMX - - - - -Intel Pentium Pro - - - - -Intel Pentium - - - - -AMD Athlon XP Yes Yes Yes - -AMD Athlon MP Yes Yes Yes - -AMD Athlon 4 Yes Yes Yes 1 - -AMD Athlon Yes Yes - - -AMD K6-III Yes - - - -AMD K6-2 Yes - - - -AMD K6 - - - - -VIA C3 Yes - - - -Cyrix MXi - - - - YesCyrix M-II - - - Yes -Cyrix MediaGXm - - - Yes -Cyrix 6x86Mx - - - - -Cyrix MediaGX - - - - -Cyrix 6x86 - - - - -1Available on later models.

- 341 -
APPENDIX CSWAR INSTRUCTION MNEMONICSThe following tables show the instrution mnemonis for the SWAR multimedia sup-port tabulated in setion 2.1. Exept for table C.1, eah table orresponds to thetable in setion 2.1 with the same number.

- 342 -

Table C.1Comparison of Multimedia Instrution Set ExtensionsArhitetural Feature DEC HP HP SGI SGIMVI MAX-1.0 MAX-2.0 MIPS-V MDMXTypial Proessor Alpha 21164PC PA-7100LC PA-8000 H1 Arh. H1 Arh.# MM Pipelines1 2[226℄ 2 ALUs [63℄ 2 ALUs, 2 SMUs [63℄ 2 Unknown UnknownYear Announed [233℄ 1996 1993 1995 1996 1996Year Shipped [233℄ 1997 1994 1996 1999 1999?Arhitetural Feature Motorola Sun Intel, AMD IntelAltiVe VIS MMX SSETypial Proessor MPC7400 UltraSparI Pentium w/MMX Pentium III# MM Pipelines1 1 ALU, 1 VPU [89℄ 3 2 in GRU [90℄4 2 (U and V) [234℄ 2?Year Announed 1998 1994 1996 1998?Year Shipped 1999 1995 1996 1999Arhitetural Feature Intel AMD AMD AMD CyrixSSE2 3DNow! E3DNow! 3DNow!Pro EMMXTypial Proessor Pentium4 K6-2 Athlon Athlon XP M-II# MM Pipelines1 2? 2 (X and Y) 2 (exluding L/S) [235℄ 2 [99℄ 1? [232℄Year Announed 1999? 1997? 1998? 2001 1997Year Shipped 2000 1998 1999 2002 ?1Independent pipelines may not neessarily be equivalent.2SMU=Shift Multiply Unit.3VPU=Vetor Permute Unit.4GRU=Graphis Unit

- 343 -

Table C.2SWAR Addition OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular AdditionPart/Part - - - vaddubm,hadd hadd vadduhm,add.ps vadduwmImmd/Part - - - - - -Part/Part w/A - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhSalar/Part w/A - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhImmd/Part w/A - - - - add[la℄.ob, -(w/ or w/o Init) add[la℄.qhElement/Element - - - - - -Saturation AdditionPart/Part - hadd,ss, hadd,ss, - add.ob,add.qh vaddsbs,vaddubs,hadd,us hadd,us vaddshs,vadduhs,vaddsws,vadduws,vaddfpSalar/Part - - - - add.ob,add.qh -Immd/Part - - - - add.ob,add.qh -Modular Add. HighPart/Part - - - - - vadduwSat. RedAdd w/El. - - - - - vsumswsSat. Part. RedAdd - - - - - vsum2swsw/EvenSat. Part. RedAdd - - - - - vsum4sbs,w/Part vsum4ubs,vsum4shsSat. RedAdd - - - - - -and PakSat. RedAdd/Sub - - - - - -and Pak

- 344 -

Table C.2 ont'd.SWAR Addition OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular AdditionPart/Part paddb, paddb,fpadd16s,fpadd16, paddw, paddw,fpadd32s,fpadd32 paddd addps paddd,paddq,addpdImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Element/Element - - addss addsdSaturation AdditionPart/Part - paddsb,paddusb, - paddsb,paddusb,paddsw,paddusw paddsw,padduswSalar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd - - - -and PakSat. RedAdd/Sub - - - -and Pak

- 345 -

Table C.2 ont'd.SWAR Addition OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular AdditionPart/Part - - -addpsImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Element/Element - - addss -Saturation AdditionPart/Part - - paddsiwpfaddSalar/Part - - - -Immd/Part - - - -Modular Add. HighPart/Part - - - -Sat. RedAdd w/El. - - - -Sat. Part. RedAdd - - - -w/EvenSat. Part. RedAdd - - - -w/PartSat. RedAdd pfa - - -and PakSat. RedAdd/Sub - pfpna - -and Pak

- 346 -Table C.3SWAR Subtration OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular SubtrationPart/Part - - - vsububm,hsub hsub vsubuhm,sub.ps vsubuwmPart/Part w/A Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhSalar/Part w/A Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhImmd/Part w/A Di� - - - - sub.ob, -(w/ or w/o Init) sub.qhElement/Element - - - - - -Saturation SubtrationPart/Part - hsub,ss, hsub,ss, - sub.ob,sub.qh vsubsbs,vsububs,hsub,us hsub,us vsubshs,vsubuhsvsubsws,vsubuws,vsubfpSalar/Part - - - - sub.ob,sub.qh -Immd/Part - - - - sub.ob,sub.qh -Subtration HighPart/Part - - - - - vsubuwSat. RedSub - - - - - -and PakRedAdd of Abs. Di�s perr - - - - -Sum Abs Di�s; Sat A. - - - - - -Table C.3 ont'd.SWAR Subtration OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular SubtrationPart/Part psubb, psubb,fsub16s,fsub16, psubw, psubw,fsub32s,fsub32 psubd subps psubd,psubq,psubq,subpdPart/Part w/A Di� - - - -(w/ or w/o Init)Salar/Part w/A Di� - - - -(w/ or w/o Init)Immd/Part w/A Di� - - - -(w/ or w/o Init)Element/Element - - subss subsdSaturation SubtrationPart/Part - psubsb,psubusb - psubsb,psubusb,psubsw,psubusw psubsw,psubuswSalar/Part - - - -Immd/Part - - - -Subtration HighPart/Part - - - -Sat. RedSub - - - -and PakRedAdd of Abs. Di�s pdist - psadbw psadbwSum Abs Di�s; Sat A. - - - -

- 347 -

Table C.3 ont'd.SWAR Subtration OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular SubtrationPart/Part - - -subpsPart/Part w/A Di� - - - -(w/ or w/o Init)Salar/Part w/A Di� - - - -(w/ or w/o Init)Immd/Part w/A Di� - - - -(w/ or w/o Init)Element/Element - - subss -Saturation SubtrationPart/Part - - psubsiwpfsub(r)Salar/Part - - - -Immd/Part - - - -Subtration HighPart/Part - - - -Sat. RedSub - pfna - -and PakRedAdd of Abs. Di�s - psadbw - -Sum Abs Di�s; Sat A. - - - pdistib

- 348 -Table C.4Maximum and Minimum OperationsOperation Types DEC HP SGI SGI Motorola SunMVI MAX MIPS-V MDMX AltiVe VISMaximumPart/Part maxsb8,maxub8, - - max.ob, vmaxsb,vmaxub, -maxsw4,maxuw4 max.qh vmaxsh,vmaxuh,vmaxsw,vmaxuw,vmaxfpSalar/Part - - - max.ob, - -max.qhImmd/Part maxsb8,maxub8, - - max.ob, - -maxsw4,maxuw4 max.qhElement/Element - - - - - -MinimumPart/Part minsb8,minub8, - - min.ob, vminsb,vminub, -minsw4,minuw4 min.qh vminsh,vminuh,vminsw,vminuw,vminfpSalar/Part - - - min.ob, - -min.qhImmd/Part minsb8,minub8, - - min.ob, - -minsw4,minuw4 min.qhElement/Element - - - - - -Magnitude Part/Part - - - - - -Abs. Value Part/Part - - abs.ps - - -Negate Part/Part - - neg.ps - - -Generate Sign Mask - - - - - -Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMaximumPart/Part - pmaxub, pmaxub, pmaxub, -pmaxsw, pmaxsw, pmaxswmaxps pfmax maxpsmaxpdSalar/Part - - - - - - -Immd/Part - - - - - - -Element/Element - maxss - - maxss -maxsdMinimumPart/Part - pminub, pminub, pminub, -pminsw, pminsw, pminswminps pfmin minpsminpdSalar/Part - - - - - - -Immd/Part - - - - - - -Element/Element - minss - - minss -minsdMagnitude Part/Part - - - - - - pmagwAbs. Value Part/Part - - - - - - -Negate Part/Part - - - - - - -Generate Sign Mask - pmovmskb, pmovmskb, - pmovmskb -movmskps movmskpsmovmskpd

- 349 -
Table C.5Multipliation OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeModular MultipliationPart/Part - - - mul.ps - vmulesb,vmuleub,vmulosb,vmuloub,vmulesh,vmuleuh,vmulosh,vmulouhImmd/Part - - - - - -Part/Part w/A - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhSalar/Part w/A - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhImmd/Part w/A - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhPart/Part w/A Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhSalar/Part w/A Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhImmd/Part w/A Subt - - - - mul[la℄.ob, -(w/ or w/o Init) mul[la℄.qhPart/Element - - - - - -Element/Element - - - - - -Modular Mul. HighPt/Pt Store in Enh. - - - - - -Pt/Pt Store in Implied - - - - - -Pt/Pt A. w/Implied - - - - - -Sat. MultipliationPart/Part - - - - mul.ob,mul.qh -Salar/Part - - - - mul.ob,mul.qh -Immd/Part - - - - mul.ob,mul.qh -Mult. by Sign (-,0,+)Part/Part - - - - msgn.qh -Salar/Part - - - - msgn.qh -Immd/Part - - - - msgn.qh -Average - - - vavgsb,vavgub,have havg vavgsh,vavguh,vavgsw,vavguw

- 350 -
Table C.5 ont'd.Multipliation OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Modular MultipliationPart/Part fmul8x16, pmullw pmullw,fmul8sux16,fmul8ulx16,fmuld8sux16, pmuludq,fmuld8ulx16 pmuludq,mulps mulpdImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Part/Part w/A Subt - - - -(w/ or w/o Init)Salar/Part w/A Subt - - - -(w/ or w/o Init)Immd/Part w/A Subt - - - -(w/ or w/o Init)Part/Element fmul8x16au, - - -fmul8x16alElement/Element - - mulss mulsdModular Mul. HighPt/Pt Store in Enh. - pmulhw pmulhuw pmulhuw,pmulhwPt/Pt Store in Implied - - - -Pt/Pt A. w/Implied - - - -Sat. MultipliationPart/Part - - - -Salar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -Salar/Part - - - -Immd/Part - - - -Average - - pavgb, pavgb,pavgw pavgw

- 351 -
Table C.5 ont'd.Multipliation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXModular MultipliationPart/Part - - -

mulpsImmd/Part - - - -Part/Part w/A - - - -(w/ or w/o Init)Salar/Part w/A - - - -(w/ or w/o Init)Immd/Part w/A - - - -(w/ or w/o Init)Part/Part w/A Subt - - - -(w/ or w/o Init)Salar/Part w/A Subt - - - -(w/ or w/o Init)Immd/Part w/A Subt - - - -(w/ or w/o Init)Part/Element - - - -Element/Element - - mulss -Modular Mul. HighPt/Pt Store in Enh. pmulhrw pmulhuw - pmulhrwPt/Pt Store in Implied - - - pmulhriwPt/Pt A. w/Implied - - - pmahriwSat. MultipliationPart/Part pfmul - - -Salar/Part - - - -Immd/Part - - - -Mult. by Sign (-,0,+)Part/Part - - - -Salar/Part - - - -Immd/Part - - - -Average pavgusb pavgb, - pavebpavgw

- 352 -

Table C.6Combined Arithmeti OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeMultiply, then Add - - - - -Neighboring FieldsMultiply/Mod. Add - - madd.ps - vmaddfp,vmladduhmNegated - - nmadd.ps - -Multiply/Mod. AddMultiply/Sat. Add - - - - vmhaddshsMultiply(w/Rnd)/Sat. Add - - - - vmhraddshsMultiply/Mod. Subtrat - - msub.ps - -Negated - - nmsub.ps - vnmsubfpMultiply/Mod. SubtratMultiply, then Modular - - - - vmsumubm,Add Neighbor w/Part vmsumshm,vmsumuhm,vmsummbmMultiply, then Saturate - - - - vmsumshs,Add Neighbor w/Part vmsumuhs

- 353 -

Table C.6 ont'd.Combined Arithmeti OperationsOperation Types Sun Intel Intel Intel AMD CyrixVIS MMX SSE SSE2 3DNow! (All families) EMMXMultiply, then Add - pmaddwd - pmaddwd - -Neighboring FieldsMultiply/Mod. Add - - - - - -Negated - - - - - -Multiply/Mod. AddMultiply/Sat. Add - - - - - -Multiply(w/Rnd)/Sat. Add - - - - - -Multiply/Mod. Subtrat - - - - - -Negated - - - - - -Multiply/Mod. SubtratMultiply, then Modular - - - - - -Add Neighbor w/Part
Multiply, then Saturate - - - - - -Add Neighbor w/Part

