
Sparse Flat Neighborhood Networks (SFNNs):
Scalable Guaranteed Pairwise Bandwidth & Unit Latency

Timothy I. Mattox, Henry G. Dietz, & William R. Dieter

ECE Department, University of Kentucky

453 F. Paul Anderson Tower, Lexington, KY 40506-0046

tmattox@engr.uky.edu, hankd@engr.uky.edu, dieter@engr.uky.edu

Abstract

Network performance for a particular application is de-
termined by the latency and bisection bandwidth that are
achieved for the set of specific communication patterns
used by that application. The number of nodes with which
each node might potentially communicate grows linearly as
nodes are added, thus, network cost for large systems ei-
ther becomes a large fraction of machine cost or perfor-
mance suffers. However, performance-critical communica-
tion patterns commonly occurring in real parallel programs
rarely require that each node directly communicate with ev-
ery other node.

The number of node pairs actually communicating gen-
erally grows far slower than the expected O(N2). Thus,
a carefully designed network for a massively parallel sys-
tem can use relatively narrow switches while still providing
single-switch latency and guaranteed pairwise bandwidth
for performance-critical communications. This paper in-
troduces Sparse Flat Neighborhood Networks (SFNNs), a
variant of Flat Neighborhood Networks (FNNs) which are
engineered from first principles to efficiently meet these de-
tailed pairwise communication performance criteria.

1. Introduction

Parallel supercomputers, clusters, and server farms rely
heavily on performance of a system area network to coor-
dinate the actions of individual nodes. High performance
computing systems with tens to tens of thousands of Pro-
cessing Elements (PEs) have been built for many decades
using a variety of network designs, and a vastly larger set
of network designs can be found in the literature. Most re-
search is focused on networks with endearing mathemati-
cal properties or simple routing schemes. In this paper, we
suggest that network form should follow function: the best
network is the design which, of all feasible networks, yields

performance characteristics best matching the latency and
bandwidth needs of your code while simultaneously satisfy-
ing the relevant cost, scalability, and reliability constraints.
The problem in taking this seemingly obvious approach is
that the design space is surprisingly large and complex.

The work presented in this paper does not consider the
complete design space, but does search the relatively large
and important space including all designs, symmetric or
asymmetric, that could satisfy the constraints with single-
switch latency. Even though only symmetric designs are
commonly considered, for applications with complex com-
munication patterns, the best topology is likely to be asym-
metric. There are two reasons:

1. Even if only symmetric communication patterns are important
to an application, the union of multiple symmetric patterns is
generally asymmetric; thus, asymmetric communication pat-
terns naturally occur in real scientific and engineering applica-
tions

2. The design space for asymmetric designs is far larger than the
space for symmetric designs, with the corresponding result that
the best asymmetric designs often are better than the best sym-
metric ones

The problem is simply that asymmetry is difficult for hu-
mans to manage and there were neither automated design
tools nor the technology with which to efficiently imple-
ment them. The insights presented here, combined with
genetic algorithm (GA) search technology, make Sparse
Flat Neighborhood Networks (SFNNs) an extremely cost-
effective and highly scalable way to achieve specific perfor-
mance goals for user-specified communication patterns.

Section 2 defines and describes the properties of SFNNs,
including several examples. The actual design process, as
implemented by our tools, is described in Section 3. Al-
though SFNNs can use ordinary routing procedures imple-
mented within standard network hardware, Section 4 dis-
cusses the SFNN runtime support we developed to more
efficiently utilize Ethernet-like networking. A brief conclu-
sion appears in Section 5.

1

2. What Is An SFNN?

Although we plan to develop tools that will handle op-
timized design of fully general network topologies, we
initially focused on the construction of design tools for
an important and immediately useful class of networks
that we namedFlat Neighborhood Networks (FNNs)[2].
The FNN concept won a number of awards, includ-
ing a 2000 Gordon Bell award honorable mention for
price/performance[6], “Most Innovative Architecture” in
the HPC Games Challenge at SC2000, and a Computer-
world Smithsonian award as one of the six information tech-
nologies most advancing science in 2001. The FNN concept
is based on a re-evaluation of the basic principles of inter-
connection networks. The ideal switched network should
provide:

• Single hop latency for all pairwise communications.

• Full link bandwidth between any node pair independent of
any other node pairs that may be communicating at the same
time.

