
CPE200, 253FPAT
Noon, March 8, 2023

Henry (Hank) Dietz
Professor and Hardymon Chair,

Electrical & Computer Engineering



What Do We Do?

∙ : Compilers, Hardware Architectures,
and Operating Systems

∙ :
– Aggregate Function Networks (AFNs)…

in 1st Linux PC Cluster Supercomputer
– Make the components of a computing

system work better together, improving
performance & gaining new abilities



You are what you eat...

∙ I am a computer engineer / systems guy

∙ Background in CS, EE, ME, Math, & Econ

∙ From 1983, parallel processing researcher

∙ In 1970s, photo editor of various school pubs
and a published professional photographer

∙ From birth, trained to know how everything
in Dad’s manufacturing company worked



Supercomputers

Computers that can solve big problems
and can scale to solve bigger problems.

∙ Mostly about parallel processing

∙ Need not be huge, expensive, etc.

∙ We make them cheap

∙ We also make them able to do new things



(Old) Cheap Supercomputers



Current
Supercomputing Research

∙ I’m one of the folks who started the cluster
supercomputing revolution…

∙ Several years ago, I realized:
– My lab has 168kW power, 30 tons cooling
– My lab heats half the Marksbury building
– My lab could not power 1 high-end rack!
– Big systems have thousands of racks

∙ It’s really all about power / computation



int a, b, c;
c = a + b;

∙ 32-bit carry lookahead adder…

roughly 650 single-gate operations!t4=(t2|
t3); t5=(a2ˆb2); c2=(t4ˆt5);
t6=(a2&b2); t7=(t4&t5); t8=(t6|t7);
t9=(a3ˆb3); c3=(t8ˆt9);
c4=((a3&b3)|(t8&t9));

∙ By common subexpression elimination (CSE)



int:4 a, b;
c = a + b;

∙ Optimized, 17 single-gate operations:

c0=(a0ˆb0); t0=(a0&b0); t1=(a1ˆb1);
c1=(t0ˆt1); t2=(a1&b1); t3=(t0&t1);
t4=(t2|t3); t5=(a2ˆb2); c2=(t4ˆt5);
t6=(a2&b2); t7=(t4&t5); t8=(t6|t7);
t9=(a3ˆb3); c3=(t8ˆt9);
c4=((a3&b3)|(t8&t9));

∙ By common subexpression elimination (CSE)



int:4 a, b;
b = 1; c = a + b;

∙ Optimized, 7 single-gate operations:

c0= ̃a0; c1=(a0ˆa1); t0=(a0&a1);
c2=(a2ˆt0); t1=(a2&t0); c3=(a3ˆt1);
c4=(a3&t1);

∙ By value forwarding, constant folding,
algebraic simplification, and CSE…
standard compiler optimizations!



int:8 a, b, c;
a = (c * c) ^ 70;
a = ((a >> 1) & 1);
a = b + (c * b) + a;

a = a + ~(b * (c + 1));

∙ About 206,669 gates unoptimized

∙ Optimized, it’s just  a = 0;



int:8 a, b, c;
a = (c * c) ^ 70;
a = ((a >> 1) & 1);
a = b + (c * b) + a;

a = a + ~(b * (c + 1));

∙ About 206,669 gates unoptimized

∙ Optimized, it’s just  a = 0;



Quantum Computers?



Quantum Computing

Parallel processing without parallel hardware.

∙ Qubits instead of bits
– Each qubit can be 0, 1, or superposed
– A “gate” operates on superposed values
– Entangled qubits maintain values together
– Measuring a qubit’s value picks 0 or 1

 ∙ Quantum computers are not the only way to
do that: Parallel Bit Pattern computing



An Example: Find sqrt(29929)

∙ 310 single-gate operations:

int main(int argc, char **argv) {
  pbit_init();
  pint a = pint_mk(16, 29929);
  pint b = pint_h(8, 0xff);
  pint c = pint_mul(b, b);
  pint d = pint_eq(c, a);
  pint e = pint_mul(d, b);
  pint_measure(e);
}



An Example: Find sqrt(29929)

∙ C++ isqrt(29929) returns  173

int isqrt(int val) {
  pint a(val);
  pint b = pint(0).Had(8);
  pint c = (b * b);
  pint d = (c == a);
  pint pos = d.First();
  return(pos);
}



An Example: Prime Factoring

// Factor value a
// Primes that fit in 5 bits:
// 2,3,5,7,11,13,17,19,23,29,31
int a = 11*29;
pint b = 0;
b = b.Had(5,0); // 1st factor
pint c = 0;
c = c.Had(5,5); // 2nd factor
pint d = b * c; // multiply 'em
pint e = (d == a); // which gave a?
pint f = e * b;
Print(f);



An Example: factor 319



Our next superccomputer...