- 354 -
Table C.7Division and Advaned Arithmeti OperationsOperation Types DEC HP SGI SGI Motorola Sun IntelMVI MAX MIPS-V MDMX AltiVe VIS MMXDividePart/Part - - - - - - -Element/Element - - - - - - -Square RootPart/Part - - - - - - -Element/Element - - - - - - -Reiproal Approx.Part - - - - vrefp - -Element - - - - - - -Reip. Sq. Rt. Approx.Part - - - - vrsqrtefp - -Element - - - - - - -Log2(x) Approx.Part - - - - vlogefp - -2x Approx.Part - - - - vexptefp - -Operation Types Intel Intel AMD AMD AMD CyrixSSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXDividePart/Part divps - - divps -divpdElement/Element divss - - divss -divsdSquare RootPart/Part sqrtps - - sqrtps -sqrtpdElement/Element sqrtss - - sqrtss -sqrtsdReiproal Approx.Part rpps - - - rpps -Element rpss - pfrp/pfrpit1/pfrpit2 - rpss -Reip. Sq. Rt. Approx.Part rsqrtps - - - rsqrtps -Element rsqrtss - pfrsqrt/pfrsqit1/fprpit2 - rsqrtss -Log2(x) Approx.Part - - - - - -2x Approx.Part - - - - - -

- 355 -
Table C.8Shift and Rotate OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISShift Left LogialPart by Part - - - - sll.ob, vslb, -sll.qh vslh,vslwPart by Salar - - - - sll.ob, -sll.qh vslPart by Single sll - - - - -vsloPart by Immd sll - hshl - sll.ob, - -sll.qhShift Right LogialPart by Part - - - - srl.ob, vsrb, -srl.qh vsrh,vsrwPart by Salar - - - - srl.ob, - -srl.qhPart by Single srl - - - - vsro -Part by Immd srl - hshr,u - srl.ob, - -srl.qhShift Right ArithmetiPart by Part - - - - sra.qh vsrab, -vsrah,vsrawPart by Salar - - - - sra.qh - -Part by Single sra - - - - - -Part by Immd sra - hshr or hshr,s - sra.qh - -Shift Left and Addby 1 bit - - - - - - -by 2 bits s4addq - - - - - -by 3 bits s8addq - - - - - -Shift Left and Sat. Addby 1,2, or 3 bits - hshladd - - - - -Shift Left and Subtratby 2 bits s4subq - - - - - -by 3 bits s8subq - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - hshradd - - - - -RotatePart by Part - - - - - vrlb, -vrlh,vrlw

- 356 -
Table C.8 ont'd.Shift and Rotate OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXShift Left LogialPart by Part - - - - - - -Part by Salar - - - - - - -Part by Single psllw, - psllw, - - - -pslld, pslld,psllq psllqPart by Immd psllw, - psllw, - - - -pslld, pslld,psllq psllq,pslldqShift Right LogialPart by Part - - - - - - -Part by Salar - - - - - - -Part by Single psrlw, - psrlw, - - - -psrld, psrld,psrlq psrlqPart by Immd psrlw, - psrlw, - - - -psrld, psrld,psrlq psrlq,psrldqShift Right ArithmetiPart by Part - - - - - - -Part by Salar - - - - - - -Part by Single psraw, - psraw, - - - -psrad psradPart by Immd psraw, - psraw, - - - -psrad psradShift Left and Addby 1 bit - - - - - - -by 2 bits - - - - - - -by 3 bits - - - - - - -Shift Left and Sat. Addby 1,2, or 3 bits - - - - - - -Shift Left and Subtratby 2 bits - - - - - - -by 3 bits - - - - - - -Shift Right and Sat. Addby 1,2, or 3 bits - - - - - - -RotatePart by Part - - - - - - -

- 357 -
Table C.9Polymorphi OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISANDPart/Part and and and - and.ob,and.qh vand fands,fandPart/Imm and - - - and.ob,and.qh - -Part/Salar - - - - and.ob,and.qh - -ANDNPart/Part bi andm andm - - vand fandnot[12℄s1,fandnot[12℄Part/Imm bi - - - - - -NANDPart/Part - - - - - - fnands,fnandPart/Imm - - - - - - -ORPart/Part bis or or - or.ob,or.qh vor fors,forPart/Imm bis - - - or.ob,or.qh - -Part/Salar - - - - or.ob,or.qh - -ORNPart/Part ornot - - - - - fornot[12℄s,fornot[12℄Part/Imm ornot - - - - - -NORPart/Part - - - - nor.ob,nor.qh vnor fnors,fnorPart/Imm - - - - nor.ob,nor.qh - -Part/Salar - - - - nor.ob,nor.qh - -XORPart/Part xor xor xor - xor.ob,xor.qh vxor fxors,fxorPart/Imm xor - - - xor.ob,xor.qh - -Part/Salar - - - - xor.ob,xor.qh - -XORNPart/Part eqv - - - - - -Part/Imm eqv - - - - - -NXORPart/Part - - - - - - fxnors,fxnorPart/Imm - - - - - - -Population tpop - - - - - -Leading 0 bits tlz - - - - - -Trailing 0 bits ttz - - - - - -1\[12℄" means \1" or \2".

- 358 -
Table C.9 ont'd.Polymorphi OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXANDPart/Part pand andps pand,andpd - - andps -Part/Imm - - - - - - -Part/Salar - - - - - - -ANDNPart/Part pandn andnps pandn,andnpd - - andnps -Part/Imm - - - - - - -NANDPart/Part - - - - - - -Part/Imm - - - - - - -ORPart/Part por orps por,orpd - - orps -Part/Imm - - - - - - -Part/Salar - - - - - - -ORNPart/Part - - - - - - -Part/Imm - - - - - - -NORPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -XORPart/Part pxor xorps pxor,xorpd - - xorps -Part/Imm - - - - - - -Part/Salar - - - - - - -XORNPart/Part - - - - - - -Part/Imm - - - - - - -NXORPart/Part - - - - - - -Part/Imm - - - - - - -Population - - - - - - -Leading 0 bits - - - - - - -Trailing 0 bits - - - - - - -

- 359 -
Table C.10Condition Testing OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeForms of Result Bitmask - FP CC FP CC Bits Field MaskBits All/None BitsEqualityPart/Part - .eq.ob, vmpequb,mpeq .eq.qh vmpequh,.eq.ps vmpequw,vmpeqfp,Part/Imm mpeq - - .eq.ob,.eq.qh -Part/Salar - - - .eq.ob,.eq.qh -El/El - - - - -InequalityPart/Part - - - -.neq.psPart/Imm - - - - -Part/Salar - - - - -El/El - - - - -Greater ThanPart/Part - - - vmpgtsb,vmpgtub,vmpgtsh,vmpgtuh,.gt.ps vmpgtsw,vmpgtuw,vmpgtfpEl/El - - - - -Less ThanPart/Part - - .lt.ob, -.lt.qh.lt.psPart/Imm - - - .lt.ob,.lt.qh -Part/Salar - - - .lt.ob,.lt.qh -El/El - - - - -Greater or EqualPart/Part mpbge - .ge.ps - vmpgefpPart/Imm mpbge - - - -Part/Salar - - - - -Less or EqualPart/Part - - .le.ob, -.le.qh.le.psPart/Imm - - - .le.ob,.le.qh -Part/Salar - - - .le.ob,.le.qh -El/El - - - - -Not Less nor EqualPart/Part - - .nle.ps - -Element/Element - - - - -Not Less ThanPart/Part - - .nlt.ps - -Element/Element - - - - -

- 360 -
Table C.10 ont'd.Condition Testing OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Forms of Result Bitmask Field Mask Field Mask Field MaskEqualityPart/Part pmpeqb, pmpeqb,fmpeq16, pmpeqw, pmpeqw,fmpeq32 pmpeqd mpps/0 pmpeqd,mppd/0Part/Imm - - - -Part/Salar - - - -El/El - - mpss/0 mpsd/0InequalityPart/Part fmpne16, -fmpne32 mpps/4 mppd/4Part/Imm - - - -Part/Salar - - - -El/El - - mpss/4 mpsd/4Greater ThanPart/Part pmpgtb, - pmpgtb,fmpgt16, pmpgtw, pmpgtw,fmpgt32 pmpgtd pmpgtd,El/El - - - -Less ThanPart/Part - - mpps/1 mppd/1Part/Imm - - - -Part/Salar - - - -El/El - - mpss/1 mpsd/1Greater or EqualPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Less or EqualPart/Part -fmple16,fmple32 mpps/2 mppd/2Part/Imm - - - -Part/Salar - - - -El/El - - mpss/2 mpsd/2Not Less nor EqualPart/Part - - mpps/6 mppd/6Element/Element - - mpss/6 mpsd/6Not Less ThanPart/Part - - mpps/5 mppd/5Element/Element - - mpss/5 mpsd/5

- 361 -
Table C.10 ont'd.Condition Testing OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXForms of Result Field Mask - Field Mask -EqualityPart/Part - -pfmpeq mpps/0Part/Imm - - - -Part/Salar - - - -El/El - - mpss/0 -InequalityPart/Part - - -mpps/4Part/Imm - - - -Part/Salar - - - -El/El - - mpss/4 -Greater ThanPart/Part - - -pfmpgtEl/El - - - -Less ThanPart/Part - - -mpps/1Part/Imm - - - -Part/Salar - - - -El/El - - mpss/1 -Greater or EqualPart/Part pfmpge - - -Part/Imm - - - -Part/Salar - - - -Less or EqualPart/Part - - -mpps/2Part/Imm - - - -Part/Salar - - - -El/El - - mpss/2 -Not Less nor EqualPart/Part - - mpps/6 -Element/Element - - mpss/6 -Not Less ThanPart/Part - - mpps/5 -Element/Element - - mpss/5 -

- 362 -

Table C.10 ont'd.Condition Testing OperationsOperation Types DEC HP SGI SGI Motorola SunMVI MAX MIPS-V MDMX AltiVe VISNot (Greater or Equal) Pt/Pt - - .nge.ps - - -Greater or Less Than Pt/Pt - - .gl.ps - - -Not (Greater or Less) Pt/Pt - - .ngl.ps - - -Not Greater Than Pt/Pt - - .ngt.ps - - -Greater, Less, or Equal Pt/Pt - - .gle.ps - - -Not (Gr., Less, or Eq.) Pt/Pt - - .ngle.ps - - -OrderedPart/Part - - .or.ps - - -Element/Element - - - - - -UnorderedPart/Part - - .un.ps - - -Element/Element - - - - - -Unordered or Equal Pt/Pt - - .ueq.ps - - -Signaling Equal Pt/Pt - - .seq.ps - - -Signaling Not Equal Pt/Pt - - .sne.ps - - -Ordered or Greater Than Pt/Pt - - .ogt.ps - - -Unordered or Greater Pt/Pt - - .ugt.ps - - -Ord. or Greater or Eq. Pt/Pt - - .oge.ps - - -Unord. or Grtr. or Eq. Pt/Pt - - .uge.ps - - -Ordered or Less Than Pt/Pt - - .olt.ps - - -Unordered or Less Than Pt/Pt - - .ult.ps - - -Ordered or Less or Eq. Pt/Pt - - .ole.ps - - -Unord. or Less or Eq. Pt/Pt - - .ule.ps - - -Ord. or Greater or Less Pt/Pt - - .ogl.ps - - -Compare Bounds Pt/Pt - - - - vmpbfp -Set Cond. CodesOrdered El/El - - - - - -Unord. El/El - - - - - -

- 363 -

Table C.10 ont'd.Condition Testing OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXNot (Greater or Equal) Pt/Pt - - - - - - -Greater or Less Than Pt/Pt - - - - - - -Not (Greater or Less) Pt/Pt - - - - - - -Not Greater Than Pt/Pt - - - - - - -Greater, Less, or Equal Pt/Pt - - - - - - -Not (Gr., Less, or Eq.) Pt/Pt - - - - - - -OrderedPart/Part - mpps/7 mppd/7 - - mpps/7 -Element/Element - mpss/7 mpsd/7 - - mpss/7 -UnorderedPart/Part - mpps/3 mppd/3 - - mpps/3 -Element/Element - mpss/3 mpsd/3 - - mpss/3 -Unordered or Equal Pt/Pt - - - - - - -Signaling Equal Pt/Pt - - - - - - -Signaling Not Equal Pt/Pt - - - - - - -Ordered or Greater Than Pt/Pt - - - - - - -Unordered or Greater Pt/Pt - - - - - - -Ord. or Greater or Eq. Pt/Pt - - - - - - -Unord. or Grtr. or Eq. Pt/Pt - - - - - - -Ordered or Less Than Pt/Pt - - - - - - -Unordered or Less Than Pt/Pt - - - - - - -Ordered or Less or Eq. Pt/Pt - - - - - - -Unord. or Less or Eq. Pt/Pt - - - - - - -Ord. or Greater or Less Pt/Pt - - - - - - -Compare Bounds Pt/Pt - - - - - - -Set Cond. CodesOrdered El/El - omiss omisd - - omiss -Unord. El/El - uomiss uomisd - - uomiss -

- 364 -

Table C.11Conditional Flow Control OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISBranh On... 1None True beq - - - - - -Any True bne - - - - - -All Equal (Part/Part) - ombt,= mpb,*= - - - -All Equal (Part/Immed) - omibt,= mpib,*= - - - -All Inequal (Part/Part) - ombt,<> mpb,*<> - - - -All Inequal (Part/Immed) - omibt,<> mpib,*<> - - - -Operate and Null Next On...AND/Any True? - and,<> and,*<> - - - -AND/None True? - and,= and,*= - - - -ANDN/Any True? - andm,<> andm,*<> - - - -ANDN/None True? - andm,= andm,*= - - - -OR/Any True? - or,<> or,*<> - - - -OR/None True? - or,= or,*= - - - -XOR/Any True? - xor,<> xor,*<> - - - -XOR/None True? - xor,= xor,*= - - - -XOR/Any False? uxor,*swz- uxor,shz uxor,*shz - - - -uxor,sbz uxor,*sbzXOR/None False? uxor,*nwz- uxor,nhz uxor,*nhz - - - -uxor,nbz uxor,*nbzAdd Complement/Any False? uaddm,*swz(A+B) - uaddm,shz uaddm,*shz - - - -uaddm,sbz uaddm,*sbzAdd Complement/None False? uaddm,*nwz(A+B) - uaddm,nhz uaddm,*nhz - - - -uaddm,nbz uaddm,*nbz11x32 versions of these tests are also available. For example, \mpb,<>".