These properties are easily achieved using a network con-
sisting of a single switch that has at least as many ports as
there are nodes. However, in an FNN, the same properties
can be extended to several times as many nodes as there are
ports per switch.

Because using paths connecting one switch to another
would introduce both additional latency and potential band-
width bottlenecks, we ignore such paths for the purpose of
satisfying the design constraints. An FNN is modeled as a
non-recirculating single-stage network. The trick is to use
multiple Network Interfaces (NIs, or NICs for NI Cards)
in each node; thus, each node can be connected to multiple
switches. The design problem is therefore determining to
which switches each node should be connected.

The complexity of the FNN design problem is perhaps
surprisingly very high. The problem is actually a minor
variation on the well-known graph theory problem called
(v,k,t)-covering design. The number of nodes corresponds
to v, the number of ports per switch corresponds tok, and
pairwise grouping implies thatt would be equal to 2. The
standard covering problem is still an open problem in math-
ematics. An excellent discussion of the standard covering
problem, a summary of recent research on methods for con-
structing covering designs, and a database of the best known
solutions and bounds on solutions are given at the La Jolla
Covering Repository[14]. The FNN design problem differs
from the standard covering problem primarily in that the
number of network interfaces per node is constrained; there
is no corresponding constraint on (v,k,t)-covering design.
The FNN design problem also differs in that it incorporates
optimization of a variety of more complex secondary char-
acteristics, such as making the number of times each pair is

Figure 1. KLAT2’s FNN Design/Solution Map

covered (i.e., the conflict-free bandwidth between each pair)
be tuned to approximate a specification of relative band-
width requirements.

As our FNN design tools have matured, we also have
developed better ways to graphically represent both design
constraints and their solutions. It is natural to think of both
design constraints and solutions in terms of a square con-
nectivity matrix, with node sources listed down the left side
and sinks listed across the top, that shows how many links
worth of bandwidth are requested/dedicated to that directed
pairwise communication. Although such a graph for a de-
sign specification can be completely asymmetric, because
all commonly used network hardware employs bidirectional
cabling, no directly useful information is lost if the matrix is
folded along the diagonal; the bandwidth requested for a->b
is made equal to that requested for b->a by giving both the
maximum value of either. Taking advantage of this prop-
erty, we can represent the design requirements and solution
in a single square matrix: the lower left triangle defines
the requirements while the upper right triangle shows the
bandwidth delivered by the solution. This matrix is trivially
shown in graphical form as a square image in which the
color (gray shade) of each point corresponds to the number
of links required or dedicated.

The network in the world’s first FNN-based supercom-
puter,KLAT2 (Kentucky Linux Athlon Testbed 2) [3], as
built in Spring 2000, corresponds to the design/solution map
shown in Figure 1. The white center line represents nodes
talking to themselves, which neither requires nor uses net-
work bandwidth. The lower left triangle specifies complete
connectivity with a single unit bandwidth per pair and, ad-
ditionally, two or more units bandwidth for the communi-
cation patterns shown in a somewhat darker gray. KLAT2’s
network actually delivers as much as four units of band-
width per pair (i.e., a black pixel corresponds to four units
of bandwidth), entirely covering the single-unit requirement
region. Although KLAT2’s design does not quite cover the
two-unit requirement region with two or more units of band-
width, it comes very close to covering it with an average of
more than two units bandwidth per pair. This is because, at

2

the time KLAT2 was designed, our FNN design tool favored
a higher average over complete coverage of the two-or-more
region.

Several higher-level properties of KLAT2’s network are
easily visible in this graphic. One is the asymmetric nature
of KLAT2’s network design; the upper right triangle is a
random-looking pattern of one to four units bandwidth per
pair. Additionally, viewing KLAT2’s network in this way
it seems clear that the network is seriously over designed
– there are many low-importance pairs that are given high-
bandwidth coverage.

Suppose that we remove the constraint that all pairs must
have at least one unit of reserved, single-hop latency, band-
width. Our concern is thus shifted to finding a design which
covers all node pairs that we expect will have significant
communications between them. This is the basic concept of
aSparse Flat Neighborhood Network (SFNN). An SFNN
is an FNN, except the FNN property is ensured not for all
node pairs, but only for explicitly noted node pairs. For
node pairs not explicitly selected, communications would
still be possible through intermediary nodes, or through ad-
ditional switch-to-switch connections.