Supercomputers
Doing New Things



Computational Photography

Cameras as computing systems;
using computation to enhance camera abilities

and / or to process the data captured

∙ New camera / sensor / processing models

∙ Intelligent computer control of capture

∙ Detection / manipulation of image properties



“Raw” Repair

∙ “Raw” means “uncooked” or “unprocessed”

∙ Can credibly repair corrupted data
– Fuji X10 “white orbs” blooming ⇒ DeOrbIt
– Sony ARW compression artifacts ⇒ KARWY
– Sony ARW PDAF artifacts ⇒ KARWY-SR



Photoplethysmography

∙ Reprogrammed a $100 camera to detect
heartbeats by detecting color change

∙ Reprogrammed a <$100 camera to measure
heartbeat by detecting color change



Covered Safe Entry Scanner

∙ Detect when a mask is being properly worn
∙ Also thermal imager & contact tracing

∙ Reprogrammed a <$100 camera to measure
heartbeat by detecting color change



TDCI: Time Domain
Continuous Imaging

∙ TDCI representation: a continuous waveform
per pixel, compressed (mostly) in time domain

∙ TDCI processing enables:
– High dynamic range (HDR), improved SNR
– Rendering a virtual exposure for any time

interval (start time, shutter speed)
– Rendering a conventional video at any FPS

and shutter angle (temporal weighting)



TDCI Example

∙ Video is converted to TDCI, then new frames
synthesized… with significantly better quality





FourSee TDCI Camera

∙ Syncs four reprogrammed PowerShots
∙ 3D-printed structure for alignment, etc.



A Custom 3D-Printed Adapter
With M42-Compatible Thread

Lens adapter
M42 x 1mm pitch
to Sony E

On $180 printer,
0.25mm layers!



Some of our latest work...

∙ Reprogrammed a <$100 camera to measure
heartbeat by detecting color change

 



Design For Manufacturability 
(DFM)

Design product so that it is easy to manufacture.

∙ E.g., Lego doesn’t easily do curves… and
most 3D printers don’t do unsupported spans

∙ How is this computer engineering?
– A design is a parametric program

(parameterized by machine characteristics)
– Compiler technology optimizes for DFM



3D-Printed Spanless Hinges



A Fancier DFM Example

∙ In 2016, researchers at the Hasso Plattner
Institute made “metamaterial pliers”: a single
part with stiffness, spring, & bending hinge

∙ Our metamaterial version
has a spring and
a spanless
hinge and
it works…



Spring 2023: TR 12:30-1:45 EE599-001/EE699-001
 

Programmable Cameras and IoT
This course will start by introducing the basic principles of photography and the 
details of how digital cameras work. However, cameras are no longer just about 
photography; they are sensors in embedded computing systems that can serve a 
wide range of applications. For example, using CHDK, it is trivial to program a 
Canon PowerShot camera to serve as a non-contact tape measure. The course 
will use CHDK cameras to explain how camera internals work and students will 
get hands-on experience using and programming these cameras. Cameras are 
also now cheap sensors for use within Internet of Things (IoT) devices. An 
ESP32-CAM IoT module that costs under $10 includes a 2MP camera and can 
be programmed for tasks as diverse as wirelessly serving live video via an HTML 
browser interface to unlocking a door when a person's face is recognized. We will 
discuss IoT devices in general and use of the ESP32-CAM and its OV2640 
camera in particular. Students will implement simple IoT projects using the 
ESP32-CAM via the Arduino programming environment.

Prerequisites: Familiarity with C/C++ programming. No background with photography is required.



You Can Get Involved

∙ Talk to me, or Paul Eberhart, etc.

∙ Most stuff is posted at AGGREGATE.ORG

∙ Quantum computing Education & Research
In Kentucky


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 16
	Slide 17
	Slide 18
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35