- 365 -

Table C.11 ont'd.Conditional Flow Control OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXBranh On...None True - - - - - - -Any True - - - - - - -All Equal (Part/Part) - - - - - - -All Equal (Part/Immed) - - - - - - -Any Inequal (Part/Part) - - - - - - -Any Inequal (Part/Immed) - - - - - - -Operate and Null Next On...AND/Any True? - - - - - - -AND/None True? - - - - - - -ANDN/Any True? - - - - - - -ANDN/None True? - - - - - - -OR/Any True? - - - - - - -OR/None True? - - - - - - -XOR/Any True? - - - - - - -XOR/None True? - - - - - - -XOR/Any False? - - - - - - -XOR/None False? - - - - - - -Add Complement/Any False? - - - - - - -(A+ B)Add Complement/None False? - - - - - - -(A+ B)

- 366 -

Table C.12Conditional Data Manipulation OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISMove Reg/Imm On...None True moveq - - - - - -Any True movne - - - - - -Zero Masked Bytes zap - - - - - -Zero UnMasked Bytes zapnot - - - - - -Clear Reg& Null Next/AllPart/Part - omlr,= mplr,*= - - - -Part/Imm - omilr,= mpilr,*= - - - -Part/Salar - - - - - - -Clear Reg& Null Next/Not AllPart/Part - omlr,<> mplr,*<> - - - -Part/Imm - omilr,<> mpilr,*<> - - - -Part/Salar - - - - - - -Load Reg. On...Zero - - - - - - -Non-Zero - - - - - - -Negative - - - - - - -Non-Negative - - - - - - -Move Reg. On...CC bit TRUE - - - movt.ps - - -CC bit FALSE - - - movf.ps - - -Pik TruePart/Part - - - - pikt.ob,pikt.qh vsel -Part/Imm - - - - pikt.ob,pikt.qh - -Part/Salar - - - - pikt.ob,pikt.qh - -Pik FalsePart/Part - - - - pikf.ob,pikf.qh vsel -Part/Imm - - - - pikf.ob,pikf.qh - -Part/Salar - - - - pikf.ob,pikf.qh - -

- 367 -

Table C.12 ont'd.Conditional Data Manipulation OperationsOperation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXMove Reg/Imm On...None True - - - - - - -Any True - - - - - - -Zero Masked Bytes - - - - - - -Zero UnMasked Bytes - - - - - - -Clear Reg & Null Next/AllPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Clear Reg & Null Next/AnyPart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Load Reg. On...Zero - - - - - - pmvzbNon-Zero - - - - - - pmvnzbNegative - - - - - - pmvlzbNon-Negative - - - - - - pmvgezbMove Reg. On...CC bit TRUE - - - - - - -CC bit FALSE - - - - - - -Pik TruePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -Pik FalsePart/Part - - - - - - -Part/Imm - - - - - - -Part/Salar - - - - - - -

- 368 -
Table C.13Data Movement, Repliation, and Type Conversion OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltitVe VISMove Reg.!Enh. Reg. - - - - - - -Move Enh. Reg.!Reg. - - - - - - -Move Enh. Reg. - - - fsr[12℄s1,!Enh. Reg. movb movb fsr[12℄mov.psMove Comp. Enh. Reg. - - - - - - fnot[12℄s,!Enh. Reg. fnot[12℄Pak Singles to Part - - - vt.ps.s - - -Modular Move A!RegLow Third of A. - - - - ral.ob, - -ral.qhMiddle Third of A. - - - - ram.ob, - -ram.qhHigh Third of A. - - - - rah.ob, - -rah.qhMove Regs. to Low A. - - - - wal.ob, - -wal.qhMove Reg. to High A. - - - - wah.ob, - -wah.qhRepliate Field vspltb,(Element/Part) - - - - - vsplth, -vspltwRepliate Sign-Extended vspltisb,Immediate to Part - - - - - vspltish, -vspltiswShift Rt, Rnd, & Sat Atoward 0 - - - - rzu.ob, - -rzs.qh,rzu.qhto nearest away from 0 - - - - rnau.ob, - -rnas.qh,rnau.qhto nearest toward even - - - - rne.ob, - -rnes.qh,rneu.qhConvert int. to t. - - - - - vfux, -vfsxConvert t. to int. - - - - - vtuxs, -vtsxsConvert t. to t. - - - - - - -Round t. value to int.to nearest - - - - - vr�n -toward zero - - - - - vr�z -toward +in�nity - - - - - vr�p -toward -in�nity - - - - - vr�m -1\[12℄" means \1" or \2".

- 369 -
Table C.13 ont'd.Data Movement, Repliation, and Type Conversion OperationsOperation Types Intel Intel IntelMMX SSE SSE2Move Reg!Enh. Reg. movd - movdMove Enh. Reg!Reg. movd - movdMove Enh. Reg!Enh. Reg. movq movq,movdq2q,movq2dq,(movdqu)movdqa,(movups)movaps (movupd)movapdMove Comp. Enh. Reg. - - -!Enh. Reg.Pak Singles to Part - - -Modular Move A!RegLow Third of A. - - -Middle Third of A. - - -High Third of A. - - -Move Regs. to Low. A. - - -Move Reg. to High A. - - -Repliate Field - - -Repliate Sign-Extended - - -Immediate to PartShift Rt, Rnd, & Sat Atoward 0 - - -to nearest away from 0 - - -to nearest toward even - - -Convert int. to t. - vtpi2ps, vtpi2pd,vtsi2ss vtsi2sd,vtdq2ps,vtdq2pdConvert t. to int. - vt(t)ps2pi1 , vt(t)pd2pi1 ,vt(t)pd2dq1 ,vt(t)ss2si1 vt(t)sd2si1 ,vt(t)ps2dq1Convert t. to t. - - vtpd2ps,vtps2pd,vtsd2ss,vtss2sdRound t. value to int.to nearest - - -toward zero - - -toward +in�nity - - -toward -in�nity - - -1Cvt* uses rounding mode spei�ed in MXCSR. Cvtt* trunates the frational part.

- 370 -
Table C.13 ont'd.Data Movement, Repliation, and Type Conversion OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXMove Reg!Enh. Reg. - - - -Move Enh. Reg!Reg. - - - -Move Enh. Reg!Enh. Reg. - - -(movups)movapsMove Comp. Enh. Reg. - - - -!Enh. Reg. -Pak Singles to Part - - - -Modular Move A!RegLow Third of A. - - - -Middle Third of A. - - - -High Third of A. - - - -Move Regs. to Low. A. - - - -Move Reg. to High A. - - - -Repliate Field - - - -Repliate Sign-Extended - - - -Immediate to PartShift Rt, Rnd, & Sat Atoward 0 - - - -to nearest away from 0 - - - -to nearest toward even - - - -Convert int. to t. pi2fd pi2fw vtpi2ps, -vtsi2ssConvert t. to int. pf2id pf2iw vt(t)ps2pi1 , -vt(t)ss2si1Convert t. to t. - - - -Round t. value to int.to nearest - - - -toward zero - - - -toward +in�nity - - - -toward -in�nity - - - -1Cvt* uses rounding mode spei�ed in MXCSR. Cvtt* trunates the frational part.

- 371 -
Table C.14Data Extration, Insertion, and Permutation OperationsOperation Types DEC HP HP SGI SGIMVI MAX-1 MAX-2 MIPS-V MDMXExtrat Field to Reg. - - - - -Insert Seleted Field - - - - -Insert Low Field - - - - -Byte Shft Rt & ExtratBy Immed. extbl,extwl,extll,extql - - - -By Register extbl,extwl,extll,extql - - - -Byte Shft Lt & ExtratBy Immed. extwh,extlh,extqh - - - alni.ob,alni.qhBy Register extwh,extlh,extqh - - alnv.ob,alnv.qhalnv.psByte Shft Rt & Insert inswh,inslh,insqh - - - -into Zeroed RegByte Shft Lt & Insert insbl,inswl,insll,insql - - - -into Zeroed RegBit Shft Lt & Extrat - (v)extrs extrw(,s), - -(v)extru extrw,u1- extrd(,s),- extrd,u2Merge, Bit Shft Rt - (v)shd shrpw, - -& Extrat shrpdBit Shift Left & Insertinto Zeroed Regfrom Immed - z(v)depi depwi,z, - -depdi,zfrom Reg - z(v)dep depw,z, - -depd,zBit Shift Left & Insertinto Unhanged Regfrom Immed - (v)depi depwi, - -depdifrom Reg - (v)dep depw, - -depdClear Segment Low mskbl,mskwl,mskll,mskql - - - -Clear Segment High mskwh,msklh,mskqh - - - -PermutePart/Indexed by Part - - - - -Part/Indexed by Imm - - permh - -Swap Fields - - - - -1See table D-13, pD-9 in [82℄.2See table D-14, pD-9 in [82℄.

- 372 -
Table C.14 ont'd.Data Extration, Insertion, and Permutation OperationsOperation Types Motorola Sun Intel Intel IntelAltiVe VIS MMX SSE SSE2Extrat Field to Reg. - - - pextrw pextrwInsert Seleted Field - - - pinsrw pinsrwInsert Low Field - - - movss movsdByte Shft Rt & ExtratBy Immed. vsldoi - - - -By Register - faligndata - - -Byte Shft Lt & ExtratBy Immed. - - - - -By Register - - - - -Byte Shft Rt & Insert - - - - -into Zeroed RegByte Shft Lt & Insert - - - - -into Zeroed RegBit Shft Lt & Extrat - - - - -Merge, Bit Shft Rt - - - - -& ExtratBit Shift Left & Insertinto Zeroed Regfrom Immed - - - - -from Reg - - - - -Bit Shift Left & Insertinto Unhanged Regfrom Immed - - - - -from Reg - - - - -Clear Segment Low - - - - -Clear Segment High - - - - -PermutePart/Indexed by Part vperm - - - -Part/Indexed by Imm - - - pshufw, pshuw,pshufhw,pshufd,shufps shufpdSwap Fields - - - - -

- 373 -
Table C.14 ont'd.Data Extration, Insertion, and Permutation OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXExtrat Field to Reg. - pextrw - -Insert Seleted Field - pinsrw - -Insert Low Field - - movss -Byte Shft Rt & ExtratBy Immed. - - - -By Register - - - -Byte Shft Lt & ExtratBy Immed. - - - -By Register - - - -Byte Shft Rt & Insert - - - -into Zeroed RegByte Shft Lt & Insert - - - -into Zeroed RegBit Shft Lt & Extrat - - - -Merge, Bit Shft Rt - - - -& ExtratBit Shift Left & Insertinto Zeroed Regfrom Immed - - - -from Reg - - - -Bit Shift Left & Insertinto Unhanged Regfrom Immed - - - -from Reg - - - -Clear Segment Low - - - -Clear Segment High - - - -PermutePart/Indexed by Part - - - -Part/Indexed by Imm - pshufw - -shufpsSwap Fields - pswapd - -

- 374 -
Table C.15Interleaving OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISInterleave (Merge) - - - - - - fpmergeInterleave odd (left) - - mixh,l, - - - -mixw,lInterleave even (right) - - mixh,r, - - - -mixw,rInterleave upperPart/Part - - - sh.mixh.ob, vmrghb, -sh.mixh.qh vmrghh,puu.ps vmrghwPart/Imm - - - - sh.mixh.ob, - -sh.mixh.qhPart/Salar - - - - sh.mixh.ob, - -sh.mixh.qhPart/Zero - - - - sh.upuh.ob - -Interleave lowerPart/Part - - - sh.mixl.ob, vmrglb, -sh.mixl.qh vmrglh,pll.ps vmrglwPart/Imm - - - - sh.mixl.ob, - -sh.mixl.qhPart/Salar - - - - sh.mixl.ob, - -sh.mixl.qhPart/Zero - - - - sh.upul.ob - -Sale, Trun., Clip & Merge - - - - - - fpak32Interleave even w/oddForward or ReversePart/Part - - - - sh.b[ab℄.qh - -plu.psPart/Imm - - - - sh.b[ab℄.qh - -Part/Salar - - - - sh.b[ab℄.qh - -Interleave odd w/evenForward or ReversePart/Part - - - pul.ps - - -Part/Imm - - - - - - -Part/Salar - - - - - - -