The first SFNN-based supercomputer isKASY0 (Ken-
tucky ASYmmetric zero), a 128-node cluster which was
built in the Summer of 2003. The design specification and
solution for KASY0’s SFNN are shown in Figure 2.

Figure 2. KASY0’s SFNN Design/Solution Map

Although KASY0’s network also is over designed, it is
far more effective than KLAT2’s network in placing band-
width where it will be used. The "sparseness" of the design
specification and of the solution do not mean that communi-
cations between node pairs represented by white pixels are

impossible, rather, it implies that those pairs do not commu-
nicate enough to justify reserving bandwidth and ensuring
single-hop latency. Thus, in the rare event that communi-
cations between such pairs do occur, latency may be some-
what more than a single hop and the available bandwidth
may be dependent on the other traffic in the network at that
time.

The result of this new design technology is that
KASY0’s 128-node SFNN cost only $4,200 – about half
as much as KLAT2’s 64-node FNN. One might be tempted
to think that the price difference is due to network hardware
price drops in the three-year period between construction
of KLAT2 and KASY0, but the primary difference actu-
ally is the use of 3 NICs per node and 24-port switches in
KASY0 instead of 4 NICs per node and more expensive 32-
port switches as used in KLAT2.

Clearly, the concept of covering all desired communi-
cation patterns with single-hop latency reserved bandwidth
has limited scalability. We are currently working on design
tools that can maximize coverage without requiring that
complete coverage of a design specification be achieved,
and these newFractional Flat Neighborhood Network
(FFNN) design tools will remove all scaling issues and even
can be used to optimize the design of more conventional
networks, such as trees and fat trees. Of course, an FFNN
does not have as desirable properties as an SFNN. Thus, the
question we consider here is: how large a system can SFNN
technology scale to?

2.1. Scalability

Although FNNs have proven very useful for moderate-
sized systems, such as KLAT2, the most important property
of SFNN technology is the fact that the design methodology
allows scaling to very large systems. Using commodity net-
working components, we have created SFNN solutions for
design problems with as many as 10,000 nodes. However,
the primary reason that SFNNs scale is not really a property
of SFNNs, but of communication patterns. A communi-
cation pattern defines a set of communicating pairs, most
often, a1:1 andontomapping (permutation) of nodes onto
nodes.

It is a simple fact of arithmetic that the number of
other nodes each node might need to talk to grows lin-
early with the number of nodes. More precisely, in a sys-
tem with N nodes, the number of possible communica-
tion pairs involving each node is 2(N-1) for unidirectional
(ordered) pairs orN-1 for bidirectional (unordered) pairs.
This also corresponds to the well-known fact that a direct-
connection (switch-less, single-link latency) network would
require N(N-1) unidirectional wires or (N(N-1))/2 bidirec-
tional links. Thus, network complexity seems to scale as
O(N2). However, as we shall demonstrate in this paper by

3

reviewing the various communication patterns commonly
discussed in the parallel processing literature, most parallel
programs require high performance on only a small frac-
tion of the possible pairs for each node. As discussed in
the following sections, the fraction actually used in typical
applications sharply decreases as the number of nodes is in-
creased!

O(1) Scaling Patterns.It is ironic that, despite the paral-
lel processing community’s concerns about the complexity
of large scale networks, the most commonly used commu-
nication patterns in parallel programs are all patterns that
have a constant number of pairs per node independent of
the number of nodes. This observation is confirmed by the
fact that many of the largest systems built, such as the In-
tel Paragon, Cray T3D, and ASCI RED, have successfully
used networks with a simple 3D mesh topology.

The number of bidirectional communication pairs in
which each node is involved when communicating with ad-
jacent nodes within a 1D mesh is either one or two. For a
toroidal 1D mesh (i.e., a ring), each node participates in two
bidirectional communication pairs; a non-toroidal 1D mesh
differs only in that the two end nodes participate in just one
pair each. The per-node pair count is entirely unaffected by
the total number of nodes.

The design space becomes significantly larger when 2D
meshes are considered, because there may be multiple ways
to factor the nodes into a 2D mesh. For example, a 32-node
system could be viewed as 2x16, 4x8, 8x4, or 16x2. How-
ever, once a factorization is selected, the pair count per node
is independent of the total number of nodes. Communicat-
ing with nodes that are adjacent by row or column yields
between two and four pairs per node, with edge nodes in
non-toroidal meshes having the lower pair counts. Includ-
ing diagonally adjacent nodes simply changes the count to
three to eight pairs, again with the lower values correspond-
ing to edge nodes in non-toroidal meshes. Eight pairs may
be a large fraction of all possible pairs in a small cluster, but
it becomes a vanishingly small fraction of all possible pairs
as the system design is scaled to thousands of nodes. The
same is true of higher-dimensionality mesh adjacency pairs.