- 375 -
Table C.15 ont'd.Interleaving OperationsOperation Types Intel Intel IntelMMX SSE SSE2Interleave (Merge) - - -Interleave odd (left) - - -Interleave even (right) - - -Interleave upperPart/Part punpkhbw, punpkhbw,punpkhwd, punpkhwd,punpkhdq unpkhps punpkhdq,punpkhqdq,unpkhpdPart/Imm - - -Part/Salar - - -Part/Zero - - -Interleave lowerPart/Part punpklbw, punpklbw,punpklwd, punpklwd,punpkldq unpklps punpkldq,punpklqdq,unpklpdPart/Imm - - -Part/Salar - - -Part/Zero - - -Sale, Trun., Clip & Merge - - -Interleave even w/oddForward and ReversePart/Part - - -Part/Imm - - -Part/Salar - - -Interleave odd w/evenForward and ReversePart/Part - - -Part/Imm - - -Part/Salar - - -

- 376 -
Table C.15 ont'd.Interleaving OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXInterleave (Merge) - - - -Interleave odd (left) - - - -Interleave even (right) - - - -Interleave upperPart/Part - - - -unpkhpsPart/Imm - - - -Part/Salar - - - -Part/Zero - - - -Interleave lowerPart/Part - - - -unpklpsPart/Imm - - - -Part/Salar - - - -Part/Zero - - - -Sale, Trun., Clip & Merge - - - -Interleave even w/oddForward and ReversePart/Part - - - -Part/Imm - - - -Part/Salar - - - -Interleave odd w/evenForward and ReversePart/Part - - - -Part/Imm - - - -Part/Salar - - - -

- 377 -
Table C.16Catenating, Paking, and Unpaking OperationsOperation Types DEC HP SGI SGI MotorolaMVI MAX MIPS-V MDMX AltiVeCatenate oddPart/Part - - - sh.pah.ob, -sh.pah.qhPart/Imm - - - sh.pah.ob, -sh.pah.qhPart/Salar - - - sh.pah.ob, -sh.pah.qhCatenate evenPart/Part - - - sh.pal.ob, vpkuhum,sh.pal.qh vpkuwumPart/Imm - - - sh.pal.ob, -sh.pal.qhPart/Salar - - - sh.pal.ob, -sh.pal.qhCatenate upperPart/Part - - - sh.repa.qh -Part/Imm - - - sh.repa.qh -Part/Salar - - - sh.repa.qh -Catenate lowerPart/Part - - - sh.repb.qh -Part/Imm - - - sh.repb.qh -Part/Salar - - - sh.repb.qh -Unsigned Saturate, - - - - vpkshus,vpkuhus,Pak, and Catenate vpkswus,vpkuwusSigned Saturate, - - - - vpkshss,Pak, and Catenate vpkswssPixel Pak - - - - vpkpxand CatenateTrunate & Pak pklb, - - - -Low Byte pkwbSale, Trunate, - - - - -& ClipUnpak Lower - - - sh.upsl.ob vupklsb,& Sign Extend vupklshUnpak Upper - - - sh.upsh.ob vupkhsb,& Sign Extend vupkhshUnpak Low Bytes unpkbl, - - - -& Zero Extend unpkbwUnpak Lower Pixel - - - - vupklpxUnpak Upper Pixel - - - - vupkhpxZero Expand - - - - -

- 378 -
Table C.16 ont'd.Catenating, Paking, and Unpaking OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Catenate oddPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate upperPart/Part - - movhlps -Part/Imm - - - -Part/Salar - - - -Catenate lowerPart/Part - - movlhps -Part/Imm - - - -Part/Salar - - - -Unsigned Saturate, - pakuswb - pakuswbPak, and CatenateSigned Saturate, - paksswb, - paksswb,Pak, and Catenate pakssdw pakssdwPixel Pak - - - -and CatenateTrunate & Pak - - - -Low ByteSale, Trunate, fpak16, - - -& Clip fpak�xUnpak Lower - - - -& Sign ExtendUnpak Upper - - - -& Sign ExtendUnpak Low Bytes - - - -& Zero ExtendUnpak Lower Pixel - - - -Unpak Upper Pixel - - - -Zero Expand fexpand - - -

- 379 -
Table C.16 ont'd.Catenating, Paking, and Unpaking OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXCatenate oddPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate evenPart/Part - - - -Part/Imm - - - -Part/Salar - - - -Catenate upperPart/Part - - movhlps -Part/Imm - - - -Part/Salar - - - -Catenate lowerPart/Part - - movlhps -Part/Imm - - - -Part/Salar - - - -Unsigned Saturate, - - - -Pak, and CatenateSigned Saturate, - - - -Pak, and CatenatePixel Pak - - - -and CatenateTrunate & Pak - - - -Low ByteSale, Trunate, - - - -& ClipUnpak Lower - - - -& Sign ExtendUnpak Upper - - - -& Sign ExtendUnpak Low Bytes - - - -& Zero ExtendUnpak Lower Pixel - - - -Unpak Upper Pixel - - - -Zero Expand - - - -

- 380 -
Table C.17Memory Aess OperationsOperation Types DEC HP HP SGI SGI MotorolaMVI MAX-1 MAX-2 MIPS-V MDMX AltiVeLoad Aligned ldbu, ldb, ldb, - lvebx,ldwu, ldh, ldh, lvehx,ldl, ldw ldw and ldwa, lvewx,ldq ldd and ldda lux1 lvx or lvxl1Load Unaligned - - - - -ldq uLoad Field - - - - - -Load Immediate - ldil ldil - - -Load Zeros - - - - - -Load All Ones - - - - - -Load Alignment - - - - - lvsl or lvsrVetorStore Aligned stb, stb, stb, - stvebx,stw, stb, sth, stvehx,stl, stw stw and stwa stvewx,stq std and stda sux1 stvx or stvxl1Store Unaligned stbys stby, - - -stdbystq uStore Aligned - - - - - -w/Cahe FlushMasked Storeby Bitmask - - - - - -by msb of Part - - - - - -Store Syn wmb - - - - -Load Syn - - - - - -Memory Syn - syn - - - -Spin-wait Hint - - - - - -1Hints that the referene will probably be the last to this ahe blok.

- 381 -
Table C.17 ont'd.Memory Aess OperationsOperation Types Sun Intel Intel IntelVIS MMX SSE SSE2Load Aligned lddfa,d0, -lddfa,d2, movaps movdqa,movapdlddfa,[7f℄0Load Unaligned - movd, movss, movd,movq movq,movsd,movhps, movhpd,movlps, movlpd,movups movdqu,movupdLoad Field - - pinsrw pinsrwLoad Immediate - - - -Load Zeros fzeros, - - -fzeroLoad All Ones fones, - - -foneLoad Alignment - - - -VetorStore Aligned stdfa,d0, -stdfa,d2, movnti,movntq, movdqa,movntdq,movaps,movntps movapd,movntpdstdfa,[7f℄0Store Unaligned - movd, movss, movd,movq movq,movsd,movhps, movhpd,movlps, movlpd,movups movdqu,movupdStore Aligned stdfa,e0 - - -w/Cahe FlushMasked Storeby Bitmask stdfa,0, - - -stdfa,2,stdfa,4by msb of Part - - maskmovq maskmovdquStore Syn - - sfene -Load Syn - - - lfeneMemory Syn - - - mfeneSpin-wait Hint - - - pause

- 382 -
Table C.17 ont'd.Memory Aess OperationsOperation Types AMD AMD AMD Cyrix3DNow! E3DNow! 3DNow!Pro EMMXLoad Aligned - - -movapsLoad Unaligned - - movss, -movhps,movlps,movupsLoad Field - pinsrw - -Load Immediate - - - -Load Zeros - - - -Load All Ones - - - -Load Alignment - - - -VetorStore Aligned - -movntq movaps,movntpsStore Unaligned - - -movss,movhps,movlps,movupsStore Aligned - - - -w/Cahe FlushMasked Storeby Bitmask - - - -by msb of Part - maskmovq - -Store Syn - sfene - -Load Syn - - - -Memory Syn - - - -Spin-wait Hint - - - -

- 383 -
Table C.18Cahe Management OperationsOperation Types DEC HP HP SGI SGI Motorola SunMVI MAX-1 MAX-2 MIPS-V MDMX AltiVe VISPrefeth Data Line - - ldd - - - -Prefeth Data Line for Write - - ldw - - - -Prefeth Hint feth - - - - dst -Prefeth Hint Transient - - - - - dstt -Store Hint feth m - - - - dstst -Store Hint Transient wh64 - - - - dststt -Disassoiate ID and Stream(s) - - - - - dss or dssall -Evit Hint eb - - - - - -Flush Line - fd,� - - - - -Purge Line - pd - - - - -Flush Cahe - fde,�e - - - - -

Operation Types Intel Intel Intel AMD AMD AMD CyrixMMX SSE SSE2 3DNow! E3DNow! 3DNow!Pro EMMXPrefeth Data Line - - - prefeth - -Prefeth Data Line for Write - - - prefethw - -Prefeth Hint - prefeth*1 - - prefeth*1 -Prefeth Hint Transient - - - - - -Store Hint - - - - - -Store Hint Transient - - - - - -Disassoiate ID and Stream - - - - - -Evit Hint - - - - - -Flush Line - - Yes - - -Purge Line - - - - - -Flush Cahe - - - - - -1prefetht0, prefetht1, prefetht2, prefethnta.

- 384 -

- 385 -
APPENDIX DSCC INTERNAL PSEUDO-OPERATIONSThe following table lists the pseudo-ops used internally in the S ompiler, alongwith the number of arguments eah takes (i.e. the number of subtrees representingarguments whih are attahed to the pseudo-op's node. A \-" means that the on-strut has multiple hildren, but these are not onsidered to be arguments per se.\Null" means that the node is a leaf, or that it's arguments are provided in someother manner. \U" means that the operation is unary (one argument). \UR" meansthat it is a unary redution (i.e. a unary that returns a single value. \Bi" means thatthe operation is binary (two arguments). \Tri" means that the operation is trinary(three arguments).

- 386 -Table D.1S Internal Pseudo-operationsPseudo-op Args. MeaningBLOCK - A blok of odeBREAK - Break statementCALL - Funtion allCONTINUE - Continue statementDO - Do statementEVERYWHERE - Everywhere statementEXPR - ExpressionFOR - For statementGOTO - Goto statementIF - If statementLABEL - LabelRETURN - Return statementSEMI - An empty statementWHERE - Where statementWHILE - While statementNUM Null A onstant single numberVNUM Null A onstant parallel numberSIZEOF Null sizeof operatorLVSL Null Load index vetor for shift left (used for alignment in AltiVe)LOAD Null Vetor loadNEG U Parallel negateRCP U Parallel reiproal (or 1st step of 3 step operation)NOT U Parallel bitwise-NOT (1's omplement)CAST U Type ast arg0I2F U Parallel onvert arg0 from integer to oating-pointF2I U Parallel onvert arg0 from oating-point to integerLNOT U Parallel logial NOT yielding -1 or 0LEA U Load/alulate e�etive address and store in registerLOADR U Fragment load based on e�etive address in registerLOADRR U Fragment load based on e�etive address in a pair of registersLOADX U Vetor element loadSTORE U Vetor storeUNPACKL U Unpak and extend the lower �elds of a soureUNPACKH U Unpak and extend the higher �elds of a soureALL UR Redue logial-AND of arg0ANY UR Redue logial-OR of arg0REDUCEADD UR Redue add of arg0REDUCEAND UR Redue bitwise-AND of arg0REDUCEAVG UR Redue average of arg0REDUCEMAX UR Redue maximum of arg0REDUCEMIN UR Redue minimum of arg0REDUCEMUL UR Redue multiply of arg0REDUCEOR UR Redue bitwise-OR of arg0REDUCEXOR UR Redue bitwise-XOR of arg0