The conceptually most complex communication patterns
commonly used in parallel programs are typically patterns
consisting of a single pair per node. For example, thebit-
reversalcommunication pattern[5] may employ a reason-
ably complex formula to determine which node each node
will communicate with, but there is only a single pair in-
volving each node. The same is true ofshuffle[9]; it is also
significant that, given bidirectional links,inverse-shuffleis
implemented by the exact same pairing thatshuffleuses.
Notice further that all these patterns are permutations, so,
with an appropriate network, each pattern can be imple-
mented in a single message time-step.

O(LogN) Scaling Patterns. In addition toO(1) scaling

patterns, nearly all programs contain some communication
patterns that scale asO(LogN). Fundamentally,O(LogN)
scaling patterns are most often an artifact of using a network
that is incapable of performing computation. For example,
collective communicationsincluding reductions, parallel-
prefix scans, broadcast/multicast, andbarrier synchroniza-
tion are really operations sampling the global state of the
parallel system, and Aggregate Function Network (AFN)
hardware implements them directly within the network[7],
but efficient message-passing implementations typically in-
volve a sequence of tree-structured communications.

Binary tree-structured communications follow adjacency
in the familiarhypercubetopology. Thus, each node com-
municates with the nodes whose numbers differ from the
source node number by only a single bit position’s value
in the binary representation. For example, in a 32-node sys-
tem, node 5 (binary 00101) would be paired with 1 (00001),
4 (00100), 7 (00111), 13 (01101), and 21 (10101). Clearly,
there are no more thanceiling(Log2N) bit positions, so there
are at most that many nodes differing from any given node’s
number by precisely one bit position, and the number of
pairs per node grows asO(LogN).

It is important to note that many message-passing sys-
tems differentiate between what MPI[13] callsall-reduce
and reduce. An all-reducewould suggest that all nodes
should have their complete tree, whereas areducerequires
only the tree rooted at a specific point (typically, node 0).
Thus,reducecan be implemented using an average of half
as many pairs per node, although the root node will still re-
quire the full set of pairs. If anall-reduceis implemented
using a reduce followed by abroadcastfrom the root node,
rather than by directly performing Nreducessimultane-
ously, then the complete tree of pairs is only needed for
the root node. This is significant in thatreduceis far more
common thanall-reducein parallel programs.

O(N1/D) Scaling Patterns. D-dimensionalscatter,
gather, andpersonalized all-to-allcommunications involve
each node interacting with every other node in its dimen-
sion. In a 2D space, each node would need to be paired with
every node in the same row or column, yieldingO(sqrt(N))
pairs per node. The 3D case scales pairs per node by the
cube root of N. The 1D case is the worst; all nodes are in
the same dimension.

Superficially, it seems that all N-1 pairs are needed for
each node in order to support 1Dpersonalized all-to-all.
However, such a communication pattern is not able to be ac-
complished in a single time-step unless N-1 messages can
be simultaneously output by each node. With fewer than
N-1 NICs, this is literally impossible. Further, the overhead
associated with sending a message is significant; thus, un-
less messages are quite long, there is a significant penalty
in sending N-1 messages rather than sending fewer, larger,
messages that would then be repackaged and retransmitted

4

until each node had seen the data destined for it. The result
is thatpersonalized all-to-allis nearly always best imple-
mented as a compound communication, often following a
broadcast-like tree pattern. Thus, it does not make sense
to specify a design constraint for an abstract operation like
personalized all-to-all, but rather to specify the design con-
straint that corresponds to the most efficient implementation
that could be used by the specific MPI library that will be
used by applications. The pairs in such a pattern can be de-
termined by examining the MPI library documentation or
source code, or by accumulating statistics on pairs commu-
nicating in test runs using your particular MPI.

The result is that these compound patterns are usually
able to be efficiently implemented using primitive patterns
that scale asO(1) or O(LogN). Thus, the number of pairs
per node scales approximately asO(LogN), not asO(N).