- 387 -Table D.1 ont'd.S Internal Pseudo-operationsPseudo-op Args. MeaningADD Bi Parallel addADDH Bi Parallel add high (low bit is arry-out of add)AVG Bi Parallel averageDIV Bi Parallel divideMOD Bi Parallel modulusMUL Bi Parallel multiply (low N bits of result of NxN)MULEVEN Bi Parallel multiply (even N-bit �elds yeilding 2N-bit result)MULODD Bi Parallel multiply (odd N-bit �elds yeilding 2N-bit result)MULH Bi Parallel multiply high (high N bits of result)MAX Bi Parallel maximumMIN Bi Parallel minimumRCP1 Bi Parallel reiproal (or 2nd step of 3 step operation)RCP2 Bi Parallel reiproal (or 3rd step of 3 step operation)SUB Bi Parallel subtratAND Bi Parallel bitwise-ANDANDN(x,y) Bi Parallel bitwise-AND with omplement (Idential to AND(NOT x, y))NOR Bi Parallel bitwise-NOROR Bi Parallel bitwise-ORXOR Bi Parallel bitwise-XOREQ Bi Parallel == yielding -1 or 0EQ C Bi Parallel == yielding 1 or 0 (C-like result)GE Bi Parallel >= yielding -1 or 0GT Bi Parallel > yielding -1 or 0GT C Bi Parallel > yielding 1 or 0 (C-like result)LE Bi Parallel <= yielding -1 or 0LT Bi Parallel < yielding -1 or 0NE Bi Parallel ! = yielding -1 or 0LAND Bi Parallel logial AND yielding -1 or 0LOR Bi Parallel logial OR yielding -1 or 0STORER Bi Fragment store based on e�etive address in registerSTORERR Bi Fragment store based on e�etive address in a pair of registersSTOREX Bi Vetor element storeROTATE Bi Vetor rotate (inter-element rotate) (ount>0 is left?)SHIFT Bi Vetor shift (inter-element shift) (ount>0 is left?)SHL Bi Parallel intra-element shift leftSHLBIT Bi Parallel fragment shift left by bitsSHLBYTE Bi Parallel fragment shift left by bytesSHR Bi Parallel intra-element shift rightSHRBIT Bi Parallel fragment shift right by bitsSHRBYTE Bi Parallel fragment shift right by bytesINTRLVLOW Bi Interleave lower �elds of souresINTRLVHIGH Bi Interleave higher �elds of souresINTRLVEVEN Bi Interleave even �elds of souresINTRLVODD Bi Interleave odd �elds of soures

- 388 -

Table D.1 ont'd.S Internal Pseudo-operationsPseudo-op Args. MeaningPACK Bi Catenate the even �elds of soures (arg0 into low half)PACKS2U Bi Catenate the signed, even? �elds of soures (arg0 into low half?)PERM Bi Permute arg0 indexed via arg1REPL Bi Repliate �eld 'arg1' of 'arg0' in rest of fragmentPUTGET Bi? UnusedQUEST Tri Trinary onstrut (e.g. a? true:false)TPERM Tri Permute arg0 and arg1 indexed via arg2

- 389 -
APPENDIX ETHE INTEGER EXPRESSION VALIDATION PROGRAMThe integer expression validation program is written using C preproessor maros tominimize its size. In this form, it is about 500 lines long, so I only inlude somesetions here with some empty lines removed. Below is the maro whih is expandedto reate the SWARC funtions for testing an operation op, for vetors of fieldselements of signed or unsigned (sign), bits-bit preision, using modular or saturationarithmeti (ms).#define BINOP(name, op, bits, fields, sign, ms) \void name(ms sign##signed int i, ms sign##signed int j, \ms sign##signed int:bits[fields℄) \{ \ms sign##signed int:bits[fields℄ a; \ms sign##signed int:bits[fields℄ b; \\a = i; \b = j; \ = a op b; \}The C versions of these operations are generated using a set of maros whih arenot inluded here. These must emulate the operations performed by the SWARCode, handling saturation and non-standard bits sizes orretly.Debugging the S ompiler using maro-generated ode is partiularly painful.Here is an example funtion generated by the maro shown above for adding 1-bitunsigned integer values using modular addition:void add1um(modular unsigned int i, modular unsigned int j,modular unsigned int :1[64℄) { modular unsigned int:1[64℄ a;modular unsigned int:1[64℄ b; a = i; b = j; = a + b; }This is embedded in a longer line of ode beause the above maro is nested inanother maro that generates all the funtions for 1-bit unsigned modular data. This

- 390 -an be seen by typing \make valid64-MMX" in the Examples/Valid diretory of theS ompiler soures and looking at the �le valid64.Si. I have never found a way toembed a newline or line-feed harater in these maros to make the generated odemore readable.An example of the C ode generated by the S ompiler for an MMX-basedtarget is given below. Here, we see the wrapper maros generated to exeute theMMX instrutions:/* # 100 "valid64.S"*/__inline__void add1um(unsigned int *i,unsigned int *j,p64_t *){ extern p64_t pool64[℄;register p64_t *_pool = &(pool64[0℄);extern p64_t spool64[℄;register p64_t *_spool = &(spool64[0℄);{ volatile p64_t a[1℄;volatile p64_t b[1℄;movq_m2r(*(_pool + 0), mm0);movq_m2r(*(((p64_t *) ((har *)i +0)) + 0), mm1);movq_m2r(*(_pool + 2), mm2);pand_r2r(mm2, mm1);movq_r2r(mm0, mm3);psubd_r2r(mm1, mm0);movq_r2r(mm0, mm4);psllq_i2r(32, mm0);movq_m2r(*(((p64_t *) ((har *)j +0)) + 0), mm5);por_r2r(mm0, mm4);pand_r2r(mm5, mm2);psubd_r2r(mm2, mm3);movq_r2r(mm3, mm6);psllq_i2r(32, mm3);por_r2r(mm3, mm6);pxor_r2r(mm6, mm4);movq_r2m(mm4, *(((p64_t *) ((har *) +0)) + 0));}emms();}

- 391 -In this ode, a maro with a name that ends in \r2r" performs an operation on one ormore registers and leaves its result in a register. A maro with an \m2r" suÆx takesan operand from memory and leaves its result in a register. Also, a maro with an\r2m" suÆx takes an operand from a register and leaves its result in memory. Theobjets \mm0", \mm1", et. represent MMX registers. The type p64 t is a uniontype whih represents a fragment of data. emms() must be alled to put the systembak into oating-point mode from MMX mode.Eah maro is replaed with one or more inline assembly statements. Here is thepreproessed ode orresponding to the above funtion with some formatting hanges:__inline__void add1um(unsigned int *i, unsigned int *j, p64_t *){ extern p64_t pool64[℄; register p64_t *_pool = &(pool64[0℄);extern p64_t spool64[℄; register p64_t *_spool = &(spool64[0℄);{ volatile p64_t a[1℄;volatile p64_t b[1℄;__asm__ __volatile__ ("movq" " %0, %%" "mm0" : : "m" (*(_pool + 0)));__asm__ __volatile__ ("movq" " %0, %%" "mm1" : :"m" (*(((p64_t *) ((har *)i +0)) + 0)));__asm__ __volatile__ ("movq" " %0, %%" "mm2" : : "m" (*(_pool + 2)));__asm__ __volatile__ ("pand" " %" "mm2" ", %" "mm1");__asm__ __volatile__ ("movq" " %" "mm0" ", %" "mm3");__asm__ __volatile__ ("psubd" " %" "mm1" ", %" "mm0");__asm__ __volatile__ ("movq" " %" "mm0" ", %" "mm4");__asm__ __volatile__ ("psllq" " $" "32" ", %" "mm0");__asm__ __volatile__ ("movq" " %0, %%" "mm5" : :"m" (*(((p64_t *) ((har *)j +0)) + 0)));__asm__ __volatile__ ("por" " %" "mm0" ", %" "mm4");__asm__ __volatile__ ("pand" " %" "mm5" ", %" "mm2");__asm__ __volatile__ ("psubd" " %" "mm2" ", %" "mm3");__asm__ __volatile__ ("movq" " %" "mm3" ", %" "mm6");__asm__ __volatile__ ("psllq" " $" "32" ", %" "mm3");__asm__ __volatile__ ("por" " %" "mm3" ", %" "mm6");__asm__ __volatile__ ("pxor" " %" "mm6" ", %" "mm4");__asm__ __volatile__ ("movq" " %%" "mm4" ", %0" :"=m" (*(((p64_t *) ((har *) +0)) + 0)) :);}__asm__ __volatile__ ("emms");}

- 392 -The above funtion is ompiled by the C ompiler to assembly. The assemblyode generated is diretly related to the C ode generate by the S ompiler. The�nal ode is sheduled aording to the S ompiler's sheduling algorithm with theC ompiler generating the ode for handling the stak..globl add1um.type add1um,�funtionadd1um: pushl %ebpmovl %esp, %ebppushl %esipushl %ebxsubl $16, %espmovl 8(%ebp), %edxmovl 12(%ebp), %exmovl 16(%ebp), %ebxmovl $pool64, %eaxmovl $spool64, %esi#APP movq (%eax), %mm0movq (%edx), %mm1movq 16(%eax), %mm2pand %mm2, %mm1movq %mm0, %mm3psubd %mm1, %mm0movq %mm0, %mm4psllq $32, %mm0movq (%ex), %mm5por %mm0, %mm4pand %mm5, %mm2psubd %mm2, %mm3movq %mm3, %mm6psllq $32, %mm3por %mm3, %mm6pxor %mm6, %mm4movq %mm4, (%ebx)emms#NO_APP addl $16, %esppopl %ebxpopl %esipopl %ebpret

- 393 -
APPENDIX FTHE DNA EXAMPLE BENCHMARKThis is the SWARC soure with inlined C ode for the DNA example benhmark.Note the lak of target-spei� ode in the SWARC setions of the soure, and theexposure of the target arhiteture in the inlined C ode.${$inlude <stdio.h>$inlude <stdlib.h>$inlude <time.h>$inlude <sys/times.h>$inlude <limits.h>$inlude <time.h>typedef unsigned long long int ullong;$}#inlude "ommon.h"#if BPF == 128#define FRAGTYPE p128_t#define FRAGCTYPE ullong#define FRAGEXT uq#elif BPF == 64#define FRAGTYPE p64_t#define FRAGCTYPE ullong#define FRAGEXT uq#define FRAGCONST ULL#else #define FRAGTYPE p32_t#define FRAGCTYPE unsigned#define FRAGEXT ud#define FRAGCONST U#endif${strut tms junk;lok_t start, end, omptime;$}

- 394 -void f(unsigned int:2[LENGTH℄ DNA, unsigned int total){ unsigned int:2[3℄ substring;unsigned int:2[LENGTH℄ ount;unsigned int i;#ifdef DEBUG_PEEK${ stati p128_t output;{$}#endif#ifdef DEBUG_TOTAL${ printf("total=%u\n", *total);$}#endif#ifdef DEBUG_SUBSTRING${ substring[0℄.uq[0℄ = 0x0123456789abdefULL;substring[0℄.uq[1℄ = 0xfedba9876543210ULL;printf("substring[0℄={0x%016llx,0x%016llx}\n",substring[0℄.uq[0℄, substring[0℄.uq[1℄);$}#endif substring[0℄=A; substring[1℄=G; substring[2℄=T;#ifdef DEBUG_SUBSTRING${ printf("substring[0℄={0x%016llx,0x%016llx}\n",substring[0℄.uq[0℄, substring[0℄.uq[1℄);$}#endif ount = 0;#ifdef DEBUG_COUNT${ int frag, x;for (frag=0; frag<((LENGTH/(BPF/2))+1); ++frag) {printf("ount[%d℄={0x%016llx,0x%016llx}\n",frag, ount[frag℄.uq[0℄, ount[frag℄.uq[1℄);}for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf(" DNA[%d℄={0x%016llx,0x%016llx}\n",x, DNA[x℄.uq[0℄, DNA[x℄.uq[1℄);$}#endif

- 395 -for (i=0; i<3; ++i) {#ifdef DEBUG_COUNT${ int x;printf("At top of loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);#ifdef DEBUG_SETCOUNTBYHANDprintf("After setting by hand: in memory order\n");ount[0℄.uq[0℄ = 0xffffffffffffffff;ount[0℄.uq[1℄ = 0x0000000000000000;ount[1℄.uq[0℄ = 0x0123456789abdef;ount[1℄.uq[1℄ = 0xfedba9876543210;for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);#endif $}#endif ount = ount[<< 1℄;#ifdef DEBUG_COUNT${ int x;printf("After shift: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);$}#endif ount += (DNA == substring[i℄)? 1:0;#ifdef DEBUG_COUNT${ int x;printf("At bottom of loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);printf("\n");$}#endif }

- 396 -#ifdef DEBUG_COUNT${ int x;printf("Just outside loop: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);$}#endif ount = (ount == 3)? 1:0;#ifdef DEBUG_COUNT${ int x;printf("After marking full ounts: in memory order\n");for (x=0; x<((LENGTH/(BPF/2))+1); ++x)printf("ount[%d℄={0x%016llx,0x%016llx}\n",x, ount[x℄.uq[0℄, ount[x℄.uq[1℄);$}#endif total += ount;#ifdef DEBUG_TOTAL${ printf("total=%u\n", *total);$}#endif#ifdef DEBUG_PEEK${ printf("output = {0x%016llx, 0x%016llx}\n",output.uq[0℄, output.uq[1℄);}$}#endif}${int main(void){ int iters, i, j, k;unsigned int total = 0;FRAGTYPE DNA[((2*LENGTH-1)/BPF)+1℄;#ifdef TIME_OVERALL