Pair Synergy. A set of parallel programs will generally
require not just one communication pattern, but the union
of all communication patterns used in any of the programs.
Thus, it is natural to expect that the number of pairs for
each node is actually the sum of the number of pairs for that
node in each communication pattern. Of course, the sum
of a fixed number ofO(1) and O(LogN) values grows no
faster thanO(LogN). However, the sum could still become
too large for commodity switches.

In practice, the sum of pairs is a rarely-seen upper bound.
A pair required by one pattern very often also is required by
another pattern.

This type of synergy is very common among various
mesh patterns and even reductions. For example, nearly
all pairs required to support 1D adjacency also are required
to support 2D adjacency; only 1D pairs involving nodes
in edge positions in the 2D pattern are not covered by the
2D pattern. Similarly,hypercubeadjacency has many pairs
that overlap those of meshes. The result is a significant re-
duction in the total number of pairs required for the union
of multiple communication patterns, although the precise
amount of reduction is highly dependent on the set of pat-
terns specified.

SFNNs are not the only type of network that can take
advantage of this insight. For example, direct connection
networks also can be made much simpler. However, the rel-
atively high degree of switches (e.g., 24, 32, 48, 64, or even
more ports) makes it feasible to cover design requirements
for systems that are much larger than can be accommodated
using the relatively low degree (e.g., 5 or 6 NICs) afforded
by direct connections between nodes.

A Larger Example. The result of all the above is that
SFNN networks for very large systems, covering a wide
range of communication patterns, can be built using com-
modity network hardware. The largest such designs we
have thus far created contain over 10,000 nodes. The pri-
mary limitation in making larger designs appears to be the

Figure 3. A 1,024-node Design/Solution Map

inefficiency of the design tool itself in dealing with very
large designs. The concepts appear to allow much larger
systems to be built and improvements to our design tool al-
ready have been responsible for the jump from a maximum
design size of about 1,000 nodes to over 10,000 using the
same network hardware components. It is impractical to use
a 10,000x10,000 design map scaled to fit within the mar-
gins of this paper, so our large design example is a 1,024-
node design, shown in Figure 3. This design uses 48-port
switches to cover all of the following:

• 1D torus power of 2 offsets

• 2D torus power of 2 offsets in 512x2, 256x4, 128x8, 64x16,
and 32x32 topologies

• 3D torus power of 2 offsets in 256x2x2, 128x4x2, 64x8x2,
64x4x4, 32x16x2, 32x8x4, 16x16x4, and 16x8x8 topologies

• Shuffle & inverse-shuffle

• Bit-reversal

• Hypercube

• 2D matrix transpose (32x32, one element per node)

The total number of possible pairs is 523,776. The union
of all the specified patterns requests coverage of just 14,566
pairs; approximately 2.78% of all possible pairs! The actual
design covers 102,883 pairs, or 19.6%, including all 14,566
requested pairs.

This system design requires 4,848 NICs (assuming no
NIs are built-into the motherboards) and 101 switches. The
total street cost for the network would thus be less than

5

$100,000 using name-brand 100 Mb/s Fast Ethernet hard-
ware (~$500 per switch, ~$10 per NI+cable). Latency
would be around 30 microseconds (i.e., a single Fast Eth-
ernet switch delay) for any communication pattern that is
covered. Bisection bandwidth measured on any permuta-
tion pattern covered would be greater than 102.4 Gb/s, with
a total network bandwidth of no more than 484.8 Gb/s. If
these performance numbers are not sufficient,anynetwork-
ing technology could be substituted for Fast Ethernet – Gb/s
Ethernet, Infiniband, etc. – in which case a new design
optimized for the constraints imposed by the networking
technology should be created. Note that SFNN designs pri-
marily use multiple NIs per node for connectivity reasons,
and thus only require a node’s motherboard to support full-
bandwidth on a single NI at any one time.

Two properties are immediately visible from this moder-
ately large example. As predicted by the above discussion,
the design constraints are indeed very sparse despite cover-
ing a rich set of communication patterns. The second prop-
erty immediately visible is that the design solution, though
quite sparse, is significantly less sparse than the design con-
straints. It is not clear why the solution has a higher den-
sity: is the higher density necessary or is it the result of the
design tool settling for a less-than-minimal solution? The
answer seems to be a mix of both. As our SFNN design
tool has improved, the density of the solutions found has
significantly decreased (and the design sizes the tool can
handle with similar network components have correspond-
ingly increased). However, because an SFNN must com-
pletely cover the design constraint pairs, it is highly likely
that some (small) fraction of the pairs only can be covered
with relatively loose-fitting solutions. Our ongoing research
into FFNNs already has shown that very small switches can
be used to cover the vast majority of design constraint pairs
without including a significant number of pairs outside the
design constraints.

2.2. Asymmetry

It is significant that the vast majority of SFNN design
solutions, including all three shown above, are asymmet-
ric. In fact, by enumeration of all possible designs for very
small design problems, it easily can be shown that the best
asymmetric design is usually better than the best symmet-
ric design for most sets of design constraints. Symmet-
ric design constraints are usually more efficiently covered
with somewhat asymmetric solutions. Just as the union of
symmetric patterns generally is asymmetric, a cover con-
structed symmetrically using switches of a fixed width is
unlikely to have precisely the same symmetry as the de-
sign constraints; thus, a symmetric cover would needlessly
include additional pairs. Interestingly, many designers con-
fuse symmetry with modularity; asymmetric designs eas-

ily can be constrained to have a specified modular structure
without requiring that the complete design be symmetric. In
summary, asymmetric design may require powerful design
tools, but the benefits can be huge.

2.3. Multiprocessor Nodes

The above discussion assumes a single processor per
node. However, assuming multiple processors per node
simply makes the communication pair requirements for
each node be computed using the sum of the processor
communication requirements for all processors within that
node. In itself, this tends to yield somewhat denser speci-
fications, making the benefit in using multiprocessor nodes
unclear: contrary to popular belief, multiprocessor nodes
do not necessarily reduce network cost per processor. Be-
cause interprocessor communication within a node does not
require use of an external network, it would be possible for
an SFNN design tool to incorporate renumbering of pro-
cessors within nodes as a mechanism to help minimize the
external network hardware required to cover a design spec-
ified by processor pairs. Rather than numbering processors
within nodes sequentially, a future SFNN design tool for
systems with multiprocessor nodes might number proces-
sors in a random-looking order that minimizes the external
network hardware needed to cover all specified pairs.

3. SFNN Design

A primary motivator for the development of SFNNs was
the realization that Universal FNNs supported many more
communication patterns than were needed. By designing
for the known needed communication patterns, the network
could be much less expensive to construct, yet still yield
comparable performance for a given set of applications. To
design SFNNs, it is necessary to specify the set of commu-
nication patterns that we wish the SFNN to support with
guaranteed pairwise bandwidth and unit latency. This set
can be represented by an NxN weighted connectivity ma-
trix for N PEs, with the value at matrix element (x,y) being
the relative importance of the communications between PE
x with PE y. If the weights are restricted to zero and one, the
matrix is in the same form as an adjacency matrix; two PEs
are considered adjacent if they are connected to a common
switch. There are three approaches for determining these
connectivity matrices.

3.1. Specification Of Performance Constraints

One can search research publications to identify the
complete set of communication patterns that are discussed.
For example, some frequency-domain transformation algo-
rithms (such as various codings of FFT) communicate using

6

a bit-reversal pattern in which PE x communicates with PE
y where y’s binary value is equal to the bits of the binary
value of x listed in reverse order. Another alternative is to
construct the matrix by directly examining the source code
for the applications that will be run on the machine or con-
sulting the code’s author or documentation. Care must be
taken to distinguish between how the author or application
code views a communication and how it really is imple-
mented; libraries like MPICH or LAM-MPI do not always
implement communications in the way that one might ex-
pect. A third approach, which we are developing primar-
ily for FFNN design, involves automated determination of
communication patterns using instrumented runs of target
applications.

The current SFNN design software allows the communi-
cation matrix to be specified as the union of any of the pat-
terns we found to be common in a literature search. Each
communicating pair yields a 1 entry in the matrix, every
other pair yields a 0. The patterns available include:

• Hypercube, single bit difference in PE ID number (N must
be a power of 2)

• Bit-Reversal of the PE ID number (N must be a power of 2)

• Perfect-Shuffle (N must be even)

• 2D Matrix Transpose of a single element per PE (N must be
a square)

• 1D, 2D, 3D Grids or Tori with various sub-patterns indepen-
dently selectable:

– Distance 1 offsets in X, Y, or Z
– Distance 1 diagonals in 2D and 3D

– Power of 2 offsets in X, Y, or Z
– All PEs that differ in only one dimension (e.g. every

PE in same row, column, etc.)