- 397 -start = times(&junk);#endif#ifdef TIME_COMPUTEomptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {/* Full fragments - 32,31,...,0 */for (i=0; i<LENGTH/(BPF/2); ++i) {for (j=0; j<(BPF/2); ++j) {#if BPF==128DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |(DNA[i℄.FRAGEXT[1℄ << ((BPF/2)-2));DNA[i℄.FRAGEXT[1℄ = (DNA[i℄.FRAGEXT[1℄>>2) |(((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< 62);#elseDNA[i℄.FRAGEXT = (DNA[i℄.FRAGEXT>>2) |(((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< BPF-2);#endif}}/* Final, possibly partially-filled, fragment */if (i == (2*LENGTH-1)/BPF) {#if BPF==128DNA[i℄.FRAGEXT[1℄ = DNA[i℄.FRAGEXT[0℄ = 0ULL;#else DNA[i℄.FRAGEXT = 0ULL;#endif}for (j=0; j<LENGTH%(BPF/2); ++j) {#if BPF==128if (LENGTH%(BPF/2) > 32) {/* Store in upper half */DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |(DNA[i℄.FRAGEXT[1℄ << ((BPF/2)-2));DNA[i℄.FRAGEXT[1℄ = (DNA[i℄.FRAGEXT[1℄>>2) |(((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%((BPF/2)/2))*2)-2);} else {/* Store in lower half */DNA[i℄.FRAGEXT[1℄ = 0ULL;

- 398 -DNA[i℄.FRAGEXT[0℄ = (DNA[i℄.FRAGEXT[0℄>>2) |(((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%((BPF/2)/2))*2)-2);}#elseDNA[i℄.FRAGEXT = (DNA[i℄.FRAGEXT>>2) |(((FRAGCTYPE)(4.0*rand()/(RAND_MAX+1.0))&0x3)<< ((LENGTH%(BPF/2))*2)-2);#endif}#ifdef DEBUGprintf("(Desending order) DNA[i℄=");for (i=0; i<LENGTH; ++i) {#if BPF==128j = (LENGTH-1-i)/(BPF/2);k = (LENGTH-1-i)%(BPF/2);if (k >= (BPF/4)) {/* Field is in upper half */k -= (BPF/4);printf("%llu ",(DNA[j℄.FRAGEXT[1℄>>2*k) & 0x3ULL);} else {/* Field is in lower half */printf("%llu ",(DNA[j℄.FRAGEXT[0℄>>2*k) & 0x3ULL);}#elsej = (LENGTH-1-i)/(BPF/2);k = (LENGTH-1-i)%(BPF/2);printf("%d ",(int)((DNA[j℄.FRAGEXT >> 2*k) &0x3FRAGCONST));#endif}printf("\n");#endif#ifdef TIME_COMPUTEstart = times(&junk);#endiff(DNA, &total);#ifdef TIME_COMPUTEend = times(&junk);omptime += (end-start);#endif

- 399 -}printf ("Total was %u.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element hek: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element hek: %ld\n",LENGTH, omptime);#endifreturn 0;}$} The C versions of this program are similar to one another. The C harater versionis:#inlude <stdio.h>#inlude <stdlib.h>#inlude <time.h>#inlude <sys/times.h>#inlude <limits.h>#inlude <time.h>#inlude "ommon.h"strut tms junk;lok_t start, end, omptime;int f (har DNA[℄){ har substring[3℄ = {A, G, T};har ount[LENGTH℄;int total;int i, j;/* start = times(&junk); */for (i=0; i<LENGTH-2; ++i) ount[i℄ = 0;total = 0;

- 400 -for (i=0; i<3; ++i)for (j=0; j<LENGTH-2; ++j)ount[j℄ += (DNA[j+i℄ == substring[i℄);for (i=0; i<LENGTH-2; ++i)total += (ount[i℄ == 3);/* end = times(&junk); *//* printf("Time elapsed for %d element hek: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);*/return total;}int main(void){ int iters;int i;int total = 0;har DNA[LENGTH℄;#ifdef TIME_OVERALLstart = times(&junk);#endif#ifdef TIME_COMPUTEomptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {for (i=0; i<LENGTH; ++i) {DNA[i℄ = (har)(4.0*rand()/(RAND_MAX+1.0));}#ifdef DEBUGprintf("DNA[i℄=");for (i=LENGTH-1; i>=0; --i) {printf("%x ", DNA[i℄);}printf("\n");#endif#ifdef TIME_COMPUTEstart = times(&junk);#endif

- 401 -total += f(DNA);#ifdef TIME_COMPUTEend = times(&junk);omptime += (end-start);#endif}printf ("Total was %d.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element hek: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element hek: %ld\n",LENGTH, omptime);#endifreturn 0;} The C integer version is:#inlude <stdio.h>#inlude <stdlib.h>#inlude <time.h>#inlude <sys/times.h>#inlude <limits.h>#inlude <time.h>#inlude "ommon.h"strut tms junk;lok_t start, end, omptime;int f (int DNA[℄){ int substring[3℄ = {A, G, T};int ount[LENGTH℄;int total;int i, j;/* start = times(&junk); */for (i=0; i<LENGTH-2; ++i) ount[i℄ = 0;

- 402 -total = 0;for (i=0; i<3; ++i)for (j=0; j<LENGTH-2; ++j)ount[j℄ += (DNA[j+i℄ == substring[i℄);for (i=0; i<LENGTH-2; ++i)total += (ount[i℄ == 3);/* end = times(&junk); *//* printf("Time elapsed for %d element hek: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);*/return total;}int main(void){ int iters;int i;int total = 0;int DNA[LENGTH℄;#ifdef TIME_OVERALLstart = times(&junk);#endif#ifdef TIME_COMPUTEomptime = 0ULL;#endifsrand(SEED);for (iters=0; iters<ITERS; ++iters) {for (i=0; i<LENGTH; ++i) {DNA[i℄ = (int)(4.0*rand()/(RAND_MAX+1.0));}#ifdef DEBUGprintf("DNA[i℄=");for (i=LENGTH-1; i>=0; --i) {printf("%x ", DNA[i℄);}printf("\n");#endif

- 403 -#ifdef TIME_COMPUTEstart = times(&junk);#endiftotal += f(DNA);#ifdef TIME_COMPUTEend = times(&junk);omptime += (end-start);#endif}printf ("Total was %d.\n", total);#ifdef TIME_OVERALLend = times(&junk);printf("Time elapsed for %d element hek: %ld (%ld, %ld)\n",LENGTH, end-start, end, start);#endif#ifdef TIME_COMPUTEprintf("Time elapsed for %d element hek: %ld\n",LENGTH, omptime);#endifreturn 0;} The following �le de�nes the parameters of the experimental run to ensure om-monality between eah version:/* Parameters of run **LENGTH is the length of the DNA vetor to be searhed,ITERS is the number of iterations that the main loop will be run,SEED is for random() to ensure all versions generate the same data.*/ #define LENGTH 350#define ITERS 1000000#define SEED 11/* Choose one of the following for timimg information. ********************TIME_OVERALL inludes time to initialize the data,TIME_COMPUTE does not.*/ #undef TIME_OVERALL#define TIME_COMPUTE/* Define this to generate some debugging information ********************/#undef DEBUG_PEEK

- 404 -#undef DEBUG_SUBSTRING#undef DEBUG_COUNT#undef DEBUG_SETCOUNTBYHAND#undef DEBUG_TOTAL/* Values for the genes. Do not hange these. ***************************/#define A 0#define G 1#define T 2#define C 3

- 405 -
APPENDIX GNUMERICAL RESULTS FOR DNA BENCHMARKThis appendix ontains the numeri results of experiments in porting the dna.Sbenhmark program.Speedup was alulated as the average time for the fastest C version divided bythe average time for the version under test. In all ases, 10 trials were run and therunning times of the ounting funtion averaged. This separated the time to generatethe random data and pak it into the orret layout from the atual proessing time.This is reasonable under the assumption that measured data an be presented to theomputer in an optimal layout by the measuring devie.To ensure that the timing averages are reasonably preise despite the relativelyoarse-grained timing mehanism used, one million iterations of the loop were per-formed in eah trial and the resultant timings averaged.G.1 Results on AltiVe TargetThe S-generated AltiVe ode ahieved speedup, though signi�antly less thanone would hope given AltiVe's 128-bit registers and the 2-bit data. The optimalspeedup would have been approximately 128/2 or 64x over serial 32-bit integer or 8-bit harater ode. The average speedup alulated from the measured trials rangedfrom about 3.8x to about 4.6x.The results are presented in table G.1 below for S-generated ode using 2-bitintegers and employing various fragment sizes, ompiler optimization levels, and op-timization types; GCC-generated C ode using 32-bit integers, and GCC-generatedC ode using 8-bit haraters.

- 406 -The numbers in this table were obtained by ompiling and running eah of thefour versions on a 1GHz PowerBook G4 omputer running LinuxPPC. No other ap-pliations (exluding normal servies) were running, and no other users had aess tothe mahine.The best speedup was ahieved by S-generated 32-bit integer C ode. Whilethis ode was obviously inorret (the alulated total is slightly o�), it is remarkablebeause it does not use the AltiVe instrution set. The best speedup using theAltiVe instrutions was 4.567, whih is nearly as good. Given that the AltiVeregisters are four times as large as the PowerPC's general registers, we would expetthe 128-bit AltiVe SWAR ode to be about four times as fast as the 32-bit SWARode on the same platform.G.2 Results for MMX TargetS-generated MMX ode did not ahieved speedup in any of the tests. Thespeedup alulated from the measured trials was between approximately 0.4x and0.8x. These results are summarized in table G.2 below for 2-bit S-generated MMXode, 2-bit S-generated C-only ode using the target's 32-bit general-purpose integerregisters, GCC-generated C ode using 32-bit integers, and GCC-generated C odeusing 8-bit haraters.The worst-ase S ode was generated without using any of the optimizationsbuilt into the ompiler. The best ase S ode was generated without using the MMXregisters, with S running at optimization level 0, and with S only performing bak-end peephole optimizations. Thus, we might assume that the overhead of using theMMX-enhaned hardware was greater than the gains made. However, an inspetionof the generated C ode reveals that the MMX-based C ode is hindered by therelatively small number of enhaned registers available. S's spill ode is admittedlyhorrendous, so there is a high penalty for spills. This is probably the primary reasonfor the relatively poor performane of the MMX ode.

- 407 -
Table G.1AltiVe Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:128 S 0 / GCC 3 - 439.5 4.458 5441660S 010530 int:2:128 S 1 / GCC 3 - 437.7 4.476 5441660S 010530 int:2:128 S 2 / GCC 3 - 429.0 4.5671 5441660S 010530 int:2:128 S 3 / GCC 3 - 441.5 4.438 5441660S 010530 int:2:32 S 0 / GCC 3 - 431.8 4.537 5440685S 010530 int:2:32 S 1 / GCC 3 - 435.4 4.500 5440685S 010530 int:2:32 S 2 / GCC 3 - 437.4 4.479 5440685S 010530 int:2:32 S 3 / GCC 3 - 422.6 4.6362 5440685S 010530 int:2:128 S 0 / GCC 3 {fe-bvt 437.7 4.476 5441660S 010530 int:2:128 S 1 / GCC 3 {fe-bvt 446.0 4.393 5441660S 010530 int:2:128 S 2 / GCC 3 {fe-bvt 436.0 4.494 5441660S 010530 int:2:128 S 3 / GCC 3 {fe-bvt 441.9 4.434 5441660S 010530 int:2:32 S 0 / GCC 3 {fe-bvt 438.9 4.464 5440685S 010530 int:2:32 S 1 / GCC 3 {fe-bvt 438.6 4.476 5440685S 010530 int:2:32 S 2 / GCC 3 {fe-bvt 436.2 4.492 5440685S 010530 int:2:32 S 3 / GCC 3 {fe-bvt 435.6 4.498 5440685S 010530 int:2:128 S 0 / GCC 3 {no-be-ofold 440.8 4.445 5441660S 010530 int:2:128 S 1 / GCC 3 {no-be-ofold 434.3 4.511 5441660S 010530 int:2:128 S 2 / GCC 3 {no-be-ofold 432.9 4.526 5441660S 010530 int:2:128 S 3 / GCC 3 {no-be-ofold 437.6 4.477 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold 439.1 4.462 5440685S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold 441.3 4.440 5440685S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold 430.2 4.554 5440685S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold 442.7 4.426 5440685S 010530 int:2:128 S 0 / GCC 3 {no-be-peep 456.7 4.290 5441660S 010530 int:2:128 S 1 / GCC 3 {no-be-peep 443.2 4.421 5441660S 010530 int:2:128 S 2 / GCC 3 {no-be-peep 455.1 4.305 5441660S 010530 int:2:128 S 3 / GCC 3 {no-be-peep 452.9 4.326 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-peep 453.6 4.319 5440685S 010530 int:2:32 S 1 / GCC 3 {no-be-peep 457.1 4.286 5440685S 010530 int:2:32 S 2 / GCC 3 {no-be-peep 452.4 4.331 5440685S 010530 int:2:32 S 3 / GCC 3 {no-be-peep 452.0 4.335 5440685S 010530 int:2:128 S 0 / GCC 3 {no-be-ofold {no-be-peep 440.0 4.435 5441660S 010530 int:2:128 S 1 / GCC 3 {no-be-ofold {no-be-peep 449.3 4.361 5441660S 010530 int:2:128 S 2 / GCC 3 {no-be-ofold {no-be-peep 451.0 4.344 5441660S 010530 int:2:128 S 3 / GCC 3 {no-be-ofold {no-be-peep 459.3 4.266 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold {no-be-peep 457.4 4.283 5440685S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold {no-be-peep 456.6 4.291 5440685S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold {no-be-peep 460.7 4.253 5440685S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold {no-be-peep 446.9 4.384 54406851Best dna1282Best dna32, best overall