For 2D and 3D grids/tori, one can select to use just one
balanced factorization of N, or all unique factorizations. For
example a 512 PE cluster can be specified as having any of
the following 3D grids: 128x2x2, 64x4x2, 32x8x2, 32x4x4,
16x16x2, 16x8x4, or 8x8x8; the default would be 8x8x8.

3.2. The Design Algorithm

Although SFNN design appears to be harder than the un-
solved (v,k,t)-covering problem, good solutions can be cre-
ated using aGenetic Algorithm (GA) very similar to that
we developed for FNN design [2]. The genome represen-
tation used in both the FNN and SFNN GAs consists of a
fixed-length bit string representing the set of PEs connected
to each switch. The crossover and mutation operations are
specially coded to ensure various invariant properties are
met by all population members: the number of PEs, the
maximum number of switches, the maximum number of
NICs per PE, and the maximum number of connections per

switch. This saves considerable time because the GA’s met-
ric evaluation is merely ranking feasible network designs,
not also checking their feasibility. However, the GA would
be slow to find FNNs, and even slower to find SFNNs, with-
out a few extra tricks. The FNN design tool attempts to
speed its search by first finding approximate solutions to a
scaled-down problem and then scaling those solutions up to
seed the full problem’s initial population; the SFNN design
tool also seeds its initial population with good designs, but
by using a greedy “buddy connection” algorithm rather than
scaling the problem.

3.3. Related Work In Network Design

There is a huge body of literature on interconnection net-
work designs for parallel supercomputers, but very little on
the design process.

Traditionally, the emphasis has been on selecting a “uni-
versal” topology with good mathematical properties and
then mapping program communications onto that network
architecture. Various mesh and hypercube architectures
have been very popular in more traditional supercomputers,
while cluster network designs most often are either trees
or fat trees [11], perhaps also employing trunking or chan-
nel bonding [15] to enable use of wider, but lower-speed,
switches. All of these network topologies share the property
that they have straightforward scaling procedures, use rela-
tively low-degree nodes, and require multiple routing hops
to accomplish most communication patterns. Mesh and hy-
percube designs offer very simple routing algorithms and
relatively easy use of alternative paths for load balancing or
fault recovery. Trees are fully compatible with commodity
network hardware. Fat trees offer the ability to maintain bi-
section bandwidth as the design is scaled, but at the cost of
requiring routers rather than “dumb” switches to load bal-
ance across alternative paths through the thick portion of
the tree. None of these designs directly addresses issues of
latency for user-specified communication patterns.

The design process for Circulant graphs and other Ca-
ley graphs[17] is becoming a popular topic in interconnec-
tion research due to the low latency these graphs afford by
using relatively high-degree nodes. However, this design
process is again oblivious to performance requirements for
user-specified communication patterns. The work presented
in this paper is closely related to, and based on, our earlier
work using genetic algorithms to design FNNs [2] which
may be either symmetric or asymmetric. At the same time
we were building KLAT2 (Spring 2000), a group at Aus-
tralia’s National University by hand created a symmetric
FNN for the Bunyip supercomputer[1]. The work on fil-
tering random graphs published in Fall 2002 by Lakamraju
et al [10] is closely related to the FNN approach, but use of a
random search is far less efficient than the genetic algorithm

7

approach we have taken, they restricted their consideration
to regular graphs of high-degree nodes, and the metrics that
they considered do not directly correspond to performance
on a user-specified set of communication patterns.

4. SFNN Runtime support

FNN and SFNN routing is closely related to Linux Chan-
nel Bonding [15], however, it is complicated by the fact that
the set of NIs used is a function of the destination of each
message. Another important difference is that it is often de-
sirable to use uplink connections between switches for an
SFNN to route messages between node pairs not covered
by the design, which prohibits the duplication of MAC ad-
dresses (as used in channel bonding).

Our driver assigns each NI a unique local MAC address
such that a single table lookup of a 32-bit entry determines
all routes to be used between a particular pair of nodes. Our
MAC-level mechanism can be used with both standard IP
and technology-specific libraries; e.g., a GAMMA[4] inter-
face could further reduce Gb/s Ethernet latency. Our re-
assignment of MAC addresses somewhat complicates the
network boot process, which we have resolved by incorpo-
rating support for our drivers inWarewulf[16].