- 408 -
Table G.1 ont'd.AltiVe Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:128 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 445.1 4.402 5441660S 010530 int:2:128 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 438.8 4.465 5441660S 010530 int:2:128 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 445.6 4.397 5441660S 010530 int:2:128 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 443.5 4.418 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 440.7 4.446 5440685S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 444.9 4.404 5440685S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 451.3 4.341 5440685S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 451.7 4.337 5440685S 010530 int:2:128 S 0 / GCC 3 {no-fe-ofold 445.5 4.398 5441660S 010530 int:2:128 S 1 / GCC 3 {no-fe-ofold 446.3 4.390 5441660S 010530 int:2:128 S 2 / GCC 3 {no-fe-ofold 454.7 4.309 5441660S 010530 int:2:128 S 3 / GCC 3 {no-fe-ofold 446.7 4.386 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold 446.5 4.388 5440685S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold 436.6 4.487 5440685S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold 442.5 4.428 5440685S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold 453.1 4.324 5440685S 010530 int:2:128 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 465.6 4.208 5441660S 010530 int:2:128 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 471.4 4.156 5441660S 010530 int:2:128 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 460.2 4.257 5441660S 010530 int:2:128 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 470.5 4.164 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 491.4 3.987 5440685S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 509.1 3.8481 5440685S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 489.6 4.002 5440685S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 475.3 4.122 5440685GCC 2.95.3 har:8:32 GCC 0 - 7148.9 0.274 5441660GCC 2.95.3 har:8:32 GCC 1 - 2222.2 0.882 5441660GCC 2.95.3 har:8:32 GCC 2 - 1959.2 1.0002 5441660GCC 2.95.3 har:8:32 GCC 3 - 1960.0 1.000 5441660GCC 2.95.3 int:32:32 GCC 0 - 8130.2 0.2413 5441660GCC 2.95.3 int:32:32 GCC 1 - 2835.1 0.691 5441660GCC 2.95.3 int:32:32 GCC 2 - 1961.1 0.9994 5441660GCC 2.95.3 int:32:32 GCC 3 - 1967.9 0.996 54416601Worst S-ompiled2Best C har, best GCC-ompiled3Worst GCC-ompiled4Best C int

- 409 -The numbers in this table were obtained by ompiling and running eah of thefour versions on a Pentium4 omputer running Redhat Linux 7.0 with kernel version2.2.16-22. No other appliations (exluding normal servies) were running, and noother users had aess to the mahine.Corret operation of the S-generated MMX ode was assumed to be veri�ed byomparing the results with the GCC-generated C versions and �nding no di�erenein the alulated totals. Note that there is no di�erene in the results of the S-generated non-MMX ode and the GCC-generated ode.G.3 Results for 3DNow! TargetThe S-generated 3DNow! ode also ahieved speedup; again signi�antly lessthan the theoretial maximum of 64/2 or 32x over serial 32-bit integer or 8-bit har-ater ode, but more than the AltiVe ode and signi�antly more than the MMXode.The speedup alulated for S-generated ode ranged from approximately 3.9x to5.1x. The results are summarized in table G.3 for 2-bit S-generated 3DNow! ode,2-bit S-generated C-only ode using the target's 32-bit general-purpose registers,GCC-generated C ode using 32-bit integers, and GCC-generated C ode using 8-bitharaters.3DNow! su�ers from the same problems as MMX in relation to register spills.Interestingly though, the 3DNow! trials all obtained speedup over the best GCC-generated C ode. This is a signi�ant di�erene in two relatively similar arhite-tures. The reason for this needs to be studied.G.4 Results for IA32 TargetS-generated IA32 ode ahieved speedup in only one ase, but not by a signi�antamount over the best GCC-generated C ode. In the majority of ases, the S-generated ode was atually slower. This is to be expeted beause the arhiteture

- 410 -
Table G.2MMX Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:64 S 0 / GCC 3 - 908.2 0.810 5441660S 010530 int:2:64 S 1 / GCC 3 - 904.2 0.813 5441660S 010530 int:2:64 S 2 / GCC 3 - 891.2 0.8251 5441660S 010530 int:2:64 S 3 / GCC 3 - 902.7 0.815 5441660S 010530 int:2:32 S 0 / GCC 3 - 981.2 0.749 5441660S 010530 int:2:32 S 1 / GCC 3 - 979.3 0.751 5441660S 010530 int:2:32 S 2 / GCC 3 - 983.0 0.748 5441660S 010530 int:2:32 S 3 / GCC 3 - 989.3 0.743 5441660S 010530 int:2:64 S 0 / GCC 3 {fe-bvt 930.9 0.790 5441660S 010530 int:2:64 S 1 / GCC 3 {fe-bvt 924.5 0.795 5441660S 010530 int:2:64 S 2 / GCC 3 {fe-bvt 919.3 0.800 5441660S 010530 int:2:64 S 3 / GCC 3 {fe-bvt 938.8 0.783 5441660S 010530 int:2:32 S 0 / GCC 3 {fe-bvt 933.8 0.787 5441660S 010530 int:2:32 S 1 / GCC 3 {fe-bvt 939.0 0.783 5441660S 010530 int:2:32 S 2 / GCC 3 {fe-bvt 934.7 0.787 5441660S 010530 int:2:32 S 3 / GCC 3 {fe-bvt 952.9 0.772 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-ofold {no-be-peep 1154.2 0.637 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-ofold {no-be-peep 1147.0 0.641 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-ofold {no-be-peep 1160.0 0.634 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-ofold {no-be-peep 1180.9 0.623 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold {no-be-peep 1096.4 0.671 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold {no-be-peep 1079.8 0.681 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold {no-be-peep 1085.6 0.677 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold {no-be-peep 1090.5 0.674 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-ofold 959.4 0.766 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-ofold 968.1 0.760 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-ofold 959.8 0.766 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-ofold 974.4 0.755 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold 968.5 0.759 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold 968.7 0.759 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold 991.3 0.742 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold 998.7 0.736 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-peep 1130.9 0.650 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-peep 1116.6 0.659 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-peep 1107.6 0.664 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-peep 1117.3 0.658 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-peep 1069.9 0.687 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-peep 1089.0 0.675 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-peep 1074.4 0.684 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-peep 1071.5 0.686 54416601Best dna64

- 411 -
Table G.2 ont'd.MMX Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 931.9 0.789 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 942.8 0.780 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 948.1 0.776 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 930.1 0.791 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 885.4 0.8301 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 897.9 0.819 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 900.6 0.816 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 897.9 0.819 5441660S 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold 963.7 0.763 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold 959.9 0.766 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold 950.6 0.774 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold 963.5 0.763 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold 984.4 0.747 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold 971.0 0.757 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold 967.0 0.760 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold 964.9 0.762 5441660S 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1182.1 0.622 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1977.0 0.3722 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1191.7 0.617 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1194.5 0.616 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1453.9 0.506 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1455.1 0.505 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1435.8 0.512 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1406.8 0.523 5441660GCC 2.96 har:8:32 GCC 0 - 1675.8 0.439 5441660GCC 2.96 har:8:32 GCC 1 - 968.4 0.759 5441660GCC 2.96 har:8:32 GCC 2 - 735.3 1.0003 5441660GCC 2.96 har:8:32 GCC 3 - 785.7 0.936 5441660GCC 2.96 int:32:32 GCC 0 - 2477.0 0.2974 5441660GCC 2.96 int:32:32 GCC 1 - 1046.6 0.703 5441660GCC 2.96 int:32:32 GCC 2 - 904.7 0.8135 5441660GCC 2.96 int:32:32 GCC 3 - 912.1 0.806 54416601Best dna32, best S-ompiled2Worst S-ompiled3Best C har, best overall4Worst overall5Best C int

- 412 -
Table G.33DNow! Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:64 S 0 / GCC 3 - 1122.7 4.708 5441660S 010530 int:2:64 S 1 / GCC 3 - 1095.0 4.827 5441660S 010530 int:2:64 S 2 / GCC 3 - 1114.0 4.744 5441660S 010530 int:2:64 S 3 / GCC 3 - 1115.7 4.737 5441660S 010530 int:2:32 S 0 / GCC 3 - 1065.7 4.959 5441660S 010530 int:2:32 S 1 / GCC 3 - 1057.1 5.000 5441660S 010530 int:2:32 S 2 / GCC 3 - 1059.0 4.991 5441660S 010530 int:2:32 S 3 / GCC 3 - 1065.3 4.961 5441660S 010530 int:2:64 S 0 / GCC 3 {fe-bvt 1080.3 4.8921 5441660S 010530 int:2:64 S 1 / GCC 3 {fe-bvt 1082.9 4.881 5441660S 010530 int:2:64 S 2 / GCC 3 {fe-bvt 1090.4 4.847 5441660S 010530 int:2:64 S 3 / GCC 3 {fe-bvt 1099.7 4.806 5441660S 010530 int:2:32 S 0 / GCC 3 {fe-bvt 1054.9 5.010 5441660S 010530 int:2:32 S 1 / GCC 3 {fe-bvt 1061.6 4.979 5441660S 010530 int:2:32 S 2 / GCC 3 {fe-bvt 1040.1 5.0822 5441660S 010530 int:2:32 S 3 / GCC 3 {fe-bvt 1060.1 4.986 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-ofold {no-be-peep 1308.9 4.038 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-ofold {no-be-peep 1295.7 4.079 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-ofold {no-be-peep 1304.1 4.053 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-ofold {no-be-peep 1299.5 4.067 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold {no-be-peep 1306.9 4.044 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold {no-be-peep 1279.7 4.130 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold {no-be-peep 1297.1 4.075 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold {no-be-peep 1308.2 4.040 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-ofold 1095.4 4.825 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-ofold 1096.6 4.820 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-ofold 1091.7 4.841 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-ofold 1095.7 4.824 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold 1057.9 4.996 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold 1055.4 5.008 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold 1040.9 5.078 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold 1051.5 5.026 5441660S 010530 int:2:64 S 0 / GCC 3 {no-be-peep 1295.2 4.081 5441660S 010530 int:2:64 S 1 / GCC 3 {no-be-peep 1277.4 4.138 5441660S 010530 int:2:64 S 2 / GCC 3 {no-be-peep 1289.1 4.100 5441660S 010530 int:2:64 S 3 / GCC 3 {no-be-peep 1282.0 4.123 5441660S 010530 int:2:32 S 0 / GCC 3 {no-be-peep 1281.9 4.123 5441660S 010530 int:2:32 S 1 / GCC 3 {no-be-peep 1297.6 4.073 5441660S 010530 int:2:32 S 2 / GCC 3 {no-be-peep 1256.6 4.206 5441660S 010530 int:2:32 S 3 / GCC 3 {no-be-peep 1251.0 4.225 54416601Best dna642Best dna32, best overall

- 413 -
Table G.3 ont'd.3DNow! Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 1126.9 4.690 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 1146.7 4.609 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 1128.9 4.682 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 1130.0 4.677 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 1084.6 4.873 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 1105.1 4.783 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 1104.7 4.784 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 1100.7 4.802 5441660S 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold 1138.8 4.641 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold 1137.5 4.646 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold 1124.6 4.700 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold 1114.7 4.741 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold 1097.2 4.817 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold 1121.8 4.711 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold 1120.0 4.719 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold 1111.3 4.756 5441660S 010530 int:2:64 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1332.0 3.968 5441660S 010530 int:2:64 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1346.3 3.9261 5441660S 010530 int:2:64 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1327.5 3.981 5441660S 010530 int:2:64 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1342.9 3.936 5441660S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1289.7 4.098 5441660S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1309.0 4.038 5441660S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1292.0 4.091 5441660S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 1319.1 4.007 5441660egs 2.91.66 har:8:32 GCC 0 - 14800.7 0.357 5441660egs 2.91.66 har:8:32 GCC 1 - 5285.3 1.0002 5441660egs 2.91.66 har:8:32 GCC 2 - 5385.9 0.981 5441660egs 2.91.66 har:8:32 GCC 3 - 6064.3 0.872 5441660egs 2.91.66 int:32:32 GCC 0 - 15580.7 0.3393 5441660egs 2.91.66 int:32:32 GCC 1 - 6697.4 0.7894 5441660egs 2.91.66 int:32:32 GCC 2 - 7037.3 0.751 5441660egs 2.91.66 int:32:32 GCC 3 - 7311.3 0.723 54416601Worst S-ompiled2Best C har, best GCC3Worst GCC-ompiled4Best C int

- 414 -does not provide any form of SWAR instrutions other than the basi polymorphis(bitwise logial operations). However, this isn't the point of porting this ode to anunenhaned 32-bit arhiteture. The point proven here is that the SWARC ode anbe ported to an unenhaned arhiteture without modi�ation.The speedup for S-generated ode ranged from approximately 0.42x to 1.03x. Itis worth noting that the GCC-generated ode ahieved speedups ranging from 0.28xto 1.00x. Thus, the hoie of ompiler swithes appears to a�et the performanemore than the hoie between S and GCC. The results are summarized in table G.4for 2-bit S-generated C-only ode using 32-bit integer fragments in the generalregisters, GCC-generated C ode using 32-bit integers, and GCC-generated C odeusing 8-bit haraters.