5. Conclusion

When we first demonstrated FNNs in KLAT2 in Spring
2000, the general reaction to the technology was strongly
positive. Within a short time, the technology had won vari-
ous awards and was being applied by both commercial[12]
and academic[8] users. However, we knew that universal
FNNs were just the “low-hanging fruit” of a much larger
crop: the ability to automatically engineer an interconnec-
tion network to meet arbitrary performance criteria. SFNNs
are a giant leap along this path, not just because they scale
to much larger designs and are even more cost effective
than FNNs, but because they represent the first time high-
performance network design has been directly driven by a
purely quantitative specification. Perhaps even more sig-
nificantly, our support software now makes the fact that an
SFNN is being used entirely transparent; it can be built us-
ing standard network hardware and even message-passing
library routines need not know an SFNN is being used. The
SFNN concept, and the tools developed to exploit it, allow
a supercomputer systems designer more flexibility and con-
trol over the cost/performance trade-offs of the network for
a suite of target applications.

References

[1] Douglas A. Aberdeen, Jonathan Baxter, and Robert Ed-
wards. 98 cents/Mflops/s, Ultra-Large-Scale Neural-

Network Training on a PIII Cluster. InIEEE/ACM SC2000
Gordon Bell Prize Award in the Price/Performance category,
Dallas, Texas, November 2000.

[2] H.G. Dietz and T.I. Mattox. Compiler Techniques For Flat
Neighborhood Networks. In13th International workshop
on Languages and Compilers for Parallel Computing, pages
239–254, IBM Watson Research Center, Yorktown, New
York, August 2000.

[3] H.G. Dietz and T.I. Mattox. KLAT2’s Flat Neighborhood
Network. In Extreme Linux Track in the 4th Annual Linux
Showcase, October 2000.

[4] GAMMA. http://www.disi.unige.it/project/gamma/.

[5] S. K. S. Gupta, C.-H. Huang, P. Sadayappan, and R. W. John-
son. Implementing fast Fourier transforms on distributed-
memory multiprocessors using data redistributions.Parallel
Processing Letters, 4(4):477–488, 1994.

[6] Th. Hauser, T.I. Mattox, R.P. LeBeau, H.G. Dietz, and
P.G. Huang. High-Cost CFD on a Low-Cost Cluster. In
IEEE/ACM SC2000 Gordon Bell Prize Honarable Mention
in the Price/Performance category, Dallas, Texas, Novem-
ber 2000.

[7] R. Hoare, H. Dietz, T. Mattox, and S. Kim. Bitwise aggre-
gate networks. InThe Eighth IEEE Symposium on Parallel
and Distributed Processing (SPDP ’96), New Orleans, LA,
October 1996.

[8] KAGe. http://www.esci.keele.ac.uk/geophysics/kage/.

[9] Sunil Kim and Alexander Veidenbaum. On shortest path
routing in single stage shuffle-exchange networks. InProc.
7th Annual ACM Symposium on Parallel Algorithms and Ar-
chitectures SPAA’95, pages 298–307, Santa Barbara, Cali-
fornia, 1995.

[10] Vijay Lakamraju, Israel Koren, and C.M. Krishna. Filter-
ing Random Graphs to Synthesize Interconnection Networks
with Multiple Objectives.IEEE Transactions on Parallel and
Distributed Systems, 13(11):1139–1149, November 2002.

[11] Charles E. Leiserson. Fat-trees: Universal networks for hard-
ware efficient supercomputing.IEEE Transactions on Com-
puters, C-34(10):892–901, October 1985.

[12] LinuxLabs. http://www.linuxlabs.com/nimbus.html.

[13] Message Passing Interface Forum, http://www.mpi-
forum.org/docs/mpi-11-html/mpi-report.html. MPI: A
Message-Passing-Interface Standard, May 1994.

[14] La Jolla Covering Repository.
http://www.ccrwest.org/cover.html.

[15] T. Sterling, D. Savarese, D. J. Becker, J. E. Dorband, U. A.
Ranawake, and C. V. Packer. BEOWULF: A parallel work-
station for scientific computation. InProceedings of the
24th International Conference on Parallel Processing, pages
I:11–14, Oconomowoc, WI, 1995.

[16] Warewulf. http://warewulf-cluster.org/.

[17] Junming Xu. Topological Structure and Analysis of Inter-
connection Networks. Kluwer Academic Publishers, 2001.

8