- 415 -
Table G.4IA32 Trial RunsCompiler Data Type: Optimization Compiler Avg. Speedup CalulatedBits:Fragsize Level(s) Swithes Time (x fator) TotalS 010530 int:2:32 S 0 / GCC 3 - 9029.7 0.801 5435001S 010530 int:2:32 S 1 / GCC 3 - 9029.9 0.801 5435001S 010530 int:2:32 S 2 / GCC 3 - 8869.6 0.816 5435001S 010530 int:2:32 S 3 / GCC 3 - 8736.8 0.828 5435001S 010530 int:2:32 S 0 / GCC 3 {fe-bvt 8993.0 0.804 5435001S 010530 int:2:32 S 1 / GCC 3 {fe-bvt 13259.8 0.546 5435001S 010530 int:2:32 S 2 / GCC 3 {fe-bvt 8977.9 0.806 5435001S 010530 int:2:32 S 3 / GCC 3 {fe-bvt 12811.6 0.565 5435001S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold {no-be-peep 11067.3 0.654 5435001S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold {no-be-peep 17094.1 0.4231 5435001S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold {no-be-peep 11543.7 0.627 5435001S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold {no-be-peep 11063.0 0.654 5435001S 010530 int:2:32 S 0 / GCC 3 {no-be-ofold 13329.4 0.543 5435001S 010530 int:2:32 S 1 / GCC 3 {no-be-ofold 8949.7 0.808 5435001S 010530 int:2:32 S 2 / GCC 3 {no-be-ofold 9105.7 0.794 5435001S 010530 int:2:32 S 3 / GCC 3 {no-be-ofold 9129.2 0.792 5435001S 010530 int:2:32 S 0 / GCC 3 {no-be-peep 11414.6 0.634 5435001S 010530 int:2:32 S 1 / GCC 3 {no-be-peep 15728.9 0.460 5435001S 010530 int:2:32 S 2 / GCC 3 {no-be-peep 11213.7 0.645 5435001S 010530 int:2:32 S 3 / GCC 3 {no-be-peep 11477.7 0.630 5435001S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold 11583.6 0.625 5435001S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold 8859.9 0.817 5435001S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold 8615.7 0.840 5435001S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold 8841.0 0.818 5435001S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold 7037.6 1.0282 5435001S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold 9833.9 0.736 5435001S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold 9175.9 0.788 5435001S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold 9125.7 0.793 5435001S 010530 int:2:32 S 0 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 16283.1 0.444 5435001S 010530 int:2:32 S 1 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 15685.0 0.461 5435001S 010530 int:2:32 S 2 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 11604.4 0.623 5435001S 010530 int:2:32 S 3 / GCC 3 {no-fe-ofold {no-be-ofold {no-be-peep 11597.6 0.624 5435001GCC 2.7.2.1 har:8:32 GCC 0 - 26276.9 0.2753 5435001GCC 2.7.2.1 har:8:32 GCC 1 - 10349.3 0.6994 5435001GCC 2.7.2.1 har:8:32 GCC 2 - 10773.6 0.674 5435001GCC 2.7.2.1 har:8:32 GCC 3 - 10887.6 0.664 5435001GCC 2.7.2.1 int:32:32 GCC 0 - 19702.7 0.367 5435001GCC 2.7.2.1 int:32:32 GCC 1 - 7234.4 1.0005 5435001GCC 2.7.2.1 int:32:32 GCC 2 - 7264.5 0.996 5435001GCC 2.7.2.1 int:32:32 GCC 3 - 7757.5 0.933 54350011Worst S-ompiled2Best dna32, best overall3Worst GCC-ompiled4Best C har5Best C int, best GCC-ompiled

- 416 -

- 417 -
APPENDIX HLINPACK PERFORMANCEThe SWARC ode used to replae ore loops in the C/C++ Linpak 100x100 Benh-mark inluded the following soure:/* lp.S - Compile with S - -k -mK6-2 -O5 */void swar_saxpy(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ y += (s * x);}void swar_sdot(float:32[VECTSIZE℄ x, float:32[VECTSIZE℄ y, float s){ s += (x * y);}void swar_ssal(float:32[VECTSIZE℄ x, float s){ x = x * s;} Currently, oating-point operations are only supported for 3DNow! and AltiVe.The ode should be ompiled with the orret target swith to allow the ompiler totake advantage of SWAR oating-point instrutions.H.1 Results for 3DNow!The following two tables report performane results on a 1GHz AMDAthlon-basedHP Pavilion N5470 laptop omputer. The �rst of these reports average MFLOPS us-ing rolled standard C ode. The seond reports average MFLOPS using S-generatedSWARC ode.

- 418 -Table H.1Results for rolled C odeVECTSIZE OPTIME Average 201 Average 2002 1 267.99 249.222 2 268.10 249.232 4 268.01 249.222 100 267.90 (Worst) 249.89 (Best)4 1 268.17 248.78 (Worst)4 2 268.17 248.794 4 268.28 (Best) 248.994 100 268.10 249.398 1 268.19 249.298 2 268.08 249.108 4 268.08 249.158 100 267.98 249.8716 1 268.01 249.5616 2 267.93 249.6316 4 268.01 249.6916 100 267.93 249.6332 1 268.10 249.3332 2 268.01 249.3332 4 268.01 249.4832 100 268.10 249.33In both ases, the soure was sent through the S ompiler, whih generated Code from the SWARC ode. This was passed by S to the native C ompiler (GCC2.96), whih generated the exeutable. The S-generated ode was alled by theexeutable onditionally depending on the de�nition of a maro.In the �rst table, table H.1, VECTSIZE and OPTIME are irrelevant beauseVECTSIZE is only used within the SWARC ode and OPTIME was the time thatS was allowed to spend generating a shedule for this SWARC ode. The SWARCode was not alled by the exeutables in this set of runs.In the seond table, table H.2, VECTSIZE represents the �xed vetor length usedfor generating ode. Currently, the S ompiler does not allow for variable vetorlengths. The length of eah vetor must be delared or the ompiler will assign it alength of one element. OPTIME was the time allowed for the S ompiler to attemptto �nd the best shedule for eah basi blok.For the rolled C ode, the best run with a dimension of 201 ahieved 268.28MFLOPS, while the best run for a dimension of 200 ahieved 249.89 MFLOPS. Ineah ase, the variane was negligible.

- 419 -Table H.2Results for SWARC odeVECTSIZE OPTIME Average 201 Average 2002 1 408.28 402.272 2 408.09 402.502 4 407.52 (Worst) 401.57 (Worst)2 100 407.90 402.824 1 464.86 487.244 2 463.76 487.004 4 464.53 486.684 100 464.53 487.148 1 540.28 586.588 2 540.91 586.968 4 540.91 587.278 100 540.75 587.0416 1 550.75 616.65 (Best)16 2 551.28 (Best) 616.3016 4 551.01 616.6416 100 551.17 616.3432 1 521.63 559.4332 2 521.41 557.5332 4 521.91 558.9532 100 520.97 558.54In omparison, the best run for SWARC ode with a dimension of 201 ahieved551.28 MFLOPS with a VECTSIZE of 16 and a 2 seond maximum optimizationtime. This is an improvement of 551:28�268:28268:28 = 105% over the best rolled C ode.The best run for SWARC ode with a dimension of 200 ahieved 616.65 MFLOPSwith a VECTSIZE of 16 and a 1 maximum seond optimization time. This is animprovement of 616:65�249:89249:89 = 147% over the best rolled C ode.The worst run for SWARC ode with a dimension of 201 ahieved 407.52 MFLOPSwith a VECTSIZE of 2 and a 4 seond maximum optimization time. This is animprovement of 407:52�268:28268:28 = 51:9% over the best rolled C ode.The worst run for SWARC ode with a dimension of 200 ahieved 401.57 MFLOPSwith a VECTSIZE of 2 and a 4 seond maximum optimization time. This is animprovement of 401:57�249:89249:89 = 60:7% over the best rolled C ode.VECTSIZE was limited to 32 beause longer VECTSIZEs led to basi blokswhih required more tuples than the urrent ompiler ould handle. Notie that thebest VECTSIZE for the SWARC version was an intermediate value (8 or 16 elementsper subvetor).

- 420 -Table H.3Results for rolled C odeVECTSIZE OPTIME Average 201 Average 2002 1 175.37 177.45 (Worst)2 2 175.67 177.45 (Worst)2 4 175.37 177.542 100 175.37 177.544 1 175.53 181.33 (Best)4 2 175.53 180.754 4 174.75 (Worst) 180.624 100 175.53 180.758 1 175.53 180.758 2 175.99 (Best) 180.718 4 175.45 180.608 100 175.45 180.6016 1 175.45 180.8916 2 175.45 180.6016 4 175.39 180.6216 100 175.45 180.6032 1 175.45 180.6032 2 175.99 180.7132 4 175.53 180.6632 100 175.53 180.7564 1 175.31 177.4564 2 175.45 177.4564 4 175.37 177.4564 100 175.61 177.40H.2 Results for AltiVeThe following two tables report performane results on a 500MHz PowerPC G4-based Apple PowerBook laptop omputer. Again, the �rst of these, table H.3, reportsaverage MFLOPS using rolled standard C ode. The seond, table H.4, reportsaverage MFLOPS using S-generated SWARC ode.The same ompilation proess was used as for the 3DNow! trials, with the sameversion of the S ompiler being used. Version 2.95.3 of GCC was used to ompilethe �nal C ode for the PowerPC target.Again, VECTSIZE and OPTIME are irrelevant in the �rst table and have thesame meaning in the seond as in the previous setion.For the rolled C ode, the best run with a dimension of 201 ahieved 175.99MFLOPS, while the best run for a dimension of 200 ahieved 181.33 MFLOPS. Ineah ase, the variane was relative small.

- 421 -Table H.4Results for SWARC odeVECTSIZE OPTIME Average 201 Average 2002 1 49.48 49.732 2 49.46 (Worst) 49.69 (Worst)2 4 49.60 49.732 100 49.48 49.734 1 93.34 94.024 2 93.34 94.144 4 93.36 94.024 100 93.50 94.028 1 126.34 127.418 2 126.34 127.418 4 126.68 127.418 100 126.29 127.4116 1 150.69 152.2916 2 150.75 152.2716 4 150.69 152.2916 100 150.69 152.2932 1 160.03 167.59 (Best)32 2 160.40 (Best) 167.1732 4 160.36 167.1532 100 160.32 167.2064 1 96.27 97.1064 2 96.31 96.9364 4 96.52 96.9164 100 96.31 96.91In omparison, the best run for SWARC ode with a dimension of 201 ahieved160.40 MFLOPS with a VECTSIZE of 32 and a 2 seond maximum optimizationtime. This is a degradation of 175:99�160:40175:99 = 8:9% versus the best rolled C ode. Thismeans that the best S-generated ode had signi�antly slower performane thanthe orresponding GCC-generated ode.The best run for SWARC ode with a dimension of 200 ahieved 167.59 MFLOPSwith a VECTSIZE of 32 and a 1 seond maximum optimization time. This is adegradation of 181:33�167:59181:33 = 7:6% versus the best rolled C ode. Again, this meansthat the S-generated ode was signi�antly slower than the orresponding C ode.

- 422 -
VITARandall James Fisher was born in Niles, Mihigan on February of 1966. Hereeived a B.S. in Eletrial Engineering in 1989 from Mihigan State University,where he studied omputer engineering under the Computer Engineering Option.He entered the Master's program there in the same year to study omputers andontrol systems, graduating with an M.S. in Eletrial Engineering in 1991 during thepeak of the \downsizing" trend. Thus, he was able to attend several job interviewswith ompanies that weren't planning to hire anyone anyway.After tiring of this, he took a year o� to be with his family before applying toseveral Dotoral programs. Purdue being the only shool wise (foolish?) enough toaept him, he moved to West Lafayette in August of 1993 to study ompilers andparallel proessing.As a member of the PAPERS researh group at Purdue University, he has helpedto develop the aggregate funtion model of parallel proessing and tehniques forusing and maintaining lusters of workstations inluding omputational lusters andvideo walls. His own researh has foused on developing languages and ompilersfor parallel proessing, espeially for the general-purpose SWAR (SIMD Within ARegister) proessing model whih he o-developed with Hank Dietz.While at Purdue, he was a teahing assistant in the undergraduate ompilersourse and operating systems laboratory. For these, he wrote supplemental materialsand developed online examples, several of whih are still in use.He is urrently an instrutor of Eletrial and Computer Engineering at Penn-sylvania State University, the Behrend College in Erie, Pennsylvania, where he hasplayed a signi�ant role in the development of its Computer Engineering program.

